

000 001 002 003 004 005 006 007 008 009 010 INTERNALIZING SELF-CONSISTENCY IN LANGUAGE MODELS: MULTI-AGENT CONSENSUS ALIGNMENT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Language Models (LMs) are inconsistent reasoners, often generating contradic-
012 tory responses to identical prompts. While inference-time methods can mitigate
013 these inconsistencies, they fail to address the core problem: LMs struggle to reli-
014 ably select reasoning pathways that lead to consistent outcomes under exploratory
015 sampling. To address this, we formalize self-consistency as an intrinsic property of
016 well-aligned reasoning models and introduce Multi-Agent Consensus Alignment
017 (MACA), a reinforcement learning framework that post-trains models to favor rea-
018 soning trajectories aligned with their internal consensus using majority/minority
019 outcomes from multi-agent debate. These trajectories emerge from deliberative
020 exchanges where agents ground reasoning in peer arguments, not just aggregation
021 of independent attempts, creating richer consensus signals than single-round ma-
022 jority voting. MACA enables agents to teach themselves to be more decisive and
023 concise, and better leverage peer insights in multi-agent settings without external
024 supervision, driving substantial improvements across self-consistency (+27.6%
025 on GSM8K), single-agent reasoning (+23.7% on MATH), sampling-based infer-
026 ence (+22.4% Pass@20 on MATH), and multi-agent ensemble decision-making
027 (+42.7% on MathQA). These findings, coupled with strong generalization to un-
028 seen benchmarks (+16.3% on GPQA, +11.6% on CommonsenseQA), demonstrate
029 robust self-alignment that more reliably unlocks latent reasoning potential of lan-
030 guage models.

1 INTRODUCTION

031 A fundamental trait of a reliable reasoning model is self-consistency: the intrinsic ability to produce
032 stable outputs across various sampled reasoning paths (Elazar et al., 2021; Wang et al., 2022). In
033 the human brain, this consistency emerges from the prefrontal and anterior cingulate cortices, which
034 resolve conflicts between competing neural activations (Miller & Cohen, 2001) by balancing novelty
035 and coherence (Friston, 2010; Botvinick et al., 2004; Shenhav et al., 2013; Zhang et al., 2025).
036 This enables human reasoning to remain robust despite the inherent randomness of thought. In
037 contrast, while probabilistic decoding in language models (LMs) gives access to diverse reasoning
038 trajectories, it struggles to consistently select high-quality paths (Holtzman et al., 2020; Wang et al.,
039 2022). Yet, current AI alignment research primarily focuses on human preferences and external
040 values (Ouyang et al., 2022; Glaese et al., 2022), while overlooking the model’s self-alignment. The
041 challenge remains: teaching models to sample diversely, i.e., exploring multiple valid reasoning
042 paths like different theorem proofs or alternative chains of thought, while maintaining consistent
043 quality and conclusions. Existing methods for mitigating sampling inconsistencies such as sampling
044 multiple reasoning paths and aggregating via majority vote (Wang et al., 2022; Li et al., 2024) or
045 using multi-agent debate (Irving et al., 2018) operate at inference time. While these reduce output
046 variance, they do not improve the model’s internal reasoning stability. When models generate low-
047 quality reasoning traces, aggregation can even be counterproductive: noisy arguments compound
048 rather than cancel out, especially in ambiguous scenarios (Radharapu et al., 2025).

049 We formalize self-consistency as an intrinsic property of well-aligned reasoning models and intro-
050 duce Multi-Agent Consensus Alignment (MACA), a reinforcement learning (RL) framework where
051 multiple LM clones collaborate to solve problems through iterative debate. This debate serves as a
052 simulation environment where agents explore solutions independently, then ground their reasoning
053 through peer interaction and update their answers. Crucially, the reasoning paths exchanged during

054 this collaborative exploration, not just final majority answers, provide strong training signals for
 055 teaching agents to recognize stable reasoning patterns (Fig. 1). These consensus-aligned trajectories
 056 from debate contain richer signals than aggregating isolated reasoning attempts. We reinforce
 057 majority-outcome traces where agents successfully converged through peer grounding. This teaches
 058 models to internalize self-consistency: they learn from collaboratively refined reasoning and develop
 059 an inductive bias toward consensus-forming trajectories even mid-generation, which resembles hu-
 060 man intuition for sensing sound arguments before completing them (Kahneman, 2011). Learning
 061 from these patterns teaches models to weigh multiple reasoning approaches, a skill that generalizes
 062 beyond the original training tasks and makes them better ensemble participants.

063 Our experiments confirm that multi-agent debate produces more informative training signals than
 064 single-round majority voting. We also observe that addressing consensus alignment through pre-
 065 ference learning yields substantial improvements over scalar-reward RL and imitation learning. We
 066 optimize the separation between majority and minority trajectories using majority vote variants of
 067 DPO (Rafailov et al., 2023) and KTO (Ethayarajh et al., 2024), outperforming GRPO (Shao et al.,
 068 2024) and SFT (Subramaniam et al., 2025). This mirrors human preference formation through rel-
 069 ative comparison (Festinger, 1957): when truth is ambiguous, judgments emerge through compara-
 070 tive assessment where majority opinions provide normative pressure while minority views introduce
 071 necessary variation (Moscovici, 1976; Nemeth, 1985; M. J. A. N. de Caritat, 1785). Training on
 072 debate-derived preferences thus teaches models to ground reasoning in peer arguments, learning
 073 efficient and stable reasoning through comparison rather than ground-truth labels.

074 **Key contributions.** Through extensive experiments on LMs across various reasoning benchmarks,
 075 we empirically demonstrate that MACA achieves improvements on the following dimensions.

- 076 • **Self-consistency.** MACA shows improvements in answer consistency (up to +27.6% on
 077 GSM8K) across different sampled reasoning paths.
- 078 • **Accuracy.** It also yields significant improvements in individual agent performance
 079 (+23.7% on MATH), sampling-based inference (+22.4% Pass@20 on MATH), and multi-
 080 agent performance (+42.7% on MathQA).
- 081 • **Generalization.** Training for self-consistency on mathematical reasoning transfers to all
 082 evaluated tasks, including unseen domains (+11.3% on GPQA, +11.6% on Common-
 083 senseQA), demonstrating that self-consistency is a foundational capability for general rea-
 084 soning.

086 2 RELATED WORK

088 Existing approaches address sampling inconsistency primarily through inference-time techniques.
 089 Self-consistency prompting (Wang et al., 2022; Li et al., 2024) samples multiple reasoning paths
 090 and selects the majority-voted answer, with extensions for non-verifiable outputs (Chen et al., 2023)
 091 and path pruning (Zhu et al., 2024a). Multi-agent debate frameworks (Du et al., 2023; Irving et al.,
 092 2018) similarly utilize consensus across models to improve reliability, with recent work exploring
 093 applications in scientific discovery (Gottweis et al., 2025). These methods, however, require
 094 additional inference compute and do not internalize the self-consistency into the model. We in-
 095 stead improve self-consistency through post-training that optimizes consensus signals via multi-
 096 agent RL (Yang et al., 2021; Jiang & Lu, 2021; Zhu et al., 2024b; Zhan et al., 2025), strengthening
 097 foundational reasoning abilities. Current training-time alternatives have limitations: relative log-
 098 probability ranking (Huang et al., 2025) correlates weakly with accuracy compared to consensus
 099 (App. I), while LLM-as-a-Judge approaches (Jiao et al., 2025) suffer from preference leakage (Li
 100 et al., 2025) and bias under ambiguity (Radharapu et al., 2025). Majority vote RL methods such
 101 as TTRL (Zuo et al., 2025) and ScDPO (Prasad et al., 2024) use GRPO and DPO, respectively, to
 102 reinforce single-round majority vote, whereas our framework leverages multi-agent debate, while
 103 supporting both preference learning and scalar-reward formulations. **Both TTRL and ScDPO are**
 104 **specialized cases of the framework developed in this work, when reducing the multi-agent debate**
 105 **parameters to a single-round majority vote.** Subramaniam et al. (2025) uses Supervised Fine-Tuning
 106 (SFT) for multi-agent debate optimization. In this work we demonstrate that RL-based alternatives
 107 achieve superior performance compared to SFT.

108

3 FORMALIZING SELF-CONSISTENCY

109

110 Given a prompt x , an LM with parameters θ defines a distribution $\pi_\theta(y|x) = \prod_{t=1}^{|y|} \pi_\theta(y_t|x, y_{<t})$
111 over reasoning trajectories y , from which answers $a = A(y)$ are extracted. Under tempera-
112 ture sampling, the model samples from a modified distribution $\pi_{\theta,\tau}(y|x)$ where token proba-
113 bilities are adjusted by temperature $\tau > 0$. This induces an answer distribution $P_{\theta,\tau}(a|x) =$
114 $\sum_{y:A(y)=a} \pi_{\theta,\tau}(y|x)$, which gives each answer’s probability by summing over all reasoning paths
115 that lead to it. We denote the majority answer as $a_{\theta,\tau}^*(x) = \arg \max_a P_{\theta,\tau}(a|x)$ with majority
116 probability $S_{\theta,\tau}^+(x) = P_{\theta,\tau}(a_{\theta,\tau}^*(x)|x)$. This represents the total probability mass concentrated on
117 the most likely answer, or the model’s internal consensus.
118

119 Temperature sampling enables exploration of diverse reasoning paths, but reduces the consistency
120 of the final answer. While greedy decoding ($\tau = 0$) trivially approaches perfect consistency, it elimi-
121 nates exploration and often produces suboptimal solutions (Holtzman et al., 2020). Lower tempera-
122 tures increase consistency but restrict reasoning diversity. A self-consistent model should maintain
123 high $S_{\theta,\tau}^+(x)$ even at high temperatures, allowing the model to access diverse reasoning trajectories
124 while reliably converging on consistent answers. We measure self-consistency in two ways.
125

126 **Single-agent sampling consistency.** Computing $S_{\theta,\tau}^+(x)$ directly requires summing probabilities
127 over all trajectories that lead to the majority answer, which is untractable. Instead, we estimate it by
128 sampling t independent trajectories with answers a_1, \dots, a_t and computing:
129

130
$$s_t^{\theta,\tau}(x) = \frac{1}{t} \sum_{i=1}^t \mathbf{1}[a_i(x) = \hat{a}(x)], \quad \text{where } \hat{a}(x) = \text{Majority}\{a_1(x), \dots, a_t(x)\}. \quad (1)$$
131

132 This measures the fraction of sampled trajectories that agree with the majority answer. As $t \rightarrow \infty$,
133 $s_t^{\theta,\tau}(x) \rightarrow S_{\theta,\tau}^+(x)$, providing a consistent estimate of the true majority probability.
134

135 **Multi-agent debate agreement.** When M agents produce answers $a_1(x), \dots, a_M(x)$ through de-
136 liberation, we measure the fraction of agents converging on the majority answer:
137

138
$$d_M^{\theta,\tau}(x) = \frac{1}{M} \sum_{m=1}^M \mathbf{1}[a_m(x) = \hat{a}(x)], \quad \text{where } \hat{a}(x) = \text{Majority}\{a_1(x), \dots, a_M(x)\}. \quad (2)$$
139

140 Higher agreement indicates a stronger consensus. In other words, models with higher $S_{\theta,\tau}^+(x)$ reach
141 the same conclusion more frequently.
142

143

4 MACA: MULTI-AGENT CONSENSUS ALIGNMENT

144

145 Having formalized self-consistency, we now present a framework to improve it through post-training
146 with self-generated signals from debate. In multi-agent debate, M copies of the same model engage
147 in iterative discussion: each agent generates an initial response, then all agents see each other’s
148 reasoning and update their answers over $R - 1$ subsequent rounds of deliberation. Answers that
149 persist indicate stronger reasoning. The framework requires no external supervision: agents su-
150 pervise themselves by learning from their own debate dynamics. Specifically, for each prompt x ,
151 the debate produces final responses $\mathcal{Y}(x) = \{y_1, \dots, y_M\}$ with extracted answers $a_m = A(y_m)$.
152 The majority consensus $\hat{a}(x) = \text{Majority}\{a_1, \dots, a_M\}$ partitions $\mathcal{Y}(x)$ into consensus-supporting
153 $\mathcal{G}^+(x) = \{y \in \mathcal{Y}(x) : A(y) = \hat{a}(x)\}$ and dissenting $\mathcal{G}^-(x) = \{y \in \mathcal{Y}(x) : A(y) \neq \hat{a}(x)\}$ tra-
154 jectories. This creates a fixed post-training dataset $\mathcal{D}_{\text{post}} = \{(x, \hat{a}(x), \mathcal{G}^+(x), \mathcal{G}^-(x))\}_{x \in \mathcal{D}}$ where
155 \mathcal{D} is the original set of prompts. Debate consensus, arising through deliberative exchange rather
156 than statistical sampling, provides rich training signals. We adapt four post-training objectives to
157 this self-generated data, treating consensus-supporting trajectories (\mathcal{G}^+) as preferred and dissenting
158 trajectories (\mathcal{G}^-) as not preferred. By learning to separate these groups, the model internalizes the
159 nuanced differences between stable consensus and dissenting reasoning. See Alg. 1 in App. D for
160 the complete iterative debate and post-training loop.
161

162 **Majority-Vote SFT (MV-SFT)** trains the model to mimic consensus-supporting trajectories:
163

164
$$\mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y^+ \in \mathcal{G}^+(x)} [\log \pi_\theta(y^+|x)]. \quad (3)$$
165

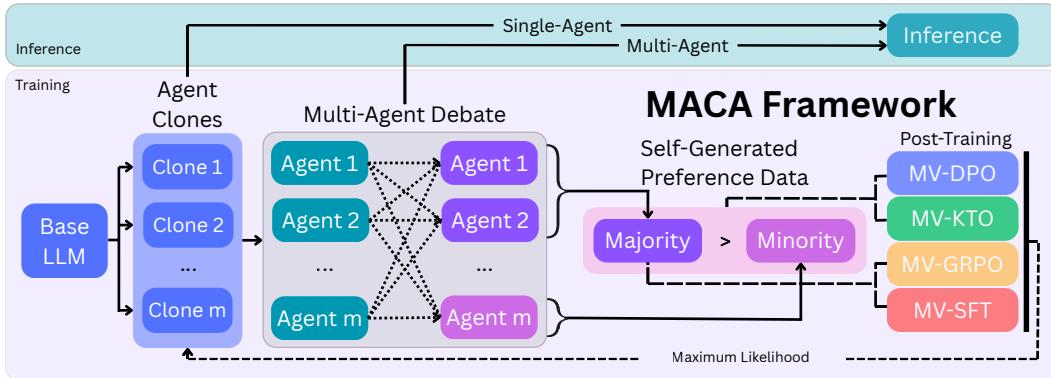


Figure 1: Multi-Agent Consensus Alignment framework: Multiple clones of a base LM engage in debate to generate majority and minority reasoning trajectories through multi-agent debate. The framework splits responses based on alignment with majority consensus to create preference pairs. MV-GRPO compares online samples against majority signals, while MV-SFT imitates majority traces directly. In contrast, MV-DPO and MV-KTO utilize both positive (majority) and negative (minority) examples to learn relative separation between these preference pairs. Updated agents can then be used for single-agent or multi-agent inference, or continue iterative training.

Majority-Vote GRPO (MV-GRPO) uses online sampling with consensus-based rewards. For each prompt x , we sample multiple trajectories from the current policy and assign reward $r_x(y) = 1[\mathcal{A}(y) = \hat{a}(x)]$ based on whether each sample’s answer matches the pre-computed consensus:

$$\mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi_\theta} \left[\tilde{A}_x(y) \sum_t \log \pi_\theta(y_t | x, y_{<t}) \right] + \lambda \text{KL}(\pi_\theta \| \pi_{\text{ref}}), \quad (4)$$

where $\tilde{A}_x(y) = r_x(y) - \bar{r}_x$ is the group-normalized advantage. We find that model inconsistency naturally yields both consensus and dissenting trajectories, allowing GRPO’s group normalization to contrast majority/minority outcomes within batches.

Majority-Vote DPO (MV-DPO) follows the standard DPO formulation with preference pairs constructed from our pre-generated debate outcomes:

$$\mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{(y^+, y^-) \in \mathcal{G}^+(x) \times \mathcal{G}^-(x)} \left[\log \sigma \left(\beta \left[\log \frac{\pi_\theta(y^+ | x)}{\pi_{\text{ref}}(y^+ | x)} - \log \frac{\pi_\theta(y^- | x)}{\pi_{\text{ref}}(y^- | x)} \right] \right) \right]. \quad (5)$$

By contrasting the model’s own consensus and dissenting trajectories, DPO’s log probability ratios capture differences across entire reasoning chains, not just final answers, allowing each token to contribute to the preference signal.

Majority-Vote KTO (MV-KTO) applies KTO’s unpaired formulation with debate-derived labels from our fixed dataset, with class-balancing weights λ_+ and λ_- :

$$\begin{aligned} \mathcal{L}_{\text{KTO}}(\theta) = & -\lambda_+ \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y^+ \in \mathcal{G}^+(x)} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y^+ | x)}{\pi_{\text{ref}}(y^+ | x)} \right) \right] \\ & -\lambda_- \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y^- \in \mathcal{G}^-(x)} \left[\log \sigma \left(-\beta \log \frac{\pi_\theta(y^- | x)}{\pi_{\text{ref}}(y^- | x)} \right) \right]. \end{aligned} \quad (6)$$

KTO’s unpaired structure handles imbalanced outcomes where majority trajectories dominate.

MACA as a generalization of self-guided majority-vote RL. MACA subsumes prior majority-vote RL approaches such as TTRL (Zuo et al., 2025) and ScPO (Prasad et al., 2024), which use a single round majority vote from independently sampled responses. TTRL uses this to inform GRPO labels, while ScPO uses it to construct DPO pairs. By contrast, MACA introduces multi-agent, multi-round debate, including deliberation traces as conditioning contexts within the prompts during RL. This exposes the model to concrete examples of relative grounding, instances where consensus emerges through explicit engagement with peer arguments, allowing the model to learn not just to aggregate outputs, but to internalize the deliberative process by which consensus is reached.

216

5 RESULTS AND DISCUSSION

217

218 We evaluate MACA by post-training four **instruction-tuned** small LMs (Qwen-2B (Yang et al.,
219 Llama-3B (Grattafiori et al., 2024), Phi-4B (Abdin et al., 2024), and Llama-8B (Grattafiori
220 et al., 2024)) on six reasoning benchmarks (MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al.,
221 2021), MathQA (Amini et al., 2019), SVAMP (Patel et al., 2021), GPQA (Rein et al., 2023), and
222 Commonsense-QA (Talmor et al., 2019)). We use 4-bit quantization with QLoRA (Dettmers et al.,
223 2023) and limit responses to 256 tokens with temperature $\tau = 1.0$, which tests exploratory sampling
224 under a budget adequate for efficient solvers on these benchmarks while reflecting realistic deploy-
225 ment compute constraints (Tong et al., 2025; Husom et al., 2025). Improvements persist when tested
226 with larger token limits (App. M). We instantiate multi-agent debate with $M = 3$ clones and $R = 2$
227 rounds, and compare (1) pre-trained models, (2) SFT baselines, and (3) MACA variants of GRPO,
228 DPO, and KTO. We train and evaluate models on 1500/500 train/test splits for each dataset inde-
229 pendently, unless otherwise specified, isolating task-specific self-consistency improvements. We
230 report mean agent accuracy with standard deviation across three seeds. Debate prompts, training
231 parameters, multi-processing design, and other experimental details can be found in App. E.
232

233

5.1 POST-TRAINING IMPROVES SELF-CONSISTENCY

234 We measure the effect of post-training on sampling consistency $s_t^{\theta, \tau}(x)$, the fraction of sampled tra-
235 jectories that match the majority answer. As formalized in Sec. 3, we track the sampling consistency
236 where $s_t^{\theta, \tau}(x)$ converges to the modal probability $S_{\theta, \tau}^+(x)$ as $t \rightarrow \infty$. For each model, we sample
237 20 trajectories on 500 held-out prompts and evaluate $s_t^{\theta, \tau}(x)$ for $t = 1$ to 20 (Fig. 2). At $t = 1$,
238 this metric primarily captures answer completeness, i.e., the percentage of responses that produce
239 parseable answers within the token window, which post-training substantially improves. MV-DPO
240 and MV-KTO achieve these gains through self-supervised preference learning alone, demon-
241 strating that models can teach themselves more efficient reasoning without format rewards (App. M), which
242 can otherwise be spurious (Huang et al., 2024; Srivastava et al., 2025). As sample size increases,
243 the metric transitions to measuring true cross-sample agreement. The curves stabilize up to 27.6
244 percentage points above baseline, demonstrating that post-training increases answer concentration:
245 models more consistently sample trajectories that converge despite high-temperature exploration.
246 These improvements persist when tested without max token constraints (App. J.1).
247

248 In multi-agent debate, we evaluate the agreement metric $d_M^{\theta, \tau}(x)$ defined in Sec. 3. Base small LMs
249 initially struggle to reach meaningful consensus: for Qwen-2B on GSM8K, most of the “consensus”
250 comes from random tie-breaking (1/3 agreement) or weak majorities (2/3), with only 13.4% reach-
251 ing unanimity (Fig. 12, App. P). Post-training with MACA thoroughly addresses this: non-parseable
252 responses drop from 13.8% to 0.6%, no-agreement cases from 45.6% to 19.8%, while unanimous
253 agreement triples from 13.4% to 43.4%. This confirms that MACA improves both individual reason-
254 ing quality and collaborative grounding, enabling genuine consensus rather than noisy aggregation
255 (agreement distributions in App. P).
256

257

5.2 SELF-CONSISTENCY IMPROVES PROBLEM-SOLVING PERFORMANCE

258 **Impact on a single agent in zero-shot setting.** Across 12 model-dataset pairs, MV-RL methods
259 consistently outperform the Base and MV-SFT baselines (Table 1) in single-agent zero-shot (single
260 trajectory) settings. Self-guided preference learning (MV-DPO and MV-KTO) outperforms scalar
261 rewards via MV-GRPO for all models except Phi-4B. MV-DPO is best in 7/12 cases, while MV-KTO
262 is better in some cases for smaller LMs.
263

264 **Impact on inference-time sampling.** We next examine how gains in self-consistency translate to
265 inference-time performance under various sampling regimes. For each prompt, we draw t trajec-
266 tories and report two metrics: Pass@t, the fraction of prompts for which at least one of the first
267 t samples is correct (Chen et al., 2021), and MV@t, the fraction for which a majority vote over
268 those t samples matches the ground truth (ties counted as incorrect) (Li et al., 2024). As shown
269 in Fig. 3, post-training (blue) (i) lifts greedy ($\tau=0$) accuracy, (ii) increases MV@t at each fixed t ,
270 and (iii) raises Pass@t, the empirical sampling upper bound, indicating higher achievable accuracy
271 at any given sampling budget. When additional inference compute is available (i.e., $t > 1$), sam-
272 pling techniques continue to see gains on top of the post-training improvements, showing MACA
273

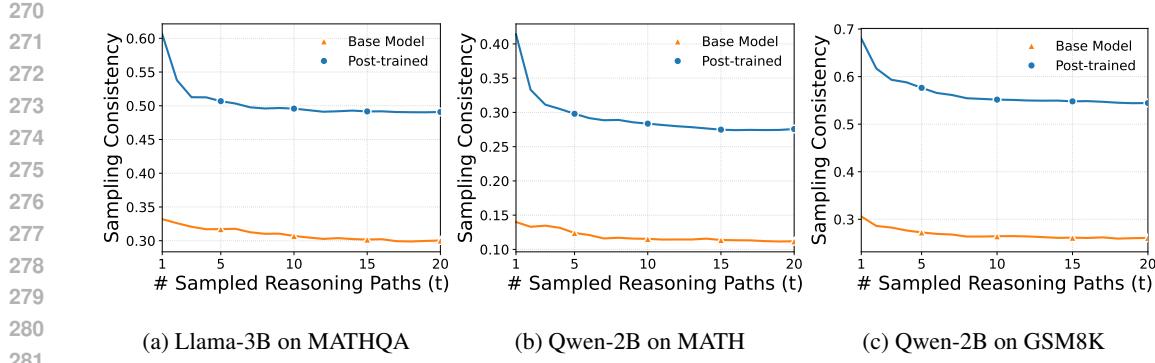


Figure 2: Consistency before and after MACA post-training. Pre-trained models (Orange) show low sampling consistency across sampled trajectories. Post-training with MACA (Blue) substantially improves sampling consistency. Averaged over 500 test prompts with 20 trajectories each.

Table 1: Accuracy impact of MACA on single agent performance in zero-shot setting.

Model	Dataset	Base / SFT (Baseline)		RL (Our Methods)			Best Δ
		Base	MV-SFT	MV-GRPO	MV-KTO	MV-DPO	
Qwen2B	MATH	7.67	11.51 ± 0.60	18.09 ± 0.71	20.18 ± 0.67	23.49 ± 2.30	$\uparrow 15.82$
	GSM8K	23.00	24.84 ± 0.87	34.40 ± 2.08	45.13 ± 1.80	43.87 ± 1.92	$\uparrow 22.71$
	MathQA	5.00	5.25 ± 0.33	17.27 ± 2.88	22.16 ± 1.14	20.91 ± 0.47	$\uparrow 17.27$
Llama3B	MATH	27.87	25.89 ± 0.56	35.22 ± 0.44	40.64 ± 1.25	40.71 ± 0.08	$\uparrow 13.26$
	GSM8K	57.33	55.98 ± 0.68	52.40 ± 2.84	65.76 ± 1.44	64.98 ± 1.67	$\uparrow 8.80$
	MathQA	23.87	23.44 ± 0.73	30.09 ± 1.98	42.84 ± 0.67	45.00 ± 2.23	$\uparrow 21.13$
Phi4B	MATH	34.60	34.60 ± 0.82	37.42 ± 0.16	33.84 ± 0.78	34.62 ± 1.48	$\uparrow 2.82$
	GSM8K	67.27	69.58 ± 0.76	67.13 ± 3.60	75.60 ± 1.80	76.87 ± 0.36	$\uparrow 9.84$
	MathQA	34.87	34.04 ± 0.58	45.52 ± 2.19	33.91 ± 0.16	33.91 ± 0.50	$\uparrow 10.65$
Llama8B	MATH	22.93	23.16 ± 0.14	29.66 ± 1.27	39.42 ± 0.44	46.00 ± 0.35	$\uparrow 23.07$
	GSM8K	57.93	42.09 ± 1.28	62.45 ± 6.01	72.36 ± 1.34	77.36 ± 0.27	$\uparrow 19.43$
	MathQA	29.67	30.84 ± 0.60	33.07 ± 1.11	38.42 ± 1.22	51.18 ± 0.24	$\uparrow 21.51$

is complementary to inference-time sampling. The same pattern holds with full-precision, with improvements comparable to their 4-bit counterparts (App. O). Finally, self-consistency gains strongly correlate with accuracy improvements ($r > 0.86$ across all tested inference conditions; see App. J).

Impact on multi-agent debate setting. We evaluate MACA in the multi-agent setting using final-round majority-vote accuracy (the consensus after debate). Baselines are (1) the base model’s debate outcome (Du et al., 2023) and (2) MV-SFT on majority traces (Subramaniam et al., 2025). As shown in Table 2, post-training on debate-derived signals improves ensemble accuracy across all models and datasets. Preference learning variants (MV-DPO and MV-KTO) provide the largest and most consistent gains, up to +42.73 percentage points, by directly optimizing the log-probability gap between trajectories, with MV-KTO performing best on smaller models ($\leq 3B$) and MV-DPO on larger ones ($4-8B$). Learning the relative separation between full reasoning trajectory pairs appears to better address credit assignment challenges in sparse final-answer supervision compared to both MV-GRPO’s scalar rewards and MV-SFT’s imitation learning, simultaneously improving answer accuracy while reinforcing higher-quality and more concise intermediate reasoning steps (App. M).

Impact on debate dynamics. Fig. 4 summarizes four metrics: initial round average single-agent accuracy, initial round ensemble majority vote (not used in the debate), final round average single-agent accuracy (conditioned on debate context/peer chains-of-thought), and final round ensemble majority vote (consensus). Post-training produces the largest gains where agents leverage peer feedback, since it directly teaches effective peer context utilization. We also observe that post-training mitigates debate-driven performance degradation observed in MATHQA for Llama-3B. The con-

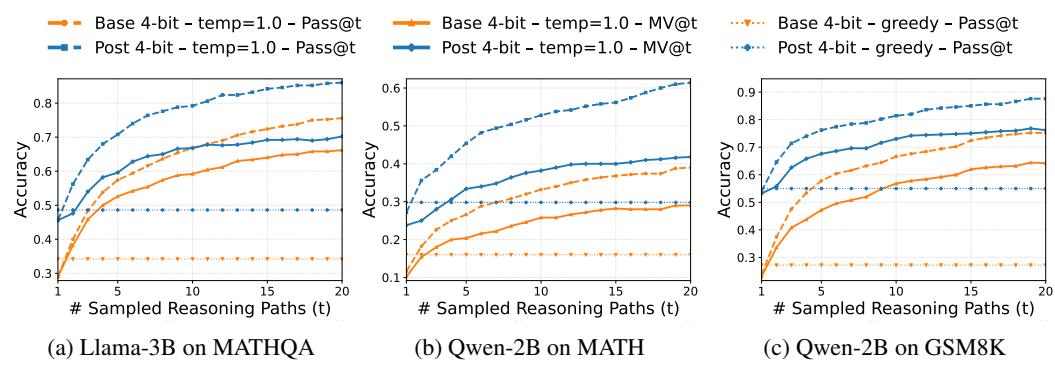


Figure 3: Post-training self-consistency improves sampling accuracy. Dashed: Pass@t (oracle upper bound), solid: MV@t (majority over t samples), dotted: greedy ($\tau = 0$) accuracy. (Blue): post-trained model. (Orange): base model. Curves computed over 500 prompts.

Table 2: Post-training multi-agent debate yields consistent accuracy improvements.

Model	Dataset	Pre / SFT (Baseline)		RL (Our Methods)			Best Δ
		Debate	MV-SFT	MV-GRPO	MV-KTO	MV-DPO	
Qwen2B	MATH	32.40	37.07 ± 3.07	39.00 ± 1.74	46.47 ± 3.01	42.60 ± 1.78	$\uparrow 14.07$
	GSM8K	49.60	50.53 ± 1.36	54.13 ± 2.02	63.07 ± 0.64	58.47 ± 1.62	$\uparrow 13.47$
	MathQA	24.20	26.27 ± 0.58	29.93 ± 4.99	32.60 ± 0.72	28.33 ± 0.31	$\uparrow 9.13$
Llama3B	MATH	37.80	35.33 ± 1.62	48.33 ± 2.19	52.93 ± 0.99	51.93 ± 1.67	$\uparrow 15.27$
	GSM8K	65.60	64.60 ± 1.59	68.60 ± 1.00	73.13 ± 0.83	71.67 ± 3.03	$\uparrow 7.80$
	MathQA	21.60	40.07 ± 2.00	48.73 ± 1.60	64.00 ± 0.53	63.13 ± 1.89	$\uparrow 42.73$
Phi4B	MATH	44.40	45.53 ± 2.53	49.93 ± 1.33	45.27 ± 0.70	46.73 ± 1.67	$\uparrow 5.53$
	GSM8K	79.60	78.93 ± 0.61	82.67 ± 1.81	82.47 ± 1.14	84.73 ± 0.31	$\uparrow 5.13$
	MathQA	49.60	50.87 ± 1.62	63.07 ± 1.21	51.53 ± 1.14	51.40 ± 1.44	$\uparrow 13.47$
Llama8B	MATH	32.80	34.13 ± 0.70	45.93 ± 1.03	53.93 ± 1.80	59.67 ± 1.33	$\uparrow 26.87$
	GSM8K	74.00	66.27 ± 1.01	81.53 ± 2.81	81.00 ± 1.97	81.93 ± 1.51	$\uparrow 8.60$
	MathQA	44.60	44.13 ± 1.10	57.27 ± 0.61	62.00 ± 2.03	69.27 ± 1.55	$\uparrow 24.67$

trastive signal allows models to learn from consensus patterns even when exposed to flawed reasoning trajectories, correcting rather than amplifying poor grounding behaviors.

Improving self-consistency on math datasets improves general reasoning. We demonstrate that training to improve internal self-consistency on any mathematical dataset enhances performance across diverse reasoning tasks, including previously unseen domains. Building on recent work

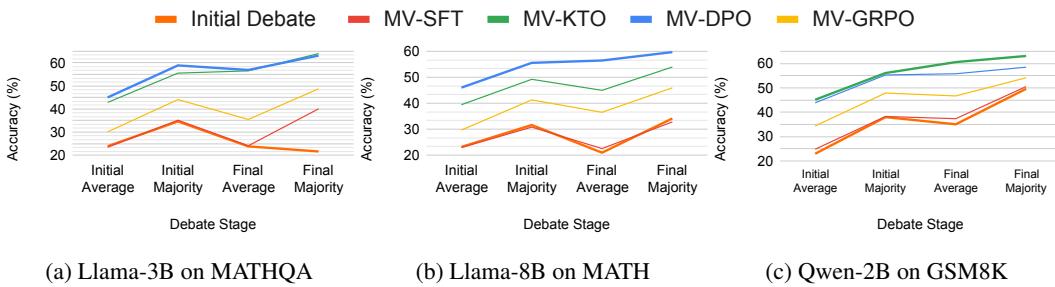


Figure 4: Debate-aware RL improves all stages of multi-agent debate. Incorporating debate context in RL teaches agents to leverage prior arguments, improving final-round consensus. Stages: initial round average, initial round majority vote, final round average, final round majority vote.

378 Table 3: Post-training self-consistency improves performance across general reasoning benchmarks.
 379 Models trained on datasets (columns) tested on benchmarks (rows). Bottom rows show generaliza-
 380 tion to unseen benchmarks: SVAMP (math), GPQA (science), CSQA (commonsense). All = joint
 381 training on combined datasets. Arrows show absolute gains over **instruction-tuned** model.

Test	Qwen2B (post-trained on)					Llama3B (post-trained on)				
	Base	MATH	GSM	MQA	All	Base	MATH	GSM	MQA	All
MATH	10.4	↑10.0	↑3.8	↑10.8	↑12.2	32.0	↑19.4	↑16.4	↑18.2	↑21.2
GSM	27.0	↑20.0	↑25.6	↑22.6	↑27.8	69.6	↑6.0	↑6.8	↑8.4	↑10.8
MQA	7.4	↑12.6	↑17.0	↑15.4	↑21.4	24.6	↑14.0	↑13.4	↑21.2	↑21.6
SVAMP	48.3	↑19.0	↑18.0	↑17.0	↑27.7	71.3	↑6.0	↑6.4	↑9.7	↑7.1
GPQA	0.5	↑6.0	↑5.3	↑12.8	↑16.3	0.7	↑5.4	↑6.3	↑9.8	↑10.7
CSQA	3.8	↑19.8	↑43.0	↑54.0	↑59.6	53.0	↑7.4	↑10.6	↑11.6	↑11.0

Table 4: Multi-agent: Post-training with debate (MV) is comparable to ground-truth (GT).

Llama-8B	Dataset	Debate	SFT		KTO		DPO		GRPO	
			GT	MV	GT	MV	GT	MV	GT	MV
Single-Agent	MATH	22.93	23.73	23.00	41.20	39.40	45.13	46.40	29.07	31.13
	GSM8K	57.93	40.20	41.67	72.60	70.87	76.33	77.67	61.27	66.87
Multi-Agent	MATH	32.80	34.00	33.40	56.00	55.80	61.80	60.80	48.60	44.80
	GSM8K	74.00	65.20	65.20	81.20	79.40	81.60	83.0	83.20	84.20

403 showing math training enhances general reasoning (DeepSeek-AI, 2025; Akter et al., 2025), we
 404 demonstrate that improving self-consistency—internal consensus strength—on math is essential for
 405 reliably unlocking these capabilities. Table 3 reports results for models trained on MATH, GSM8K,
 406 or MathQA individually, and on all three combined (All), using MV-DPO. Training on any single
 407 dataset improves performance across all reasoning tasks, including unseen math (SVAMP), science
 408 (GPQA), and commonsense reasoning (CSQA). Joint training achieves further improvements across
 409 nearly every benchmark, demonstrating that diverse training data amplifies self-consistency gains.

5.3 ABLATION STUDY

412 To understand the sources of performance gains from MACA, we conduct ablation studies exam-
 413 ining key components. We show that self-generated consensus signals outperform ground-truth
 414 supervision, including peer context during training improves relative grounding and debate utili-
 415 zation, and multi-round debate provides stronger signals than single-round majority vote. We also
 416 demonstrate in App. M that self-supervised preference learning serves as an effective implicit for-
 417 mat reward by reinforcing more efficient and concise chain-of-thought construction, though most
 418 gains stem from fundamental reasoning improvements rather than formatting alone.

419 **RL with debate is comparable to RL with ground-truth.** Table 4 compares post-training with
 420 debate majority-vote labels, derived from the model’s own consensus without external supervision,
 421 to ground-truth labels on Llama-3B. Across post-training methods and in both single- and multi-
 422 agent settings, using Debate-MV is consistently comparable to ground-truth supervision, a trend
 423 that holds across other models as well (App. F). We additionally show in App. K that this com-
 424 parable performance between Debate-MV and ground-truth supervision extends to general reasoning
 425 improvements under MACA across all proposed post-training methods and reasoning benchmarks
 426 tested, as observed in Table 3. Because Debate-MV scales naturally with sample size, its parity with
 427 ground-truth highlights self-supervised alignment as a promising direction.

428 **RL with debate outperforms RL with single-round majority vote.** We evaluate three training
 429 conditions in the single-agent setting to understand the impact of training on the debate versus ini-
 430 tial round majority vote on the individual agents themselves, as shown in Table 6: (1) initial round
 431 majority vote with GRPO (akin to TTRL (Zuo et al., 2025)), (2) initial round majority vote with
 DPO (akin to ScPO without the weighted loss term (Prasad et al., 2024)), and (3) debate majority

432 Table 5: Multi-agent: Post-training with debate context (peer CoTs) outperforms no context.
433

GSM8K	Initial Round Avg		Final Round Avg		Final Round MV	
	NoCtx	Context	NoCtx	Context	NoCtx	Context
Llama-3B	65.87	66.73	67.87	70.60	70.60	73.80
Phi-4B	74.67	76.60	74.60	77.80	81.80	84.40
Llama-8B	75.80	77.67	78.00	81.20	81.60	83.00

440 Table 6: Single-agent: RL on debate majority-vote with peer context (MV-DPO) outperforms RL
441 on single-round majority vote (TTRL, ScPO). Arrows show gains over instruction-tuned model.
442 Statistics gathered over 3 seeds.
443

	MATH				GSM8K			
	Qwen-2B	Llama-3B	Phi-4B	Llama-8B	Qwen-2B	Llama-3B	Phi-4B	Llama-8B
TTRL	$\uparrow 18.0 \pm 2.9$	$\uparrow 5.3 \pm 5.7$	$\uparrow 6.1 \pm 2.1$	$\uparrow 7.5 \pm 0.2$	$\uparrow 24.5 \pm 1.6$	$\downarrow 22.3 \pm 8.3$	$\uparrow 4.8 \pm 1.6$	$\downarrow 13.5 \pm 5.7$
ScPO	$\uparrow 2.3 \pm 1.1$	$\uparrow 3.4 \pm 0.2$	$\uparrow 0.1 \pm 0.5$	$\uparrow 3.7 \pm 0.6$	$\uparrow 15.9 \pm 3.4$	$\uparrow 1.6 \pm 0.8$	$\uparrow 5.9 \pm 0.5$	$\uparrow 12.9 \pm 1.2$
MV-DPO	$\uparrow 16.7 \pm 0.4$	$\uparrow 12.5 \pm 0.7$	$\uparrow 6.9 \pm 0.2$	$\uparrow 17.1 \pm 0.8$	$\uparrow 23.8 \pm 0.9$	$\uparrow 3.7 \pm 0.3$	$\uparrow 7.3 \pm 0.3$	$\uparrow 18.2 \pm 0.2$

451 vote with DPO including peer context (MV-DPO from MACA). Training on the debate signal im-
452 proves single-agent performance more than reinforcing the initial round majority vote. Additionally,
453 Table 5 shows that including peer context during preference learning (MV-DPO) improves multi-
454 agent debate performance (more models/datasets in App. G), with the largest gains in final-round
455 individual accuracy, reflecting better use of peer chains-of-thought during deliberation (Fig. 4).

456 **Debate improves consensus quality.** Finally, the debate process itself improves consensus sig-
457 nals. Base small LMs produce mostly random or weak majorities initially, but post-training in-
458 creases unanimous agreement from 27.2% to 43.4% between initial and final rounds (Qwen-2B on
459 GSM8K, App. P). This iterative refinement provides more reliable training signals than independent
460 sampling. While majority vote correlates strongly with accuracy (alternative ranking signals like
461 log-probability are explored in App. I), post-training debate creates a self-reinforcing cycle: better
462 debate generates higher-quality signals, producing models that debate more effectively. Iterative
463 training yields continued improvements with diminishing returns, as shown in App. H.

465 6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

466 We introduce self-consistency as an intrinsic property of well-aligned reasoning and present MACA,
467 a self-supervised framework that teaches models to reliably sample coherent reasoning through re-
468 inforcement of internal consensus signals. Without external supervision, MACA drives substantial
469 improvements: +27.6% self-consistency on GSM8K, +22.4% Pass@20 on MATH, +23.7% zero-
470 shot accuracy on MATH, strong generalization to unseen benchmarks (+16.3% GPQA, +11.6%
471 CommonsenseQA), and enhanced multi-agent performance (+42.7% on MathQA). Through debate,
472 agents attempt to ground their reasoning in peer context, and we select trajectories where such de-
473 liberation aligns with internal consensus. These consensus-aligned examples provide natural super-
474 vision for stable reasoning patterns, enabling models to self-improve their reasoning consistency, ef-
475 ficiency, and accuracy without explicit chain-of-thought supervision or external answer verification.
476 Through preference learning on debate signals, models produce more concise chains-of-thought
477 without format rewards and correct cases where aggregation previously led to degeneration, signif-
478 icantly improving the robustness of multi-agent debate. While MACA has limitations, including
479 requiring sufficient base model competence to generate meaningful consensus signals, potentially
480 amplifying existing biases in model outputs, and lacking direct supervision of intermediate rea-
481 soning correctness, it demonstrates that consensus reinforcement has robust benefits. Future work
482 could explore alternative consensus methods, confidence-weighted voting, heterogeneous agents,
483 and better leveraging of minority traces. Sizeable gains on difficult unseen tasks (+10.0% on AMC,
484 App. M) suggest consensus alignment unlocks latent capabilities beyond consistency itself. MACA
485 demonstrates that language models can effectively harness internal deliberation for self-alignment,
elevating their reasoning capabilities autonomously.

486 REFERENCES
487

488 M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J. Hewett, M. Java-
489 heripi, P. Kauffmann, J. R. Lee, Y. T. Lee, Y. Li, W. Liu, C. C. T. Mendes, A. Nguyen, E. Price,
490 G. de Rosa, O. Saarikivi, A. Salim, S. Shah, X. Wang, R. Ward, Y. Wu, D. Yu, C. Zhang, and
491 Y. Zhang. Phi-4 technical report. *arXiv preprint arXiv:2412.08905*, 2024.

492 S. N. Akter, S. Prabhumoye, M. Novikov, S. Han, Y. Lin, E. Bakhturina, E. Nyberg, Y. Choi, M. Pat-
493 wary, M. Shoeybi, and B. Catanzaro. Nemotron-crossthink: Scaling self-learning beyond math
494 reasoning. *arXiv preprint arXiv:2504.13941*, 2025.

495 A. Amini, S. R. Gabriel, A. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi. MathQA: To-
496 wards interpretable math word problem solving with operation-based formalisms. In *Conference*
497 *of the North American Chapter of the Association for Computational Linguistics: Human Lan-*
498 *guage Technologies*, pp. 2357–2367, 2019.

499 M. M. Botvinick, J. D. Cohen, and C. S. Carter. Conflict monitoring and anterior cingulate cortex:
500 An update. *Trends in Cognitive Sciences*, 8(12):539–546, 2004.

502 M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
503 N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
504 B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, Ł. Kaiser, M. Bavarian, C. Winter, P. Tillet,
505 F. Petroski Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H.
506 Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders,
507 C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
508 M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
509 I. Sutskever, and W. Zaremba. Evaluating large language models trained on code. *arXiv preprint*
510 *arXiv:2107.03374*, 2021.

511 X. Chen, R. Aksitov, U. Alon, J. Ren, K. Xiao, P. Yin, S. Prakash, C. Sutton, X. Wang, and
512 D. Zhou. Universal self-consistency for large language model generation. *arXiv preprint*
513 *arXiv:2311.17311*, 2023.

514 K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, Ł. Kaiser, M. Plappert, J. Tworek, J. Hilton,
515 R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. *arXiv*
516 *preprint arXiv:2110.14168*, 2021.

518 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
519 *arXiv preprint arXiv:2501.12948*, 2025.

520 T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. QLoRA: Efficient finetuning of quan-
521 tized LLMs. *arXiv preprint arXiv:2305.14314*, 2023.

523 Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch. Improving factuality and reasoning in
524 language models through multiagent debate. In *Proceedings of the 41st International Conference*
525 *on Machine Learning*, 2023.

526 Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze, and Y. Goldberg. Mea-
527 suring and improving consistency in pretrained language models. *Transactions of the Association*
528 *for Computational Linguistics*, 9:1012–1031, 2021.

530 K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Kto: Model alignment as prospect
531 theoretic optimization. In *Proceedings of the 41st International Conference on Machine Learning*,
532 pp. 12634–12651, 2024.

533 L. Festinger. *A Theory of Cognitive Dissonance*. Stanford University Press, 1957.

535 K. Friston. The free-energy principle: A unified brain theory? *Nature Reviews Neuroscience*, 11(2):
536 127–138, 2010.

537 A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger,
538 M. Chadwick, P. Thacker, L. Campbell-Gillingham, J. Uesato, P.-S. Huang, R. Comanescu,
539 F. Yang, A. See, S. S. Dathathri, R. Greig, C. Chen, D. Fritz, J. Sanchez Elias, R. Green,

540 S. Mokrá, N. Fernando, B. Wu, R. Foley, S. Young, I. Gabriel, W. Isaac, J. Mellor, D. Hass-
 541 abis, K. Kavukcuoglu, L. A. Hendricks, and G. Irving. Improving alignment of dialogue agents
 542 via targeted human judgements. *arXiv preprint arXiv:2209.14375*, 2022.

543 J. Gottweis, W. H. Weng, A. Daryin, T. Tu, A. Palepu, P. Sirkovic, A. Myaskovsky, F. Weissberger,
 544 K. Rong, R. Tanno, K. Saab, D. Popovici, J. Blum, F. Zhang, K. Chou, A. Hassidim, B. Gokturk,
 545 A. Vahdat, P. Kohli, Y. Matias, A. Carroll, K. Kulkarni, N. Tomasev, Y. Guan, V. Dhillon, E. D. V.
 546 Vaishnav, B. Lee, T. R. D. Costa, J. R. Penadés, G. Peltz, Y. Xu, A. Pawlosky, A. Karthikesalingam, and V. Natarajan. Towards an ai co-scientist. *arXiv preprint arXiv:2502.18864*, 2025.

547 A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
 548 A. Schelten, A. Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*,
 549 2024.

550 D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Mea-
 551 suring mathematical problem solving with the MATH dataset. In *Neural Information Processing
 552 Systems Track on Datasets and Benchmarks*, 2021.

553 A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration.
 554 In *International Conference on Learning Representations*, 2020.

555 A. Huang, A. Block, D. J. Foster, D. Rohatgi, C. Zhang, M. Simchowitz, J. T. Ash, and A. Krish-
 556 namurthy. Self-improvement in language models: The sharpening mechanism. In *International
 557 Conference on Learning Representations*, 2025.

558 J. Huang, X. Chen, S. Mishra, H. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language mod-
 559 els cannot self-correct reasoning yet. In *International Conference on Learning Representations*,
 560 2024.

561 E. J. Husom, A. Goknil, M. Astekin, L. K. Shar, A. Kåsen, S. Sen, B. A. Mithassel, and A. Soylu.
 562 Sustainable llm inference for edge ai: Evaluating quantized llms for energy efficiency, output
 563 accuracy, and inference latency. *arXiv preprint arXiv:2504.03360*, 2025.

564 G. Irving, P. Christiano, and D. Amodei. AI safety via debate. *arXiv preprint arXiv:1805.00899*,
 565 2018.

566 J. Jiang and Z. Lu. Offline decentralized multi-agent reinforcement learning. *arXiv preprint
 567 arXiv:2108.01832*, 2021.

568 F. Jiao, G. Guo, X. Zhang, N. F. Chen, S. Joty, and F. Wei. Preference optimization for reasoning
 569 with pseudo feedback. In *International Conference on Learning Representations*, 2025.

570 D. Kahneman. *Thinking, Fast and Slow*. Farrar, Straus and Giroux, New York, 2011.

571 KnovelEng. AMC-23 dataset. Hugging Face Datasets, 2023. URL <https://huggingface.co/datasets/knoveleng/AMC-23>.

572 D. Li, R. Sun, Y. Huang, M. Zhong, B. Jiang, J. Han, X. Zhang, W. Wang, and H. Liu. Preference
 573 leakage: A contamination problem in LLM-as-a-judge. *arXiv preprint arXiv:2502.01534*, 2025.

574 J. Li, J. Wang, Z. Zhang, and H. Zhao. Self-prompting large language models for zero-shot open-
 575 domain QA. In *Conference of the North American Chapter of the Association for Computational
 576 Linguistics*, 2024.

577 Marquis de Condorcet M. J. A. N. de Caritat. *Essai sur l'application de l'analyse à la probabilité
 578 des décisions rendues à la pluralité des voix*. Imprimerie Royale, 1785.

579 E. K. Miller and J. D. Cohen. An integrative theory of prefrontal cortex function. *Annual Review of
 580 Neuroscience*, 24:167–202, 2001.

581 S. Moscovici. Studies in social influence iii: Majority versus minority influence in a group. *Euro-
 582 pean Journal of Social Psychology*, 6(2):149–202, 1976.

583 C. J. Nemeth. *The Influence of Minority Social Position on the Formation of Social Judgment*.
 584 Psychology Press, 1985.

594 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
 595 X. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
 596 P. F. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
 597 human feedback. In *Advances in Neural Information Processing Systems*, 2022.

598 A. Patel, S. Bhattacharya, and N. Goyal. Are NLP models really able to solve simple math word
 599 problems? In *Conference of the North American Chapter of the Association for Computational
 600 Linguistics: Human Language Technologies*, pp. 2080–2094, 2021.

602 A. Prasad, W. Yuan, R. Y. Pang, J. Xu, M. Fazel-Zarandi, M. Bansal, S. Sukhbaatar, J. Weston, and
 603 J. Yu. Self-consistency preference optimization. *arXiv preprint arXiv:2411.04109*, 2024.

604 B. Radharapu, M. Revel, M. Ung, S. Ruder, and A. Williams. Arbiters of ambivalence: Challenges
 605 of using LLMs in no-consensus tasks. *arXiv preprint arXiv:2505.23820*, 2025.

607 R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference
 608 optimization: Your language model is secretly a reward model. *arXiv preprint arXiv:2305.18290*,
 609 2023.

610 D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani, J. Michael, and S. R. Bowman.
 611 GPQA: A graduate-level google-proof q&a benchmark. *arXiv preprint arXiv:2311.12022*, 2023.

612 Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, M. Zhang, Y. Li, Y. Wu, and D. Guo. Deepseek-
 613 math: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint
 614 arXiv:2402.03300*, 2024.

616 A. Shenhav, M. M. Botvinick, and J. D. Cohen. The expected value of control: An integrative theory
 617 of anterior cingulate cortex function. *Neuron*, 79(2):217–240, 2013.

618 P. Srivastava, H. Singh, R. Madhavan, G. Patil, S. Addepalli, A. Suggala, R. Aravamudhan,
 619 S. Sharma, A. Laha, A. Raghav, K. Shanmugam, and D. Precup. Robust reward modeling
 620 via causal rubrics. 2025.

622 V. Subramaniam, Y. Du, J. B. Tenenbaum, A. Torralba, S. Li, and I. Mordatch. Multiagent finetun-
 623 ing: Self improvement with diverse reasoning chains. *arXiv preprint arXiv:2501.05707*, 2025.

625 A. Talmor, J. Herzig, N. Lourie, and J. Berant. CommonsenseQA: A question answering challenge
 626 targeting commonsense knowledge. In *Conference of the North American Chapter of the Association
 627 for Computational Linguistics: Human Language Technologies*, pp. 4149–4158, 2019.

628 Y. Tong, J. Yuan, and C. Hu. Enhancing quantization-aware training on edge devices via relative
 629 entropy coresnet selection and cascaded layer correction. *arXiv preprint arXiv:2507.17768*, 2025.

631 X. Wang, J. Wei, D. Schuurmans, Q. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
 632 Self-consistency improves chain of thought reasoning in language models. *arXiv preprint
 633 arXiv:2203.11171*, 2022.

634 A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong, H. Wei,
 635 H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Yang, J. Xu, J. Zhou, J. Bai, J. He,
 636 J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng,
 637 R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou,
 638 X. Ren, X. Zhang, X. Wei, X. Ren, X. Liu, Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu,
 639 Z. Cui, Z. Zhang, Z. Guo, and Z. Fan. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*,
 640 2024.

641 Y. Yang, X. Ma, C. Li, Z. Zheng, Q. Zhang, G. Huang, J. Yang, and Q. Zhao. Believe what you
 642 see: Implicit constraint approach for offline multi-agent reinforcement learning. In *Advances in
 643 Neural Information Processing Systems*, pp. 10299–10312, 2021.

644 W. Zhan, S. Fujimoto, Z. Zhu, J. D. Lee, D. R. Jiang, and Y. Efroni. Exploiting structure in offline
 645 multi-agent RL: The benefits of low interaction rank. In *International Conference on Learning
 646 Representations*, 2025.

648 S. Zhang, Y. Tian, Q. Liu, and H. Wu. The neural correlates of novelty and variability in human
649 decision-making under an active inference framework. *eLife*, 13:RP92892, 2025.
650

651 J. Zhu, Y. Shen, J. Zhao, and A. Zou. Path-consistency: Prefix enhancement for efficient inference
652 in LLM. *arXiv preprint arXiv:2409.01281*, 2024a.

653 Z. Zhu, M. Liu, L. Mao, B. Kang, M. Xu, Y. Yu, S. Ermon, and W. Zhang. MADiff: Offline multi-
654 agent learning with diffusion models. In *Advances in Neural Information Processing Systems*,
655 2024b.

656

657 Y. Zuo, K. Zhang, L. Sheng, S. Qu, G. Cui, X. Zhu, H. Li, Y. Zhang, X. Long, E. Hua, B. Qi, Y. Sun,
658 Z. Ma, L. Yuan, N. Ding, and B. Zhou. Ttrl: Test-time reinforcement learning. *arXiv preprint*
659 *arXiv:2504.16084*, 2025.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LLM USAGE DECLARATION**
703704 We declare that large language models (LLMs) were only used to assist with minor tasks, including
705 grammar checking, language refinement, and basic coding support such as debugging. All research
706 contributions, experimental design, data analysis, and scientific findings presented in this work are
707 original to the authors.
708709 **B EXAMPLES OF POST-TRAINED CONSISTENT REASONING IN SINGLE- AND**
710 **MULTI- AGENT SETTINGS**
711712 This appendix presents examples from the debates, providing a qualitative signal of how post-
713 training affects both single-agent reasoning and multi-agent collaboration. The evidence highlights
714 visible improvements in mathematical reasoning, consensus formation, and systematic problem-
715 solving.
716717 **B.1 OVERVIEW OF KEY FINDINGS**
718719 Analysis of the transcripts reveals that post-training leads to more systematic and efficient reasoning
720 in single-agent settings. Models demonstrate clearer step-by-step problem decomposition, make
721 fewer calculation errors, and show improved conceptual understanding. Notably, responses become
722 more concise and are less likely to be truncated due to inefficient reasoning.
723724 In multi-agent debates, post-training enhances collaborative effects. Agents more frequently refer-
725 ence and build upon each other’s solutions, leading to more robust cross-verification and consensus
726 formation. We observe that post-trained agents are more likely to resolve mistakes through discus-
727 sion rather than propagate errors.
728729 Our analysis shows that preference learning teaches models higher-quality and more concise rea-
730 soning without requiring explicit format rewards. The consensus mechanism itself becomes more
731 effective at aggregating individual outputs, supporting both in-distribution and out-of-distribution
732 transfer.
733734 **B.2 CASE STUDY 1: SINGLE-AGENT MATHEMATICAL REASONING**
735736 **B.2.1 PROBLEM: CITIES A AND B RELATIVE SPEED**737 **AMC Problem Statement**738 Cities A and B are 45 miles apart. Alicia lives in A and Beth lives in B . Alicia bikes towards
739 B at 18 miles per hour. Leaving at the same time, Beth bikes toward A at 12 miles per hour.
740 How many miles from City A will they be when they meet?
741742 **Correct Solution:** Combined speed = $18 + 12 = 30$ mph; Time to meet = $45/30 = 1.5$ hours;
743 Distance from A = $18 \times 1.5 = 27$ miles
744745 **Ground Truth:** 27
746
747
748
749
750
751
752
753
754
755

756 B.2.2 PRE-TRAINING RESPONSE: FUNDAMENTAL CONCEPTUAL CONFUSION
757758 **Base Model: Conceptual Breakdown**
759760 To solve this problem, we can use the concept of relative motion. Here's a step-by-step
761 breakdown:
762763

- 764 • Let's denote the time that Alicia travels as t hours. Since Beth travels in the opposite
765 direction, we can say that the time she travels is also t hours.
- 766 • Since they are traveling towards each other, the distance between them will decrease
767 at a rate of $18 + 12 = 30$ miles per hour.
- 768 • The initial distance between them is 45 miles. After t hours, the total distance traveled
769 by both Alicia and Beth will be the initial distance plus the distance traveled
770 together, which is $45 + 30t$ miles.
- 771 • We can set up an equation using the fact that their combined distance traveled
772 equals the initial distance between them: $45 + 30t = 45$. This is because they
773 meet when the sum of their distances is equal to the initial distance.
- 774 • Solving for t , we get $t = 0$ hours. However, this doesn't make sense because it
775 means they meet immediately after starting. Let's try again.
- 776 • Since we can't set up a simple equation with this method, let's think about it in
777 terms of their relative speed: 12

778 [Response cuts off mid-sentence]

779 **Parsed Answer:** null780 **Analysis: Multiple failure modes.** The pre-training response reveals several critical reasoning
781 failures: incorrect problem setup, misapplication of distance-time relationships, and ultimately an
782 illogical result. The model exhausts its token budget exploring unproductive solution paths before
783 reaching a conclusion.784 B.2.3 POST-TRAINING RESPONSE: CORRECT SYSTEMATIC SOLUTION
785786 **Post-Training: Correct and Concise**
787788 To solve this problem, we can follow these steps:
789790

- 791 • We know the distance between Cities A and B is 45 miles.
- 792 • Alicia and Beth are biking towards each other at a combined speed of $18 + 12 = 30$
793 miles per hour.
- 794 • Since they are biking towards each other, we can use the concept of relative speed
795 to find the time it takes for them to meet.
- 796 • We can calculate the time using the formula: time = distance / speed. Using this
797 formula, the time they take to meet is 45 miles / 30 miles per hour, which equals
798 1.5 hours.
- 799 • Now that we have the time, we can find the distance covered by Alicia, since we
800 know her speed is 18 miles per hour. Distance covered by Alicia is 18×1.5 , which
801 equals 27 miles.

802 Therefore, Alicia and Beth will meet 27 miles from City A.
803

27

804 **Analysis: Systematic improvement.** Post-training produces a clear, systematic approach: correct
805 conceptual application, logical step progression, and efficient completion within the token limit.
806 This demonstrates improved reasoning quality and token efficiency achieved through preference
807 learning without explicit format rewards.808
809

810 B.3 CASE STUDY 2: MULTI-AGENT MATHEMATICAL REASONING
811812 B.3.1 PROBLEM: ROAD TRIP GAS MILEAGE CALCULATION
813814 **Problem Statement**815 Sophia is thinking of taking a road trip in her car, and would like to know how far she can
816 drive on a single tank of gas. She has traveled 100 miles since last filling her tank, and she
817 needed to put in 4 gallons of gas to fill it up again. The owner's manual for her car says that
818 her tank holds 12 gallons of gas. How many miles can Sophia drive on a single tank of gas?
819820 **Correct Solution:** $100 \div 4 = 25 \text{ mpg}$; $25 \times 12 = 300 \text{ miles}$ 821 **Ground Truth:** 300822 B.4 COMPLETE MULTI-AGENT TRANSCRIPTS: PRE-TRAINING FAILURE (ITERATION 0)
823824 B.4.1 ROUND 1: INITIAL AGENT RESPONSES
825826 **User Prompt**827 Solve the following math problem. Sophia is thinking of taking a road trip in her car, and
828 would like to know how far she can drive on a single tank of gas. She has traveled 100 miles
829 since last filling her tank, and she needed to put in 4 gallons of gas to fill it up again. The
830 owner's manual for her car says that her tank holds 12 gallons of gas. How many miles can
831 Sophia drive on a single tank of gas?832 Provide a bullet point summary of your step-by-step reasoning. Your final answer should be
833 a single numerical number, in the form \boxed{answer}, at the end of your response.
834835 **Agent 1: Mathematical Error**836 To solve this problem, I need to determine Sophia's car's fuel efficiency and then calculate
837 how far she can drive on a full tank.

838 Step 1: Determine fuel efficiency from the given information.

839

- Sophia traveled 100 miles and used 4 gallons of gas
- Fuel efficiency = $100 \text{ miles} \div 4 \text{ gallons} = 25 \text{ miles per gallon}$

840 Step 5: Convert the fuel efficiency from mpg to gallons per mile (GPM):

841

- Since 1 mpg means traveling 1 mile with each gallon, Sophia will use $4 \text{ gallons} \times$
842 $(1 \text{ mile/mpg}) = 4 \text{ miles per tank.}$

843 Step 6: Calculate total distance for full tank:

844

- Total distance = $4 \text{ miles per tank} \times 12 \text{ gallons} = 48 \text{ miles}$

845 **48**846 **Agent 2: Incomplete Reasoning**847 If the distance covered in one tank of fuel is 100 miles, then the Miles Per Gallon (MPG) is
848 calculated as follows...

849 [Response appears incomplete and truncated mid-calculation]

850 After reviewing the problem again, I need to be more careful with my calculations.

851 Let me reconsider: Sophia used 4 gallons to travel some distance, and her tank holds 12
852 gallons total.853 I'm getting confused by the different approaches. Let me try again: 100 miles with 4 gallons
854 means...855 Final answer: **48**

856

857

858

859

860

861

862

863

864
865**Agent 3: Correct but Overruled**

866 Let me solve this step by step:

867 Step 1: Calculate fuel efficiency from given data:

- 868 • Distance traveled: 100 miles
- 869 • Gas used: 4 gallons
- 870 • Fuel efficiency: $100 \div 4 = 25$ miles per gallon

871 Step 2: Calculate range on full tank:

- 872 • Full tank capacity: 12 gallons
- 873 • Total range: $25 \text{ mpg} \times 12 \text{ gallons} = 300 \text{ miles}$

874 Therefore, Sophia can drive 300 miles on a single tank of gas.

875
876
877
300

878

879
880**B.4.2 ROUND 2: FAILED COLLABORATIVE DISCUSSION**881
882**Agent 1: Doubling Down on Error**

883 After reviewing all approaches, I maintain my calculation:

884 Based on the calculations, I'm confident that 48 miles is correct because we need to convert
885 the efficiency properly.886
887
48888
889**Pre-Training Result:** Consensus selected 48 miles despite Agent 3's correct reasoning.890
891
892**B.4.3 COMPLETE MULTI-AGENT TRANSCRIPTS: POST-TRAINING SUCCESS (ITERATION 1)**893
894**B.4.4 ROUND 1: PERFECT AGENT RESPONSES**895
896**Agent 1: Complete Correction**897 To solve this problem, I need to determine Sophia's fuel efficiency and calculate her range
898 on a full tank.

899 Step 1: Calculate Sophia's car's fuel efficiency:

- 900 • Sophia traveled 100 miles since last fill-up
- 901 • She used 4 gallons of gas
- 902 • Fuel efficiency = $100 \text{ miles} \div 4 \text{ gallons} = 25 \text{ miles per gallon}$

903 Step 2: Calculate range on full tank:

- 904 • Tank capacity: 12 gallons
- 905 • Range = $25 \text{ mpg} \times 12 \text{ gallons} = 300 \text{ miles}$

906 Therefore, Sophia can drive 300 miles on a single tank of gas.

907
908
300909
910
911**Unanimous Agreement**912 **Agent 1:** "I see all agents used the same systematic approach. The calculation is clear: $25 \text{ mpg} \times 12 \text{ gallons} = 300 \text{ miles}$."913 **Agent 2:** "Perfect agreement on methodology. The fuel efficiency calculation is the key
914 step, then applying it to full tank capacity."915 **Agent 3:** "Unanimous consensus on 300 miles. All reasoning aligns perfectly."916
917**Post-Training Result:** Perfect consensus on 300 miles with all agents showing correct reasoning.

918 B.4.5 ANALYSIS: TRAINING EFFECTS ON MULTI-AGENT COLLABORATION
919

920 Post-training produces substantial improvements in both individual and collective reasoning. Be-
921 fore training, agents make calculation errors and the consensus mechanism selects incorrect answers
922 even when correct solutions are present, with two agents converging on the same mistake and over-
923 ruling the correct agent. After training, all agents apply correct methodology and reach unanimous
924 agreement on the right answer. These results demonstrate that preference learning encourages sys-
925 tematic step-by-step reasoning, reducing errors and their propagation during collaboration, while
926 multi-agent training enhances the consensus mechanism’s ability to reliably select correct solutions.
927

928 C GROUNDING BEHAVIORS IN BASE-MODEL MULTI-AGENT DEBATES
929

930 Having provided examples of the impact of post-training on single- and multi-agent reasoning, we
931 now highlight representative examples from some initial debates among base models demonstrating
932 spontaneous grounding behaviors that emerge during multi-agent reasoning. Note that each debate
933 consists of an initial round (three agents provide independent solutions) and a final round (agents
934 update after seeing peers’ responses).

935 C.1 EXAMPLE 1: AIRPORT TIMING PROBLEM
936937 **Problem**

938 Amber and Josh are flying to France for vacation. Their flight leaves at 8:00 pm and as
939 an international flight, it’s recommended that they check in 2 hours early. It will take 45
940 minutes to drive to the airport and another 15 minutes to park their vehicle and make their
941 way to the terminal. What is the latest time they can leave their house to make it to the
942 airport in time?
943

944 The correct solution requires working backwards from the 8:00 PM flight time: they must arrive by
945 6:00 PM (2 hours early), and with 1 hour total travel time, they must leave by 5:00 PM.
946

947 **Initial round:**948 **Agent 1: Directional Error**

949

- 950 • Flight leaves at 8:00 pm, need to check in 2 hours early = 6:00 pm arrival
- 951 • Calculate travel time: $45 + 15 = 60$ minutes = 1 hour
- 952 • Add travel time to departure time: 6:00 pm + 1 hour = 7:00 pm

953 **Error: Adds travel time instead of subtracting it**

954 Answer: 7:00 pm

955 **Agent 2: Fundamental Misunderstanding**

956

- 957 • Find total travel time: $45 + 15 = 60$ minutes = 1 hour
- 958 • Add travel time to flight departure time: 8:00 pm + 1 hour = 9:00 pm

959 **Completely ignores 2-hour check-in requirement and adds travel time instead of subtracting
960 it**

961 Answer: 9:00 pm

962 **Agent 3: Correct Solution**

963

- 964 • Flight at 8:00 pm requires arrival by 6:00 pm (2 hours early)
- 965 • Travel time: 45 min driving + 15 min parking = 60 minutes
- 966 • Must leave by: 6:00 pm - 1 hour = 5:00 pm

967 Answer: 5:00 pm

972
973**Final round (after seeing peers):**

974

Agent 1: Adopts Worse Error

975

“After reviewing other solutions, I update my approach:

977

- Departure time from house: 8:00 pm
- Total travel time: $45 + 15 = 60$ minutes = 1 hour
- Add travel time to departure: $8:00 \text{ pm} + 1 \text{ hour} = 9:00 \text{ pm}$ ”

980

Abandons partial understanding to adopt Agent 2’s incorrect reasoning as well

981

Answer: 9:00 pm

983

984

Agent 2: Persists with Error

985

Maintains original incorrect answer of 9:00 pm

987

988

Agent 3: Explicitly Identifies Error Pattern

989

“The other agents seem to be adding time to the flight departure rather than working backwards from the required arrival time. The correct approach:

991

- Required arrival: 6:00 pm (2 hours before 8:00 pm flight)
- Subtract travel time: $6:00 \text{ pm} - 1 \text{ hour} = 5:00 \text{ pm}$ departure”

994

Recognizes error in other agents’ responses and upholds its own correct understanding

995

Answer: 5:00 pm

996

Key observation. Agent 1 had partial understanding (recognized the 6:00 PM arrival requirement) but abandoned this to adopt Agent 2’s more fundamental error. Agent 3 explicitly identifies the common error pattern of “adding time to flight departure” and maintains the correct backward calculation. This incidentally reflects exactly the case where statistical aggregation can be counterproductive: the inconsistencies in reasoning among the sampled trajectories outnumber the sensible agent, and this error gets propagated. Interestingly, we show that post-training is able to correct these cases despite the initial debate datasets containing examples of bad grounding.

1004

1005

C.2 EXAMPLE 2: SELF-CORRECTION IN MATHEMATICAL REASONING

1006

1007

Problem

1008

1009

A store offers a 20% discount on all items. If Sarah buys a jacket originally priced at \$80 and pants originally priced at \$50, how much does she pay in total after the discount?

1010

The correct solution: Total original price = \$130, discount = 20% of \$130 = \$26, final price = \$104.

1012

Initial round:

1013

1014

Agent 1: Calculation Error

1015

Original total: $\$80 + \$50 = \$130$

1016

Discount: $20\% = 0.2 \times \$130 = \26

1017

Final price: $\$130 + \$26 = \$156$

1018

Error: Adds discount instead of subtracting

1019

Answer: \$156

1020

1021

Agent 2: Correct Approach

1022

1023

Total: \$130

1024

After 20% discount: $\$130 \times 0.8 = \104

1025

Answer: \$104

1026

1027

1028 Jacket discount: 20% of \$80 = \$16, price = \$64

1029 Pants discount: 20% of \$50 = \$10

1030 Total: \$64 + \$10 = \$74

1031 **Error: Adds discounted jacket price to pants discount amount**

1032 Answer: \$74

1033

1034

Final round:

1035

1036

1037 "I realize I added the discount instead of subtracting. Looking at Agent 2's approach of
1038 multiplying by 0.8 is cleaner: $\$130 \times 0.8 = \104 "1039 **Recognizes own error and adopts correct method**

1040 Answer: \$104

1041

1042

1043

1044 "Jacket after discount: $\$80 \times 0.8 = \64 1045 Pants after discount: $\$50 \times 0.8 = \40 1046 Total: $\$64 + \$40 = \$104$ "

1047 Answer: \$104

1048

1049

1050 **Key observation.** Agent 1 explicitly acknowledges their error ("I added the discount instead of
subtracting") and adopts Agent 2's more efficient method. Agent 3 corrects their calculation error
after seeing consistent peer answers.

1051

1052

C.3 EXAMPLE 3: GEOMETRIC PROBLEM - METHOD SIMPLIFICATION

1053

1054

Problem

1055

1056

A rectangle has a perimeter of 24 units and an area of 32 square units. What are the dimensions of the rectangle?

1057

1058

1059

The correct solution: If dimensions are length l and width w , then $2(l + w) = 24$ so $l + w = 12$,
and $lw = 32$. Solving this system gives dimensions 8 and 4.

1060

1061

Initial round:

1062

1063

Agent 1: Algebraic Approach

1064

Let length = l , width = w

1065

From perimeter: $2l + 2w = 24$, so $l + w = 12$

1066

From area: $lw = 32$

1067

Setting up quadratic: $w(12 - w) = 32$

1068

 $12w - w^2 = 32$

1069

 $w^2 - 12w + 32 = 0$

1070

Stops without solving the quadratic

1071

1072

1073

1074

1075

1076

1077

1078

1079

Agent 2: Direct Factoring $l + w = 12$ and $lw = 32$

Looking for factors of 32 that sum to 12: 8 and 4

Dimensions: 8×4

Answer: 8 units by 4 units

1080

Agent 3: Quadratic Solution

1081

From $w^2 - 12w + 32 = 0$

1082

Using quadratic formula or factoring: $(w - 8)(w - 4) = 0$

1083

So $w = 8$ or $w = 4$

1084

Dimensions: 8×4

1085

Answer: 8 units by 4 units

1086

1087

Final round:

1088

Agent 1: Adopts Simpler Method

1089

1090

“Agent 2’s approach of finding factors of 32 that sum to 12 is much more direct than solving the quadratic. Since $8 \times 4 = 32$ and $8 + 4 = 12$, the dimensions are 8 by 4.”

1091

Recognizes and adopts more efficient solution method

1092

Answer: 8 units by 4 units

1093

1094

1095

Key observation. Agent 1 explicitly acknowledges that Agent 2’s factor-finding approach is “much more direct” than the algebraic method, demonstrating recognition of solution efficiency. Post-training reinforces these behaviors, enabling the model to learn patterns of concise and efficient reasoning.

1100

1101

C.4 SUMMARY

1102

These examples demonstrate observable grounding behaviors in multi-agent debates:

1103

1104

Error propagation: Agents sometimes abandon partially correct reasoning to adopt peer errors (Example 1, Agent 1).

1105

1106

Explicit error recognition: Agents identify specific errors in their own reasoning (“I added the discount instead of subtracting”) and in peers’ approaches (“adding time to flight departure”).

1107

1108

Method adoption: Agents recognize more efficient solution methods from peers and explicitly acknowledge this (“Agent 2’s approach... is much more direct”).

1109

1110

Self-correction through peer comparison: Seeing consistent peer answers prompts agents to revisit and correct their calculations.

1111

1112

These behaviors generate training signals beyond simple majority voting. The debate format captures not just correct answers but also common error patterns, self-correction mechanisms, and explicit reasoning about solution quality, providing rich supervision for teaching models to recognize and adopt sound reasoning strategies.

1113

1114

D MACA ALGORITHM: ADDITIONAL IMPLEMENTATION DETAILS

1115

1116

D.1 AGENT HETEROGENEITY AND SPECIALIZATION

1117

1118

1119

1120

1121

1122

In our current experiments, we use homogeneous agents (clones) that update independently over a single training iteration, enabling evaluation of both individual and averaged performance to measure the benefits of divergence. We also explore the impact of training over multiple such iterations of debate and post-training in App. H. For multi-iteration runs, agent checkpoints can be managed in two ways: agents may either remain synchronized by resetting checkpoints to the best performing one after every iteration, or diverge by updating independently from distinct trajectory data, allowing specialization and diversity through differential learning. Additionally, the MACA framework also supports heterogeneous agents, allowing different language models to be independently optimized through this framework, where agents represent distinct models or architectures from the outset, each bringing inherently different capabilities or perspectives.

1131

1132

1133

1134 **Algorithm 1** Multi-Agent Consensus Alignment Via Debate-RL

1135

1136 1: **input:** agents $\{\pi_{\theta_m}\}_{m=1}^M$, rounds R , iters L , batch size B , method in MV-SFT, MV-GRPO, MV-DPO, or
1137 MV-KTO

1138 2: **for** $\ell = 1, \dots, L$ **do**

1139 3: sample batch $\{x^{(\ell,i)}\}_{i=1}^B$ of prompts from \mathcal{D}

1140 4: **for** $i = 1, \dots, B$ **do** ▷ Generate debate trajectories

1141 5: $y_{m,1}^{(\ell,i)} \sim \pi_{\theta_m}(\cdot | x^{(\ell,i)}) \quad \forall m$

1142 6: **for** $r = 2, \dots, R$ **do** ▷ Condition on peers' previous round outputs

1143 7: $x_{m,r}^{(\ell,i)} = [x^{(\ell,i)}; \{y_{j,r-1}^{(\ell,i)}\}_{j \neq m}]$

1144 8: $y_{m,r}^{(\ell,i)} \sim \pi_{\theta_m}(\cdot | x_{m,r}^{(\ell,i)}) \quad \forall m$

1145 9: **end for**

1146 10: Parse final answers $a_m^{(\ell,i)} = \mathcal{A}(y_{m,R}^{(\ell,i)}) \quad \forall m$

1147 11: Aggregate consensus $\hat{a}(x^{(\ell,i)}) = \text{Majority}\{a_1^{(\ell,i)}, \dots, a_M^{(\ell,i)}\}$

1148 12: Extract final contexts $x_m^{(\ell,i)} \leftarrow x_{m,R}^{(\ell,i)}$ for all m

1149 13: Partition responses by consensus alignment:
1150 $\mathcal{G}_+^{(\ell,i)} = \{y_{m,R}^{(\ell,i)} : a_m^{(\ell,i)} = \hat{a}(x^{(\ell,i)})\}$
1151 $\mathcal{G}_-^{(\ell,i)} = \{y_{m,R}^{(\ell,i)} : a_m^{(\ell,i)} \neq \hat{a}(x^{(\ell,i)})\}$

1152 14: **end for**

1153 15: **build dataset:** $\mathcal{D}_{\text{post}} = \{(x^{(\ell,i)}, \hat{a}(x^{(\ell,i)}), \mathcal{G}_+^{(\ell,i)}, \mathcal{G}_-^{(\ell,i)})\}_{i=1}^B$

1154 16: **training data by method:**

1155 MV-SFT: for each m , use $\{(x_m^{(\ell,i)}, y_{m,R}^{(\ell,i)}) : y_{m,R}^{(\ell,i)} \in \mathcal{G}_+^{(\ell,i)}\}_i$.

1156 MV-GRPO: for each m , store $\{(x_m^{(\ell,i)}, \hat{a}(x^{(\ell,i)}))\}_i$ for reward computation on new samples.

1157 MV-DPO/MV-KTO: pool $\{(x_m^{(\ell,i)}, y_{m,R}^{(\ell,i)})\}_{i,m}$ partitioned by $\mathcal{G}_+, \mathcal{G}_-$ across agents.

1158 17: **update policies:** apply majority-vote objective to refine each π_{θ_m}

1159 18: **end for**

E EXPERIMENTAL SETUP

E.1 TRAINING PARAMETERS

1164 We conducted hyperparameter sweeps across learning rates from 1e-7 to 1e-5, finding that 1e-5
1165 consistently performed best across all methods. For preference-based methods (MV-KTO, MV-
1166 DPO), we used $\beta = 0.1$ throughout all experiments. LoRA ranks and alpha values were adjusted
1167 based on model size and computational constraints, with rank/alpha of 64-128 for MV-DPO and
1168 MV-KTO, 32-64 for MV-GRPO, and 128 for MV-SFT. Tables 7–10 provide complete parameter
1169 specifications.

1170 GSM8K, MATH, and MathQA used 1500/500/500 train/valid/test splits. SVAMP, GPQA, CSQA,
1171 and AMC were used only for testing, with 300, 448, 500, and 40 test examples, respectively.

E.2 DATASETS

1174 We evaluated model mathematical reasoning using seven publicly available datasets spanning a
1175 range of difficulty and subject areas: MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021),
1176 MathQA (Amini et al., 2019), SVAMP (Patel et al., 2021), GPQA (Rein et al., 2023), AMC 23 Knov-
1177 elEng (2023), and CommonsenseQA/CSQA (Talmor et al., 2019).

1179 **MATH** (Hendrycks et al., 2021): The MATH dataset contains 12,500 high school mathematics
1180 problems from algebra, geometry, combinatorics, and number theory, each requiring multi-step reasoning
1181 and precise mathematical solutions.

1182 **GSM8K** (Cobbe et al., 2021): GSM8K is composed of 8,500 grade-school-level word problems
1183 emphasizing arithmetic and logical reasoning, with step-by-step annotated solutions for each prob-
1184 lem.

1185 **MathQA** (Amini et al., 2019): MathQA features over 37,000 question-answer pairs based on quan-
1186 titative reasoning, requiring models to convert natural language problems into mathematical expres-
1187 sions and perform multi-step computation.

1188
1189

Table 7: Training parameters.

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

Parameter	SFT	GRPO	DPO	KTO
Learning rate	$1 \times 10^{-5-7}$	$1 \times 10^{-5-7}$	$1 \times 10^{-5-7}$	$1 \times 10^{-5-7}$
Weight decay	1×10^{-2}	1×10^{-2}	1×10^{-2}	1×10^{-2}
Batch size	1–8	8	1–8	1–8
Epochs	1–3	1–3	1–3	1–3
Gradient accumulation steps	2–4	2–4	2–4	2–4
Optimizer	AdamW	AdamW	AdamW	AdamW
LoRA rank (r)	8–128	8–64	8–128	8–128
LoRA alpha	8–128	8–64	8–128	8–128
LoRA dropout	0.1	0.1	0.1	0.1
LoRA target modules		q_proj, k_proj, v_proj, o_proj		
Entropy coefficient	-	0.01	-	-
Beta (regularization)	-	-	0.1–0.3	0.1–0.3
Number of generations per step	-	8	-	-
Maximum sequence length		Model-dependent (2048–4096)		
Mixed precision		bf16		
Quantization		4-bit (BitsAndBytesConfig)		

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

Table 8: Generation parameters.

Parameter	Value
Temperature	1.0
Top-p sampling	0.9
Maximum new tokens	256
Do sample	True
Pad token ID	EOS token ID

1220
1221
1222

SVAMP (Patel et al., 2021): SVAMP consists of carefully reworded arithmetic word problems designed to probe model robustness and prevent reliance on annotation artifacts, focusing on genuine multi-step arithmetic reasoning.

1223
1224
1225
1226

GPQA (Rein et al., 2023): GPQA provides 448 expert-curated, multiple-choice questions covering graduate-level biology, physics, and chemistry, emphasizing deep, multi-stage reasoning and robust factual understanding.

1227
1228
1229

AMC 23 (KnovelEng, 2023): This dataset includes recent problems drawn from the 2023 American Mathematics Competitions (AMC), spanning algebra, combinatorics, geometry, and number theory, and is useful for assessing model performance on expert-constructed math tasks

1230
1231
1232
1233
1234

CommonsenseQA (Talmor et al., 2019): CommonsenseQA is a challenging multiple-choice question-answering dataset requiring models to apply commonsense reasoning over diverse everyday scenarios. The dataset comprises 12,247 questions, each designed to probe deeper, non-trivial conceptual knowledge beyond factual recall, making it a benchmark for evaluating commonsense understanding in language models.

1235
1236
1237

These datasets collectively enable a thorough evaluation of analytical reasoning capabilities in large language models.

1238
1239

E.3 MULTI-AGENT DEBATE INFRASTRUCTURE

1240
1241

Our multi-agent debate system addresses the computational challenges of training and deploying multiple agents efficiently through specialized infrastructure for quantized training isolation and scalable debate inference.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Table 9: Multi-agent debate parameters.

Parameter	Value
Number of agents	3
Debate rounds	2
Batch debate size	8–24
Use majority vote	True
Include debate context	True
Use async debate	True

Table 10: Model and dataset configuration.

Parameter	Value
Base models	Phi-4B, Qwen-2B, Llama-3B
Training datasets	GSM8K, MATH, MathQA
Test datasets	GSM8K, MATH, MathQA, SVAMP, GPQA, CSQA, AMC
Training size	1500 samples
Test size	500 samples
Validation size	500 samples
Use quantization	4-bit BitsAndBytesConfig
Use adapter mode	True (LoRA)
Use scheduler	True

E.3.1 QUANTIZED MARL TRAINING

Current post-training libraries lack support for multi-gpu distributed training with 4-bit quantization and PEFT adapters. We implement training isolation where each agent trains on a single GPU with explicit resource assignment, using gradient checkpointing and paged optimizers (paged_adamw_8bit) for memory efficiency. This enables stable multi-agent RL with QLoRA while preserving quantization benefits.

E.3.2 SCALABLE DEBATE INFERENCE FRAMEWORK

The inference system enables efficient multi-agent debates through adapter hot-swapping and dynamic resource management, designed to scale seamlessly with available compute resources. A centralized base model manager maintains a pool of quantized base models shared across agents, implementing lazy loading and caching for lightweight LoRA adapters that enable rapid agent switching without full model reloading. An adapter job scheduler coordinates debate workloads across available GPUs through adaptive load balancing, priority queues for debate tasks ordered by round index, and automatic cluster adaptation that detects available hardware and distributes workloads accordingly. This architecture enables concurrent multi-agent inference on hardware that would typically support only single full-precision models, with debate throughput scaling linearly with compute resources while maintaining memory efficiency through quantization and adapter sharing.

E.4 DEBATE PROMPT TEMPLATES

This appendix details the prompts used in our multi-agent debate system.

E.4.1 INITIAL QUESTION PROMPT

Used in the first round of debate.

For GPQA, MathQA, CommonsenseQA

1296 Initial Prompt: Multiple Choice
1297
1298
1299 Answer the following multiple choice question as accurately
1300 as possible.
1301 {question}
1302
1303 Provide a bullet point summary of your step-by-step reasoning
1304 .
1305 Your final answer should be a single choice letter in the
1306 form
1307 \boxed{answer}, at the end of your response.
1308

For GSM8K, SVAMP, AMC, MATH

Initial Prompt: Math Problem

Solve the following math problem. {question}

Provide a bullet point summary of your step-by-step reasoning

.

Your final answer should be a single numerical number, in the form

`\boxed{answer}`, at the end of your response.

E.4.2 DEBATE PHASE PROMPT

1324 Used in subsequent rounds of debate to incorporate peer context.

1325
1326 Debate Phase Prompt
1327
1328 Here are solutions from other agents:
1329 {agent_responses}
1330
1331 Using each response as additional advice, give an updated
1332 bullet point summary of your step-by-step reasoning to
1333 the question: {question}
1334
1335 Make sure your final answer is in the form \boxed{answer}, at
1336 the end of your response.
1337

F ABLATION: GROUND TRUTH VS DEBATE MAJORITY VOTE

Tables 11 and 12 report ablations comparing post-training on oracle ground-truth (GT) labels versus (DMV) labels across MATH and GSM8K benchmarks.

1343 In the single-agent setting (Table 11), DMV supervision proves consistently competitive with, and
1344 often superior to, GT supervision across Qwen2B, Llama-3B, Phi-4B, and Llama-8B. Gains are
1345 most pronounced for preference-based objectives such as KTO and DPO, where DMV provides
1346 a more stable learning signal. By contrast, the oracle GT signal sometimes produces degraded
1347 performance, particularly in KTO. Notably, DMV provides a robust alternative that avoids these
1348 pitfalls, often leading to stronger outcomes without requiring external supervision.

1350 Table 11: Single-agent accuracy: Unsupervised post-training using debate-majority-vote-derived
 1351 supervision (DMV) performs comparably to or outperforms supervised training using ground truth
 1352 (GT) labels. Bold indicates the better score in each pair.

1354 Model	1355 Dataset	1356 Debate	1357 SFT		1358 KTO		1359 DPO		1360 GRPO	
			1361 <i>GT</i>	1362 <i>DMV</i>	1363 <i>GT</i>	1364 <i>DMV</i>	1365 <i>GT</i>	1366 <i>DMV</i>	1367 <i>GT</i>	1368 <i>DMV</i>
1357 Qwen2B	MATH	7.67	12.13	12.20	12.67	19.67	17.13	23.00	21.33	17.33
	GSM8K	23.00	24.20	24.80	45.40	47.20	46.47	44.20	39.73	32.07
1359 Llama3B	MATH	27.87	26.80	25.60	12.53	39.20	38.40	40.67	36.80	35.00
	GSM8K	57.33	54.13	56.73	27.27	66.27	56.87	66.73	54.93	52.20
1361 Phi4B	MATH	34.60	33.07	35.20	33.73	33.00	37.00	36.33	37.80	37.33
	GSM8K	67.27	71.67	70.20	76.13	75.47	75.80	76.60	74.80	70.40
1363 Llama8B	MATH	22.93	23.73	23.00	41.20	39.40	45.13	46.40	29.07	31.13
	GSM8K	57.93	40.20	41.67	72.60	70.87	76.33	77.67	61.27	66.87

1365 Table 12: Multi-agent accuracy: Unsupervised post-training using debate-majority-vote-derived
 1366 supervision (DMV) performs comparably to or outperforms supervised training using ground truth
 1367 (GT) labels. Bold indicates the better score in each pair.

1369 Model	1370 Dataset	1371 Init	1372 SFT		1373 KTO		1374 DPO		1375 GRPO	
			1376 <i>GT</i>	1377 <i>DMV</i>	1378 <i>GT</i>	1379 <i>DMV</i>	1380 <i>GT</i>	1381 <i>DMV</i>	1382 <i>GT</i>	1383 <i>DMV</i>
1372 Qwen2B	MATH	32.4	38.6	40.6	40.4	46.2	39.4	41.2	43.6	40.2
	GSM8K	49.6	50.0	51.6	66.2	63.8	61.6	57.0	60.4	51.8
1374 Llama3B	MATH	37.8	35.6	33.6	15.8	51.8	50.8	51.4	49.2	50.8
	GSM8K	65.6	65.8	64.0	29.4	73.8	67.0	73.8	64.4	69.6
1376 Phi4B	MATH	44.4	44.0	46.0	46.8	44.6	50.2	48.6	51.4	50.8
	GSM8K	79.6	79.8	78.4	82.6	81.2	83.8	84.4	81.6	83.4
1378 Llama8B	MATH	32.8	34.0	33.4	56.0	55.8	61.8	60.8	48.6	44.8
	GSM8K	74.0	65.2	65.2	81.2	79.4	81.6	83.0	83.2	84.2

1382 In the multi-agent setting (Table 12), the advantages of DMV supervision become even clearer.
 1383 Across nearly all models and methods, DMV either matches or exceeds GT labels. The gains are
 1384 especially consistent under preference-learning formulations (KTO, DPO), where DMV supervision
 1385 yields more reliable improvements to consensus-based performance. While GT labels retain
 1386 competitive strength in certain cases (e.g., Phi-4B on MATH tasks), DMV repeatedly delivers higher or
 1387 more stable final-round accuracies.

1388 Together, these results show that debate-derived majority-vote supervision provides an effective,
 1389 scalable alternative to oracle ground truth. DMV not only mitigates the instability observed when
 1390 GT is used in preference-learning objectives, but also enhances both single- and multi-agent training.
 1391 These findings underscore the efficacy of unsupervised alignment signals, leveraging a model’s own
 1392 consensus dynamics, as a robust substitute for human-labeled supervision.

1394 G ABLATION: EFFECT OF PEER CONTEXT IN MULTI-AGENT DEBATE

1396 Tables 13 and 14 examine whether conditioning on peer responses during training improves debate
 1397 performance.

1398 Training with peer context substantially improves multi-agent debate performance (Table 14). While
 1399 initial round (single-agent) performance shows modest benefits from context training (5 out of 8
 1400 cases improve), the advantages become pronounced in final-round multi-agent settings. Context
 1401 training improves final-round individual accuracy in 7 out of 8 cases, with particularly large gains
 1402 for models like L8B-MATH (57.80 vs. 51.47) and L3B-MATH (45.80 vs. 41.13). Most importantly,
 1403 final-round majority voting benefits from context in 6 out of 8 cases, with GSM8K tasks show-

1404 Table 13: Multi-agent comparison of Context vs No Context runs across Initial Debate, SFT, KTO,
 1405 DPO, and GRPO. Bold indicates which setting performed better in each pair.

Model	Dataset	Debate	SFT		KTO		DPO		GRPO	
			Context	NoCtx	Context	NoCtx	Context	NoCtx	Context	NoCtx
Qwen2B	MATH	32.4	40.6	38.0	46.2	46.6	41.2	43.4	40.2	39.8
	GSM8K	49.6	51.6	51.6	63.8	59.2	57.0	57.8	51.8	57.2
Llama3B	MATH	37.8	33.6	37.4	51.8	27.0	51.4	51.0	50.8	47.0
	GSM8K	65.6	64.0	65.4	73.8	59.0	73.8	70.6	69.6	50.0
Phi4B	MATH	44.4	46.0	45.0	44.6	46.0	48.6	48.4	50.8	52.8
	GSM8K	79.6	78.4	80.0	81.2	82.0	84.4	81.8	83.4	82.0
Llama8B	MATH	32.8	33.4	31.4	55.8	49.2	60.8	57.2	44.8	44.6
	GSM8K	74.0	65.2	67.4	79.4	80.6	83.0	81.6	84.2	71.0

1418 Table 14: Post-training with peer context teaches agents to utilize other agents’ responses in the
 1419 debate format for more effective final round ensemble reasoning (MV-DPO).

Model-Data	Initial Round Avg		Final Round Avg		Final Round MV	
	NoCtx	Context	NoCtx	Context	NoCtx	Context
Qwen2B-MATH	22.33	23.00	37.13	38.33	43.40	41.20
Qwen2B-GSM8K	46.53	44.20	52.53	54.73	57.80	57.00
Llama3B-MATH	40.27	40.67	41.13	45.80	51.00	51.40
Llama3B-GSM8K	65.87	66.73	67.87	70.60	70.60	73.80
Phi4B-MATH	39.47	36.33	39.53	34.73	48.40	48.60
Phi4B-GSM8K	74.67	76.60	74.60	77.80	81.80	84.40
Llama8B-MATH	49.87	46.40	51.47	57.80	57.20	60.80
Llama8B-GSM8K	75.80	77.67	78.00	81.20	81.60	83.00

1433 ing consistent improvements across all model sizes (1.4-3.2 percentage points) and larger models
 1434 achieving substantial gains on MATH tasks (e.g., L8B-MATH improving from 57.20 to 60.80).
 1435 These results demonstrate that context-aware training teaches agents to effectively leverage peer
 1436 feedback during deliberation, leading to stronger consensus outcomes in multi-agent debate.

H ITERATIVE IMPROVEMENT

1440 Table 15 examines whether iterative training beyond the first iteration yields continued improve-
 1441 ments. While It-1 produces the substantial gains reported in our main results, iterations 2 and 3
 1442 demonstrate continued modest improvements: in 23 of 24 evaluation settings, either It-2 or It-3
 1443 achieves the best performance. For example, Phi-4B on MATH majority vote increases from 55.00
 1444 (It-1) to 57.40 (It-3), and Llama-8B on GSM8K improves from 82.80 to 85.60.

1445 These gains show clear diminishing returns compared to the It-0→It-1 jump, with typical improve-
 1446 ments of 1-3 percentage points between iterations. Performance occasionally dips between adjacent
 1447 iterations (e.g., L3B-GSM8K majority vote: 72.00→74.60→70.80) but generally trends upward.
 1448 This pattern suggests that iterative training continues to extract useful signal from debate-generated
 1449 data, though with decreasing marginal benefit after the initial iteration.

I DPO PAIR SELECTION STRATEGY ANALYSIS

1453 We compared two strategies for creating preference pairs from multi-agent debate data: majori-
 1454 ty/minority partitioning versus confidence-based selection using model log-probabilities. Analysis
 1455 covered 2,226 agent responses from 742 problems across multiple models and datasets. Majori-
 1456 ty/minority partitioning substantially outperforms confidence-based selection across all metrics.
 1457 Majority responses achieve 68.0% accuracy versus 28.1% for minority responses (39.8 percentage
 1458 point gap), while high-confidence responses achieve only 51.5% accuracy versus 33.2% for low-

1458 Table 15: Iterative alternation between debate generation and post-training across four iterations
 1459 shows substantial initial gains (It-0 to It-1) followed by diminishing returns. Model abbreviations:
 1460 Q2B=Qwen-2B, L3B=Llama-3B, L8B=Llama-8B, P4B=Phi-4B.

Model-Data	Initial Round Avg				Final Round Avg				Final Round MV			
	It-0	It-1	It-2	It-3	It-0	It-1	It-2	It-3	It-0	It-1	It-2	It-3
Q2B-MATH	7.67	17.40	18.00	19.33	21.47	43.13	40.73	43.93	32.40	47.40	41.20	48.60
Q2B-GSM8K	23.00	44.20	44.67	44.73	35.07	58.67	59.93	59.47	49.60	60.80	62.20	62.60
L3B-MATH	27.87	40.93	39.33	41.93	24.27	48.27	46.93	48.73	37.80	55.00	54.00	53.60
L3B-GSM8K	57.33	64.60	67.07	65.20	49.20	68.73	71.13	69.07	65.60	72.00	74.60	70.80
P4B-MATH	34.60	43.27	43.67	43.80	34.37	48.00	48.93	50.20	44.40	55.00	55.80	57.40
P4B-GSM8K	67.27	75.73	76.20	75.47	68.53	77.00	79.20	77.60	79.60	81.40	84.40	83.00
L8B-MATH	22.93	44.53	44.67	44.87	22.53	55.73	57.60	56.07	32.80	58.20	60.40	59.80
L8B-GSM8K	57.93	77.00	77.87	78.80	56.53	80.80	80.73	82.93	74.00	82.80	82.60	85.60

1474 confidence (18.3 percentage point gap). The majority strategy yields an effect size of Cohen’s $d =$
 1475 1.832 compared to 0.281 for confidence-based selection, a $6.5\times$ difference in discriminative power.
 1476 Additionally, majority voting provides usable preference signals in 70.5% of examples versus 35.2%
 1477 for confidence-based selection. These results validate using majority vote consensus for DPO pair
 1478 selection, demonstrating that collective agreement provides more reliable quality signals than individual
 1479 model confidence for mathematical reasoning tasks.

J SELF-CONSISTENCY AND ACCURACY CORRELATION ANALYSIS

1483 We analyze the correlation between self-consistency and accuracy improvements across three exper-
 1484 imental conditions to assess the robustness of our findings under different token generation limits
 1485 and quantization settings. We test three conditions: (1) Token Capped + Quantized (256 tokens,
 1486 4-bit), our standard experimental setup matching computational constraints; (2) Token Uncapped +
 1487 Non-Quantized (2048 tokens with no observed truncation, full precision), representing maximum
 1488 generation quality without computational constraints; and (3) Token Uncapped + Quantized (2048
 1489 tokens with no observed truncation, 4-bit), a balanced approach removing token truncation while
 1490 maintaining efficiency.

1491 Table 16: Self-consistency vs accuracy correlation across experimental conditions. “Capped” refers
 1492 to 256 token limit, which is used throughout the work due to computational constraints in multi-
 1493 agent RL settings, and “Uncapped” refers to 2048 token limit where no response truncation occurred.

Condition	Model-Dataset	Self-Consistency (%)		Accuracy (%)		Correlation (r)
		Base	Post	Base	Post	
Capped +Quant	Llama3B-MathQA	31.2	49.4	29.1	45.8	0.954
	Qwen2B-Math	12.0	27.8	11.6	26.8	0.989
	Qwen2B-GSM8K	26.4	54.0	25.9	52.7	0.982
Uncapped +Full	Llama3B-MathQA	49.5	68.5	45.1	60.9	0.869
	Qwen2B-Math	50.4	57.2	48.2	54.4	0.944
	Qwen2B-GSM8K	51.4	76.4	50.8	75.5	0.933
Uncapped +Quant	Llama3B-MathQA	49.8	67.3	45.8	60.8	0.899
	Qwen2B-Math	42.8	49.7	38.9	45.2	0.935
	Qwen2B-GSM8K	50.6	73.5	48.9	71.3	0.927

1508 All conditions show strong positive correlations ($r > 0.86$) between self-consistency and accuracy,
 1509 validating self-consistency as a robust proxy for model performance across computational settings.
 1510 Interestingly, capped conditions show slightly higher correlations (mean $r = 0.975$) compared to
 1511 uncapped conditions (mean $r = 0.915$ for both quantized and full precision). This tighter coupling
 likely reflects how post-training teaches more efficient reasoning: models learn to better utilize

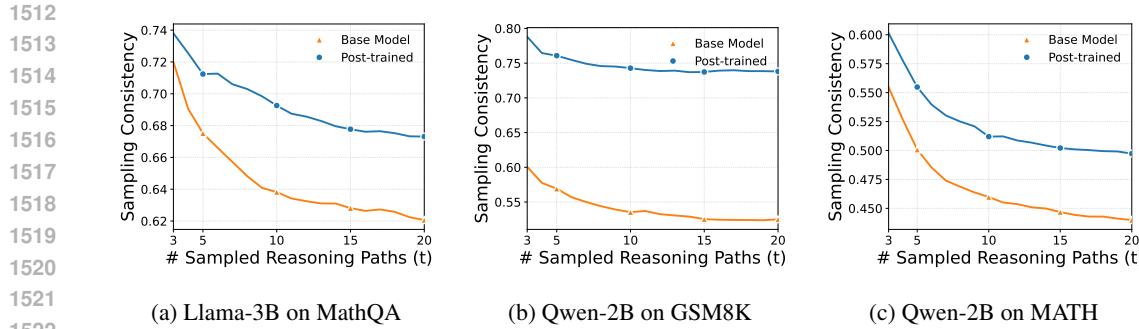


Figure 5: Self-consistency improvements persist without token constraints. Models trained with 256-token debates still show gains when tested with full-length responses, though with reduced effect sizes due to the weaker training signal compared to testing conditions. Colors: **Blue**: post-trained model, **Orange**: base model.

limited token budgets, producing fewer truncated responses while achieving higher accuracy within constraints. In uncapped settings, post-trained models generate 22-36% shorter responses while still being more accurate, demonstrating that this efficiency persists without token limits. Four-bit quantization minimally impacts correlation strength, with quantized uncapped (mean $r = 0.920$) closely matching full precision uncapped (mean $r = 0.915$), demonstrating that computational efficiency can be achieved without degrading the consistency-accuracy relationship. Post-training consistently improves both metrics across all conditions, with self-consistency gains ranging from 6.9 to 27.6 percentage points and accuracy gains from 6.3 to 24.7 percentage points, confirming that our approach remains effective under varying computational constraints.

J.1 SELF-CONSISTENCY IMPROVEMENTS WITHOUT TOKEN CONSTRAINTS

Figure 5 shows self-consistency curves for the aforementioned model-dataset pairs without token constraints. Improvements persist across all configurations, demonstrating that MACA’s benefits are not merely artifacts of addressing truncation. The effect sizes are slightly smaller than in our main results due to train-test mismatch: these models were trained on debate signals from 256-token responses but tested without constraints. Training on full-length debates would likely yield larger improvements, as the consensus signals would be stronger and better aligned with test conditions.

K IMPACT OF MACA ON GENERAL REASONING

We demonstrate that debate-derived majority vote supervision achieves comparable performance to ground truth supervision while enabling effective generalization to unseen reasoning domains. Tables 17 and 18 present direct comparisons between these supervision approaches across mathematical training domains and out-of-distribution tasks.

Table 17 shows that debate-derived supervision performs comparably to ground truth labels on training domains, with methods trading wins across model-dataset combinations. Table 18 reveals that both supervision approaches generalize effectively to unseen reasoning tasks, including mathematical word problems (SVAMP), science reasoning (GPQA), and commonsense reasoning (CSQA). Both methods show substantial improvements over base performance across all domains, confirming that MACA develops transferable reasoning capabilities.

These results demonstrate that debate-generated consensus signals provide an effective unsupervised alternative to ground truth supervision, achieving comparable performance without human annotation. This approach offers significant advantages for scaling reasoning improvements to new domains or large datasets where expert labels are unavailable or prohibitively expensive.

1566 Table 17: Within-distribution performance comparison: Debate-derived majority vote supervision
 1567 vs. ground truth supervision on training domains. Models are trained on MATH, GSM8K, and
 1568 MathQA datasets. Bold indicates the better method for each model-dataset pair, demonstrating that
 1569 debate-derived supervision achieves comparable performance to ground truth labels.

1570

1571 Model	1572 Method	1573 MATH		1574 GSM8K		1575 MathQA	
		1576 Debate-MV	1577 GT	1578 Debate-MV	1579 GT	1580 Debate-MV	1581 GT
1574 Qwen2B	Base	10.4	10.4	27.0	27.0	7.4	7.4
	SFT	10.8	10.4	25.6	26.4	8.2	8.8
	GRPO	19.4	21.0	45.2	48.6	18.6	19.6
	KTO	22.6	23.2	54.8	54.6	28.8	28.6
	DPO	24.8	24.2	51.4	52.0	24.2	24.0
1578 Llama3B	Base	32.0	32.0	69.6	69.6	24.6	24.6
	SFT	33.2	32.4	64.2	64.2	26.4	25.2
	GRPO	45.8	46.4	75.8	74.8	36.2	31.8
	KTO	48.0	47.8	76.0	76.8	41.4	40.6
	DPO	53.2	53.6	80.4	77.8	46.2	45.4

1582

1583 Table 18: Cross-domain generalization: Debate-derived majority vote supervision vs. ground truth
 1584 supervision on unseen reasoning tasks. Models trained on mathematical datasets (MATH, GSM8K,
 1585 MathQA) generalize effectively to diverse reasoning domains. Bold indicates the better method
 1586 for each model-dataset pair, showing that both supervision approaches transfer well to out-of-
 1587 distribution tasks.

1588

1589 Model	1590 Method	1591 SVAMP		1592 GPQA		1593 CSQA	
		1594 Debate-MV	1595 GT	1596 Debate-MV	1597 GT	1598 Debate-MV	1599 GT
1592 Qwen2B	Base	48.30	48.30	0.45	0.45	3.80	3.80
	SFT	53.30	53.00	17.90	0.89	16.80	18.80
	GRPO	60.30	58.33	8.70	7.81	10.80	9.60
	KTO	76.00	76.33	16.70	16.96	63.40	60.80
	DPO	65.00	64.67	19.64	20.98	62.2	60.80
1596 Llama3B	Base	71.30	71.30	0.67	0.67	53.00	53.00
	SFT	68.33	72.0	2.23	2.23	57.40	57.80
	GRPO	75.00	79.33	6.92	5.13	63.20	59.40
	KTO	76.70	78.67	8.93	9.82	62.20	61.80
	DPO	78.40	80.67	11.40	11.60	64.00	62.40

1601

1602 L POST-TRAINING METHOD IMPACT ON LOG-PROBABILITY DISTRIBUTION

1603

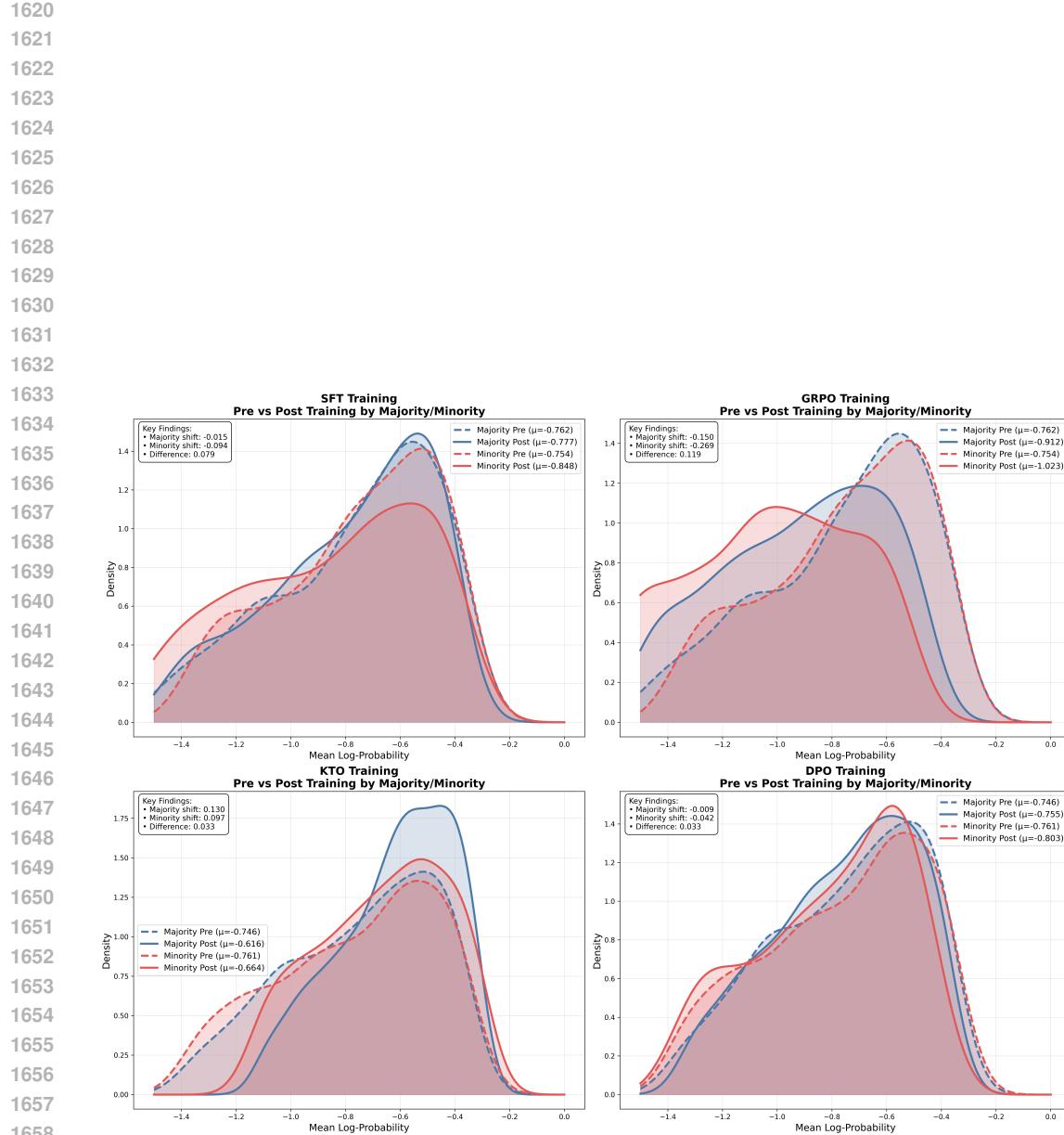
1604 Figure 6 shows how different post-training methods affected log-probability distributions for Qwen-
 1605 2B on MATH. Preference-based methods (DPO, KTO) increased the density of majority distribu-
 1606 tions, with KTO showing particularly pronounced effects: higher peaks and tighter tails indicating
 1607 more concentrated probability mass around consensus responses. SFT left the majority distribu-
 1608 tion largely unchanged while substantially reducing minority distribution density. GRPO created
 1609 the most dramatic separation between distributions, shifting both leftward (lower log-probabilities
 1610 overall) but with the minority distribution shifting much more substantially than the majority. While
 1611 these different patterns (probability concentration for preference methods versus selective penal-
 1612 ization for GRPO) all corresponded with performance improvements, further research is needed to
 1613 better understand the relationship between these specific distributional changes and the impact on
 1614 consistency.

1615

1616 M PREFERENCE LEARNING AS AN IMPLICIT FORMAT REWARD

1617

1618 This section investigates how preference learning through consensus signals acts as an implicit for-
 1619 mat reward, teaching models to produce more efficient and accurate reasoning without explicit for-
 1620 matting supervision. We examine three key aspects: the baseline capability requirements for ef-



1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Figure 6: Log probability distributions for majority and minority answers before and after post-training (Qwen2B, Math).

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3

1728
1729 Table 20: Improvements from post-training with `max_new_tokens` = 256 translate when tested with
1730 larger token counts (512). “All” represents a model post-trained on Math, MathQA, and GSM8K;
1731 its row reports improvement deltas over the base model performance.

Model	Trained on	Tested on (<code>max_new_tokens</code> = 512)					
		MATH	GSM8K	MathQA	SVAMP	AMC	GPQA
Qwen2B	Base	32.8	47.4	18.8	53.7	7.5	12.5
	All	↑15.6	↑24.6	↑22.2	↑20.0	↑2.5	↑11.2
Llama3B	Base	60.8	76.8	43.0	78.0	10.0	9.2
	All	↑6.4	↓0.2	↑11.2	↑3.0	↑10.0	↑14.5

1740
1741 Table 21: Decomposition of performance improvements into completion gains versus reasoning
1742 gains. “From Completion” represents accuracy gained if all truncated base model responses had
1743 been allowed to complete. “From Better Reasoning” represents the remaining improvement at-
1744 tributable to fundamental problem-solving enhancement. Percentages show the relative contribution
1745 of each component to total gains.

Model	Dataset	Before	After	Total Gain	From Completion	From Better Reasoning
Qwen2B	CSQA	3.8	63.4	↑59.6	↑18.6 (31%)	↑41.0 (69%)
	GPQA	0.4	16.7	↑16.3	↑0.7 (4%)	↑15.6 (96%)
	GSM8K	24.6	54.8	↑30.2	↑0.0 (0%)	↑30.2 (100%)
	MATH	10.4	22.6	↑12.2	↑0.0 (0%)	↑12.2 (100%)
	MathQA	7.4	28.8	↑21.4	↑2.0 (9%)	↑19.4 (91%)
	SVAMP	48.3	76.0	↑27.7	↑0.4 (1%)	↑27.3 (99%)
Llama3B	CSQA	53.0	64.0	↑11.0	↑1.2 (11%)	↑9.8 (89%)
	GPQA	0.7	11.4	↑10.7	↑0.9 (8%)	↑9.8 (92%)
	GSM8K	69.6	80.4	↑10.8	↑0.2 (2%)	↑10.6 (98%)
	MATH	41.2	53.2	↑12.0	↑0.2 (2%)	↑11.8 (98%)
	MathQA	29.2	46.2	↑17.0	↓0.2 (-1%)	↑17.2 (101%)
	SVAMP	71.3	75.7	↑4.3	↑0.0 (0%)	↑4.3 (100%)

1760 M.4 FORMATTING IMPROVEMENTS AND REMAINING REASONING GAINS

1761
1762 To further isolate reasoning improvements from formatting effects, we analyze how post-training
1763 affects answer formatting compliance. Table 22 shows the percentage of responses with correct
1764 reasoning but incorrect formatting, and calculates reasoning gains that persist beyond all formatting
1765 improvements. Post-training dramatically reduces formatting losses (e.g., from 38.8% to 0.6% on
1766 CSQA for Qwen2B). However, the “Reasoning Gain Beyond Formatting” column reveals that sub-
1767 stantial improvements remain even after perfect formatting is assumed. For instance, Qwen2B’s 59.6
1768 percentage point improvement on CSQA includes 38.2 points from better formatting; the remaining
1769 21.4 points represent accuracy improvements distinct from formatting.

1770 M.5 PARSER IMPLEMENTATION DETAILS

1771
1772 To quantify formatting improvements versus reasoning gains, we employed two parsers with differ-
1773 ent strictness levels. Our standard parser requires answers in `\boxed{}` format and returns `None`
1774 for any deviation. The relaxed parser, used for impact analysis in Table 22, accepts common natural
1775 language patterns like “The answer is A” or “Answer: 42” by searching the entire response for valid
1776 answer formats.

1777
1778 This relaxed parser first attempts the strict extraction, then falls back to regex patterns that capture
1779 answers expressed naturally in text. For multiple choice, it accepts patterns like “[Tt]he answer is
1780 ([A-E])” or “Answer: ([A-E])”. For numerical answers, it extracts from patterns like “= 42” at line
1781 endings or “The final answer is 42”. When multiple patterns match, it takes the last occurrence,
1782 mimicking how humans identify the final answer in a reasoning chain.

Table 22: Analysis of formatting improvements versus reasoning gains. “Accuracy Lost to Format Errors” shows the percentage of responses with correct reasoning but incorrect formatting (e.g., writing “The answer is A” instead of \boxed{A}). “Reasoning Gain Beyond Formatting” shows improvements that persist even after accounting for all formatting fixes, calculated as: Total Gain - (Format Loss Before - Format Loss After).

Model	Dataset	Accuracy Lost to Format Errors (%) Before Training	Accuracy Lost to Format Errors (%) After Training	Reasoning Gain Beyond Formatting (%)
Qwen2B	CSQA	38.8	0.6	↑21.4
	GPQA	6.2	1.6	↑11.7
	MathQA	5.8	0.6	↑16.2
Llama3B	CSQA	7.0	1.4	↑5.4
	GPQA	7.6	3.8	↑6.9
	MathQA	5.8	2.8	↑14.0

The gap between strict and relaxed parser accuracies precisely measures the “Accuracy Lost to Format Errors” in Table 22. Strict formatting compliance is a key measure of a model’s ability to follow instructions and is critical for downstream applications that rely on reliable parsing of LM outputs, while the relaxed parser accounts for human-interpretable correctness. This dual evaluation reveals that preference learning through consensus not only teaches proper formatting as an implicit reward but fundamentally improves problem-solving capabilities, with reasoning gains persisting even when formatting constraints are removed.

N TRAINING CURVES

The training dynamics of our post-training methods provide insight into how models learn to refine responses towards multi-agent consensus preferences. Figures 7a–8b show example training curves across key metrics during post-training with MV-DPO, MV-KTO, MV-GRPO, and MV-SFT.

Across all methods, the reward margins between chosen (consensus) and rejected (non-consensus) responses increase consistently, indicating effective preference learning. MV-DPO and MV-KTO reveal this pattern strongly: margins start near zero and grow steadily as the models optimize towards favoring majority-preferred outputs. MV-KTO achieves similar reward improvements despite not requiring strict paired comparisons, demonstrating its robust learning dynamics.

Training accuracy converges for all methods, reaching high classification levels between consensus and non-consensus responses, showing that each approach successfully reinforces desired sampling behaviors. Correspondingly, losses decrease smoothly without signs of instability or collapse, indicating stable training processes.

Log probabilities of rejected responses decline across post-training methods, reflecting the models’ increasing tendency to assign lower likelihood to outputs outside the consensus. This is most pronounced in MV-DPO and MV-GRPO, where rejected rewards fall more steeply, delineating a clear separation between preferred and discouraged responses. MV-SFT, operating via imitation learning, exhibits strong improvements in token accuracy and loss while reinforcing consensus-aligned responses effectively.

Overall, the asymmetric reward trajectories, where chosen response rewards remain relatively stable or increase slightly while rejected response rewards decline sharply, suggest that post-training primarily discourages generation of minority or outlier outputs. This mechanism is a core driver behind the improved sampling consistency and reasoning quality observed in our experiments.

These training curves collectively support our hypothesis that post-training with majority vote preferences enables models to internalize collective agreement notions and reproduce responses better aligned with multi-agent consensus.

1836 Table 23: Single-agent: RL with debate outperforms RL with single-round majority vote. Bench-
 1837 mark against TTRL (single-round R0 MV-GRPO), ScPO (single-round R0 MV-DPO), MACA (de-
 1838 bate final round R1 MV-DPO with debate context after collaborative exchange). Accuracy averaged
 1839 over 3 seeds with standard deviation reported in comparison to base(instruction-tuned) model.

	Qwen-2B	Llama-3B	Phi-4B	Llama-8B
MATH				
Base	9.4	40.2	39.8	36.0
R0 MV-GRPO	27.4 ± 2.9	45.5 ± 5.7	45.9 ± 2.1	43.5 ± 0.2
R0 MV-DPO	11.7 ± 1.1	43.6 ± 0.2	39.9 ± 0.5	39.7 ± 0.6
R1 MV-DPO	26.1 ± 0.4	52.7 ± 0.7	46.7 ± 0.2	53.1 ± 0.8
GSM8K				
Base	26.4	72.8	76.4	67.8
R0 MV-GRPO	50.9 ± 1.6	50.5 ± 8.3	81.2 ± 1.6	54.3 ± 5.7
R0 MV-DPO	42.3 ± 3.4	74.4 ± 0.8	82.3 ± 0.5	80.7 ± 1.2
R1 MV-DPO	50.2 ± 0.9	76.5 ± 0.3	83.7 ± 0.3	86.0 ± 0.2

O POST-TRAINING SELF-CONSISTENCY IMPROVEMENTS TRANSLATE FROM 4-BIT QUANTIZED MODEL TO FULL MODEL

As shown in Figures 9-11, post-training improvements on 4-bit quantized models transfer to full-precision models, and the improvement margin persists with larger numbers of trajectories sampled ($t = 50$).

P IMPACT OF POST-TRAINING ON DEBATE AGREEMENT RATES

Figure 12 shows how agent agreement patterns evolve through debate, comparing base models (Iteration 0) against consensus-trained models (Iteration 1). These distributions directly measure whether our training successfully shifts probability mass toward consensus trajectories $\mathcal{G}_+(x)$.

Base models show relatively uniform agreement distributions, with only 13.4% of examples achieving full consensus (3/3 agreement) in the final round. After consensus post-training with MV-DPO, this increases over three-fold to 43.4%, with systematic improvements across all agreement levels: increased mass at 2/3 and 3/3 agreement, decreased mass at 1/3 agreement. This redistribution confirms that training drives the policy toward consensus-supporting trajectories.

Additionally, unparseable responses drop from 11% to 0.6% without explicit format rewards. Since our training favors consensus completions, which must finish within token limits to be comparable, the method implicitly rewards efficient, complete reasoning patterns. This suggests consensus alignment naturally encourages concise and coherent reasoning as a prerequisite for measurable agreement.

Q PERFORMANCE COMPARISON OF RL ON DEBATE VS. SINGLE-ROUND MAJORITY VOTE RL IN SINGLE-AGENT SETTING

Table 23 reports the full results referenced in Table 6, including standard deviation over 3 seeds. We find that MACA with final round majority vote with debate context outperforms single-round majority-vote RL with DPO (akin to ScPO (Prasad et al., 2024)) in all 8 configurations tested, and RL with GRPO (akin to TTRL (Zuo et al., 2025)) in 6 out of 8 configurations tested, with the other 2 configs being within the standard deviation.

R EFFICIENCY

Here we detail the compute performance tradeoffs of MACA’s MV-DPO with debate context against other single-agent benchmark methods. ScPO requires 0.075-0.58 GPU hours achieving -0.6%

1890 to +13.6% gains, TTTRL requires 2.2-7.7 GPU hours achieving -26.4% to +18% changes, while
1891 MACA (MV-DPO with debate) requires 0.73-1.68 GPU hours achieving consistent positive gains.
1892 Our efficiency plots demonstrate that MV-DPO on debate provides the best performance-efficiency
1893 tradeoff—higher performance than ScPO/TTTRL with comparable computational cost to ScPO and
1894 significantly lower cost than TTTRL.

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

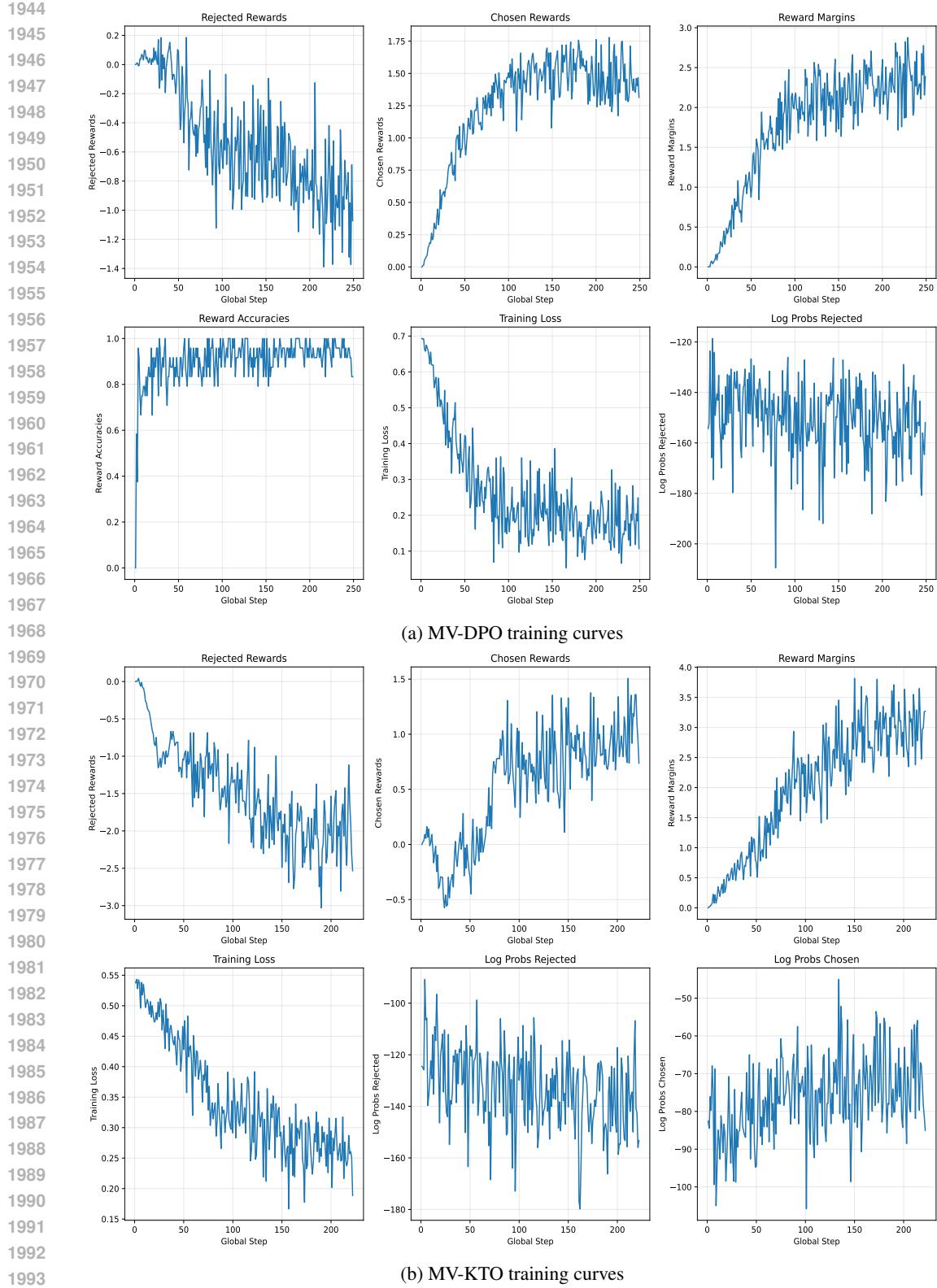
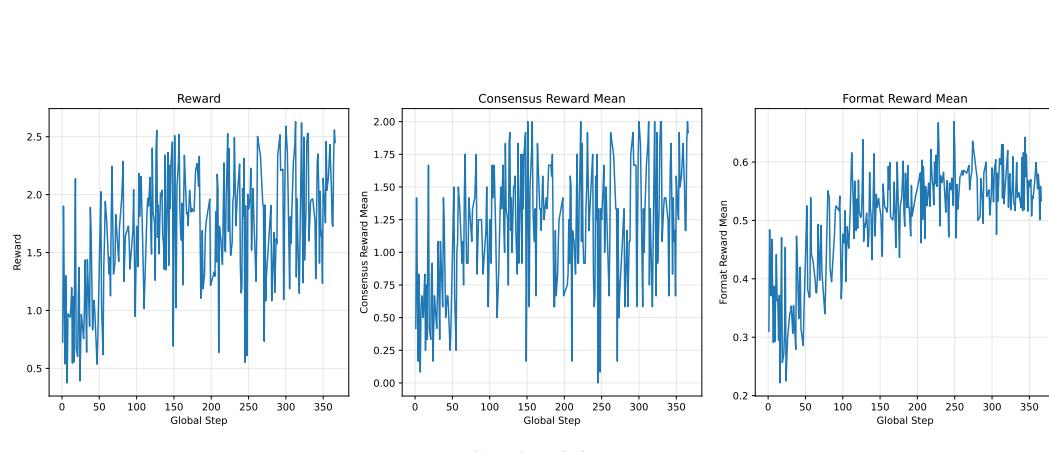


Figure 7: Training curves for MV-DPO and MV-KTO. (a) MV-DPO: increasing reward margin between majority (chosen) and minority (rejected) responses, with declining rejected log probabilities. (b) MV-KTO: similar reward margin increase using unpaired examples, with rejected log probabilities decreasing and chosen increasing.

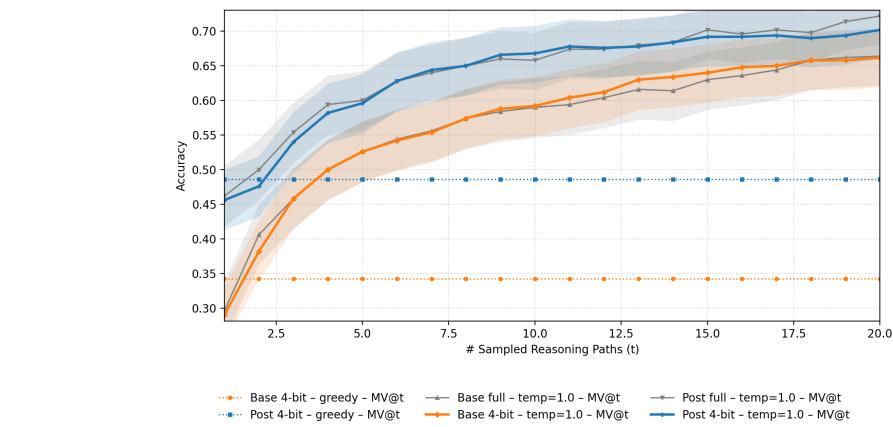


(a) MV-GRPO training curves



(b) MV-SFT training curves

Figure 8: Training curves for MV-GRPO and MV-SFT. (a) MV-GRPO: consensus and format rewards both increase. (b) MV-SFT: token accuracy increases while loss decreases.

Figure 9: Llama-3B on MathQA (MV@t, t=20). **Blue:** post-trained 4-bit model, **Orange:** base 4-bit model, **Grey:** full-precision model.

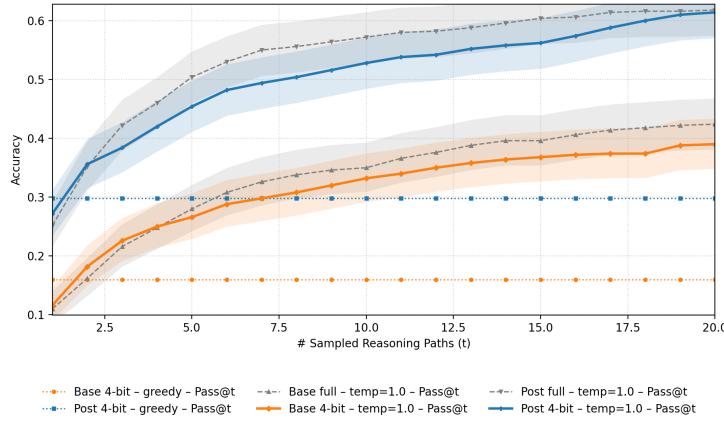


Figure 10: Qwen-2B on MATH (Pass@t, t=20). **Blue**: post-trained 4-bit model, **Orange**: base 4-bit model, **Grey**: full-precision model.

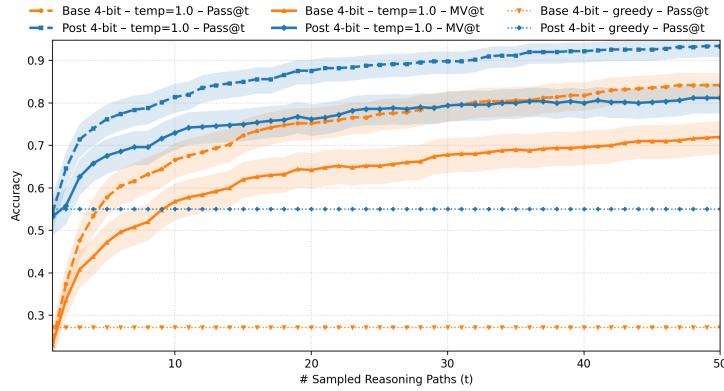


Figure 11: Qwen-2B on GSM8K (Pass@t, MV@t; t=50). **Blue**: post-trained 4-bit model, **Orange**: base 4-bit model.

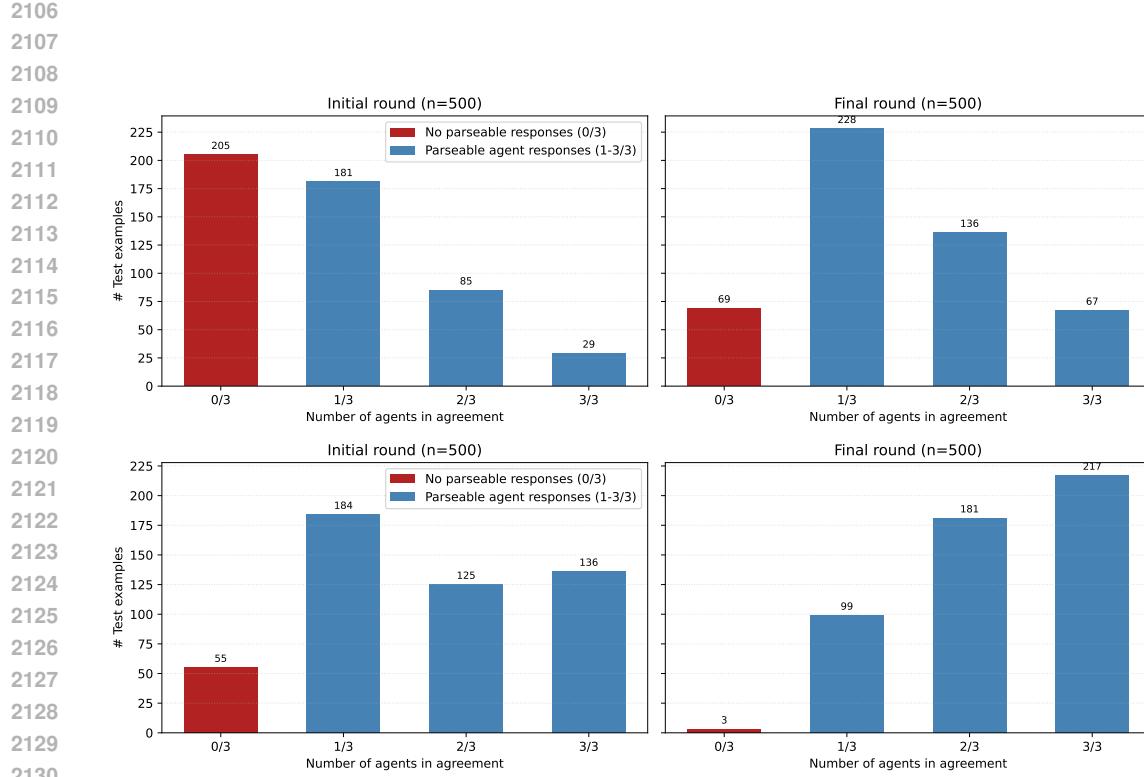


Figure 12: MACA drives meaningful improvements in both answer completeness and agent agreement, verifying the probability mass reallocation to the consensus set of reasoning trajectories (Ex: Qwen2B on GSM8K). Top: base model debate; bottom: post-trained model debate; left: initial debate round; right: final debate round.

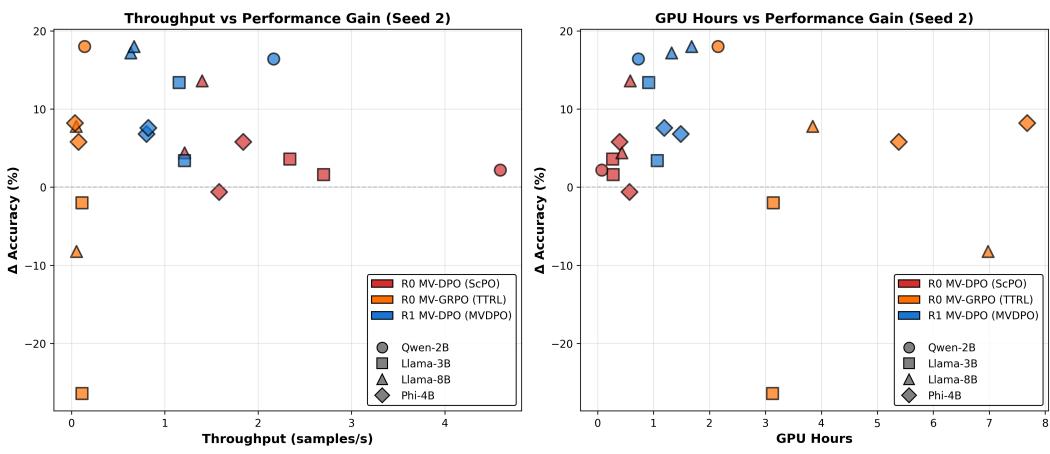


Figure 13: GPU throughput and training runtime compared with performance lift for single-agent post-training methods