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Abstract

Although supervised learning has been highly successful in improving the state-of-the-art
in the domain of image-based computer vision in the past, the margin of improvement has
diminished significantly in recent years, indicating that a plateau is in sight. Meanwhile,
the use of self-supervised learning (SSL) for the purpose of natural language processing
(NLP) has seen tremendous successes during the past couple of years, with this new learning
paradigm yielding powerful language models. Inspired by the excellent results obtained
in the field of NLP, self-supervised methods that rely on clustering, contrastive learning,
distillation, and information-maximization, which all fall under the banner of discriminative
SSL, have experienced a swift uptake in the area of computer vision. Shortly afterwards,
generative SSL frameworks that are mostly based on masked image modeling, complemented
and surpassed the results obtained with discriminative SSL. Consequently, within a span of
three years, over 100 unique general-purpose frameworks for generative and discriminative
SSL, with a focus on imaging, were proposed. In this survey, we review a plethora of research
efforts conducted on image-oriented SSL, providing a historic view and paying attention to
best practices as well as useful software packages. While doing so, we discuss pretext tasks
for image-based SSL, as well as techniques that are commonly used in image-based SSL.
Lastly, to aid researchers who aim at contributing to image-focused SSL, we outline a number
of promising research directions.

1 Introduction

The remarkable feature extraction capabilities of deep neural networks (DNNs) have enabled their effective
utilization in numerous visual tasks. Although the core building blocks that are in common use today were
already proposed two decades ago (LeCun et al., 1998), DNNs only became the go-to models after the
introduction of AlexNet (Krizhevsky et al., 2012), a DNN architecture that was able to obtain exceptional
results for the ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) that took place
in 2012, by leveraging vast amounts of computational resources (at that time) and large amounts of labeled
data. Since then, the availability of standardized datasets in the image domain such as MNIST (LeCun
et al., 1998), CIFAR (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), COCO (Lin et al., 2014),
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and ImageNet enabled standardized experimentation, with these datasets acting as catalysts for major
advancements in the area of supervised learning. Starting with AlexNet, the classification accuracy of DNNs
on ImageNet improved year after year thanks to better and novel architectural designs (e.g., VGG (Simonyan
& Zisserman, 2015), ResNet (He et al., 2016), InceptionNet (Szegedy et al., 2015; 2016), ViT (Dosovitskiy
et al., 2020)), augmentation techniques, optimizers, and activation functions, as well as methods for smoother
training (Loshchilov & Hutter, 2017; Yun et al., 2019; Ioffe & Szegedy, 2015; Kingma & Ba, 2014; Clevert
et al., 2015).

Unfortunately, not all datasets come with an abundance of labeled training data. In order to overcome this
hurdle and to facilitate the application of DNNs to smaller datasets, transfer learning was introduced and
soon became the dominant method to transfer knowledge across image datasets (Tan et al., 2018). Although
transfer learning enables the usage of DNNs for smaller datasets thanks to features extracted from larger
datasets, models trained in this way are known to be brittle and sensitive to small changes in the data (Jain
et al., 2022) due to the use of supervised pre-training. Furthermore, shortcomings of supervised learning
also became apparent when improvements obtained with these methods came to a halt in recent years (see
Figure 1 for top-1 accuracy on ImageNet), thus calling for research efforts that go beyond the use of supervised
learning (Zisserman, 2018). In order to overcome the limitations of supervised learning, countless studies
investigated the line of unsupervised learning, which aims at enabling robust feature extraction through the
training of models without label information (Celebi & Aydin, 2016). Unfortunately, results obtained by
these methods on image datasets fell short until recently (Noroozi & Favaro, 2016; Pathak et al., 2016), while
the use of self-supervised methods in the field of natural language processing (NLP) achieved state-of-the-art
results, compared to supervised learning techniques (Devlin et al., 2018; Radford et al., 2019).

As mentioned above, the field of NLP enjoyed the success of self-supervised models over supervised ones ear-
lier than the field of computer vision, with models such as BERT, GPT, and their variants achieving state-of-the
art results (Devlin et al., 2018; Radford et al., 2019; Brown et al., 2020). One reason which explains the suc-
cess of SSL in NLP is the abundance of unlabeled text data, such as books, online websites, and blogs (Chen
et al., 2017; Hamilton et al., 2017), which prompted researchers to investigate SSL over supervised training.
Another reason that explains their success, as discussed by He et al. (2020), is the fundamental difference
between the signal space of NLP and the signal space of computer vision, given that language data are
discrete and structured (i.e., words), whereas image data are high dimensional, continuous, and unstruc-
tured. Nevertheless, we can state that the success of SSL in the field of NLP prompted the computer vision
community to put more investigative efforts into this learning paradigm.

In order to alleviate issues regarding label requirements, as well as to enable robust feature extraction, self-
supervised learning in computer vision emerged as a method for extracting robust features from unlabeled
data using the properties of images themselves (He et al., 2020; Chen et al., 2020b). The idea behind SSL is
straightforward: devise an experimental setting in which the task that provides the supervisory signal can
be solved without human annotation and then train DNNs to solve it.

Note that the description provided above for SSL also covers a number of additional approaches including
autoencoders (Gogna & Majumdar, 2016), generative models, and clustering-based methods that leverage
self-labeling (Caron et al., 2018), and that these approaches also fall into the category of unsupervised
learning (since human annotation is not necessary). Furthermore, most of the training routines described in
this manuscript also use the term “self-supervised learning” interchangeably with “representation learning”
when supervision is provided by the data, while representation learning is described by Bengio et al. (2013)
as “learning representations of the data that make it easier to extract useful information when building
classifiers or other predictors”, irrespective of the supervisory nature of the learning methodology. So, how
did “self-supervision” become such a popular term in recent years?

Resurgence of the term “self-supervised learning” in computer vision – Beyond a number of niche
use cases such as image colorization (Larsson et al., 2017), image inpainting (Yang et al., 2017), and puzzle-
solvers (Trinh et al., 2019) that explicitly use self-supervision, the term “self-supervised learning” was previ-
ously not employed to describe many techniques. Furthermore, compared to other learning paradigms, the
use of SSL was not popular until recently (see Figure 1). In fact, research efforts that are now considered
to be pioneers in SSL and that are used for SSL benchmarking, such as Deep Cluster (Caron et al., 2018),
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(a) ImageNet top-1 accuracy (b) Interest over time for different learning paradigms

Figure 1: (a) ImageNet top-1 accuracy for DNNs proposed between 2012 - 2022 and (b) interest over time
for three popular learning paradigms between 2004 - 2022, as measured with Google Trends.

InstDist (Wu et al., 2018b), CPC (Oord et al., 2018), and Local Aggregation (Zhuang et al., 2019), were
published as unsupervised training methods, distancing themselves from SSL.

The resurgence of interest in self-supervision and the re-branding of corresponding methodologies can be
attributed to the popularization of the term by both authoritative researchers and tech giants in the field
between 2018 and 2020 (Zisserman, 2018; Efros, 2019; Bachman, 2019; LeCun & Misra, 2020; Chen, 2020;
Howard, 2020). The reason for this re-branding is straightforward: most of the tasks discussed above
that fell under the banner of unsupervised learning were deemed misleading, since the training was not
completely unsupervised. Instead, the supervision was provided by the data itself, without explicit human
labeling (Zisserman, 2018; LeCun, 2019). As a result of this re-branding, while most papers published before
2020 use unsupervised learning to describe their work, those that are published after 2020 use the description
self-supervised learning, hence the conflict between the use of the two terms.

An interesting moment in this timeline, and the one that furthered the popularity of the term SSL, is the
revision by Yann LeCun of his now-famous cake analogy from NeurIPS-16, during a talk he gave at ISSCC-19
and later at AAAI-20 (LeCun, 2020): “If intelligence is a cake, the bulk of the cake is unsupervised self-
supervised learning, the icing on the cake is supervised learning, and the cherry on the cake is reinforcement
learning” (LeCun, 2016).

In summary, we can say that self-supervised learning refers to a recently popularized learning paradigm,
encompassing predictive tasks where the supervisory signal is provided by the data, without relying on the
explicit use of human labels.

Generative and discriminative SSL – In general, self-supervision approaches can be grouped into two
categories: generative and discriminative (Doersch et al., 2015). In generative self-supervision, the task is
to build appropriate distributions over a collection of data while operating in the pixel space. A common
criticism of generative self-supervision is that it is computationally expensive, does not work well with high-
resolution images, and that it may be superfluous for representation learning (Chen et al., 2020b; Grill
et al., 2020). Typical models relying on this kind of self-supervision are autoencoders (AEs) and generative
adversarial networks (GANs) (Kingma & Welling, 2013; Vincent et al., 2008; Goodfellow et al., 2020). It
should be noted that although both AEs and GANs are categorized as “generative” models, they achieve
self-supervision in different and distinct ways.

In contrast to generative SSL, in discriminative self-supervision, the task is to learn good representations of
the data in order to perform a specified pretext task (which we will explain shortly) that does not require
a human annotation effort (Doersch et al., 2015). Discriminative self-supervision is similar to supervised
learning in the sense that the objective function is often a scoring function that evaluates the discriminative
power of learned representations. Most of the SSL frameworks we will cover in this manuscript refer to
the works of Becker & Hinton (1992) and Bromley et al. (1993) as the earliest research efforts that use
discriminative self-supervision in the form it is used nowadays, with the above research efforts investigating
representation alignments across different inputs.

Purpose of this survey – Thanks to the excellent results obtained by SSL in computer vision, numerous SSL
frameworks were proposed within the span of a couple of years. Although most of these frameworks are often
specialized in nature, addressing a select number of tasks (such as depth estimation, face recognition, remote
sensing, and pose estimation), we could trace their origin to roughly 100 general-purpose SSL frameworks
that are applicable to images. Even though several in-depth surveys are available on the topic of image-

3



Published in Transactions on Machine Learning Research (05/2023)

D
N

N
(a) Colorization

D
N

N

(b) Inpainting

D
N

N

(c) Geometric transformations
D

N
N

(d) Puzzle solvers

D
N

N

Pull together

Contrast

(e) Instance discrimination

D
N

N

(f) Context prediction

D
N

N

(g) Masked image modeling
D

N
N

(h) Corrupted image modeling

D
N

N

(i) Masked feature prediction
Figure 2: Illustrations of various image-based pretext tasks for self-supervised learning.

based contrastive SSL (Albelwi, 2022; Khan et al., 2022), due to the fast-paced nature of research in SSL,
they do not cover recent non-contrastive SSL methods that transformed the field. As such, a major goal of
this survey is to cover the aforementioned image-oriented frameworks for generative and discriminative SSL
which benefited from a tremendous research and development efforts in recent years, hereby presenting a
concise and aggregate work to readers who take an interest in this field.

In Section 2, we describe popular pretext tasks for self-supervision, subsequently detailing a number of
relevant technical concepts that are commonly used in Section 3. Diving deeper into SSL as it is used
nowadays for image-related tasks, in Section 4, we cover recently proposed SSL frameworks for image-based
training in a chronological order and discuss methods of evaluation in Section 5. In Section 6, we cover
relevant libraries, repositories, and publicly available implementations that aim at assisting researchers.
Finally, in Section 7, we review a number of shortcomings of SSL, identify open problems, and conclude our
survey.

2 Pretext tasks for self-supervised learning

The image domain allows a number of unique pretext tasks that enable self-supervision. Below we describe
the most popular ones and illustrate them in Figure 2.

Image colorization – Automated colorization of grayscale images is a line of research that was investigated
even before the widespread usage of DNNs (Luan et al., 2007; Charpiat et al., 2008). However, the availability
of large-scale colored datasets such as ImageNet, combined with the versatility of DNNs, further strengthened
the interest in high-quality image colorization, especially for the purpose of coloring historical pictures. In
parallel to research efforts that aimed at increasing the quality of colorization, such as (Cheng et al., 2015;
Iizuka et al., 2016), the idea of using image colorization as a pretext task for representation learning was
also investigated (Larsson et al., 2017; 2016; Zhang et al., 2016). Although this task alone was revealed to
be too simple to force DNNs to learn complex representations (Caron et al., 2020), colorization is still used
in tandem with other tasks to boost the effectiveness of SSL models.

Inpainting – The task of predicting a missing part of an image is referred to as image inpainting (Bertalmio
et al., 2000). With the widespread usage of DNNs, inpainting problems also found numerous solutions (Yang
et al., 2017; Yu et al., 2019). One such solution, and the one that allows for the use of SSL, is proposed
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by Pathak et al. (2016), leveraging context encoders that aim at inpainting large parts of images that are
missing, forcing models to learn the image context.

Geometric transformations – Inspired by research efforts that bring together geometric transformations
and neural networks (Kanazawa et al., 2016; Rocco et al., 2017), and taking advantage of image-based
datasets that almost always contain upright images, Gidaris et al. (2018) proposed the idea of predicting
image rotations as a method of self-supervision. Following the success of this method, other types of geometric
transformations were proposed by Novotny et al. (2018); Zhang et al. (2019); Chen et al. (2019).

Puzzle solvers – A unique image-based task that can be formulated in a SSL setting is solving a jigsaw
puzzle (Noroozi & Favaro, 2016), where the goal is to correctly predict the relative location of nine puzzle
pieces. This unusual pretext task, as well as a number of derivations, is employed in support of a variety of
tasks, including domain generalization (Carlucci et al., 2019), generation of image embeddings (Trinh et al.,
2019), image retrieval (Pang et al., 2020), and auxiliary learning (Li et al., 2021b).

Instance discrimination – Given differently augmented views (i.e., instances) originating from one image,
instance discrimination refers to the idea of recognizing these views as originating from the same image,
while discriminating any other image with a different origin (Wu et al., 2018b). Different from the previously
described pretext tasks which achieve representation learning as a by-product of the optimization objective,
instance discrimination optimizes for representation learning by directly matching the representations of
similar images while contrasting the representations of dissimilar ones. In this context, images that are
contrasted to similar ones are called negative samples (e.g., the gecko image in Figure 2e). The main
idea behind representation matching between similar images and contrasting different images is to help
DNNs learn representations that are invariant to commonly used image transformations, since most of these
transformations do not alter the visual semantics (Misra & Maaten, 2020). The origins of this approach can
be traced back to the research efforts presented in Hadsell et al. (2006), Sohn & Lee (2012), and Hui (2013).

Masked image modeling – The adaptation of masked language modeling in NLP to computer vision as a
new pretext task for self-supervised training was a groundbreaking discovery in generative SSL (Chen et al.,
2020a; Bao et al., 2021). This technique is referred to as masked image modeling (MIM) (Bao et al., 2021).
The idea behind MIM is simple: divide an image into a collection of equal-sized patches, mask some of the
patches, and task the model with generating their corresponding pattern. As we will discuss in later parts
of this paper, while the usage of MIM has popularized generative SSL, this pretext task can be thought of
as a variant of image inpainting. The primary difference between MIM and the inpainting method proposed
in the work of Pathak et al. (2016) is that MIM uses non-overlapping patches of equal size. After the rise
in popularity of MIM (which is often used in conjunction with vision transformers (ViT) (Dosovitskiy et al.,
2020)), a number of its variants emerged, with corrupted image modeling (Fang et al., 2023) (see Figure 2h)
and masked feature prediction (Wei et al., 2022) (see Figure 2i) the two most prominent ones.

Others – Apart from the mainstream pretext tasks described above, there are a number of unique tasks
that do not fit into one of the above categories such as: the split-brain approach which tries to predict a
subset of image channels from other channels (Zhang et al., 2017), a feature consistency method involving
synthetic images (Ren & Lee, 2018), context prediction (Doersch et al., 2015), adversarial feature learn-
ing (Donahue et al., 2016; Donahue & Simonyan, 2019), exemplar networks (Dosovitskiy et al., 2014), and
object counting (Noroozi et al., 2017).

Effectiveness of pretext tasks – Given the abundance of pretext tasks for self-supervision, which of these
tasks enable DNNs to learn the most useful representations? Although there is no clear answer to this
question, ever since the works of Dosovitskiy et al. (2014), Wu et al. (2018b), and Oord et al. (2018), instance
discrimination was established as the dominant pretext task for image-based discriminative SSL, thanks to
the superb results achieved using this type of self-supervision (He et al., 2020; Grill et al., 2020; Chen et al.,
2020b). On the other hand, MIM has been recognized as a tremendously powerful pretext task that enables
generative SSL to reach and even surpass the results obtained with instance discrimination. (Dosovitskiy
et al., 2020; Bao et al., 2021; He et al., 2022).
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Figure 3: Illustrations of some of the important concepts related to SSL described in Section 3.

3 Important concepts in self-supervised learning

In this section, we briefly describe a number of commonly used concepts that are relevant to the forthcoming
SSL frameworks. Although these concepts were key elements of early individual SSL frameworks, newer
frameworks make use of a mixture of them.

Notation – For clarity, we briefly detail the notation used to describe several core SSL concepts. Given an
image x ∈ Rp and its categorical association y ∈ RM sampled from a dataset (x, y) ∼ D, with yc = 1
and ym = 0 , ∀ m ∈ {0, . . . , M}\{c}, let fθ(·) be an encoder (i.e., a feature extractor) that maps an image
augmented with a stochastic augmentation function T (·) to a set of features r ∈ Rk using a neural network
with parameters θ. These features can then be mapped onto a set of projections z and predictions q using the
proj(·) and pred(·) functions, respectively. In this context, projectors and predictors are simply multi-layer
perceptrons (MLP).

Backbone network – In the context of SSL, the term “backbone” refers to the feature extractor(s) (i.e.,
fθ(·)) that are trained with SSL frameworks. Typically, a backbone network is a task-agnostic DNN (e.g., a
ResNet-50 without the final fully connected layer). The majority of the frameworks we will cover use either
a variant of ResNet (e.g., vanilla ResNet-50, ResNext, or Wide ResNet) or, very recently, vision transformers
as the backbone.
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SSL training and evaluation – In traditional supervised learning, the feature extractor (e.g., convolutional
layers) and the predictor (e.g., linear layers that map features to classes) are trained at the same time.
However, SSL is only concerned with the training of the feature extractor. After the SSL training is complete,
the linear layer that maps the features to classes is trained separately.

In Figure 3a, we provide a simplified illustration of (left) SSL training and (right) linear evaluation. SSL
frameworks are placed on top of backbone networks and are trained in conjunction with the backbone. After
the SSL training is complete, the framework is discarded and only the trained backbone is used. Note that
this backbone is merely a feature extractor. Then, depending on the problem at hand, a new layer that
maps features to classes is initialized and trained. It is crucial to keep in mind that the SSL training is only
concerned with the quality of features obtained from the feature extractor. As such, the majority (if not the
entirety) of the forthcoming concepts as well as frameworks tackle feature extractor training. Nevertheless,
for the sake of completeness, in Section 5, we will also describe evaluation methods.

Vision transformers – Vision transformers represent a novel deep learning paradigm that leverages the
transformer architecture developed initially for NLP and applies it to image classification tasks.

...
CLS

V
iT

...
CLS

Figure 4: An illustration
of ViT input-output rela-
tions.

ViT adopts a preprocessing step that involves partitioning the input image
into non-overlapping patches, which are linearly embedded to create a se-
quence of tokens. The transformer encoder is then applied to these tokens,
with the self-attention mechanism allowing the model to selectively focus on
different patches and learn intricate correlation structures among them.
An essential element of the ViT architecture is the [CLS] token, which is
prepended to the input and subsequently leveraged for downstream classifi-
cation tasks. However, in addition to the [CLS] token, ViTs also generate
patch representation tokens that encapsulate information about the corre-
sponding patch and its relationship with other patches, based on the atten-
tion mechanism (see Figure 4). These representation tokens can be utilized
for various MIM-based self-supervised tasks, which are relevant for generative
SSL frameworks.

Siamese networks – A form of dual-backbone networks called Siamese networks (Bromley et al., 1993)
consisting of two identical neural networks that share the same set of weights are popular architectures for
SSL (see Figure 3b). Although this type of networks was useful in solving a variety of problems (Chopra
et al., 2005; Bertinetto et al., 2016; Chicco, 2021), in the context of SSL, they are mostly employed to achieve
consistency between representations when, for example, two instances of the same image are provided.

Apart from Siamese networks, a majority of SSL frameworks use dual backbones that may not share weights
due to recently discovered beneficial properties. In such cases, the weights of one model are updated via
backpropagation, while the weights of the other model can be updated using a variety of techniques which
we discuss next.

Stop-grad – Siamese networks generally propagate errors from both branches after the loss calculation. As
illustrated in Figure 3c, the term “stop-grad” refers to stopping the gradient flow from one branch of a
dual-backbone network, while allowing this gradient flow to alter the weights of the other branch (Chen &
He, 2021).

Delayed weight updates – Assume a Siamese-like dual-backbone network where one branch is called the
teacher and the other one the student. However, different than the Siamese architecture, weights of these
models are not shared. In this scenario, delayed-weight updates refer to the idea of propagating the error
through only one branch via backpropagation and updating the trainable parameters of the other branch via a
predetermined rule (see Figure 3d). Popular implementations of this operation are Mean Teacher (Tarvainen
& Valpola, 2017), momentum encoding (He et al., 2020), and exponential moving average (Grill et al., 2020).

Projection and prediction MLPs – The usage of multi-layer perceptrons in the form of projection and
prediction heads following a feature extractor (e.g., a dual backbone) is acknowledged as a powerful technique
that greatly improves the effectiveness of SSL methods (Chen et al., 2020d). We visualize this technique in
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Figure 3e, as implemented in BYOL framework (Grill et al., 2020). Note that this visualization illustrates an
asymmetric architecture but the asymmetry is not a necessity for projection/prediction MLPs.

Negative samples – The InfoNCE loss (discussed in depth in Section 3.1) aims at maximizing the similarity
between representations of two augmentations of the same image, while minimizing the same metric across
different images. In such cases, the “different” images are referred to as negative samples (Chen et al.,
2020b). This concept, which has been the focus of many research efforts (which we will discuss later on),
will be particularly relevant for contrastive SSL (He et al., 2020).

Memory bank – Given a set of n images, x = [x1, . . . , xn], a memory bank refers to the simple idea of
storing the corresponding image representations, as computed with fθ(x) = [r1, . . . , rn], and to subsequently
using this memory bank for various tasks (for example, to use the obtained image representations as negative
samples in InfoNCE) (Wu et al., 2018a; He et al., 2020).

Pseudo-labeling – A number of SSL methods discussed below employ pseudo-labeling strategies to enable
self-supervision (Caron et al., 2018; Asano et al., 2019). Such approaches can be visualized as shown in
Figure 3f, where a label is assigned to an image based on its feature representation (through the use of, for
example, K-means clustering) and where that label is then used to calculate a loss.

3.1 Loss functions to train SSL frameworks

The forthcoming SSL frameworks utilize a wide range of loss functions to enable self-supervised training.
Although the usage of these loss functions is often specific to certain frameworks, in this section, we will
cover the most prominent losses that see common use across different frameworks.
Cross-entropy loss – Cross-entropy loss (CE) is a commonly used
loss function in classification tasks which measures the difference
between the predicted probabilities and the true probabilities of a
categorical variable. Given a prediction ŷ for a C-class classification
problem, CE for the class t is calculated as follows:

LCE(ŷ, t) = − log exp(ŷt)∑C
c=0 exp(ŷc)

.

In clustering-based SSL, CE and its variants are mainly used with the target label t being assigned via
a self-labeling mechanism such as k-means clustering (Caron et al., 2018; Asano et al., 2019; Qian et al.,
2022). More recently, distillation-based SSL frameworks also make use of CE where the output of the student
network is matched to that of the teacher (Caron et al., 2021; Gidaris et al., 2021; Li et al., 2021a).
Cosine similarity – Cosine similarity measures the similarity be-
tween two non-zero vectors in a high-dimensional space, formalized
as a dot product between ℓ2 normalized vectors v1 and v2 as follows:

sim(v1, v2) = v1 · v2

∥v1∥∥v2∥
.

In the context of SSL, cosine similarity is often employed in combination with noise-contrastive estimation
(NCE) for contrastive-learning-based discriminative SSL frameworks. It is also employed by a number of
prominent distillation networks to quantify representation similarity (Grill et al., 2020; Chen & He, 2021).
Given an image x and two views x{1,2} ∼ T (x) obtained with an augmentation T , let z{1,2} and q{1,2} be
the outputs of the projection and prediction layers, respectively, obtained by using a Siamese-like backbone
similar to the one depicted in Figure 5. SimSiam, for example, then employs negative symmetric cosine simi-
larity between projections and predictions defined as − 1

2 sim(q1, stop-grad(z2))− 1
2 sim(q2, stop-grad(z1))

with stop-grad(·) referring to the stop-grad operation described above (Chen & He, 2021).

Noise-contrastive estimation – A contrastive loss is a loss that has a low value when the two input images
are similar and a large value when they are dissimilar (Chopra et al., 2005; Hadsell et al., 2006). A funda-
mental loss that enables contrastive training for image-based SSL is InfoNCE (Sohn, 2016; Oord et al., 2018),
which is a modification of NCE (Gutmann & Hyvärinen, 2010). Following Chen et al. (2020b), InfoNCE
can be defined using 2n instances of n images in a single batch: x = [T (x1), T (x1), . . . , T (xn), T (xn)], with
T (·) a stochastic image augmentation function. In this scenario, the InfoNCE loss for a single positive pair
is defined as follows:

LInfoNCE(x{i,j}) = − log exp(sim(ri, rj))∑2n
k=0 1{k ̸=i} exp(sim(ri, rk))

, (1)
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Figure 5: Illustrations of (left) dual-backbone discriminative and (right) MIM-based generative frameworks.

where f(xi) = ri denotes the feature representation of the ith data point. InfoNCE is the most employed
loss function for SSL frameworks that use contrastive learning (Chen et al., 2020b; He et al., 2020).

Mean squared error – Defined as MSE(v, v̂) = 1
n

∑n
i=1(vi − v̂i)2, the mean squared error (MSE) is em-

ployed in a number of prominent distillation-based SSL frameworks to measure feature alignment (Grill
et al., 2020; Tian et al., 2021b; Caron et al., 2021). More recently, MSE has also been adopted to measure
the correctness of reconstruction targets for MIM-based generative frameworks (He et al., 2022; Hou et al.,
2022; Tian et al., 2023).

Mean absolute error – Defined as MAE(v, v̂) = 1
n

∑n
i=1 |vi − v̂i|, the mean absolute error (MAE) was

a rarely used error measurement metric until the resurgence of MIM-based generative SSL, in which it is
employed to measure the correctness of reconstruction targets (Xie et al., 2022b; Tian et al., 2023).

Information-maximization – Proposed by Ermolov et al. (2021); Zbontar et al. (2021); Bardes et al.
(2021), a unique method of self-supervision is to maximize the information content of the embeddings (i.e.,
projections/predictions). Compared to the previously discussed losses, losses that maximize information
content of embeddings are not only unique but also much more complicated.

For example, the loss of VicReg (Bardes et al., 2021) —a popular information-maximization framework—
can be defined using two batches of n image embeddings coming from two branches of a Siamese-like network,
q = [q1, . . . , qn] and q′ = [q′

1, . . . , q′
n]. Then, the VicReg loss is defined as follows:

LVIC(q, q′) := λ s(q, q′)︸ ︷︷ ︸
Invariance

+µ [v(q) + v(q′)]︸ ︷︷ ︸
Variance

+ν [c(q) + c(q′)]︸ ︷︷ ︸
Covariance

, (2)

where λ, µ, and ν are hyperparameters, and the three constituent expressions in this complex loss function
play the following role: (1) The invariance term s(q, q′) = 1

n

∑n
i=1 ∥qi − q′

i∥
2
2 aims to learn invariance to

data transformations by making q and q′ similar. (2) The variance term v(q) aims to prevent norm collapse
by giving the components of q and q′ a standard deviation equal to γ (a fixed hyperparameter). It is defined
as a hinge loss v(q) = max(0, γ − S(q, ϵ)), with S(q, ϵ) =

√
Var(q) + ϵ the regularized standard deviation.

(3) The covariance term c(q) strives to remove correlations between the different components of q, and is
given by the sum

∑
i ̸=j [C(q)]2ij over the off-diagonal elements of the d-dimensional covariance matrix C(q).

4 Self-supervised learning frameworks

Although most recently proposed frameworks make use of a variety of techniques from both generative
and discriminative SSL, the frameworks that we will discuss shortly can be typically categorized as either
generative or discriminative. In the case when a framework leverages techniques that belong to multiple
categories and may thus fall into more than one category, we adopt the designation used by its creators.
Since most of the frameworks are known by their acronyms, we use their abbreviated names in the main
text and provide their full names in Section A of the the appendix.
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SSL framework Proposed by Unique property

Deep Cluster Caron et al. (2018) Avoids trivial solutions for clustering-based SSL
Local Aggregation Zhuang et al. (2019) Local aggregation metric for soft cluster assignments
Deeper Cluster Caron et al. (2019) Integrates rotation-based SSL into clustering
SeLa Asano et al. (2019) Improves Deep Cluster with the Sinkhorn-Knopp algorithm
SCAN Van Gansbeke et al. (2020) Decouples feature learning and clustering using a two-step approach
Deep Cluster-v2 Caron et al. (2020) Incorporates various SSL improvements into Deep Cluster
SeLa-v2 Caron et al. (2020) Incorporates various SSL improvements into SeLa
Swav Caron et al. (2020) Online clustering with consistency across assignments
ODC Zhan et al. (2020) Converts Deep Cluster into an online method
CoKe Qian et al. (2022) Improves the clustering phase with an online constrained k-means method
Self-Classifier Amrani & Bronstein (2021) Single-stage end-to-end clustering combined with contrastive learning

Table 1: SSL frameworks that rely on clustering-based self-supervision and their unique properties.

4.1 Discriminative SSL

In terms of discriminative SSL, frameworks can roughly be grouped by their reliance on the following tech-
niques: clustering, contrastive learning, distillation and information-maximization. In what fol-
lows, we detail discriminative SSL frameworks that fall under the aforementioned categories.

4.1.1 Clustering

Self-labeling via clustering is one of the most straightforward ways to achieve self-supervision, with clustering
being one of the most popular methods for unsupervised learning (Bishop, 2006). For neural networks, the
usage of clustering-based methods for training can be traced back to the seminal works of Coates et al.
(2011), Coates & Ng (2012), and Yang et al. (2016), which paved the way for the use of such methods for
SSL. Unfortunately, clustering-based methods have to solve a number of well-documented issues such as: (1)
offline training that prevents their usage for large-scale data, (2) large clusters dominating the majority of
the labels or small clusters leading to extremely granular labels, (3) empty clusters, (4) requiring knowledge
about the number of clusters beforehand, and (5) trivial solutions where all data are gathered in a single
cluster which causes the network to collapse (Xu et al., 2004; Joulin et al., 2016). Since these issues are
fundamental problems of clustering, all of the clustering-based SSL methods have to tackle these problems
in their own unique way when trying to perform self-supervision.

The pioneering work of Caron et al. (2018) put forward Deep Cluster, one of the first clustering-based SSL
methods that achieves results comparable to supervised models. This method solves the issues listed above
with an offline training approach and by forcing a uniform distribution across clusters, both of which limit
the usage of Deep Cluster. Following that, getting rid of the tricks applied in Deep Cluster became the
primary focus of a number of subsequent studies, leading to improved clustering-based SSL methods such
as SeLA (Asano et al., 2019), Online Deep Cluster (Zhan et al., 2020), and Self-Classifier (Amrani
& Bronstein, 2021). SeLa tackles the issue of model collapse by incorporating a more principled loss using
the Sinkhorn-Knopp algorithm (Cuturi, 2013). Online Deep Clustering on the other hand addresses the
aforementioned offline training issue to enable online training for large datasets.

Conversely, Van Gansbeke et al. (2020) argue that an end-to-end approach with online training may lead
to various problems and propose an approach called SCAN that replaces the use of K-Means for the purpose
of clustering with the use of an advanced neighbor search. When it comes to the state-of-the-art, the
clustering-based method proposed in Caron et al. (2020), known as Swav, which also leverages a number of
contrastive elements, is currently considered to be the most stable and accurate approach. Table 1 provides
a summarizing overview of several clustering-based SSL methods, detailing their unique traits.

4.1.2 Contrastive learning

Contrastive learning with the InfoNCE loss (or an extension of it) is the most popular approach for self-
supervision and also the one that received the most research contributions in the past years. Contrastive
methods can be traced back to the works of Bromley et al. (1993) and Chopra et al. (2005), but in terms of
modern usage of SSL, Wu et al. (2018b) and Oord et al. (2018) popularized this line of research by proposing
InstDist and CPC, respectively. Hjelm et al. (2018) and Bachman et al. (2019) investigated different ways to
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SSL framework Proposed by Unique property

InstDist (NPID) Wu et al. (2018b) Non-parametric softmax calculation
CPC Oord et al. (2018) Usage of InfoNCE loss across multiple tasks
DIM Hjelm et al. (2018) Measures representation quality with two novel losses (MINE and NDM)
CPC-v2 Henaff (2020) Improves CPC architecture and training
AMDIM Bachman et al. (2019) Extends DIM for mixture-based representations
CMC Tian et al. (2020a) Information-maximization across different sensory views
MoCo He et al. (2020) SSL with momentum encoder and memory bank
PIRL Misra & Maaten (2020) Contrastive learning with jigsaw puzzles
SimCLR Chen et al. (2020b) Usage of projection heads and new augmentations
MoCo-v2 Chen et al. (2020d) Improves MoCo with the design of SimCLR
SimCLR-v2 Chen et al. (2020c) Improves SimCLR with memory bank and deeper projector MLPs
PCL & PCL-v2 Li et al. (2020b) Formulates contrastive learning with clustering using EM
PIC Cao et al. (2020) One-branch parametric instance classification
DCL Chuang et al. (2020) Negative sample section with a debiased contrastive objective
LooC Xiao et al. (2020) Learns transformation dependent and invariant representations
G-SimCLR Chakraborty et al. (2020) SimCLR with negative sample selection using pseudo-labels
ReLIC Mitrovic et al. (2020) Imposes invariance constraints during SSL training
AdCo Hu et al. (2021) Mixes self-trained negative adversaries into SSL
DenseCL Wang et al. (2021c) Dense contrastive loss for SSL
PixPro Xie et al. (2021c) PixContrast and PixPro losses for contrastive SSL
MoCo-v3 Chen et al. (2021) Improves MoCo-v2 with symmetrized loss and without a memory bank
CLSA Wang & Qi (2022) Usage of stronger augmentations for contrastive learning
Truncated Triplet Wang et al. (2021b) Attempts to solve under- and over-clustering in contrastive learning
NNCLR Dwibedi et al. (2021) Nearest-neighbors as positive samples in contrastive loss
MoBY Xie et al. (2021b) Combines design principles of MoCo and BYOL for transformers
DNC Tian et al. (2021a) Alternation of contrastive learning and clustering-based hard negative mining
ReSSL Zheng et al. (2021) Maintains the relational consistency between different instances of images
UniGrad Tao et al. (2022a) Unifies contrastive learning, distillation, and information-maximization
ReLIC-v2 Tomasev et al. (2022) Improves ReLIC with inductive biases to learn more informative representations
SimCo Zhang et al. (2022a) Simplifies MoCo with momentum removal
SimMoCo Zhang et al. (2022a) Simplifies MoCo with dictionary removal
UniVIP Li et al. (2022b) Scene-based SSL based on similarity, correlation, and discrimination
Mugs Zhou et al. (2022) Explicitly learns multi-granular visual features
CaCo Wang et al. (2022b) Learns both positive and negative samples end-to-end with an encoder
SMoG Pang et al. (2022) Replaces instance contrastive learning with group contrastive learning
SiameseIM Tao et al. (2022b) Instance discrimination using UniGrad and masked images

Table 2: SSL frameworks that rely on contrastive learning-based self-supervision and their unique prop-
erties.

measure representation quality for contrastive learning and proposed DIM and AMDIM respectively, while Tian
et al. (2020a) extended contrastive learning for multiple sensory inputs with CMC. After the aforementioned
works contrastive SSL attracted significant research interest but it was the groundbreaking results obtained
with MoCo which used memory banks with delayed weight updates that put contrastive SSL really into
the spotlight (He et al., 2020). Shortly after, Chen et al. (2020b) proposed SimCLR and with it, further
improved the state-of-the-art with the help of projection heads and strong augmentations and cemented
the importance of contrastive self-supervision as a learning paradigm. Incorporating the enhancements of
SimCLR into MoCo, Chen et al. (2020d) proposed MoCo-v2 and showed that there still exists a large margin
for improvement. Chen et al. (2021) later introduced a third version of MoCo, exploring the usage of vision
transformers as backbones. The reliable design of MoCo and its improved versions were the foundation of
many subsequent contrastive SSL frameworks, such as AdCo (Hu et al., 2021), MocHi (Kalantidis et al., 2020),
and DenseCL (Wang et al., 2021c).

While the above architectures mostly use dual backbones, Cao et al. (2020) proposed PIC and demonstrated
the viability a single-branch backbone architecture for contrastive learning. Kalantidis et al. (2020) experi-
mented with hard negative samples for improving the effectiveness of contrastive learning and Wang & Qi
(2022) demonstrated the usefulness of stronger augmentations. After the success of Moco-v2 and Moco-v3,
and with the increased availability of unique SSL methods, frameworks like G-SimCLR (Chakraborty et al.,
2020), MoBY (Xie et al., 2021b), SimCo, and SimMoCo (Zhang et al., 2022a), which combine multiple SSL meth-
ods into a single one, gained traction. More recently, SSL frameworks such as UniGrad (Tao et al., 2022a)
claim to combine four self-supervision methodologies (clustering, contrastive, distillation, and information-
maximization) into a single framework and to unify discriminative SSL training.

Although contrastive methods garnered more attention than clustering-based methods, they are also sub-
ject to a similar problem that needs to be mitigated: network collapse (Jing et al., 2021). Contrastive
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SSL framework Proposed by Unique property

BYOL Grill et al. (2020) Avoids trivial solutions through network asymmetry
SimSiam Chen & He (2021) SSL with simple Siamese networks without negative samples
OBoW Gidaris et al. (2021) Online bag-of-visual-words for SSL
DirectPred Tian et al. (2021b) Adjusts linear predictor with a gradient-free approach
SEED Fang et al. (2021) Knowledge distillation from large to small models
DisCo Gao et al. (2021) Combines contrastive and distillation learning for lightweight models
DINO Caron et al. (2021) Knowledge distillation with vision transformers
EsViT Li et al. (2021a) Multi-stage architectures with sparse self-attentions and region matching for efficient SSL
BINGO Xu et al. (2021) Distillation-based SSL for small-scale models
TinyMIM Ren et al. (2023) Distillation to transfer knowledge from large MIM-based models to small models

Table 3: SSL frameworks that rely on distillation-based self-supervision and their unique properties.

SSL framework Proposed by Unique property

WMSE Ermolov et al. (2021) Whitening Mean Squared Error loss for information-maximization
Barlow Twins Zbontar et al. (2021) SSL with redundancy reduction
VicReg Bardes et al. (2021) Variance-invariance-covariance regularization for avoiding collapse
TWIST Wang et al. (2021a) Theoretically explainable TWIST loss that avoids collapse
TLDR Kalantidis et al. (2021) Improves Barlow Twins with TLDR encoder
ARB Zhang et al. (2022b) Aligns feature representations with nearest orthonormal basis
VicRegL Bardes et al. (2022) Improves VicReg with location- and feature-based matching

Table 4: SSL frameworks that rely on information-maximization-based self-supervision and their unique
properties.

methods prevent complete collapse of a network through the use of negative samples. However, Hua et al.
(2021) surprisingly demonstrated that contrastive SSL frameworks can suffer from another type of collapse,
namely dimensional collapse, wherein representations collapse into a low-dimensional manifold. Given the
importance of negative samples in preventing collapse in contrastive SSL, understanding the effects of nega-
tive samples and finding better sampling techniques became an active research topic shortly after (Chuang
et al., 2020; Robinson et al., 2020; Zhang et al., 2022a). A summarizing overview of several contrastive SSL
frameworks can be found in Table 2.

4.1.3 Distillation

Can the collapse of networks be prevented without the use of self-labeling or a contrastive loss that relies
on negative samples? Through an asymmetric framework called BYOL, Grill et al. (2020) demonstrated that
neither of those techniques are necessary to achieve self-supervision when the proposed method relies on
distillation (Hinton et al., 2015). The general idea behind distillation is to train a network (student) to
predict representations of another one (teacher) (Tarvainen & Valpola, 2017). Shortly after the proposal of
BYOL, Chen & He (2021) proposed SimSiam, a symmetric (Siamese) framework that uses neither negative
samples nor clustering, but leverages instead stop-grad and projection/prediction MLPs. This was followed
by OBOW (Gidaris et al., 2021), in which the task is to reconstruct a bag-of-visual-words representation.

Similar to the trends witnessed for clustering and contrastive-learning, distillation-based SSL frameworks
were experimentally combined with other frameworks in an attempt to obtain boosts in overall effectiveness.
Frameworks such as DisCo (Gao et al., 2021) and MoBY (Xie et al., 2021b) merged multiple frameworks
together, while others tried to improve the effectiveness of established methods, such as MSF (Koohpayegani
et al., 2021) and ORL (Xie et al., 2021a), improving upon BYOL.

How do distillation methods avoid network collapse? Tian et al. (2020c) and Fetterman & Albrecht (2020)
argued that methods that incorporate batch statistics into training (e.g., batch normalization) aid BYOL
(and potentially other distillation-based methods) in preventing collapse, but this hypothesis was promptly
refuted by Richemond et al. (2020). Recently, Li et al. (2022a) scrutinized SimSiam and found it to be highly
sensitive to model size. Nevertheless, a definite answer to the way distillation-based SSL methods avoid
collapse is not yet found. Table 3 provides a summarizing overview of several SSL frameworks that rely on
distillation.
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Module Proposed by Unique property

InfoMin Tian et al. (2020b) InfoMin principle and evaluation of augmentations
InterCLR Xie et al. (2022a) Inter-image invariance for contrastive learning
HEXA Li et al. (2020a) Proposes new data augmentation methods that are harder to predict
MocHi Kalantidis et al. (2020) Hard negative image mixing approach
ReSim Xiao et al. (2021) Enhances SSL representations with region similarities
MSF Koohpayegani et al. (2021) Enhances BYOL by shifting the embeddings to be close to the mean of its instances
ORL Xie et al. (2021a) Utilizes BYOL for object-level training
CEB Lee et al. (2021) Measures the amount of compression in the learned representations
SEM Lavoie et al. (2022) Employs simplicial embeddings to map unnormalized representations onto simplices
ENS Ruan et al. (2022) Investigates optimal ensemble models for discriminative SSL frameworks
MRCL Liu et al. (2022b) Uses MIM as a method to avoid the discriminative information overfitting
TS Kukleva et al. (2023) Assists contrastive methods to learn group-wise features and instance-specific details
ARCL Zhao et al. (2023) Enhances contrastive learning with domain-invariant features representations
MosRep Wang et al. (2023) Data augmentation strategy that enriches backgrounds of crops

Table 5: Enhancements for existing discriminative SSL frameworks and their unique properties.

4.1.4 Information-maximization

The fourth and final discriminative self-supervision category we cover is information-maximization, having as
primary idea the maximization of the information conveyed by decorrelated embeddings. Such approaches
come with a number of advantages, in particular, they neither require negative samples nor require an
asymmetric architecture to avoid collapse. Instead, they completely rely on innovative loss functions to
avoid collapse. As a result, most of the frameworks that fall under this category can be characterized by the
novel loss function that is used.

Information-maximization as a method for self-supervision was put forward by Ermolov et al. (2021)
and Zbontar et al. (2021), where the former proposed W-MSE loss, which constrains the batch samples to
dissipate in a spherical distribution, and where the latter (Barlow Twins) aims at making the normalized
cross-correlation matrix of the embedding vectors to be close to the identity matrix. Bardes et al. (2021)
further improved the loss of Barlow Twins with the VicReg framework, proposing a loss based on variance,
invariance, and covariance (described above in equation 2). Successor frameworks such as TWIST (Wang
et al., 2021a), TLDR (Kalantidis et al., 2021), and ARB (Zhang et al., 2022b) followed the path paved by the
previous frameworks and aim at improving the losses in different ways. Due to the complex nature of the
losses used in information-maximization as a method for self-supervision, we refer the interested reader to
the respective research papers underlying those frameworks. Table 4 provides a summarizing overview of
several SSL frameworks that rely on information-maximization.

4.2 Enhancements for existing frameworks

So far, we have covered a large number of discriminative SSL frameworks, all of which have consistently
improved state-of-the-art results across various computer vision tasks. However, we have observed a trend
that emerged towards the end of 2020: framework-agnostic enhancements. These modules are small tweaks
to existing frameworks that can improve their performance in various ways, such as utilizing harder im-
ages/augmentations (Kalantidis et al., 2020; Li et al., 2020a), improving object-level representations (Xiao
et al., 2021; Xie et al., 2021a), or enabling optimal ensemble models (Ruan et al., 2022). For completeness,
we have listed these modules separately in Table 5.

4.3 Generative SSL

From 2018 onward, generative SSL was largely dismissed in favor of discriminative training methods with
contrastive learning holding the prime spot for research (He et al., 2020; Chen et al., 2020b). Popular
discriminative frameworks such as MoCo, SimCLR, and BYOL were employed for a variety of unique tasks and
were further improved with enhancements taken from each other (Chen et al., 2020d;c). In an unexpected
turn of events, towards the end of 2021, generative SSL came to dominate image-based self-supervised
learning and became the primary research focus, dethroning contrastive learning as well as discriminative
SSL (Bao et al., 2021; Zhou et al., 2021). The advances in the field from the last quarter of 2021 to
the first quarter of 2023 were so rapid that state-of-the-art results in generative SSL were improved on a
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SSL framework Proposed by Unique property

BiGAN Donahue et al. (2016) Bidirectional GAN with additional encoder modela
ALI Dumoulin et al. (2016) A GAN framework with an additional inference model
BigBiGAN Donahue & Simonyan (2019) BiGAN with the generator of BigGAN
SS-GAN Chen et al. (2019) GAN with auxiliary rotation loss
SS-GAN-LA Hou et al. (2021) SS-GAN with label augmentation
Vit-VQGAN Yu et al. (2021) VQGAN with label quantization and ViT backbone

Table 6: SSL frameworks that rely on GAN-based generative self-supervision and their unique properties.

monthly basis. This rapid expansion also came with a large category of unique approaches which resulted in
frameworks of generative SSL becoming much less standardized as opposed to frameworks in discriminative
SSL where the latter mostly contains straightforward Siamese-like dual-backbones as shown in Figure 5. In
order to improve readability, we will group generative SSL frameworks into two categories: the ones that use
generative adversarial networks (GANs) and others that use a form of masked image modeling.

4.3.1 GAN-based generative SSL

While the usage of generative neural networks can be traced back to the work of Hinton et al. (2006), it was
the seminal work of Goodfellow et al. (2020) that popularized generative models with the newly proposed
GAN framework. Since the work of Goodfellow et al. (2020), numerous GAN variants were proposed with
some of them recently taking advantage of advances in SSL, such as incorporating rotation prediction (Chen
et al., 2019), jigsaw puzzles (Baykal & Unal, 2020; Baykal et al., 2022), and self-labeling (Lučić et al., 2019).
However, most of the research in the GAN space has primarily focused on enhancing the fidelity of images
generated by the generator network, which is typically evaluated using metrics such as the Fréchet Inception
Distance (Heusel et al., 2017). As a result, these studies largely ignore the discriminative network and lack
comparative evaluations on downstream tasks, leaving them out of the scope of SSL. In what follows, we
focus on those research efforts that evaluate the discriminative power of GANs on downstream tasks.

With a unique twist to GANs, Donahue et al. (2016) proposed BiGAN, a GAN framework that contains an
additional encoder network trained in conjunction with the generator and discriminator networks with the
objective of inverting the generator. After the training is completed, this encoder can be used as a feature
extractor for downstream tasks. Independently, Dumoulin et al. (2016) proposed a generative framework
called ALI that is almost identical to BiGAN. Leveraging the improved generator of BigGAN (Brock et al.,
2018) in BiGAN, Donahue & Simonyan (2019) proposed BigBiGAN which comes with better downstream
transferability results. Taking inspiration from the developments in the area of discriminative SSL, Chen
et al. (2019) proposed SS-GAN which exploits rotation as an auxiliary task to achieve self-supervision with
GANs. This framework was further improved with the addition of label augmentation by Hou et al. (2021).
One of the most recent approaches within GAN-based SSL is ViT-VQGAN (Yu et al., 2021) which improves
VQGAN (Esser et al., 2021) using ViT backbones.

Overall, the usage of GANs in SSL has not become a mainstream method due to a number of GAN-related
limitations, ranging from mode collapse to limitations related to scalability, as well as lack of flexibility in
backbone networks.

4.3.2 Generative SSL with masked image modeling

Although only a couple of years have passed since the discovery of ViTs (Dosovitskiy et al., 2020), these archi-
tectures have been shown to achieve state-of-the-art results in a variety of vision tasks. In their work, Doso-
vitskiy et al. (2020) demonstrated the feasibility of SSL using MIM as a pretext task (although it was called
masked patch prediction by the authors), where this pretext task is seamlessly supported by the patch-based
image intake of ViTs. Developing this technique further, BEiT was one of the first frameworks that success-
fully employed MIM with vector quantized images and ViTs (Bao et al., 2021). It is important to note that
BEiT does not directly predict the pixel values of the image but learns to predict discrete visual tokens which
are created from image patches (Wu et al., 2020). BEiT uses the tokenizer — a discrete variational autoen-
coder (dVAE) — of DALL-E (Ramesh et al., 2021) which requires an offline training before training the final
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SSL framework Proposed by Unique property

iGPT Chen et al. (2020a) MIM with 9-bit pixel clustering per patch
BEiT Bao et al. (2021) Patch-based MIM with ViTs using offline DALL-E tokenizer
MAE He et al. (2022) MIM with autoencoders using lightweight ViT encoders and pixel-based reconstruction
iBOT Zhou et al. (2021) BEiT with an online tokenizer trained using the DINO objective
SimMIM Xie et al. (2022b) BEiT with a pixel reconstruction target without a tokenizer
PeCO Dong et al. (2021) Proposes a new codebook to replace the DALL-E tokenizer
MaskFeat Wei et al. (2022) MIM training with HOG as a reconstruction target
data2vec Baevski et al. (2022) BEiT with a teacher-student model and stronger augmentations
CAE Chen et al. (2022a) MAE with DALL-E token target reconstruction
CIM Fang et al. (2023) Corrupted image modeling for generative SSL with an additional discriminative objective
MCMAE Gao et al. (2022) Multi-scale hybrid convolution-transformer for improved MIM performance
ConMIM Yi et al. (2022) Contrastive learning on MIM patches
CMAE Huang et al. (2022) MIM + contrastive learning with shifted image views
SdAE Chen et al. (2022b) Self-distillation with high-level feature reconstruction
MILAN Hou et al. (2022) MIM with semantic-aware mask sampling and CLIP-assisted feature reconstruction
BEiT-v2 Peng et al. (2022) BEiT with CLIP tokenizer as a teacher and patch aggregation strategy
BEiT-v3 Wang et al. (2022a) BEiT-v2 with text fusion
CAE-v2 Zhang et al. (2022d) CAE with CLIP tokenizer
CAN Mishra et al. (2023) Combines contrastive learning, MIM, and image denoising with symmetric backbones
PCAE Li et al. (2023) Progressively drops reconstruction tokens in MAE for better speed/performance trade-off
SparK Tian et al. (2023) MIM for convolutional neural networks
MRMAE Gao et al. (2023) Uses pixels, DINO features, and CLIP features for reconstruction

Table 7: SSL frameworks that rely on MIM-based generative self-supervision and their unique properties.

model. BEiT gave rise to BEiT-v2 (Peng et al., 2022) and BEiT-v3 (Wang et al., 2022a)1 which obtain better
results using the CLIP tokenizer (Radford et al., 2021) with a patch aggregation strategy. Meanwhile, the
requirement of an external tokenizer for BEiT was alleviated by iBOT (Zhou et al., 2021) which introduced
an online tokenizer trained with the distillation routine of BYOL, thus leveraging the advances made on the
side of discriminative SSL. Xie et al. (2022b) got rid of the tokenizer of BEiT and proposed SimMIM, which
directly operates over pixel values and predicts them.

Narrowly predating BEiT, Chen et al. (2020a) proposed iGPT by leveraging GPT-2 (Radford et al., 2019) and
adapted it to vision, which represents images with tokenized patches using a 9-bit color palette by clustering
RGB pixels, and then training this model with the MLM objective of BERT (Devlin et al., 2018). The primary
difference between the training objective of iGPT (i.e., BERT-style MLM) and MIM of BEiT is that the latter
directly uses image patches as an input, therefore not losing any pixel-level information.

With a unique take on MIM, He et al. (2022) proposed MAE, an asymmetric autoencoder framework that
directly learns to reconstruct image patches. What is unique to MAE is that its encoder (ViT) only processes
unmasked patches (e.g., 25% of all patches) without any tokenizer, making it much faster than the frameworks
we have discussed thus far. He et al. (2022) also evaluated the effectiveness of different reconstruction targets
and found no statistically significant difference between reconstructing DALL-E tokens and pixels, suggesting
simple pixel reconstruction to be a viable reconstruction target. Building upon MAE, Chen et al. (2022a)
proposed CAE which comes with a latent contextual regressor and uses the DALL-E tokenizer, which was
replaced in the next iteration of this framework (CAE-v2) (Zhang et al., 2022d) by a CLIP tokenizer.

At this point we believe it is important to reiterate that MIM was explored using different reconstruction
targets such as (1) dVAE-based patch tokens (Bao et al., 2021), (2) clustering-based patch tokens (Chen
et al., 2020a), and (3) pixel values (Xie et al., 2022b). Expanding this corpus, Wei et al. (2022) proposed
MaskFeat in which the task is to predict Histograms of Oriented Gradients (HOGs) — a hand-crafted feature
descriptor (see Figure 2i) — and argued that a broad spectrum of image features can be used as targets
in MIM. Following their work, SdAE (Chen et al., 2022b) and MILAN (Hou et al., 2022) demonstrated the
feasibility of reconstructing high-level features. For an overview of reconstruction targets for MIM-based
generative SSL frameworks, see Table 8.

1BEiT-v3 is a framework that fuses vision and text but we include it for completeness.
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Figure 6: ImageNet top-1 accuracy with linear
probing on frozen representations for discrimina-
tive SSL frameworks is plotted against the num-
ber of parameters in the trained backbone. The con-
necting lines indicate different backbone networks
trained with the same framework. In both figures,
nodes with circles indicate CNN-based architectures,
whereas triangles indicate transformer-based archi-
tectures. Note that a few frameworks with overlap-
ping results are omitted from the figures, and that
axis values are scaled independently to improve vi-
sual clarity.

Table 8: Reconstruction
targets for generative SSL
frameworks that use MIM.

Framework Reconstruction

iGPT 9-bit pixels
BEiT DALL-E tokens
MAE Pixels
iBOT Distilled tokens
SimMIM Pixels
PeCO PeCO tokens
MaskFeat HOG
data2vec DALL-E tokens
CAE DALL-E tokens
CIM DALL-E tokens
MCMAE Pixels
ConMIM Patch features
CMAE Pixels
SdAE High-level features
MILAN High-level features
BEiT-v2 CLIP tokens
BEiT-v3 CLIP tokens
CAE-v2 CLIP tokens
CAN Pixels
PCAE Pixels
SparK Pixels
MRMAE CLIP tokens

Experimenting with the input side Fang et al. (2023) proposed CIM where an
auxiliary generator (in their use-case, BEiT) corrupts the input image and the
proposed framework aims to (1) discriminate patches (classification for each
patch) and (2) generate the original image.
The current trend for generative SSL is to combine both generative and dis-
criminative losses together to improve the quality of representations. In par-
ticular, contrastive learning has become a popular task to combine with MIM
with frameworks such as CAN (Mishra et al., 2023), CMAE (Huang et al., 2022)
and ConMIM (Yi et al., 2022) leveraging advances made on the side of con-
trastive SSL.
All of the generative frameworks we have discussed thus far use some form of
vision transformer as a backbone as opposed to the majority of the discrim-
inative frameworks, which make use of ResNets. In an attempt to leverage
masked convolutions, Gao et al. (2022) proposed MCMAE, a framework that
employs the hybrid convolution-transformer MAE which is able to learn dis-
criminative representations. Very recently, Tian et al. (2023) showed that
classical (ResNets) and modern (ConvNext (Liu et al., 2022a)) CNNs can be
trained with MIM and achieve state-of-the-art results that can rival those of
ViTs. The results obtained by Tian et al. (2023) indicate that ViTs, which
have been considered a prerequisite for MIM, are not irreplaceable and that
CNNs can still compete with ViTs in generative SSL.

5 Evaluating SSL models

As briefly noted in Section 3, the SSL frameworks covered thus far are concerned with the training of feature
extractors that can extract robust and useful features from images. Regardless, those feature extractors
must be evaluated for a fair comparison of performance, which is the focus of this section.

In the SSL literature, three types of evaluations are commonly used: (i) fine-tuning the entire model, (ii) linear
evaluation, also known as linear probing or linear protocol, and (iii) K-nearest neighbors (KNN) evaluation
using extracted features. A further distinction can be made based on the dataset the trained model is
evaluated on: either (a) on the same dataset, typically ImageNet, that was used for the self-supervised
training or (b) on different datasets to test downstream transferability.

KNN evaluation – After the SSL training is complete, features of the training images are generated from
the backbone and matched to their corresponding labels, thus creating a feature bank. Next, predictions
are made for the test images based on the KNN labels of this feature bank. For KNN-based evaluation,
following Wu et al. (2018b), k = 200 is often used. Although this form of evaluation was popular early on,
the majority of recently proposed frameworks evaluate their models using linear evaluation or by fine-tuning.
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(a) Linear probing (b) Fine-tuning

Figure 7: The ImageNet Top-1 accuracy of backbones that are trained with MIM-based generative SSL
frameworks are measured using (a) linear probing and (b) fine-tuning. The connecting lines indicate
different backbone networks trained with the same framework. In both figures, nodes with circles indicate
CNN-based architectures, whereas triangles indicate transformer-based architectures.

Linear evaluation – For this type of evaluation, all trainable parameters (e.g., weights) in the model are
frozen and a new linear layer, which maps features to predictions, is introduced to the trained model. Then,
only this linear layer is trained on the training set to achieve an optimal performance.

Fine-tuning – For this type of evaluation, once again, a linear layer is introduced to the SSL-trained model
which maps features to predictions. Then, in a supervised fashion, the entire model is (re)trained on the
training dataset, after which an evaluation is performed on the test/validation set.

Benchmarks – In order to provide an aggregate view of the field, we provide the benchmarking results
below.

• For the majority of the discriminative SSL frameworks covered in this survey, we provide a compar-
ison of model size to linear probing accuracy on ImageNet in Figure 6.

• For MIM-based generative SSL frameworks, we provide a comparison of model size to linear probing
and fine-tuning accuracy on ImageNet in Figure 7.

• From Table 21 to Table 23, we provide the datasets used in the respective papers of SSL frameworks.

• From Table 24 to Table 30, we provide benchmarks on ImageNet-1K.

• In Table 31, we provide benchmarks on COCO.

Evaluation preference for discriminative and generative frameworks – A noteworthy observation
in the evaluation of self-supervised learning frameworks is that while most discriminative SSL frameworks
tend to favor linear evaluation, the majority of generative SSL frameworks tend to prefer fine-tuning. This
is primarily due to the poor results obtained with linear probing with generative frameworks that only use
MIM as the pretext task (see MAE, BEiT, SimMIM, iGPT in Figure 7). When discriminative elements such as
contrastive learning, distillation, or the CLIP tokenizer which is trained contrastively, are used, linear probing
accuracy shows a dramatic increase (see MILAN, iBOT, CAE-v2, and BEiT-v2 in Figure 7).

6 Availability and comparability of SSL frameworks

Most of the frameworks covered in Section 4 perform experiments on ImageNet, COCO (Lin et al., 2014),
and Pascal VOC (Everingham et al., 2007), thus enabling straightforward benchmarking and comparability.
Moreover, many SSL frameworks come with implementations and trained models that are publicly available,
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contributing to speeding up research on SSL. For example, the availability and the straightforward adopt-
ability of the MoCo framework enabled a number of follow-up studies that used the code of MoCo (Kalantidis
et al., 2020; Hu et al., 2021; Wang et al., 2021c). For the SSL frameworks covered in this survey, in Table 17,
Table 18, and Table 19 we provide details on the availability of official implementation as well as trained
models.

Apart from the availability of official implementations, the availability of third-party repositories also accel-
erated the adoption of SSL, enabling unified experimentation. Alas, not all third-party repositories are up
to date, and some of them have already been abandoned. In Table 20, we provide a number of useful SSL
repositories that have been updated within the third quarter of 2022.

7 Conclusions, current trends, and directions for future research

In this survey, we reviewed general-purpose frameworks that use images for SSL training, with the goal of
bringing interested researchers up to speed with the field of SSL. In what follows, we highlight a number of
directions for future research that are ripe for contribution.

Theoretical understanding of the requirements of SSL – As detailed in Section 4, the successful
implementation of discriminative self-supervised learning frameworks requires several prerequisites. To this
end, several studies have investigated the efficacy of these requirements, covering topics such as the necessity
of negative samples (Kalantidis et al., 2020; Xie et al., 2022a), the importance of image augmentations (Zhang
et al., 2022c; Wang et al., 2022d), and architectural tricks (Chen & He, 2021). Furthermore, a number of
research efforts have attempted to explain the underlying mechanisms behind collapse avoidance (Garrido
et al., 2022b; Chen et al., 2023b). Because they were the earliest self-supervision methods, clustering (Assran
et al., 2023) and contrastive learning (Hu et al., 2023; Johnson et al., 2023; Tian, 2023) have received
significant attention in terms of theoretical contributions. However, other self-supervision paradigms are
areas where theoretical explanations are still lacking and are open for further research efforts.

Domain- and task-specific SSL – The majority of the frameworks covered in this survey are task-agnostic
and evaluate their performance on the ImageNet dataset and a number of various downstream tasks focusing
on natural images. However, the effectiveness of these models on natural image datasets may not necessarily
generalize to other datasets that contain different image modalities or to other tasks. Therefore, investigating
the effectiveness of SSL frameworks that leverage the unique characteristics of data in other domains such
as medical imaging (Ramesh et al., 2022; Chen et al., 2023a) or other tasks such as classification in the
wild (Goyal et al., 2021a; Tian et al., 2021a), object detection (Mishra et al., 2021; Li et al., 2022b), pose
estimation (Chen et al., 2023c), action detection as well as human-object interaction (Wei et al., 2022; Shah
et al., 2023) represents a relevant area of research.

Calibration, interpretability, and adversarial robustness – Initial findings suggest that models trained
using SSL exhibit distinct properties for robustness and interpretability when compared to models trained
via supervised learning (Hendrycks et al., 2019; Zhong et al., 2022). However, many of the beneficial and
detrimental effects of self-supervised training on downstream tasks remain unclear.

Efficient SSL – The training of SSL models demands a substantial amount of computational resources
in comparison to supervised learning. For instance, as reported by Chen et al. (2021), the training of
MoCo-v3 with a vision transformer backbone requires approximately 625 TPU days. Consequently, SSL
has significantly increased the computational demands of DNN training. This observation explains why
a vast majority of the contributions to the frameworks discussed in this survey have at least one author
with an industry affiliation (see Table 17 to Table 19). Moreover, the majority of these contributions
(> 80%) come from industry labs such as Facebook AI Research, Microsoft Research, DeepMind, Google
Research, SenseTime, ByteDance, and Huawei. To mitigate the high costs of training, researchers have
started exploring techniques for efficient training and evaluation (Li et al., 2021a; Garrido et al., 2022a; He
et al., 2022). Despite the progress made, there is still a considerable amount of work to be done in this field.

KNN-based evaluation, linear probing, or fine-tuning? – As we mentioned in Section 5, most gener-
ative SSL frameworks prefer to use fine-tuning as the method of evaluation while discriminative frameworks
prefer to use linear probing. In favor of those two, KNN-based evaluation has been mostly abandoned.
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Chen & He (2021) and He et al. (2022) argue that there is no correlation between the accuracy of linear
probing and fine-tuning or downstream transferability. He et al. (2022) further argues that linear probing
misses the opportunity to utilize strong but non-linear features, and this sentiment is repeated by a number
of follow-up research efforts (Yi et al., 2022; Chen et al., 2022a). The most recent research effort on this
topic is the work of (Park et al., 2023) where the authors argue that models trained with MIM exhibit a
bias towards texture whereas contrastive learning leads to a bias towards shape, suggesting that this may be
the explanation for the difference in linear probing accuracy. Nevertheless, thorough investigations on SSL
model evaluations and convincing explanations for their differences are largely missing.

On the usage of tokenizers in SSL – From Table 8 it can be seen that a number of MIM-based generative
SSL frameworks make use of a previously trained tokenizer in order to enhance learned representations. In
particular, (Peng et al., 2022; Gao et al., 2023; Zhang et al., 2022d) demonstrate that the usage of CLIP
tokenizers (either as-is or as a teacher for distillation) boosts the performance of frameworks considerably.
However, using a tokenizer that is trained on a large corpus of images to demonstrate state-of-the-art results
against other frameworks that do not have access to this level of supervision has recently attracted criticism
from the community (ICLR, 2023). We believe that the investigation of the efficacy and necessity of tokenizers
in generative SSL is an area that is largely unexplored.

Moving forward: generative or discriminative SSL? – Although recent results obtained with generative
SSL seem to favor generative approaches over discriminative ones, it is important to note that generative
SSL has not only benefited from the discovery of vision transformers, but also from advancements made
in the area of discriminative SSL. The most recent comparative studies suggest that the answer to the
discriminative versus generative question is not that straightforward and that both approaches have their
own merits and limitations (Park et al., 2023). As mentioned, some of the newly proposed generative
frameworks also leverage discriminative features such as contrastive learning (Yi et al., 2022; Zhang et al.,
2022d) or distillation (Zhou et al., 2021; Peng et al., 2022). Therefore, we speculate that this trend will
continue and that the newly proposed frameworks in the upcoming years will leverage improvements from
both sides in order to further improve the state-of-the-art.

Cadence of research in SSL and the extent of this survey – Before we conclude our survey, we would
like to briefly discuss the cadence of research in SSL and the breadth of topics covered in this survey.

It is widely recognized that the field of machine learning has experienced an unprecedented growth in
research and development over the past decade, particularly following the groundbreaking results achieved
with AlexNet (Krizhevsky et al., 2012). During this period, significant advances have been made not only
in the architectural design of deep neural networks, but also in optimizers, training routines, normalization
techniques, data augmentation, and various other areas. While these improvements have steadily advanced
the state-of-the-art in supervised learning, self-supervised learning has also benefited from the majority of
these advancements from the beginning. Thanks to the integration of these advancements into SSL from its
early stages, as well as the availability of computational resources, the state-of-the-art in SSL has improved
rapidly since 2018. The pace of research has been so fast that some frameworks have been improved upon
even before their predecessors got published (e.g., CAE (Chen et al., 2022a) and CAE-v2 (Zhang et al., 2022d),
BEiT-v2 (Peng et al., 2022) and BEiT-v3 (Wang et al., 2022a)).

Given the aforementioned observation, to cover the most up-to-date research efforts, we have decided to
include papers that have not yet been published in conference proceedings or journals. Consequently, the
majority of the papers cited in this survey, from 2021 onward, are preprints. At the time of submitting this
survey, the latest conference surveyed for relevant papers was the 11th International Conference on Learning
Representations (ICLR), held in May 2023, from which a portion of the papers cited in this survey have
been rejected, withdrawn, or published (Wang et al., 2023; Fang et al., 2023; Park et al., 2023; Chen et al.,
2022a; Peng et al., 2022; Chen et al., 2023b; Gao et al., 2023; Mishra et al., 2023; Li et al., 2023; Kukleva
et al., 2023; Zhao et al., 2023; Chen et al., 2023c; Park et al., 2023).
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Appendix for:
Know Your Self-supervised Learning:

A Survey on Image-based Generative and Discriminative Training
The content of appendix is detailed below.

• A list of abbreviations is provided in Section A.

• Metadata for the frameworks such as the primary affiliation of authors, publication date, and
source code as well as availability of trained models are provided for:

– Discriminative SSL frameworks in Table 17
– Enhancements to existing SSL frameworks in Table 18
– Generative SSL frameworks in Table 19

• Repositories that are useful for vision-based SSL are listed in Table 20.

• Datasets used for the evaluation in the respective papers of the frameworks are provided for:

– Discriminative SSL frameworks in Table 21
– Enhancements to discriminative SSL frameworks in Table 22
– Generative SSL frameworks in Table 23

• Benchmarks on ImageNet-1K are provided for:

– Clustering-based SSL frameworks in Table 24
– Contrastive-learning-based SSL frameworks in Table 25
– Distillation-based SSL frameworks in Table 26
– Information-maximization-based SSL frameworks in Table 27
– Enhancements to discriminative SSL frameworks in Table 28
– GAN-based SSL frameworks in Table 29
– MIM-based SSL frameworks in Table 30

• Benchmarks on COCO for all frameworks are provided in Table 31.
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A List of abbreviations
Clustering frameworks

SeLa Self labeling
SCAN Semantic clustering by adopting nearest neighbors
Swav Swapping assignments between multiple

views of the same image
ODC Online deep clustering
CoKe Constrained K-means

Contrastive frameworks

InstDist Instance discrimination
NPID Non-parametric instance discrimination
CPC Contrastive predictive coding
DIM Deep InfoMax
AMDIM Augmented multi-scale DIM
CMC Contrastive multi-view coding
MoCo Momentum contrast
PIRL Pretext-invariant representation learning
SimCLR A simple framework for contrastive learning
PCL Prototypical contrastive learning
PIC Parametric instance classification
DCL Debiased contrastive learning
LooC Leave-one-out contrastive learning
G-SimCLR Self-supervised contrastive learning with

guided projection
ReLIC Representation learning via

invariant causal mechanisms
AdCo Adversarial contrast
DenseCL Dense contrastive learning
PixPro Pixel-level consistency propagation
CLSA Contrastive learning with

stronger augmentations
NNCLR Nearest-neighbor contrastive learning

of visual representations
MoBY MoCo + BYOL
DNC Divide and contrast
ReSSL Relational self-supervised learning
UniGrad A unified gradient framework
SimCo Simplified MoCo without momentum
SimMoCo Simplified MoCo
UniVIP A unified framework for self-supervised

visual pre-training
Mugs Multi-granular self-supervised learning
CaCo Cooperative-adversarial contrastive learning
SMoG Synchronous momentum grouping
SiameseIM Siamese image modelling

Distillation frameworks

BYOL Build your-own latent
SimSiam Simple Siamese representation learning networks
OBoW Online bag-of-visual-words
DirectPred Direct linear predictor
SEED Self-supervised distillation for visual representation
DisCo Distilled contrastive learning
DINO Self-distillation with no labels
EsVit Efficient self-supervised vision transformer
BINGO Bag of instances aggregation
TinyMIM Tiny MIM

Information-maximization frameworks

WMSE Whitening mean squared error
VicReg Variance-invariance-covariance regularization
TWIST Twin class distribution estimation
TLDR Twin learning for dimensionality reduction
ARB Align representations with base
VicRegL VicReg with local visual features

Enhancement modules

InfoMin Mutual information principle
InterCLR Inter-image contrastive learning
HEXA Hard examples
MocHi Mixing of contrastive hard negatives
Resim Region similarity representation learning
MSF Mean shift for self-supervised learning
ORL Object-level representation learning
CEB Conditional entropy bottleneck
SEM Simplicial embeddings
ENS Ensemble self-supervised learning
MRCL Masked reconstruction contrastive learning
TS Temperature schedules
ARCL Augmentation-robust contrastive learning
MosRep Mosaic representation learning framework

GAN-based frameworks

BiGAN Bidirectional GAN
ALI Adversarially learned inference
BigBiGAN BiGAN with BigGAN generator
SS-GAN Self-supervised GAN
SS-GAN-LA SS-GAN with label augmentation
VQGAN Vector-quantized GAN
Vit-VQGAN ViT-based VQGAN

MIM-based frameworks

iGPT Image GPT
BEiT Bidirectional encoder representation from

image transformers
MAE Masked autoencoders
iBOT Image BERT pre-training with online tokenizer
SimMIM A simple framework for MIM
PeCO Perceptual codebook
MaskFeat Masked feature prediction
CAE Context autoencoder
CIM Corrupted image modeling
MCMAE Masked convolution meets MAE
ConMIM Denoising contrast masked image modeling
CMAE Contrastive MAE
SdAE Self-distillated masked autoencoder
MILAN Masked image pretraining on

language assisted representation
CAN Contrastive learning, masked autoencoders,

and noise prediction
PCAE Progressively compressed autoencoder
SparK Sparse masked modeling
MRMAE Mimic before reconstruct MAE

Others

BERT Bidirectional encoder representations from transformers
GPT Generative pre-trained transformer
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B Metadata for frameworks

SSL Primary Publication Experiments on Downstream Official Trained
framework affiliation date on ImageNet 1K experiments implementation models

Deep Cluster Facebook AI Research Mar 2019 Yes Yes Available Available
Local Aggregation Stanford University Apr 2019 Yes Yes Available Not available

Deeper Cluster Facebook AI Research Aug 2019 Yes Yes Available Available
SeLa University of Oxford Nov 2019 Yes Yes Available Available
SCAN KU Leuven Jul 2020 Yes No Available Available

Deep Cluster-v2 Facebook AI Research Jun 2020 Yes Yes Available Available
SeLa-v2 Facebook AI Research Jun 2020 Yes Yes Available Available

Swav Facebook AI Research Jun 2020 Yes Yes Available Available
ODC SenseTime Jun 2020 Yes Yes Available Not available
CoKe Alibaba May 2021 Yes Yes Available Available

Self-Classifier IBM Research Jul 2022 Yes Yes Available Available

InstDist (NPID) Chinese Univ. of Hong Kong May 2018 Yes Yes Available Available
CPC DeepMind Jul 2018 Yes No Not available Not available
DIM Microsoft Research Aug 2018 No No Available Not available

CPC-v2 DeepMind May 2019 Yes Yes Not available Not available
AMDIM Microsoft Research Jun 2019 Yes No Available Available
CMC MIT Jun 2019 Yes Yes Available Available
MoCo Facebook AI Research Nov 2019 Yes Yes Available Available
PIRL Facebook AI Research Dec 2019 Yes Yes Not available Not available

SimCLR Google Research Feb 2020 Yes Yes Available Available
MoCo-v2 Facebook AI Research Mar 2020 Yes Yes Available Available

SimCLR-v2 Google Research Jun 2020 Yes No Available Available
PCL & PCLv2 Salesforce Research Jun 2020 Yes Yes Available Available

PIC Microsoft Research Jun 2020 Yes Yes Available Available
DCL MIT Jul 2020 No Yes Available Available
LooC UC Berkeley Aug 2020 Yes Yes Not available Not available

G-SimCLR Walmart Labs Sep 2020 No No Available Available
ReLIC DeepMind Oct 2020 Yes Yes Not available Not available
AdCo Peking University Nov 2020 Yes Yes Available Available

DenseCL The University of Adelaide Nov 2020 No Yes Available Available
PixPro Microsoft Research Nov 2020 Yes Yes Available Available
MoCo-v3 Facebook AI Research Apr 2021 Yes Yes Available Available

CLSA Purdue University Apr 2021 Yes Yes Available Available
Truncated Triplet Sun Yat-sen University Apr 2021 Yes Yes Available Available

NNCLR Google Research Apr 2021 Yes Yes Not available Not available
MoBY Microsoft Research May 2021 Yes Yes Available Available
DNC DeepMind May 2021 Yes Yes Not available Not available

ReSSL SenseTime Jul 2021 Yes No Available Available
UniGrad SenseTime Dec 2021 Yes No Available Available
ReLIC-v2 DeepMind Jan 2022 Yes Yes Not available Not available

SimCo KAIST Mar 2022 No No Available Not available
SimMoCo KAIST Mar 2022 No No Available Not available
UniVIP University of Chinese AoS Mar 2022 Yes Yes Not available Not available
Mugs Sea AI Lab Mar 2022 Yes Yes Available Available
CaCo Purdue University Mar 2022 Yes Yes Available Available
SMoG Huawei Jul 2022 Yes Yes Not available Not available

SiameseIM Shanghai Artificial Intelligence Lab. Nov 2022 Yes Yes Not available Not available

BYOL DeepMind Jun 2020 Yes Yes Available Available
SimSiam Facebook AI Research Aug 2020 Yes Yes Available Available

OBoW Valeo.ai Dec 2020 Yes Yes Available Available
SEED Microsoft Research Jan 2021 Yes Yes Not available Not available

DirectPred Facebook AI Research Feb 2021 Yes Yes Available Not available
DisCO Tencent Apr 2021 Yes Yes Available Available
DINO Facebook AI Research Apr 2021 Yes Yes Available Available
EsViT Microsoft Research Jun 2021 Yes Yes Available Available
BINGO Huawei Mar 2022 Yes Yes Available Not available

TinyMIM Microsoft Research Jan 2023 Yes Yes Available Available

WMSE University of Trento Jul 2020 Yes No Available Not available
Barlow Twins Facebook AI Research Mar 2021 Yes Yes Available Available

VicReg Facebook AI Research May 2021 Yes Yes Available Available
TWIST Tsinghua University Oct 2021 Yes Yes Available Available
TLDR Naver Labs EU Oct 2021 Yes Yes Available Not available
ARB Shanghai Jiao Tong University Nov 2021 Yes No Not available Not available

VicRegL Facebook AI Research Oct 2022 Yes Yes Available Available

Table 17: Publication information as well as implementation details for discriminative SSL frameworks
covered in this survey.

22

https://github.com/facebookresearch/deepcluster
https://github.com/facebookresearch/deepcluster
https://github.com/neuroailab/LocalAggregation
https://github.com/facebookresearch/DeeperCluster
https://github.com/facebookresearch/DeeperCluster
https://github.com/yukimasano/self-label
https://github.com/yukimasano/self-label
https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/odc
https://github.com/idstcv/CoKe
https://github.com/idstcv/CoKe
https://github.com/elad-amrani/self-classifier
https://github.com/elad-amrani/self-classifier
https://github.com/zhirongw/lemniscate.pytorch
https://github.com/zhirongw/lemniscate.pytorch
https://github.com/rdevon/DIM
https://github.com/Philip-Bachman/amdim-public
https://github.com/Philip-Bachman/amdim-public 
https://github.com/HobbitLong/CMC/
https://github.com/HobbitLong/CMC/
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://github.com/salesforce/PCL
https://github.com/salesforce/PCL
https://github.com/bl0/PIC/
https://github.com/bl0/PIC/
https://github.com/chingyaoc/DCL
https://github.com/chingyaoc/DCL
https://github.com/ariG23498/G-SimCLR
https://github.com/ariG23498/G-SimCLR
https://github.com/maple-research-lab/AdCo/
https://github.com/maple-research-lab/AdCo/
https://github.com/WXinlong/DenseCL
https://github.com/WXinlong/DenseCL
https://github.com/zdaxie/PixPro
https://github.com/facebookresearch/simsiam
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/moco-v3
https://github.com/maple-research-lab/CLSA
https://github.com/maple-research-lab/CLSA
https://github.com/wanggrun/triplet
https://github.com/wanggrun/triplet
https://github.com/SwinTransformer/Transformer-SSL
https://github.com/SwinTransformer/Transformer-SSL
https://github.com/kyle-1997/ReSSL
https://github.com/kyle-1997/ReSSL
https://github.com/fundamentalvision/UniGrad
https://github.com/fundamentalvision/UniGrad
https://github.com/ChaoningZhang/Dual-temperatureL
https://github.com/ChaoningZhang/Dual-temperatureL
https://github.com/sail-sg/mugs
https://github.com/sail-sg/mugs
https://github.com/maple-research-lab/caco
https://github.com/maple-research-lab/caco
https://github.com/deepmind/deepmind-research/tree/master/byol
https://github.com/deepmind/deepmind-research/tree/master/byol
https://github.com/facebookresearch/simsiam
https://github.com/facebookresearch/simsiam
https://github.com/valeoai/obow
https://github.com/valeoai/obow
https://github.com/facebookresearch/luckmatters/tree/main/ssl
https://github.com/Yuting-Gao/DisCo-pytorch
https://github.com/Yuting-Gao/DisCo-pytorch
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dino
https://github.com/microsoft/esvit
https://github.com/microsoft/esvit
https://github.com/haohang96/bingo
https://github.com/OliverRensu/TinyMIM
https://github.com/OliverRensu/TinyMIM
https://github.com/htdt/self-supervised
https://github.com/facebookresearch/barlowtwins
https://github.com/facebookresearch/barlowtwins
https://github.com/facebookresearch/vicreg
https://github.com/facebookresearch/vicreg
https://github.com/bytedance/TWIST
https://github.com/bytedance/TWIST
https://github.com/naver/tldr
https://github.com/facebookresearch/VICRegL
https://github.com/facebookresearch/VICRegL
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SSL Primary Publication Experiments on Downstream Official Trained
framework affiliation date on ImageNet 1K experiments implementation models

InfoMin MIT May 2020 Yes Yes Available Available
InterCLR Nanyang Technological Univ. Aug 2020 Yes Yes Not available Not available

HEXA Microsoft Research Dec 2020 Yes Yes Not available Not available
MocHi Naver Labs EU Oct 2020 Yes Yes Not available Available
ReSim UC Berkeley Mar 2021 Yes Yes Available Available
MSF University of Maryland May 2021 Yes Yes Available Available
ORL Nanyang Technological Univ. Jun 2021 Yes Yes Available Available
CEB Google Research Sep 2021 Yes Yes Available Available
SEM MILA Apr 2022 Yes Yes Available Not available
ENS Google Research Nov 2022 Yes Yes Not available Not available
MRCL University of Chinese AoS Nov 2022 Yes Yes Not available Not available
TS Max Planck Institute Mar 2023 No No Available Available

ARCL Shanghai Jiao Tong Univ. Mar 2023 Yes Yes Not available Not available
MosRep University of Sydney Mar 2023 Yes Yes Available Available

Table 18: Publication information as well as implementation details for enhancements proposed to existing
SSL frameworks covered in this survey.

SSL Primary Publication Experiments on Downstream Official Trained
framework affiliation date on ImageNet 1K experiments implementation models

BiGAN University of California May 2016 Yes Yes Available Available
BigBiGAN DeepMind Jul 2019 Yes Yes Available Available

ALI MILA Jun 2016 No Yes Available Available
SS-GAN University of California Nov 2018 Yes Yes Available Not available

SS-GAN-LA University of Chinese AoS Oct 2021 No Yes Available Available
Vit-VQGAN Google Research Oct 2021 Yes Yes Not available Not available

iGPT OpenAI Jul 2020 Yes Yes Available Available
BEiT Microsoft Research Jun 2021 Yes Yes Available Available
MAE Facebook AI Research Nov 2021 Yes Yes Available Available
iBOT ByteDance Nov 2021 Yes Yes Available Available

SimMIM Microsoft Research Nov 2021 Yes Yes Available Available
PeCO Microsoft Research Nov 2021 Yes Yes Not available Not available

MaskFeat Facebook AI Research Dec 2021 Yes Yes Available Available
data2vec Facebook AI Research Feb 2022 Yes No Available Available

CAE Peking University Feb 2022 Yes Yes Not available Not available
CIM Microsoft Research Feb 2022 Yes Yes Not available Not available

MCMAE SenseTime May 2022 Yes Yes Available Available
ConMIM Tencent May 2022 Yes Yes Available Available
CMAE ByteDance Jul 2022 Yes Yes Not available Not available
SdAE Huawei Jul 2022 Yes Yes Available Available
MILAN Alibaba Aug 2022 Yes Yes Available Available

BEiT-v2 Microsoft Research Aug 2022 Yes Yes Available Available
BEiT-v3 Microsoft Research Aug 2022 Yes Yes Available Available
CAE-v2 Baidu Nov 2022 Yes Yes Not available Not available

CAN Google Research Jan 2023 Yes Yes Available Available
PCAE Huawei Jan 2023 Yes Yes Available Available
SparK ByteDance Jan 2023 Yes Yes Available Available
MRMAE Shanghai AI Laboratory Mar 2023 Yes Yes Available Available

Table 19: Publication information as well as implementation details for generative SSL frameworks covered
in this survey.

Repository name Maintainer Purpose

Awesome SSL Independent A comprehensive reading list for SSL
solo-learn Independent (da Costa et al., 2022) SSL frameworks, benchmarking, and model zoo
VISSL Facebook (Goyal et al., 2021b) SSL frameworks, benchmarking, and model zoo
MMSelfSup OpenMMLab (Contributors, 2021) SSL frameworks, benchmarking, and model zoo
Lightly Lightly.ai (Susmelj et al., 2020) SSL frameworks and benchmarking
EasyCV Alibaba (Contributors, 2022) SSL frameworks and benchmarking
Unified SSL Benchmark Microsoft (Wang et al., 2022c) SSL frameworks and benchmarking

Table 20: Github repositories related to SSL, their maintainer, and purpose.
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https://github.com/HobbitLong/PyContrast
https://github.com/HobbitLong/PyContrast
https://europe.naverlabs.com/research/computer-vision/mochi/#pretrainedmodels
https://github.com/Tete-Xiao/ReSim
https://github.com/Tete-Xiao/ReSim
https://github.com/UMBCvision/MSF
https://github.com/UMBCvision/MSF
https://github.com/Jiahao000/ORL
https://github.com/Jiahao000/ORL
https://github.com/google-research/compressive-visual-representations
https://github.com/google-research/compressive-visual-representations
https://openreview.net/forum?id=RWtGreRpovS
https://github.com/Annusha/temperature_schedules
https://github.com/Annusha/temperature_schedules
https://github.com/DerrickWang005/MosRep
https://github.com/DerrickWang005/MosRep
https://github.com/jeffdonahue/bigan
https://github.com/jeffdonahue/bigan
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/bigbigan_with_tf_hub.ipynb
https://tfhub.dev/s?publisher=deepmind&q=bigbigan
https://github.com/IshmaelBelghazi/ALI
https://github.com/IshmaelBelghazi/ALI
https://github.com/google/compare_gan/tree/master/compare_gan
https://github.com/liang-hou/ssgan-la
https://github.com/liang-hou/ssgan-la
https://github.com/openai/image-gpt
https://github.com/openai/image-gpt
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/mae
https://github.com/bytedance/ibot
https://github.com/bytedance/ibot
https://github.com/microsoft/SimMIM
https://github.com/microsoft/SimMIM
https://github.com/facebookresearch/SlowFast/blob/main/projects/maskfeat/README.md
https://github.com/facebookresearch/SlowFast/blob/main/projects/maskfeat/README.md
https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
https://github.com/Alpha-VL/ConvMAE
https://github.com/Alpha-VL/ConvMAE
https://github.com/TencentARC/ConMIM
https://github.com/TencentARC/ConMIM
https://github.com/AbrahamYabo/SdAE
https://github.com/AbrahamYabo/SdAE
https://github.com/zejiangh/MILAN
https://github.com/zejiangh/MILAN
https://github.com/microsoft/unilm/tree/master/beit2
https://github.com/microsoft/unilm/tree/master/beit2
https://github.com/microsoft/unilm/tree/master/beit3
https://github.com/microsoft/unilm/tree/master/beit3
https://github.com/bwconrad/can
https://github.com/bwconrad/can
https://github.com/caddyless/PCAE/
https://github.com/caddyless/PCAE/
https://github.com/keyu-tian/SparK
https://github.com/keyu-tian/SparK
https://github.com/Alpha-VL/ConvMAE
https://github.com/Alpha-VL/ConvMAE
https://github.com/jason718/awesome-self-supervised-learning
https://github.com/vturrisi/solo-learn
https://github.com/facebookresearch/vissl
https://github.com/open-mmlab/mmselfsup
https://github.com/lightly-ai/lightly
https://github.com/alibaba/EasyCV
https://github.com/microsoft/Semi-supervised-learning
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C Framework dataset usage

SSL Used Tasksframework datasets

Deep Cluster ImageNet-1k, Pascal VOC, Places, YFCC100M C, D, S
Local Aggregation ImageNet-1k, Pascal VOC C, D

Deeper Cluster ImageNet-1k, Pascal VOC, Places C, D, S
SeLa ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, SVHN C, D
SCAN ImageNet-1k, CIFAR-100, CIFAR-10, STL-10 C

Deep Cluster-v2 ImageNet-1k C
SeLa-v2 ImageNet-1k C

Swav ImageNet-1k, COCO, Pascal VOC, Places C, D
ODC ImageNet-1k, Pascal VOC, Places C, D

CoKe ImageNet-1k, COCO, Pascal VOC C, D, S
Self-Classifier ImageNet-1k, COCO, Pascal VOC C, D

InstDist (NPID) ImageNet-1k, Places C, D
CPC ImageNet-1k C
DIM Tiny ImageNet, CIFAR-100, CIFAR-10, STL-10, CelebA C

CPC-v2 ImageNet-1k, Pascal VOC C, D
AMDIM ImageNet-1k, CIFAR-100, CIFAR-10, Places, STL-10 C

CMC ImageNet-1k, STL-10 C, D, S
MoCo ImageNet-1k, COCO, Pascal VOC C, D, S
PIRL ImageNet-1k, Pascal VOC, Places, iNat C, D

SimCLR ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, Food, Birdsnap C, DSUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower
MoCo-v2 ImageNet-1k, Pascal VOC C, D

SimCLR-v2 ImageNet-1k, CIFAR-10 C
PCL & PCLv2 ImageNet-1k, Pascal VOC, Places C, D

PIC ImageNet-1k, Pascal VOC, Cityscapes, iNat18 C, D, S
DCL ImageNet-100, CIFAR-10, STL-10 C

LooC ImageNet-100, iNat-1K, CUB-200, Flowers-102 C
G-SimCLR ImageNet subset, CIFAR-10 C

ReLIC ImageNet-1k, ImageNet-R, ImageNet-C C
AdCo ImageNet-1k, COCO, Pascal VOC, Places C, D

DenseCL COCO, Pascal VOC, Cityscapes C, D, S
PixPro ImageNet-1k, COCO, Pascal VOC, Cityscapes C, D, S

MoCo-v3 ImageNet-1k, CIFAR-100, CIFAR-10, Oxford Flowers-102 , Oxford-IIIT-Pet C
CLSA ImageNet-1k, COCO, Pascal VOC C, D

Truncated Triplet ImageNet-1k, COCO, Pascal VOC, SYSU-30k C, D, S

NNCLR ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, Food, Birdsnap C, DSUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower
MoBY ImageNet-1k, COCO, ADE20K C, D, S

DNC ImageNet-1k, CIFAR-100, CIFAR-10, COCO, Pascal VOC, Places, Food C, D, SBirdsnap, SUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower, NYU v2
ReSSL ImageNet-1k, CIFAR-100, CIFAR-10, STL-10 C

UniGrad ImageNet-1k C

ReLIC-v2 ImageNet-1k, ImageNetV2, ImageNet-C, ImageNet-R C, D, SImageNet-Sketch, PASCAL VOC, Cityscapes
SimCo ImageNet-100, CIFAR-100, CIFAR-10, STL-10, SVHN C

SimMoCo ImageNet-100, CIFAR-100, CIFAR-10, STL-10, SVHN C
UniVIP ImageNet-1k, COCO C, D, S

Mugs ImageNet-1k, COCO C, D, S

CaCo ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, Food C, DSUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower
SMoG ImageNet-1k, COCO, Pascal VOC, Cityscapes C, D, S

SiameseIM ImageNet-1k, COCO, ADE20k C, D, S

BYOL ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, Food C, D, SBirdsnap, SUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower, NYU v2
SimSiam ImageNet-1k, COCO, Pascal VOC C, D, S

OBoW ImageNet-1k, Pascal VOC, Places C, D, S
DirectPred ImageNet-1k, CIFAR-10, STL-10 C

SEED ImageNet-1k, CIFAR-10, STL-10, COCO, Pascal VOC C, D, S
DisCO ImageNet-1k, CIFAR-100, CIFAR-10, COCO, Pascal VOC C, D, S

DINO ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, iNat18, iNat19
Flowers, Cars, iNet, Google Landmarks v2, DAVIS 2017 videos C, D, S

EsViT ImageNet-1k, CIFAR-100, CIFAR-10, COCO, Pascal VOC, STL-10, MINST, Food C, D, SSUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower, FER2013, GTSRB, HatefulMemes, PatchCamelyon, UCF101
BINGO ImageNet, CIFAR-100, CIFAR-10, COCO C, D, S

TinyMIM ImageNet-1k, ADE20K C, S

WMSE ImageNet-1k, ImageNet-100, Tiny ImageNet, CIFAR-100, CIFAR-10, STL-10 C
Barlow Twins ImageNet-1k, COCO, Pascal-VOC, Places, iNat18 C, D, S

VicReg ImageNet-1k,COCO, Pascal VOC, Places, iNat18 C, D, S

TWIST ImageNet-1k, CIFAR-100, CIFAR-10, COCO, Pascal VOC, Food C, D, SSUN397, Cars, Aircraft, DTD, Pets, Caltech-101, Flower
TLDR ImageNet-1k C
ARB ImageNet-1k, ImageNet-100, CIFAR-100, CIFAR-10 C

VicRegL ImageNet-1k, Pascal VOC, Cityscapes C, S

Table 21: Employed datasets for experiments used in the research articles of the discriminative SSL
frameworks. The third column summarizes the evaluated tasks in the respective papers of frameworks:
(C)lassification, (D)etection/localization, and (S)egmentation.
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SSL Used Tasksframework datasets

InfoMin ImageNet-1k, COCO, Pascal VOC, Colorful Moving-MNIST C, D, S
InterCLR ImageNet-1k, Pascal VOC, Places C, D

HEXA ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC C, D
MocHi ImageNet-1k, ImageNet-100, COCO, Pascal VOC C, D, S
ReSim ImageNet-1k, ImageNet-100, COCO, Pascal VOC D, S

MSF ImageNet-1k, CIFAR-100, CIFAR-10, Pascal VOC, Food, SUN397, Cars C, DAircraft, DTD, Pets, Caltech-101, Flower
ORL ImageNet-1k, COCO, Pascal VOC, Places, iNat C, D, S
CEB ImageNet-1k, ImageNet-A, ImageNet-C, ImageNet-R CImageNet-v2, ImageNet-Vid, YouTube-BB, ObjectNet
SEM ImageNet-1k, ImageNet-A, ImageNet-C, ImageNet-R CImageNet-v2, CIFAR-100, CIFAR-10, Food, Sun397, DTD, Flower
ENS ImageNet-1k, CIFAR-100, CIFAR-10, Food, SUN397, Cars CDTD, Pets, Caltech-101, Flower

MRCL ImageNet-1k, COCO, ADE20k C, D, S
TS ImageNet-100, CIFAR-100, CIFAR-10 C

ARCL ImageNet-1k, CIFAR-100, CIFAR-10, Food, SUN397 CCars, Aircraft, DTD, Pets, Caltech-101, Flower
MosRep ImageNet-1k, ImageNet-100, CIFAR-100, CIFAR-10, COCO C, D, SFood, Cars, DTD, Pets, Caltech-101, Flower

Table 22: Employed datasets for experiments used in the research articles of the enhancements to discrim-
inative SSL frameworks. The third column summarizes the evaluated tasks in the respective papers of
frameworks: (C)lassification, (D)etection/localization, and (S)egmentation.

SSL Used Tasksframework datasets

BigBiGAN ImageNet-1k C
BiGAN ImageNet-1k, Pascal VOC, MNIST C, D, S

ALI Tiny ImageNet, CIFAR-10, SVHN, CelebA C
SS-GAN ImageNet-1k, CIFAR-10, CelebA-HQ, LSUN-Bedroom C

SS-GAN-LA Tiny-ImageNet, CIFAR-10, STL-10, CelebA C
Vit-VQGAN ImageNet-1k, CelebA-HQ, FFHQ C

iGPT ImageNet-1k, CIFAR-100, CIFAR-10, STL-10 C
BEiT ImageNet-1k, ADE20K C, S
MAE ImageNet-1k, COCO, Places, iNat17, iNat18, iNat19 C, D, S

iBOT ImageNet-1k, CIFAR-100, CIFAR-10, COCO, ADE20k, iNat18, iNat19, Flower, Cars C, D, S
SimMIM ImageNet-1k, COCO, ADE20K, iNat18 C, D, S

PeCO ImageNet-1k, COCO, ADE20k C, D, S
MaskFeat ImageNet-1k, Kinetics-400, Kinetics-600, Kinetics-700 C
data2vec ImageNet-1k C

CAE ImageNet-1k, COCO, ADE20K C, D, S
CIM ImageNet-1k, COCO, ADE20K C, D, S

MCMAE ImageNet-1k, COCO, ADE20K C, D, S
ConMIM ImageNet-1k, COCO, ADE20K C, D, S

CMAE ImageNet-1k, COCO, ADE20K C, D, S
SdAE ImageNet-1k, COCO, ADE20K C, D, S

MILAN ImageNet-1k, COCO, ADE20K C, D, S
BEiT-v2 ImageNet-1k, ADE20K C, S
BEiT-v3 ImageNet-1k, COCO, ADE20K C, D, S

MRCL ImageNet-1k, COCO, ADE20K C, D, S
CAE-v2 ImageNet-1k, COCO, ADE20K C, D, S

CAN ImageNet-1k, ImageNet-v2, ImageNet-Real, ImageNet-Adversarial, ImageNet-Rendition CCIFAR-100, Birds, Cars, DTD, Pets, UC-Merced, Col-Hist, Caltech, ObjectNet
PCAE ImageNet-1k, COCO C, D, S

SparK ImageNet-1k, COCO C, D, S
MRMAE ImageNet-1k, COCO C, D

Table 23: Employed datasets for experiments used in the research articles of the generative SSL frameworks.
The third column summarizes the evaluated tasks in the respective papers of frameworks: (C)lassification,
(D)etection/localization, and (S)egmentation.
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D ImageNet benchmarks

SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuracy accuracy notes

Deep Cluster AlexNet 500 - 39.8 Used conv4 output

LA ResNet-50 200 - 60.2 -

Deeper Cluster VGG-16 100 - 48.4 -

SeLA ResNet-50 90 - 61.5 -

SCAN ResNet-50 90 - 39.9 Unsupervised evaluation

Deep Cluster-v2 ResNet-50 400 - 74.3 2x160 + 4x96 crops
Deep Cluster-v2 ResNet-50 800 71.9 - -

SeLA-v2 ResNet-50 400 - 71.8 2x160 + 4x96 crops

Swav ResNet-50 800 77.8 75.3 -

ODC ResNet-50 440 - 57.6 -

CoKe ResNet-50 800 - 76.4 8 views

Self-C. ResNet-50 800 - 74.1 -

Table 24: ImageNet-1k linear probing and fine-tuning benchmarks for clustering-based SSL frameworks.
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SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuracy accuracy notes

InstDist (NPID) ResNet-50 200 - 54.0 Using conv5

CPC ResNet-v2 101 130 - 48.7 -

CPCv2 ResNet-50 200 - 61.8 -

AMDIM ResNet-50 150 - 68.1 Large AMDIM model

CMC ResNet-50 200 - 66.2 RandAugment

MoCo ResNet-50 200 77.3 60.6 -
MoCo ResNet50 (×2) 200 - 65.4 -
MoCo ResNet50 (×4) 200 - 68.6 -

PIRL ResNet-50 800 - 63.6 At res5

SimCLR ResNet-50 100 - 63.6 -
SimCLR ResNet-50 (×2) 100 - 74.2 -
SimCLR ResNet-50 (×4) 100 - 76.5 -

MoCo-v2 ResNet-50 800 75.5 71.1 -

SimCLR-v2 ResNet-50 400 76.3 71.7 -
SimCLR-v2 ResNet-50 (×2) 400 79.1 75.6 -
SimCLR-v2 ResNet-101 400 78.2 73.6 -
SimCLR-v2 ResNet-101 (×2) 400 80.7 77.0 -

PCL ResNet-50 200 - 61.5 -

PCL-v2 ResNet-50 200 - 67.6 -

PIC ResNet-50 200 - 70.8 -

ReLIC ResNet-50 800 - 74.8 -

AdCo ResNet-50 800 - 75.7 Multi-crop
AdCo ResNet-50 200 67.0 - -

PixPro ResNet-50 100 - 66.3 with SimCLR

MoCo-v3 ResNet-50 800 - 73.8 -
MoCo-v3 ViT-B 300 83.2 76.7 -
MoCo-v3 ViT-L 300 84.1 77.6 -
MoCo-v3 ViT-H 300 - 78.1 -

CLSA ResNet-50 200 - 73.3 Multi-crop
CLSA ResNet-50 800 - 76.2 Multi-crop

Truncated Triplet ResNet-50 700 - 75.9 -

NNCLR ResNet-50 1000 - 75.6 Multi-crop

MoBY DeiT-S 300 - 72.8 -
MoBY Swin-T 300 - 75.0 -

DNC ResNet-50 3000 78.2 75.8 -

ReSSL ResNet-50 200 - 74.7 5 crops

UniGrad ResNet-50 800 - 75.5 with CutMix + multi-crop

ReLIC-v2 ResNet-50 1000 - 77.1 -

UniVIP ResNet-50 300 - 74.2 -

Mugs ViT-S 3200 82.6 78.9 -
Mugs ViT-B 1600 84.3 80.6 84.3
Mugs ViT-L 1000 - 82.1 -

CaCo ResNet-50 200 - 75.3 -

SMoG ResNet-50 400 78.3 76.4 Multi-crop

SiameseIm ViT-B 1600 84.1 78.0 -

Table 25: ImageNet-1k linear probing and fine-tuning benchmarks for contrastive-learning-based SSL
frameworks.
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SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuaracy accuracy notes

BYOL ResNet-50 1000 77.7 74.3 -
BYOL ResNet-50 (×2) 1000 - 77.4 -
BYOL ResNet-50 (×4) 1000 - 78.6 -
BYOL ResNet-200 (×2) 1000 - 79.6 -

SimSiam ResNet-50 800 - 71.3 -

OBoW ResNet-50 200 - 73.8 -

DirectPred ResNet-50 300 - 72.4 -

SEED ResNet-34 800 - 58.5 Distilled from ResNet-50

DisCo ResNet-34 800 - 62.5 Distilled from ResNet-50

DINO ResNet-50 300 - 75.3 -
DINO ViT-S 300 81.5 77.0 -
DINO ViT-B 300 82.8 78.2 -

EsViT Swin-T 300 - 78.1 -
EsViT Swin-S 300 - 79.5 -
EsViT Swin-B 300 - 80.4 -

BINGO ResNet-34 200 - 66.1 Distilled from ResNet-50

TinyMIM ViT-S 300 83.0 - Distilled from Vit-B
TinyMIM ViT-B 300 85.0 - Distilled from Vit-L

Table 26: ImageNet-1k linear probing and fine-tuning benchmarks for distillation-based SSL frameworks.

SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuracy accuracy notes

WMSE ResNet-50 100 - 69.4 d = 4, corresponding to 6 positive pairs
WMSE ResNet-50 400 - 72.5 d = 4, corresponding to 6 positive pairs

Barlow Twins ResNet-50 1000 - 73.2 -

VicReg ResNet-50 1000 - 73.2 -

TWIST ResNet-50 800 - 75.5 Multi-crop
TWIST ViT-B/16 300 82.8 78.4 -

TLDR ViT-S/16 100 - 74.8 -

ARB ResNet-50 100 - 68.2 -

VicRegL ConvNext-S 150 - 75.9 -
VicRegL ConvNext-B 150 - 77.1 -

Table 27: ImageNet-1k linear probing and fine-tuning benchmarks for information-maximization-based
SSL frameworks.
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SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuracy accuracy notes

InfoMin ResNet-50 800 - 73.0 -

InterCLR ResNet-50 + NPID-v2 1000 - 69.6 -
InterCLR ResNet-50 + BYOL 1000 - 74.5 -

HEXA ResNet-50 + MoCo-v2 800 75.7 71.7 -
HEXA ResNet-50 + DeepCluster-v2 800 78.3 75.5 8-crops

MocHi ResNet-50 + MoCo-v2 1000 - 70.6 -

MSF ResNet-50 + BYOL-asym 200 - 72.4 Weak/strong variation
MSF ResNet-50 + BYOL-asym 200 - 66.3 Weak/weak variation

ORL ResNet-50 + BYOL 800 - 60.7 Pre-train on COCO+

CEB ResNet-50 + SimCLR 1000 - 71.6 -
CEB ResNet-50 + BYOL 1000 - 75.6 -
CEB ResNet-50 (2x) + SimCLR 1000 - 75.0 -
CEB ResNet-50 (2x) + BYOL 1000 - 78.8 -

SEM ResNet-50 + BYOL 200 - 74.1 -

ENS ViT-B/16 + DINO 400 - 79.1 -
ENS ViT-B/16 + MSN 400 - 78.9 -
ENS ViT-B/8 + DINO 300 - 81.0 -
ENS ViT-B/8 + MSN 300 - 80.8 -

MRCL ViT-B + SimCLR 600 - 80.0 -
MRCL ViT-B + BarTwins 600 - 80.4 -

ARCL ResNet-50 + MoCo 900 - 70.9 3 views

MosRep ResNet-50 + MoCo-v2 200 - 72.3 -
MosRep ResNet-50 + BYOL 200 - 76.2 -

Table 28: ImageNet-1k linear probing and fine-tuning benchmarks for enhancements to discriminative SSL
frameworks.

SSL Backbone SSL Fine-tuning Linear probing Additional
framework network epochs accuracy accuracy notes

BiGAN BB 400 - 56.2 -

BigBiGAN ResNet-50 800 76.3 55.4 -
BigBiGAN ResNet-50 (×4) 800 76.6 60.8 -

SS-GAN ResNet 80 - 38 -

Vit-VQGAN ViT-B 100 - 65.1 -
Vit-VQGAN ViT-L 100 - 73.2 -

Table 29: ImageNet-1k linear probing and fine-tuning benchmarks for GAN-based SSL frameworks.
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SSL Backbone SSL Fine tuning Linear probing Additional
framework network epochs accuracy accuracy notes

iGPT GPT-L ∼ 100 72.6 65.2 -
iGPT GPT-XL ∼ 100 - 68.7 -
iGPT GPT-XL ∼ 100 - 72.0 Concatenation of five layers

BEiT ViT-B 800 83.2 56.7 -
BEiT ViT-L 300 85.2 73.5 -
BEiT ViT-H 300 85.1 - -

MAE ViT-B 1600 83.6 68.0 -
MAE ViT-L 1600 85.9 75.8 -
MAE ViT-H 1600 87.8 76.6 -

iBOT ViT-S 3200 82.3 77.9 -
iBOT ViT-B 1600 84.0 79.5 -
iBOT ViT-L 1000 84.8 81.0 -

SimMIM ViT-B 800 83.8 56.7 -

PeCO ViT-B 800 84.5 - -
PeCO ViT-L 800 86.5 - -
PeCO ViT-H 800 88.3 - -

MaskFeat ViT-L 1600 84.0 67.7

data2vec ViT-B 800 84.2 - -
data2vec ViT-L 1600 86.6 - -

CAE ViT-S 300 82.0 51.8 -
CAE ViT-B 1600 83.9 70.4 -
CAE ViT-L 1600 86.3 78.1 -

CIM ViT-S 300 81.6 - -
CIM ViT-B 300 83.3 - -
CIM ResNet-50 300 80.5 - FT 300 epochs

MCMAE ConViT-B 1600 85.0 70.9 -

ConMIM ViT-S 800 83.9 - 384 x 384 images
ConMIM ViT-B 800 85.3 - 384 x 384 images
ConMIM ViT-L 1600 86.5 - 384 x 384 images

CMAE ConViT-B 1600 85.3 73.9 -

SdAE ViT-B 300 84.1 64.9

MILAN ViT-B 400 85.4 79.9 -
MILAN ViT-L 400 87.8 84.3 -

BEiT-v2 ViT-B 300 85.0 80.1 -
BEiT-v2 ViT-L 1600 87.3 - -

BEiT-v3 BB N/A 89.6 - Uses IN-21k

CAE-v2 ViT-S 300 83.1 77.5 -
CAE-v2 ViT-B 300 85.3 80.6 -
CAE-v2 ViT-L 300 86.7 81.7 -

CAN ViT-B 1600 83.6 74.8 -
CAN ViT-L 800 84.7 76.2 -

PCAE ViT-S 300 81.9 - -
PCAE ViT-B 300 83.6 - -
PCAE ViT-B 800 83.9 - -

SparK ConvX-S 1600 84.1 - -
SparK ConvX-B 1600 84.8 54.7 -

MRMAE ConViT-B 400 85.8 - -

Table 30: ImageNet-1k linear probing and fine-tuning benchmarks for MIM-based generative SSL frame-
works. “SSL epochs” denotes the number of epochs for the SSL training.
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E COCO benchmarks

SSL Backbone APb APm Additional
framework network performance performance notes

Swav ResNet-50 41.6 37.8 -
Coke ResNet-50 40.9 37.2 -

Self-Classifier ResNet-50 41.5 36.1 -

InstDist ResNet-50 37.4 34.1 -
MoCo ResNet-50 40.9 35.5 -
PIRL ResNet-50 38.5 34.0 -

SimCLR ResNet-50 39.6 34.6 -
MoCo-v2 ResNet-50 39.8 36.1 -
DenseCL ResNet-50 39.6 35.7 -
PixPro ResNet-50 41.4 40.5
CLSA ResNet-50 42.3 24.4 -

MoCo-v3 ViT-B 45.5 40.5 -
Truncated Triplet ResNet-50 41.7 36.2 -

MoBY Swin-T 48.1 41.7 -
UniVIP ResNet-50 42.2 38.2 -
Mugs ViT-S 49.8 43.0 -
SMoG ResNet-50 40.1 36.9 -

SiameseIM ViT-B 52.1 46.2 -

SimSiam ResNet-50 39.2 34.4
SEED ResNet-18 35.3 31.1 Distilled from ResNet-50
DisCo ResNet-34 40.0 34.9 Distilled from ResNet-50
DINO ViT-B 46.8 41.5 -
EsVit Swin-S 46.2 41.6 -
BINGO ResNet-18 34.9 31.9 -

Barlow Twins ResNet-50 40.0 36.7 -
VicReg ResNet-50 39.4 36.4 -

InfoMin ResNet-50 40.4 38.8 -
MocHi ResNet-50 + MoCo-v2 39.4 34.5 -
ReSim ResNet-50 + MoCo 41.9 37.9 -
ORL ResNet-50 + BYOL 40.6 36.7 Pre-trains on COCO+
MRCL ViT-B + BarlowTwins 53.3 46.6 -
MRCL ViT-B + SimCLR 53.7 46.9 -

MosRep ResNet-50 + BYOL 41.1 37.2 -
MosRep ResNet-50 + Moco-v2 40.6 36.6 -

data2vec ViT-B 41.1 37.0 -
MAE ViT-B 48.4 42.6 -
iBOT ViT-S/16 49.4 42.6 -

SimMIM ViT-B/16 48.7 43.6 -
PeCO ViT-B 43.9 39.8 -
CAE ViT-B 50.0 44.0 -

MCMAE ConViT-B 53.2 47.1 -
ConMIM ViT-B/16 48.7 43.6 -
CMAE ViT-B 52.9 47.0 -
SdAE ViT-B 48.9 43.0 -
MILAN ViT-B 52.6 45.5 -
MILAN ViT-L 55.9 48.2 -

BEiT-v3 - 63.7 54.8 Uses extra Object365 dataset
MRCL SimCLR 53.7 46.9 -

CAE-v2 ViT-B 52.0 44.9 -
PCAE ViT-B 48.8 43.1 -
SparK ConvX-B 51.2 45.1 -
MRMAE ConViT-B 53.4 46.9 -

Table 31: Downstream transferability results on COCO dataset.
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