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Abstract

The advent of large language models (LLMs) has had a profound impact on our
society, providing unparalleled capabilities in a wide range of fields. However,
the high expenses of developing and dealing with LLMs limit their widespread
implementation. In today’s fast-paced tech industry, managing complex projects
efficiently remains a constant challenge. Organizations are increasingly seeking
innovative technologies to optimize project management methodologies, particu-
larly within agile frameworks. This conceptual study presents a methodology that
leverages multi-agent LLMs to address these challenges, allowing organizations
to effectively capitalize on the benefits of LLMs in project management. The im-
plementation of a multi-agent LLM system can integrate diverse user perspectives
by assigning distinct personalities to the agents, enhancing the system’s ability to
simulate context-aware interactions. The LLM-Swarm system, when utilized in
the context of agile project management, offers a comprehensive understanding of
projects by integrating various viewpoints through interconnected agent clusters
that represent different roles, including managers, lead engineers, UI/UX design-
ers, and quality assurance personnel. Our findings indicate that LLM-Swarm can
significantly improve resource allocation, task prioritization, and overall project
outcomes in agile environments.

1 Introduction

LLMs have started a new era of technological progress that is changing many parts of our culture
[2, 15].

A major challenge in the development and deployment of LLMs is the substantial cost, which limits
their scalability and hinders the full utilization of their potential. This study explores the integration of
multi-agent intelligence with LLMs to form an LLM-Swarm system (swarmlet, in our case), building
on existing concepts in both fields.

This collaborative approach utilizes the creative potential of diverse user perspectives, enabling
comprehensive and multifaceted responses to complex queries. This method works especially well in
project management, where people with different jobs and points of view come together.

Thorsten Händler [6] explores the limitations of LLMs and introduces autonomous LLM-powered
multi-agent systems as a solution. It proposes a taxonomy to analyze how these systems balance
autonomy and alignment, aiming to empower researchers in developing more reliable AI solutions.
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MetaGPT [7] integrates human workflows into LLM-based multi-agent systems, employing Stan-
dardized Operating Procedures (SOPs) to streamline complex tasks and improve solution coherence,
outperforming previous chat-based systems in software engineering benchmarks. [10] introduced
collaborative generative agents within LLM-based systems, enhancing their coordination skills in
task-oriented social contexts, exemplified in a simulated job fair, showcasing promising performance
yet uncovering limitations in handling more complex coordination tasks. AlpacaFarm [5] addresses
challenges in training LLMs by introducing a cost-effective simulator for learning from feedback,
demonstrating high agreement with human instructions and providing reference implementations for
various learning methods, with end-to-end validation showing comparable performance to models
trained on human data. SELF-DEBUGGING [3] enhances LLMs code generation by teaching them
to debug predicted programs through few-shot demonstrations, achieving state-of-the-art perfor-
mance on diverse benchmarks, including Spider, TransCoder, and MBPP. The approach demonstrates
the ability to perform rubber duck debugging, improving accuracy and sample efficiency, even on
challenging tasks without unit tests.

In the field of LLM research, the application of LLM and agent-based systems is becoming an
increasingly common practice. In spite of this, we have noticed that there is a lack of application of
collective intelligence as a means of leveraging the knowledge that is obtained from LLM. Through the
research that we are now conducting, we are working toward the goal of maximizing the effectiveness
of LLMs by utilizing the potential of collective intelligence. The goal of this study is to empower
the human team to plan well ahead of time for unfamiliar project scenarios they may encounter for
the first time. The swarmlet framework provides them with walkthroughs of all relevant previous
sources, enabling the generation of multiple plans such as plan A, B, C and so on. These alternative
plans help the team anticipate where they may encounter challenges, identify their strengths and
weaknesses, and understand where improvements are needed. The purpose of this work is to provide
human teams with all possible scenarios before they begin a project, so that the risks are minimized
during the actual execution phase. It is important to note that, throughout this paper, LLMs have been
used as examples of swarm agents within the proposed swarmlet architecture. However, medium and
small-sized language models can also play a highly beneficial role in such architectures, particularly
in addressing specific complex challenges.

Furthermore, this framework allows for the deployment of multiple similar agents, just as in real-life
projects where we require multiple developers, QA engineers, and other roles. By simulating various
agent deployments, the framework can also offer insights into the manpower needed to complete the
project within the required time, guiding teams in effective resource planning.

The remainder of this paper is organized as follows. In Section 2, the diverse perspectives and
effectiveness of the LLM-Swarm system across various fields are discussed. Section 3 provides a
detailed overview of the proposed methodology and problem formulation. The experiments and
analysis are presented in Section 4. Finally, future directions are discussed, and conclusions are
drawn in Section 5.

2 Implementation Aspects of LLM-Swarm

We chose to develop independent agent architectures instead of relying on pre-existing popular LLM-
based single-agent frameworks like BabyAGI( [1]), AutoGPT( [13]), or multi-agent frameworks
like CAMEL( [9]), MetaGPT( [7]), etc. Eventually, we present a proof of concept, demonstrating
the potential of our approach rather than offering a deployment-ready system. Our LLM-Swarm
system’s versatility makes it well-suited for use in different fields, where the cooperative integration
of different viewpoints is crucial for efficient decision-making and problem-solving.

2.1 Project Management

The LLM-Swarm system is particularly suitable for implementation in project management contexts,
particularly when there is a need for collaboration among individuals with different roles in order
to achieve shared objectives. The system’s architecture is designed to accommodate the complex
dynamics of projects. It allows for the development of questions, resolution of challenges, and
decision-making procedures to use the collective intelligence of interconnected agent clusters.
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2.2 R&D (Research and Development)

The LLM-Swarm system can enhance collaborative ideation in the research and development area,
where creativity is crucial. Inventor agents bring novel and imaginative ideas, while feedback agents
provide constructive critiques, creating an environment that is receptive to breakthroughs. The
system’s flexibility enables it to cater to the varied requirements of R&D initiatives.

2.3 Strategic planning for corporations

The implementation of the LLM-Swarm system in corporate strategy planning involves the collabora-
tion of management agents, analysts, and quality assurance agents. This guarantees that strategic
decisions undergo a rigorous evaluation process, embracing a wide range of viewpoints and promoting
a comprehensive comprehension of the competitive environment.

2.4 Learning settings

The LLM-Swarm system has the capability to augment collaborative learning and research endeavors
in educational environments. The concept facilitates dynamic discussions among student clusters,
which consist of individuals from diverse experiences and viewpoints. This fosters a deeper grasp of
subjects and encourages new problem-solving approaches.

2.5 Development of new products

The LLM-Swarm can optimize the collaborative process for organizations involved in product
development. Innovators provide novel concepts, challenger agents carefully examine suggested
functionalities, and management agents guarantee alignment with business goals. This approach
guarantees a more comprehensive and cutting-edge product development lifecycle.

2.6 Development and examination of policies

The LLM-Swarm system can provide significant advantages to governments and groups engaged in
policy making. Analyst agents serve as intermediaries between politicians and experts, facilitating
effective communication and ensuring that policy decisions are based on accurate and thorough
information. Challenger and feedback agents play a role in improving policy objectives.

3 Proposed Methodology

Swarm
Cluster

Multiple Agents inside
a swarm cluster /

swarmlet

Figure 1: Illustration of a swarmlet within an clus-
ter, representing a group of agents performing re-
lated tasks.

The proposed approach showed in Figure 1
is based on creating an LLM-Swarm system
(swarmlet) that combines the knowledge of
many different user groups that play important
parts in project management. We refer to this as
a swarmlet because it is not a full-scale swarm
architecture, but rather a hand-built, small-scale
demonstration. The system can be scaled up con-
necting more of this cluster together where the
clusters represent different teams and groups de-
signed to showcase the core principles of swarm
clusters that include question generators and
challenger bots, which interact dynamically to
refine project scopes and challenges. These in-
teractions are constant, ensuring that queries are

evaluated from diverse perspectives (an illustration in Figure 2).

Managerial agents oversee the work of analyst agents while inventors and quality assurance agents
offer a broader perspective and scrutinize the overall project. Analyst agents serve as intermediaries
between managers and employees by breaking down complex information into simplified forms.
Additionally, searchers bring in external information, further expanding the pool of knowledge. This
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Feedback Providers
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(Central Control)
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Analysts

Figure 2: Proposed LLM-Swarm (swarmlet) system. Managers are responsible for coordinating
the entire process, collaborating with all team clusters, and making final decisions. Challengers
scrutinize every decision made by other swarm clusters in order to conduct a thorough reevaluation.
The Search clusters perform internet searches as requested by the Analysts cluster. Feedback
Providers provide feedback to all swarm clusters and strive to maintain harmony among them. The
Question Generation cluster aids managers in formulating appropriate inquiries for other clusters.
Quality Assurance and Innovators assist Analysts in developing a comprehensive understanding and
in generating reliable and credible solutions.

collaborative swarmlet process ensures that a wide range of ideas and approaches are considered,
strengthening bot the planning and execution of the project.

In this study, we have specifically applied a swarmlet to a scenario focused on project management,
more precisely - agile project management. We employed agents such as the Manager, which acts
as the core controller for other agents, alongside Lead Engineer, Developer, Designer, DevOps and
QA. Figure 2 is a boilerplate framework that could be adapted to other scenarios such as R&D
development, business operations, corporate planning and many more. However, for the purpose of
this study, we demonstrate its potential in the context of agile project management in the software
development field, showcasing how this architecture can enhance collaboration, decision-making,
and project delivery.

3.1 Question Generation Agents

The LLM-Swarm system starts with expert agents whose job it is to come up with questions, project
scopes, and problems. These agents use the different personality traits of each user to get different
points of view, which sets the stage for in-depth project study.

3.2 Challenger Agents

Once the initial questions have been made, challenger agents step in and start a constructive conversa-
tion to check the truth and completeness of the questions that were made. This phase encourages a
lively exchange of ideas, which helps project goals and challenges become more clear and precise.
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3.3 Managerial Assessment Agents

At the same time, managerial agents look over the work that analyst agents have done to make sure
that the solutions they come up with are in line with the project’s goals. It is very important that
these bots put together all the pieces of information and make the main plan of action based on what
question generators and challengers talk about.

3.4 Analyst Agents

These agents act as go-betweens and look at the work of employee agents while also making it easier
for them to talk to management agents. Their job is to turn complicated scientific information into
formats that everyone can understand, make sure that everyone in different groups can work together
smoothly, and help put together full project plans.

3.5 Innovators and Quality Assurance Agents

Different groups of innovators and quality assurance agents give the project a bigger picture view.
Innovators bring new and creative ideas to the conversation, and quality assurance agents make sure
that the suggested solutions are honest and trustworthy.

3.6 Searcher Agents

In addition to talking to each other, searcher agents look into outside sources and do searches on
questions given to them by other agents. By using data from a variety of outside sources, these agents
improve the general body of knowledge, which makes the process of making decisions together
better.

3.7 Feedback Agents

Like challenges, feedback agents work on a larger scale and offer opinions and criticisms about the
project as a whole. In addition to answering specific questions, they also give feedback on the whole
process of working together and offer ways to make future interactions better.

4 Experiment and Analysis With Standalone LLM Agents

One of the ways in which the LLM-Swarm differentiates itself from a standalone LLM is by the
unique approach it takes to solving problems, bringing about choices, and putting together information.
The LLM-Swarm system differs from traditional isolated LLMs by integrating multiple LLM agents,
promoting dynamic discourse, and facilitating collaborative decision-making. An emphasis is placed
on the utilization of collective intelligence, which is achieved by the utilization of a variety of user
views in order to thoroughly solve queries and adapt to emerging difficulties within a collaborative
context.

4.1 Single LLM Agent with Memory

The first architecture is a single LLM agent with short-term memory designed to generate sprint
plans from project specifications while maintaining context across multiple interactions. It effec-
tively handles project management queries and produces coherent, detailed sprint plans for agile
environments.

• Core Components: The system uses OpenAI’s GPT-4 model, selected for its superior text
generation compared to GPT-3.5. It is configured with a temperature of 0.2 to balance cre-
ativity and accuracy, ensuring reliable and predictable outputs suited to project management
tasks.

• Memory System: The memory system utilizes the ChatMessageHistory and Runnable-
WithMessageHistory utilities from LangChain, enabling the agent to retain context across
interactions. This feature is essential for ensuring consistency and referencing prior decisions
in agile sprint planning.
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• Prompt Design: A structured prompt template guides the agent’s behavior by defining its
role as an agile project manager and outlining its approach to sprint planning through system
instructions. It includes a chat history placeholder to manage multi-step conversations and a
user input section to incorporate specific project details or queries. This structure enables
the system to generate sprint plans from project specifications and handle follow-up queries
effectively.

• Tool Integration: Initially, the architecture included two tools: a Web Search Tool for
retrieving up-to-date information on agile practices and software development topics relevant
to sprint planning, and a Calculator Tool for performing calculations such as sprint capacity,
effort estimations, and task breakdowns. However, experiments revealed that GPT-4 could
perform accurate mathematical operations internally, leading to the removal of the external
calculator tool in the final version of the architecture.

The input prompt for the sprint planning process is structured as follows:

IP0 = SI + S + CP0 (1)

Here: IP0 is the initial input prompt. SI represents the system instructions (guiding the agent’s
behavior), S represents the project specifications (such as user stories, backlog items), and CP0 is
the initial command prompt provided by the user.

Subsequent input prompts include previous chat history to maintain context:

IPi = CPi + CHi−1 (2)

Here IPi is the input prompt at step i, CPi is the command prompt at step i, and CHi−1 is the chat
history from the previous interaction.

Chat history is updated after ever interaction:

CHi = CHi−1 +Ri + IPi (3)

Here, CHi represents the newly updated chat history at step i, Ri is the response generated at step i,
and IPi is the input prompt provided for step i.

This setup ensures that the agent retains crucial information across multiple steps, allowing it to
handle follow-up questions and iterative interactions more effectively.

4.2 Single ReAct Agent with Memory

The second architecture was based on the ReAct (Reasoning + Action) framework [17]. The key
difference in this approach is that the agent does not merely generate outputs based on immediate
inputs; it engages in explicit reasoning steps before taking action. This enables more thoughtful
responses and better problem-solving capabilities.

Core Components: The ReAct agent also utilizes OpenAI’s GPT-4 model for natural language
understanding and generation. Like the single LLM agent, it employs memory through the LangChain
utilities. However, it goes beyond simple question-answering by incorporating reasoning into the
workflow, mimicking human-like problem-solving processes.

ReAct Framework: The ReAct agent employs a structured process of reasoning and acting, where
it first reflects on the current task, evaluates its options, and decides on the most appropriate action
before executing it, such as generating a sprint plan. This process includes explicit "Thought" steps,
allowing the agent to assess its progress and formulate a plan. This approach ensures that the agent’s
decisions are deliberative rather than merely reactive, making it well-suited for complex, open-ended
tasks like sprint planning.

The input prompt for the ReAct agent follows the same structure as the single LLM agent:

IP0 = RP + S + CP0 (4)
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Here, RP represents the ReAct prompt template (which adds reasoning steps), S represents the
project specifications, and CP0 is the initial command prompt.

Subsequent prompts are similar:

IPi = CPi + CHi− 1 (5)

The chat history is updated similarly:

CHi = CHi−1 +Ri + IPi (6)

This approach enables the agent to break down complex problems into manageable parts, making
more accurate and informed decisions.

4.3 Multi-Agent LLM System

The third architecture developed is a multi-agent system, where multiple LLM agents with specialized
roles collaborate to generate sprint plans. This approach simulates a real-world sprint planning
meeting, where different stakeholders contribute from their respective areas of expertise.

Role-Based Architecture:

Each agent in the system is designated a specific role—such as Project Manager, Lead Engineer, QA
Engineer, or Product Owner—and is responsible for a particular aspect of sprint planning, including
task prioritization, resource allocation, testing, or quality assurance. This role-based design enables
agents to concentrate on their areas of expertise while collaborating with others. For example, the
Project Manager focuses on high-level goals and resource distribution, whereas the QA Engineer
ensures that testing and quality control are integrated into the sprint.

Cooperative Interaction:

The agents interact and collaborate to create a unified sprint plan. For instance, the Project Manager
agent may consult with the Lead Engineer agent to assess the technical feasibility and costs of specific
tasks, while the QA Engineer ensures that adequate testing resources are allocated. This cooperative
interaction integrates multiple perspectives, resulting in a more comprehensive and robust sprint plan
compared to those generated by a single agent.

Emergent Behaviors:

A key advantage of the multi-agent system is its ability to exhibit emergent behaviors. Through
collaboration, the agents may develop solutions that surpass the capability of any single agent. The
interaction between agents can lead to more creative and well-rounded solutions, improving the
overall quality of the sprint plans.

4.4 Evaluation Framework

To evaluate the performance of the sprint plans generated by these architectures, an LLM-based
comprehensive evaluation framework was developed based on the SMART criteria [4]. The SMART
framework was selected as it provides a structured evaluation approach that naturally aligns with the
key aspects of sprint planning—where tasks must be specific, measurable, achievable, relevant to
project goals, and time-bound within sprint durations. SMART is an established framework in the
field of project management, widely used for evaluating goal-oriented tasks.

SMART Criteria:

• Specific: Are the tasks and goals clearly defined?

• Measurable: Can the outcomes be quantified or evaluated in terms of progress?

• Achievable: Are the proposed sprint goals realistic given the team’s capacity and resources?

• Relevant: Do the tasks align with the overall project objectives and priorities?

• Time-bound: Are the tasks appropriately scoped to fit within the sprint timeline?
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Table 1: Assessment for sprint plan generated by single LLM agent
Evaluator LLM Specific Measurable Achievable Relevant Time-Bound
Meta-Llama 4 4 3 5 4
Mistral 5 5 4 5 5
GPT-4o-mini 5 4 4 5 5
Average 4.67 4.33 3.67 5 4.67

Table 2: Assessment for sprint plan generated by single ReAct(Reasoning + Action) agent
Evaluator LLM Specific Measurable Achievable Relevant Time-Bound
Meta-Llama 4 5 3 5 4
Mistral 5 5 4 5 4
GPT-4o-mini 5 4 4 5 4
Average 4.67 4.67 3.67 5 4

We utilize a Likert scale (ranging from 1 to 5) [11, 12] to assess the quality of the output sprint plan
against these five specific criteria. Each criterion is scored individually, where 1 indicates strong
disagreement that the criterion is met, and 5 indicates strong agreement.Plans that score well on all
aspects of the SMART framework are considered robust and effective for guiding development teams.

Our evaluation framework is inspired by a similar kind of approach introduced in [18], where human
evaluators assess LLM-generated user stories based on the criteria set by the INVEST framework.
We adopt a similar scoring approach but replace human evaluators with LLMs. This shift from human
to LLM evaluation is driven by the need to reduce bias and enhance objectivity. For example, human
evaluations can be influenced by personal connections or a lack of attention to detail, which poses a
risk to inconsistencies and potential biases in the assessment. We employ three different LLMs as the
judges or evaluators: GPT-4o-mini [16], Meta-Llama-3.1-8B-Instruct [14], and Mistral-7B-Instruct-
v0.3 [8]. These particular models were strategically selected due to their similar parameter sizes (7-8
billion parameters), which ensures a consistent baseline for comparison. Moreover, the inclusion of
both open-source and closed-source models adds diversity to the evaluation framework.

Comparison of Architectures:

• The single LLM agent is fast and straightforward to implement but may lack the depth that
comes from considering multiple perspectives.

• The ReAct agent adds a layer of reasoning that helps improve the decision-making process,
making it more suitable for complex projects with nuanced requirements.

• The multi-agent system outperforms the others in terms of generating detailed, comprehen-
sive sprint plans but requires significantly more computational resources due to the need for
multiple agents interacting simultaneously.

5 Conclusion

The integration of collective intelligence with LLMs presents an effective solution to mitigate
the financial challenges of developing and utilizing LLMs. This approach can drive informed,
comprehensive decision-making in critical fields like healthcare, where the stakes are high. In times
of crisis, the LLM-Swarm system proves invaluable for facilitating rapid and well-grounded decisions.
Within project management, LLM-Swarm offers a dynamic, collaborative framework where distinct
agent clusters provide diverse perspectives. This approach not only enhances decision-making but
ensures a thorough analysis of every project facet. By fostering discussions, overcoming obstacles,
and integrating multiple viewpoints, the LLM-Swarm or swarmlet system has the potential to become
a powerful tool for managing complex projects in an era dominated by advanced language models.
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