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Abstract

A growing body of work studies Blindspot Discovery Methods (BDMs): methods that use an
image embedding to find semantically meaningful (i.e., united by a human-understandable
concept) subsets of the data where an image classifier performs significantly worse. Motivated
by gaps in prior work, we introduce a new framework for evaluating BDMs, SpotCheck,
that uses synthetic image datasets to train models with known blindspots and a new BDM,
PlaneSpot, that uses a 2D image representation. We use SpotCheck to run controlled
experiments that identify factors that influence BDM performance (e.g., the number of
blindspots in a model, or features used to define the blindspot) and show that PlaneSpot is
competitive with and in many cases outperforms existing BDMs. Importantly, we validate
these findings by designing additional experiments that use real image data from MS-COCO,
a large image benchmark dataset. Our findings suggest several promising directions for future
work on BDM design and evaluation. Overall, we hope that the methodology and analyses
presented in this work will help facilitate a more rigorous science of blindspot discovery.

1 Introduction

A growing body of work has found that models with high average test performance can still make systemic
errors, which occur when the model performs significantly worse on a semantically meaningful (i.e., united
by a human-understandable concept) subset of the data (Buolamwini & Gebru, 2018; Chung et al., 2019;
Oakden-Rayner et al., 2020; Singla et al., 2021; Ribeiro & Lundberg, 2022). For example, past works have
demonstrated that models trained to diagnose skin cancer from dermoscopic images sometimes rely on
spurious artifacts (e.g., surgical skin markers that some dermatologists use to mark lesions); consequently,
they have different performance on images with or without those spurious artifacts (Winkler et al., 2019;
Mahmood et al., 2021). More broadly, finding systemic errors can help us detect algorithmic bias (Buolamwini
& Gebru, 2018) or sensitivity to distribution shifts (Sagawa et al., 2020; Singh et al., 2020).

In this work, we focus on what we call the blindspot discovery problem, which is the problem of finding an
image classification model’s systemic errors without making many of the assumptions considered in related
works (e.g., we do not assume access to metadata to define semantically meaningful subsets of the data, tools
to produce counterfactual images, a specific model structure or training process, or a human in the loop).
We call methods for addressing this problem Blindspot Discovery Methods (BDMs) (e.g., Kim et al., 2019;
Sohoni et al., 2020; Singla et al., 2021; d’Eon et al., 2021; Eyuboglu et al., 2022).

We note that blindspot discovery is an emerging research area and that there has been more emphasis
on developing new BDMs than on formalizing the problem itself. Consequently, we propose a problem
formalization, summarize different approaches for evaluating BDMs, and summarize several high-level design
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choices made by BDMs. When we do this, we observe the following two gaps. First, existing evaluations are
based on an incomplete knowledge of the model’s blindspots, which limits the types of measurements and
claims they can make. Second, dimensionality reduction is a relatively underexplored aspect of BDM design.

Motivated these gaps in prior work, we propose a new evaluation framework, SpotCheck, and a new BDM,
PlaneSpot. SpotCheck is a synthetic evaluation framework for BDMs that differs from past evaluations in
that it gives us complete knowledge of the model’s blindspots and allows us to identify factors that influence
BDM performance. Additionally, we refine the evaluation metrics used by prior work. Inspired by the
intuition that clustering is typically easier in lower dimensions, we introduce PlaneSpot, a simple BDM that
finds blindspots by clustering on a low-dimensional 2D image representation.

We use SpotCheck to run controlled experiments to identify several factors that influence BDM performance.
We run additional experiments using 100, 000 photographs from the MS-COCO dataset (Lin et al., 2014), a
large-scale object detection benchmark, and find that these trends discovered using SpotCheck generalize.
Our experiments show that PlaneSpot is competitive with and in many cases outperforms existing BDMs, a
finding that has exciting implications for future work on interactive blindspot discovery. In our extended
discussion, we present several promising directions for future research on BDMs to address the failure modes
that we discovered. Overall, we hope that the methodology and analyses presented in this work will help
facilitate a more rigorous science of blindspot discovery.

2 Background
In this section, we formalize the problem of blindspot discovery for image classification. We then discuss
general approaches for evaluating the Blindspot Discovery Methods (BDMs) designed to address this problem
and high-level design choices made by BDMs.

Problem Definition. The broad goal of finding systemic errors has been studied across a range of problem
statements and method assumptions. Some common assumptions are:

• Access to metadata help define coherent subsets of the data (e.g., Kim et al., 2018; Buolamwini & Gebru,
2018; Singh et al., 2020).

• The ability to produce counterfactual images (e.g., Shetty et al., 2019; Singla et al., 2020; Xiao et al., 2021;
Leclerc et al., 2021; Li & Xu, 2021; Lang et al., 2021; Plumb et al., 2022; Wiles et al., 2023).

• A human-in-the loop, either through an interactive interface (e.g., Cabrera et al., 2019; Balayn et al., 2022;
Rajani et al., 2022; Gao et al., 2022; Cabrera et al., 2023; Suresh et al., 2023) or by inspecting explanations
(e.g., Yeh et al., 2020; Adebayo et al., 2022).

While appropriate at times, these assumptions all restrict the applicability of their respective methods. For
example, consider assuming access to metadata to help define coherent subsets of the data. This metadata
is much less common in applied settings than it is for common ML benchmarks. Further, the efficacy of
methods that rely on this metadata is limited by the quantity and relevance of this metadata; in general,
efficiently collecting large quantities of relevant metadata is challenging because it requires that the model
developer can anticipate all possible relevant types of systemic errors.

Consequently, we define the problem of blindspot discovery as the problem of finding an image classification
model’s systemic errors without making any of these assumptions. More formally, suppose that we have
an image classifier, f , and a dataset of labeled images, D = [xi]ni=1. Then, a blindspot is a coherent (i.e.,
semantically meaningful, or united by a human-understandable concept) set of images, Ψ ⊂ D, where f
performs significantly worse (i.e., p(f, Ψ) ≪ p(f, D \ Ψ) for some performance metric, p, such as recall). We
denote the set of f ’s true blindspots as Ψ : {Ψm}M

m=1. Next, we define the problem of blindspot discovery as
the problem of finding Ψ using only f and D. Then, a BDM is a method that takes as input f and D and
outputs an ordered (by some definition of importance) list of hypothesized blindspots, Ψ̂ : [Ψ̂k]Kk=1. Note that
the Ψm and Ψ̂k are sets of images. Past works propose that human stakeholders can then inspect the output
groups of points Ψ̂k to describe the semantic features shared by each group, and that the Ψ̂k can be given as
input to algorithms that aim to “fix” the blindspot by learning an updated model (Sagawa et al., 2020).

Approaches to BDM evaluation. We observe that existing approaches to quantitatively evaluate BDMs
fall in two categories. The first category of evaluations (Singla et al., 2021; d’Eon et al., 2021) simply measure
the error rate or size of Ψ̂k. However, these evaluations have two problems. First, none of the properties they
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Method 1. Image Representation 2. Dimensionality Reduction 3. Hypothesis Class
Multiaccuracy (Kim et al., 2019) VAE representation Linear model
GEORGE (Sohoni et al., 2020) Model representation UMAP (d = 0, 1, 2) Gaussian kernels
Spotlight (d’Eon et al., 2021) Model representation Gaussian kernels
Barlow (Singla et al., 2021) Adversarially-Robust Model representation Decision Tree
Domino (Eyuboglu et al., 2022) CLIP representation PCA (d = 128) Gaussian kernels
PlaneSpot Model representation scvis (d = 2) Gaussian kernels

Table 1: A high level overview of the high-level design choices made by different BDMs.

measure capture whether Ψ̂k is coherent (e.g., a random sample of misclassified images has high error but
may not match a single semantically meaningful description). Second, f ’s performance on Ψ̂k may not be
representative of f ’s performance on similar images because BDMs are optimized to return high error images
(e.g., suppose that f has a 90% accuracy on images of “zebras with people”; then, by returning the 10% of
such images that are misclassified, a BDM could mislead us into believing that f has a 0% accuracy on all
images of “zebras with people”).

The second category of evaluations compares Ψ̂ to a subset of Ψ that has either been previously found or
artificially induced (Sohoni et al., 2020; Eyuboglu et al., 2022). While these evaluations address several
issues with those from the first category, they require knowledge of Ψ, which is usually incomplete (i.e.,
we usually do not know some of the Ψm). This incompleteness makes it difficult to identify factors that
influence BDM performance or to measure a BDM’s recall or false positive rate. It is not practical to fix this
incompleteness using real data because we cannot realistically enumerate all of the possible coherent subsets
of D to check if they are blindspots. To address these limitations, we introduce SpotCheck, which gives us
complete knowledge of Ψ by using synthetic data.

High-level design choices of BDMs. In Table 1, we summarize three of the high-level design choices
made by existing BDMs. First, each BDM uses a model to extract an image representation. Many BDMs use
a representation from f , but some use pre-trained external models or other models trained on D. Second,
some of the BDMs apply some form of dimensionality reduction to that image representation. Third, each
BDM learns a model from a specified hypothesis class to predict if an image belongs to a blindspot from that
image’s (potentially reduced) representation.

Interestingly, while there has been significant effort focused on the choice of a BDM’s image representation
and hypothesis class (along with its associated learning algorithm), we note that few past works discover
blindspots using a low-dimensional representation.1 This is surprising because these BDMs are all solving
clustering or learning problems, which are generally easier in lower dimensions. Motivated by this gap in
prior work and the visualization potential of a 2D representation, we introduce PlaneSpot.

3 Evaluating BDMs using Knowledge of the True Blindspots
In Section 3.1, we introduce SpotCheck, which is an evaluation framework for BDMs that gives us complete
knowledge of the model’s true blindspots by using synthetic images, and allows us to identify factors that
influence BDM performance. In Section 3.2, we define the metrics that we use to measure the performance of
BDMs given complete knowledge of the model’s true blindspots.

3.1 SpotCheck: A Synthetic Evaluation Framework for BDMs

SpotCheck builds on ideas from Kim et al. (2022) by generating synthetic datasets of varying complexity
and training models to have specific blindspots on those datasets. We summarize its key steps below; see
Appendix A for details.

Dataset Definition. Each dataset generated by SpotCheck is defined using semantic features that describe
the possible types of images it contains. All images generated by SpotCheck have a background and potentially
multiple objects that have different shapes (e.g., squares, rectangles, circles, or text). Each object in the

1GEORGE (Sohoni et al., 2020) does experiment with clustering on a low-dimensional representation. However, their
approach differs from PlaneSpot in that they select a different number of UMAP components for different datasets. In contrast,
we specifically study the effectiveness of clustering on a 2D representation.
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label: 0 label: 0 label: 0 label: 1 label: 0 label: 0

blindspot: images with squares and circles

Figure 1: By controlling the data generation process, SpotCheck gives us complete knowledge of a model’s true
blindspots. Here, we show images sampled from a dataset created with SpotCheck. Dataset Complexity.
This dataset is defined by 3 semantic features that vary across images: the presence of a square, the presence
of a circle, and the color of the circle. We do not count the “color of the square” because it is always blue.
Blindspot Specificity. This blindspot is defined by 2 semantic features: the presence of a square and the
presence of a circle. As a result, it contains any image with both a square and a circle, regardless of the
circle’s color. Data Labels. In general, the label indicates if a square is present. However, training images
belonging to a blindspot are mislabeled.

image also has an associated size (large or small), color (blue or orange), and texture (solid or vertical
stripes). Datasets that have a larger number of features have a larger variety of images and are therefore more
complex. For example, a simple dataset may only contain images with squares and blue or orange circles (see
Figure 1), while a more complex dataset may also contain images with striped rectangles, small text, or grey
backgrounds. We detail the complete set of semantic features that SpotCheck uses in Appendix Section A.1.

Blindspot Definition. Each blindspot is defined using a subset of the semantic features that define its
associated dataset (see Figure 1 for an example). Similarly to how a dataset with more features is more
complex, a blindspot defined using more semantic features is more specific.

Training a Model to have Specific Blindspots. For each dataset and blindspot specification, we train a
ResNet-18 model (He et al., 2016) to predict whether a square is present. To induce blindspots, we generate
data where the label for each image in the training and validation sets is correct if and only if it does not
belong to any of the blindspots (see Figure 1). The test set images are always correctly labeled. We chose to
train using mislabeled images because it was most reliable method at inducing the desired true blindspots
(see our extended discussion in Appendix B). Then, because we know the full set of semantic features that
define the dataset, we can verify that the model learned to have exactly the set of blindspots that we intended
it to. As a result, SpotCheck gives us complete knowledge of the model’s true blindspots.

Generating Diverse Experimental Configurations (ECs). Since our goal is to study how various
factors influence BDM performance, we generate a diverse set of experimental configurations, (i.e., dataset,
blindspots, and model triplets). To do this, we randomize several factors: the features that define a dataset
(both the number of them and what they are) as well as the blindspots (the number of them, the number of
features that define them, and what those features are). Importantly, we sample these factors independently
of one another across this set of ECs so that we can estimate their individual influence on BDM performance.

3.2 Evaluation Metrics based on Knowledge of the True Blindspots
We define several evaluation metrics to measure how well the hypothesized blindspots returned by a BDM, Ψ̂,
capture a model’s true blindspots, Ψ. Recall that each Ψ̂k and Ψm are sets of images. First, we measure how
well a BDM finds each individual true blindspot (Blindspot Recall) and build on that to measure how well a
BDM finds the complete set of true blindspots (Discovery Rate and False Discovery Rate). Our proposed
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evaluation metrics refine those used in prior work, which only report the precision or recall of individual
hypothesized blindspots (see detailed discussion in Appendix C).

Blindspot Precision. If Ψ̂k is a subset of Ψm, we know that the model underperforms on Ψ̂k and that Ψ̂k

is coherent. We measure this using the precision of Ψ̂k with respect to Ψm:

BP(Ψ̂k, Ψm) = |Ψ̂k ∩ Ψm|
|Ψ̂k|

(1)

Then, we say that Ψ̂k belongs to Ψm if, for some threshold λp:

BP(Ψ̂k, Ψm) ≥ λp (2)

However, Ψ̂k can belong to Ψm without capturing the same information as Ψm. For example, Ψ̂k could
be “zebras with people” while Ψm could be “zebras (with or without people)”. Because this excessive
specificity could result in conclusions that are too narrow, we need to incorporate some notion of recall into
the evaluation.

Blindspot Recall. One way to incorporate recall is using the proportion of Ψm that Ψ̂k covers:

BRnaive(Ψ̂k, Ψm) = |Ψ̂k ∩ Ψm|
|Ψm|

(3)

We relax this definition by allowing Ψm to be covered by the union of multiple Ψ̂k that belong to it:

BR(Ψ̂, Ψm) =

∣∣∣∣∣
( ⋃

Ψ̂k:BP(Ψ̂k,Ψm)≥λp

Ψ̂k

)
∩ Ψm

∣∣∣∣∣
|Ψm|

(4)

Then, we say that Ψ̂ covers Ψm if, for some threshold λr:

BR(Ψ̂, Ψm) ≥ λr (5)

We do this because “zebras with people” and “zebras without people” belong to and jointly cover “zebras.”
So, if a BDM returns both, a user could combine them to arrive at the correct conclusion.

Discovery Rate (DR). We define the DR of Ψ̂ and Ψ as the fraction of the Ψm that Ψ̂ covers:

DR(Ψ̂, Ψ) = 1
M

∑
m

1(BR(Ψ̂, Ψm) ≥ λr) (6)

False Discovery Rate (FDR). When the DR is non-zero, we define FDR of Ψ̂ and Ψ as the fraction of
the Ψ̂k that do not belong to any of the Ψ:2

FDR(Ψ̂, Ψ) = 1
K

∑
k

1(max
m

BP (Ψ̂k, Ψm) < λp) (7)

Note that it is impossible to calculate the FDR without the complete set of true blindspots. While SpotCheck
gives us this knowledge, it is generally not available for a model trained on an arbitrary image dataset.

2While calculating DR, we may only need the top-u items of Ψ̂. As a result, we only calculate the FDR over those top-u
items. This prevents the FDR from being overly pessimistic when we intentionally pick K too large in our experiments. However,
it is unclear what value of u to use for ECs that have a DR of zero, so we exclude these ECs from our FDR analysis.
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4 PlaneSpot: A simple BDM based on Dimensionality Reduction

In this section, we define PlaneSpot, a new BDM. As shown in Table 1, PlaneSpot uses the most common
choices for the image representation (i.e., f ’s own representation) and the hypothesis class (i.e., Gaussian
kernels). PlaneSpot also uses standard techniques to learn a model from that hypothesis class. As a result,
the most interesting aspect of PlaneSpot’s design is that it finds blindspots using a low-dimensional (2D)
image representation. We start by defining some additional notation and then explain PlaneSpot’s choice for
each of the high-level BDM design choices shown in Table 1.

Notation. Suppose that we want to find f ’s blindspots for a class, c, and let Dc be the set of images from
D that belong to c. Further, suppose that we have divided f into two parts: g : X → Rd, which extracts
f ’s representation of an image (i.e., its penultimate layer activations), and h : Rd → [0, 1], which gives f ’s
predicted confidence for class c.

Image Representation. We use g to extract f ’s representation for Dc, G = g(Dc) ∈ Rn×d, and h to extract
f ’s predicted confidences for class c, H = h(G) ∈ [0, 1]n×1. Note that, because all of the images in Dc belong
to class c, entries of H closer to 1 denote higher confidence in the class.

Dimensionality Reduction. We use G to train scvis (Ding et al., 2018), which combines the objective
functions of tSNE and an autoencoder, in order to learn a 2D representation of f ’s representation, s : Rd → R2.
We chose to use scvis because we believe there are implicit similarities between scvis’s initial use (identifying
cell types) and blindspot discovery: both tasks require finding potentially small groups of points in a high
dimensional space (Ding et al., 2018). We also ablate our choice of dimensionality reduction method and
find that scvis achieves comparable or better performance than other methods in Appendix D. We use s to
get the 2D representation of Dc, S = s(G) ∈ Rn×2. Finally, we normalize the columns of S to be in [0, 1],
S̄ ∈ [0, 1]n×2.

Hypothesis Class. We want PlaneSpot to be aware of both S̄ (the representation of Dc) and H (f ’s
predicted confidences for Dc), so we combine them into a single representation, R = [S̄; w · H] ∈ Rn×3 where
w is a hyperparameter controlling the relative weight of these components. We pass R to a Gaussian Mixture
Model clustering algorithm, where the number of clusters is chosen using the Bayesian Information Criteria.
We return those clusters (where each Ψ̂k corresponds to a different cluster) in order of decreasing importance,
which we define using the product of their error rate and the number of errors in them.

5 Experiments
In Section 5.1, we use SpotCheck to run a series of controlled experiments using synthetic data. In Section
5.2, we demonstrate how to setup semi-controlled experiments to validate that the findings from SpotCheck
generalize to settings with realistic image data.

5.1 Synthetic Data Experiments
We use SpotCheck to generate 100 ECs with datasets that have 6-8 semantic features and models that have
1-3 blindspots (each defined with 5-7 semantic features). We validate that the trained ResNet-18 models
have near-perfect (99%) validation set accuracy on images that do not belong to a blindspot, and near-zero
validation set accuracy on images that do belong to a blindspot to rule out the possibility of other coherent
and underperforming subgroups beyond the blindspots we induced.

We evaluate three recent BDMs: Spotlight (d’Eon et al., 2021), Barlow (Singla et al., 2021), Domino (Eyuboglu
et al., 2022), and PlaneSpot. We ran the BDMs on a held-out test set (instead of the model’s train set)
because the model’s performance on the test set is likely to be more representative of model performance
during deployment (Feldman & Zhang, 2020). We give all BDMs the positive examples (i.e., images with
squares) from the test set and limit them to returning 10 hypothesized blindspots. We use a held-out set of 20
ECs to tune each BDM’s hyperparameters (see details in Appendix E). We use λp = λr = 0.8 for our metrics.
We define each 95% confidence interval as the empirical mean plus or minus 1.96 standard deviations.

Overall Results. Table 2 shows the DR and FDR results averaged across all 100 ECs. We observe that
PlaneSpot has the highest DR and that PlaneSpot and Barlow have a lower FDR than Spotlight and
Domino. In Appendix F, we take a deeper look at why these BDMs are failing and conclude that a significant
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Table 2: (Synthetic Data) Average BDM DR
and FDR with their standard errors across 100
SpotCheck ECs.

Method DR FDR
Barlow 0.43 (0.04) 0.03 (0.01)
Spotlight 0.79 (0.03) 0.09 (0.01)
Domino 0.64 (0.04) 0.07 (0.01)
PlaneSpot 0.88 (0.03) 0.02 (0.01)

Figure 2: (Synthetic Data) The fraction of blindspots
covered (with shaded 95% CIs) for blindspots defined
using 5, 6, and 7 features using 2 different choices for
the “minimum weight” hyperparameter S (defined
in d’Eon et al. (2021)).

Figure 3: (Synthetic Data) (Left/Center) Average BDM DR/FDR (with shaded 95% confidence intervals)
for ECs that have 1, 2, and 3 blindspots. (Right) The fraction of blindspots covered, across the individual
blindspots from the ECs, for blindspots defined using 5, 6, and 7 features.

Figure 4: (Synthetic Data) The fraction of blindspots covered (with shaded 95% confidence intervals) that are
or are not defined with (Left) the “relative position” feature (whether the square appears above the centerline
of the image), (Center) a “texture” feature (whether any object in the image has vertical stripes), or (Right)
the presence of a circle (whether there is a circle in the image).
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portion of all of their failures can be explained by their tendency to merge multiple true blindspots into a
single hypothesized blindspot.

5.1.1 Identifying factors that influence BDM performance

We study two types of factors: per-configuration factors, which measure properties of the dataset (e.g., how
complex is it?) or of the model (e.g., how many blindspots does it have?), and per-blindspot factors, which
measure properties of each individual blindspot (e.g., is it defined with this feature?). For per-configuration
factors, we average DR and FDR across the ECs. For per-blindspot factors, we report the fraction of
blindspots covered averaged across each individual blindspot from the ECs (see Equation 5).

The number of blindspots matters. In Figure 3 (Left), we plot the average DR for ECs with 1, 2, and 3
blindspots. Average DR decreases for all methods as the number of blindspots increases. Figure 3 (Center)
shows that FDR increases as the number of blindspots increases. Together these observations show that
BDMs perform worse in settings with multiple blindspots, which is particularly significant because past
evaluations have primarily focused on settings with one blindspot.

The specificity of blindspots matters. In Figure 3 (Right), we plot the fraction of blindspots covered for
blindspots defined using 5, 6, and 7 features. With the exception of Spotlight, all of these methods are less
capable of finding more-specific/less frequently occurring blindspots.

The features that define a blindspot matter. In Figure 4, we plot the fraction of blindspots covered
for blindspots that either are or are not defined using various features. In general, we observe that the
performance of these BDMs is influenced by the types of features used to define a blindspot (e.g., the presence
of spurious objects, color or texture information, background information). All methods are less likely to
find blindspots defined using the “relative position” feature. Interestingly, BDMs that use the model’s
representation for their image representation (i.e., PlaneSpot and Spotlight) are less sensitive to the features
that define a blindspot than those that use an external model’s representation (i.e., Barlow and Domino).

Hyperparameters matter. We make two observations about BDM hyperparameters that suggest that it is
critical that future BDMs provide ways to tune their hyperparameters. First, in Appendix E, we observe
that many BDMs have significant performance differences when we vary their hyperparameters. However,
hyperparameter tuning is harder in real settings where a model developer does not have access to information
about the true blindspots. Second, in Figure 2, we observe that two hyperparameter settings that perform
nearly identically on average, exhibit significantly different performance at finding blindspots defined using
differing numbers of features. This suggests that there may not be a single best hyperparameter choice to find
all of the blindspots in a single model, which could contain multiple blindspots of different specificity or size.

5.2 Real Data Experiments

We design semi-controlled experiments using the COCO dataset (Lin et al., 2014) to test whether several
findings observed using SpotCheck generalize to settings with real data. While COCO has extensive
annotations, it does not have enough metadata to test all of the findings from SpotCheck (e.g., we cannot
induce blindspots that depend on the texture of an object). Therefore, we study the following questions:

Q1. Will the 2D image representation used by PlaneSpot still be effective?
Q2. Are BDMs still less effective for models with more true blindspots?
Q3. Are BDMs still less effective at finding more-specific blindspots?

We are interested in studying the effect of two experimental factors: the number of blindspots in a model
(Q2) and of the specificity of those blindspots (Q3). To estimate their influence on BDM performance, we use
the same strategy as SpotCheck and generate a set of ECs where we randomize these factors independently
of one another. We detail how we generate these ECs for reproducibility in Appendix G and show an example
EC in Figure 5. We define each “more-specific” blindspot using two COCO object classes (e.g., “elephants
with people”), and each “less-specific” blindspot using only one class (e.g., “zebras”).
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label: 0 label: 1 label: 0 label: 0 label: 0

blindspot 1: elephants with people

label: 0

blindspot 2: zebras

Figure 5: Images sampled from an example EC created using COCO. In this example, the task is to detect
whether an animal is present. The EC has two true blindspots: “elephants with people,” which is more-specific
because it is defined using two objects, and “zebras,” which is less-specific because it is defined using only
one object.

Table 3: (Real Data) The effect of number of
blindspots (Q2) is confounded with the effect of the
specificity of those blindspots (Q3): as we try to
induce more blindspots in the model, the model is
less likely to learn more-specific blindspots. Overall,
the model learned all of the intended blindspots in
65 of the 90 ECs in the general pool.

Num Blindspots (Q2)
Fraction of successfully

induced Blindspots
that are more-specific (Q3)

1 0.54
2 0.47
3 0.40

1 2 3
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Figure 6: (Real Data) When we condition on only
having less-specific induced blindspots, we see that
BDM performance decreases as we increase the num-
ber of induced blindspots. These results are based
on 82 ECs where the model learned all the intended
blindspots.

Table 4: (Real Data) For the 65 ECs in the gen-
eral pool where the model learned all the intended
blindspots, we report average BDM DR with its stan-
dard error.

Method DR
Barlow 0.09 (0.03)
Spotlight 0.14 (0.04)
Domino 0.38 (0.05)
PlaneSpot 0.48 (0.05)

Less More
Blindspot Specificity
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Figure 7: (Real Data) When we condition on only
having a single induced blindspot, we see that BDMs
are less effective at finding more-specific blindspots.
These results are based on 70 ECs where the model
learned the intended blindspots.
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However, one key difference from our synthetic experiments is that when we use real data, we cannot guarantee
that the model will learn the blindspots that we try to induce in it. Even if our goal is to train a model
to underperform on all images with “elephants with people” by using a train set where all such images are
mislabeled, the model may not actually have comparatively lower recall on images of “elephants with people”
in the test set. We call this behavior “failing to learn” the intended blindspot. Further, if the model fails to
learn the intended blindspots in a non-random way, the factors that we want to investigate may be correlated
and, consequently, their effects may be confounded, which makes it difficult to estimate their individual
effects. Table 3 shows that this confounding occurs between the effects of the number (Q2) and the specificity
(Q3) of the blindspots in the COCO ECs.

To eliminate this confounding effect, we generate a new set of ECs for each factor where we hold the other
confounding factor constant. We call the set of ECs where all of the factors are chosen independently the
general pool because it covers a wider range of possible ECs, which is better for measuring overall BDM
performance. We call this new set of ECs the conditioned pool because it is generated by conditioning the
distribution used to generate the general pool on specific confounding factors. For all pools, we exclude all
ECs where the model failed to learn the intended blindspots from our analyses. We provide details about the
number of ECs retained in each pool in Appendix G. Because blindspot discovery is harder with real data,
we use more lenient thresholds for our metrics and set λp = λr = 0.5.

Results. Overall, all of the findings that we observed using SpotCheck generalized to the COCO data
experiments. In Table 4, we report the average BDM DR using ECs from the general pool. Because we only
have knowledge of the blindspots that we induced, the DR is calculated relative to those blindspots and we
cannot calculate BDM FDR. We observe that PlaneSpot has a DR competitive with existing BDMs on real
data (Q1). Interestingly, Domino has a higher DR than Spotlight on the COCO data, which differs from the
result observed in the synthetic data experiments in Table 2 where Spotlight had a higher DR than Domino.
We explore this discrepancy further by performing ablations of the image representations used by Domino
and Spotlight in Appendix I.

In Figures 6 and 7, we replicate the trends we observed using SpotCheck. Using the conditioned EC pools,
we observe that BDM performance generally decreases as the number of induced blindspots increases (Q2)
and that all BDMs are less effective at finding blindspots that are more-specific (Q3). Interestingly, we
observe that Domino has a higher DR than PlaneSpot for models with a single less-specific induced blindspot
(Figures 6 and 7). However, PlaneSpot has a higher DR than Domino for models with multiple (less-specific)
induced blindspots (Figure 6), and a similar DR to Domino for models with a single more-specific blindspot
(Figure 7. These differences explain why PlaneSpot has a higher DR than Domino for ECs in the general
pool (Table 2), which includes models with multiple (more-specific) induced blindspots.

Finally, we ran an additional smaller-scale experiment detailed in Appendix H where we generated several
ECs using data from the OpenImages dataset (Kuznetsova et al., 2018) to study the extent to which our
observed trends hold on additional natural image benchmark datasets beyond MS-COCO. In summary, we
found that PlaneSpot also achieves performance competitive with past BDMs on data from OpenImages.

6 Discussion
We provide an extended discussion of (1) similarities and differences between the synthetic and real data
experiments (Section 6.1), (2) limitations of our evaluation and past evaluations of BDMs (Section 6.2), and
(3) promising directions for future work on blindspot discovery (Section 6.3).

6.1 Interpreting the experimental results
In this work, we ran two sets of experiments to evaluate BDMs: experiments that use synthetic images
generated from SpotCheck, and experiments that use real images from COCO. While we observe a few
notable differences between their results, in general we find that all three trends in BDM performance that we
observed using SpotCheck were replicated on COCO (a large image benchmark dataset).

One important observed difference is that even with more lenient thresholds for blindspot precision and recall,
all BDMs have a much lower average discovery rate on real data (Table 4) than on synthetic data (Table 2).
Thus, we caution researchers away from interpreting the raw values of metrics such as DR on SpotCheck as
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an accurate representation of BDM DR on a more realistic or complex image dataset. Another observed
difference is the relative performance of Domino and Spotlight. Our ablation experiments in Appendix I
show that this performance difference is partly due to Domino’s use of a CLIP embedding. We hypothesize
that using CLIP is better suited to the COCO dataset, as COCO contains photographs that are likely more
similar to CLIP’s training dataset than synthetic images (Radford et al., 2021).

Despite these two differences, more broadly we observe that the majority of our experimental findings from
SpotCheck also hold on real data. These results provide evidence that scientific findings from SpotCheck
about the factors that influence BDM performance may generalize to a wider range of more realistic settings.

Our finding that several factors influence BDM performance has significant implications for BDM developers
and users. As one example, we observed that BDMs are less effective for models with a greater number of
induced blindspots in both the synthetic and real data experiments. This result is significant because past
benchmarks such as Eyuboglu et al. (2022) only evaluate BDMs using models with a single induced blindspot,
and may result in overly optimistic conclusions about BDM performance. Further, Li et al. (2022a;b) show
that techniques that fix only a single blindspot often worsen model performance on other blindspots. This
work is a cautionary example of how failing to discover an important blindspot can have negative consequences
in practice, as practitioners who take action to address one blindspot may inadvertently worsen performance
on other blindspots that they are unaware of.

6.2 Limitations
In this work, we propose SpotCheck as a new framework that addresses known limitations with prior
approaches to evaluation by generating synthetic images. While synthetic images have many important
benefits for benchmarking BDMs (i.e., we can fully enumerate the set of semantic features that define each
image dataset), ultimately we care about understanding and improving BDM performance in the real world.
To understand if the trends we observed using SpotCheck generalize to settings with real (not synthetic)
images, we also designed semi-controlled experiments using the COCO dataset. We observed that our findings
did generalize, and that BDM performance generally deteriorates in more realistic and complex settings.
Thus, we believe that characterizing and addressing existing BDM failure modes in a simple synthetic setting
may serve as a stepping-stone to success in more realistic and complex settings.

While we believe that our contributions are an important step forward, we note that evaluating BDMs is
difficult and several open challenges remain. One open question is whether the methodology that we used
to induce blindspots in both our synthetic and real data experiments, i.e., training with mislabeled images,
influences BDM performance. In this work, we chose to induce true blindspots using available metadata so
that we could run scientific experiments using models with different types of blindspots (e.g., blindspots
defined with different features or levels of specificity). While this strategy to induce blindspots is common
in prior work (Eyuboglu et al., 2022; Kim et al., 2022), it remains an open question if blindspots that are
induced in this way differ from naturally occurring blindspots.

Finally, we note that there are many open challenges associated with running semi-controlled experiments on
real data that potentially bias or add noise to our real data results in Section 5.2. First, models trained on
real data likely have naturally occurring blindspots (i.e., blindspots that we did not intend the model to
learn) that may influence the results. Second, the chosen BDM hyperparameters are probably sub-optimal
because we cannot tune them for a specific EC. Third, the results may be biased in potentially unknown ways
towards certain BDMs whenever some of the models in the set of ECs fail to learn the intended blindspots.
For example, our general pool of ECs contains more less-specific blindspots than more-specific blindspots,
which will bias the results towards BDMs that are more effective at finding less-specific blindspots. Fourth,
there can be false positives in verifying that a model actually learned an intended blindspot. This is because
there could be a sub-blindspot (that we may not have the metadata to define) within that intended blindspot
that is actually causing the model to perform significantly worse on the intended blindspot. These challenges
are shared by all existing quantitative evaluations of BDMs (Eyuboglu et al., 2022; Sohoni et al., 2020), and
are precisely what motivated us to develop SpotCheck.

6.3 Future Work
Addressing the discovered failure modes. Our findings suggest several important challenges for future
work that develops new BDMs to address. One such challenge is providing a practical way for practitioners
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to tune BDM hyperparameters without access to knowledge of the true blindspots. Another challenge is to
prevent BDMs from merging multiple true blindspots into a single hypothesized blindspot as observed in the
additional experiments in Appendix F. A final challenge is to develop BDMs that can more effectively find
more-specific (or “rare”) blindspots.

Evaluating BDMs in the wild. In this work, we evaluate BDMs by comparing the hypothesized blindspots
they return to a set of true blindspots that we induce. While our proposed approach of inducing blindspots
has several benefits, a remaining direction for future work is how to evaluate BDMs in more realistic settings
where we have no knowledge of the model’s true blindspots.

In Appendix K, we propose one potential approach to directly evaluate BDMs using a controlled user
study where we show the hypothesized blindspots to a human subject, and ask them to write down text
description hypotheses of groups where the model underperforms. For example, if a user hypothesizes the
model underperforms on images of “zebras outside”, we would evaluate the correctness of their hypothesis by
calculating the model’s performance on a new sample of images of “zebras outside”. This approach avoids
using knowledge of the true blindspots by simply evaluating the correctness of each individual hypothesis.
Another benefit is that this approach can be used to evaluate the utility of a broader set of tools (e.g.,
interactive interfaces or post-hoc explanations such as those listed in Section 2), unlike past evaluations which
are restricted to fully-automated tools that return groups of datapoints.

Interactive blindspot discovery. Our finding that PlaneSpot, a BDM that clusters on a simple 2D
embedding, is competitive with state-of-the-art BDMs poses several promising directions for future work.
Because a 2D embedding can be easily visualized, we can directly show the image representation to a
practitioner. The practitioner can then directly discover blindspots from the image representation, effectively
replacing the clustering algorithm (“Hypothesis Class”) in Table 1.

As a minimal proof-of-concept, we discuss a simple case study where we qualitatively inspect the 2D scvis
embedding for several large-scale benchmark datasets in Appendix J. We find that several true blindspots
documented in past work are indeed separable in the 2D embedding space, but that many of them appear as
a small cluster or other unusual shape that is unlikely to be returned by a standard clustering algorithm.
We believe that human-in-the-loop clustering is promising as a human subject can iteratively refine the
boundaries of each cluster and also has a richer contextual understanding of “coherence” to guide their
clustering (Bae et al., 2020). While a growing number of interactive model debugging interfaces show users a
2D dataset embedding (Rajani et al., 2022; Cabrera et al., 2023; Suresh et al., 2023), its benefits relative to
fully automated clustering have yet to be studied systematically.

7 Conclusion

In this work, we introduced SpotCheck, a synthetic evaluation framework for BDMs, and PlaneSpot, a simple
BDM that uses a 2D image representation. Using SpotCheck, we identified several factors that influence
BDM performance, including the number of induced blindspots, the specificity and features that define each
blindspot, and BDM hyper-parameters. We then designed additional experiments that use the MS-COCO
dataset to validate that trends we observed using SpotCheck also hold for models trained on a large image
benchmark dataset. We found that PlaneSpot achieves performance competitive with existing BDMs on
both synthetic and real data. Our findings suggest several promising directions for future work (Section 6.3)
to address discovered failure modes of existing BDMs.

Beyond the insights made in the experiments that we ran, we believe that our evaluation workflow has laid
further groundwork for a more rigorous science of blindspot discovery. Researchers interested in benchmarking
their own BDM or answering scientific questions about blindspot discovery can first use SpotCheck to run
controlled experiments where they have full knowledge of and control over the models’ true blindspots. We
hope that our experimental design for our semi-controlled real data experiments (e.g., our discussion on how
to control for confounding effects) can also serve as a guidepost for researchers interested in evaluating a new
BDM or validating new trends observed using SpotCheck on real-world data. While evaluations that use real
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data are harder and noisier (in part, because of the challenges that we identified in Sections 5.2 and 6.2),
these experiments are also more realistic.

We note that our proposed evaluation workflow is particularly well suited for identifying factors that influence
BDM performance. For researchers, understanding these factors is essential to running fair and informative
experiments (e.g., only evaluating BDMs in settings that only have one induced blindspot, which we have
identified as being easier, may misrepresent how BDMs perform in more realistic settings where models
have more than one true blindspot). For practitioners, understanding these factors may help them use any
prior knowledge they may have to select an effective BDM for their own application domain. We release
the SpotCheck source code used in our experiments as a public benchmark for BDMs (link) and provide an
open-source implementation of PlaneSpot (link).
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A SpotCheck, Extended

In this section we detail how we use SpotCheck to generate random experimental configurations.

• In Section A.1, we define the different types of semantic features that can appear in each image.
• In Section A.2, we define a synthetic image dataset, how we generate random datasets, and how we sample

images from a dataset.
• In Section A.3, we define a blindspot for a synthetic image dataset, how we generate a random blindspot,

and how we generate an unambiguous set of blindspots.

Related Work. SpotCheck is a synthetic evaluation framework for blindspot discovery that entails generating
synthetic datasets and training models with known true blindspots. SpotCheck is inspired by (Kim et al.,
2022), a benchmark for saliency maps, which aims to train models with known ground-truth reasoning. Our
work is related to several other synthetic evaluation frameworks for shortcut learning, including Eulig et al.
(2021); Hermann & Lampinen (2020). Our work differs from these other related works in that we specifically
aim to induce different true blindspots in each model.
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A.1 Semantic Features

Table 5 defines all of the semantic features that SpotCheck uses to generate synthetic images. We call these
semantic features Attributes and group them into Layers based on what part of an image they describe. Each
Attribute has two possible Values: a Default and Alternative Value. Each synthetic image has an associated
list of (Layer, Attribute, Value) triplets that describes the image. Figure 8 shows this triplet list for two
synthetic images.

We sometimes refer to the Square/Rectangle/Circle/Text Layers as Object Layers because they all describe
a specific object that can be present in an image. The location of each object within an image is chosen
randomly, subject to the constraint that each object doesn’t overlap with any other object.

Table 5: The Layers and Attributes that define the synthetic images.

Layer Attribute Default Value Alternative Value
Background Color White Grey

Texture Solid Salt and Pepper Noise
Square/Rectangle/Circle/Text Presence False True

Size Normal Small
Color Blue Orange
Texture Solid Vertical Stripes

Square (continued) Number 1 2
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A.2 Defining a Dataset using these Semantic Features

At a high level, SpotCheck defines a Dataset by deciding whether or not each Attribute of each Layer is
Rollable (i.e., the Attribute can take either its Default or Alternative Value, uniformly at random) or not
Rollable (i.e., the Attribute only takes its Default Value). We measure a Dataset’s complexity using the
number of Rollable Attributes it has. Figure 8 describes the Rollable and Not Rollable Attributes for an
example Dataset.

Generating a Random Dataset. We start by picking which Layers will be part of the Dataset:

• Images need a background, so all Datasets have the Background Layer.
• The task is to predict whether there is a square in the image, so all Datasets have the Square Layer.
• We add 1-3 (chosen uniformly at random) of the other Object Layers (chosen uniformly at random without

replacement from the set {Rectangle, Circle, Text}) to the Dataset.

Once the Layers are chosen, we make 6-8 (chosen uniformly at random) of the Attributes Rollable:

• Each Object Layer has its Presence Attribute made Rollable.
• Then, the remaining Rollable Attributes are chosen by iteratively:

• Selecting a Layer uniformly at random from those that have at least one Not Rollable Attribute.
• Selecting an Attribute from that Layer uniformly at random from those that are Not Rollable.

Sampling an Image from a Dataset. Once a Dataset’s Rollable Attributes have been defined, generating
a random image is straightforward:

• For each Attribute from each Layer in the Dataset, we pick a random Value if the Attribute is Rollable.
Attributes that are Not Rollable will take their Default Value.
• If the Layer is an Object Layer:

• If the Presence Attribute is True, the location of the object is chosen randomly (subject to the
non-overlapping constraint).

• If the Presence Attribute is False, the object will not be rendered (regardless of the Values chosen for
the other Attributes of this Layer).

• We then use the resulting (Layer, Attribute, Value) triplet list and the list of object locations to render a
224x224 RGB image.

• Finally, we calculate any MetaAttributes (explained next) and append these (Layer, MetaAttribute, Value)
triplets to the image’s definition list.

Calculating MetaAttributes. While each Attribute corresponds to a semantic feature, there are a
potentially infinite number of MetaAttributes that one could calculate as semantically meaningful functions
of an image. We list the MetaAttributes that we calculate in our experiments in Table 6. Because this space
is infinitely large and grows with the number of Attributes, we exclude MetaAttributes from our measure of
Dataset complexity.
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Dataset Definition:
Rollable Attributes

Background: {Color: False, 
Texture: True}

Square: {Presence: True,
Size: False,
Color: True,
Texture: True,
Number: False}

Text: {Presence: True,
  Size: False,

      Color: True,
      Texture: False}

Example Image #1 (Background, Texture, Solid),

(Square, Presence, True),
(Square, Color, Blue),
(Square, Texture, Vertical 
Stripes),

(Text, Presence, True),
(Text, Color, Orange}

Example Image #2 (Background, Texture, Salt & 
Pepper),

(Square, Presence, False),
(Square, Color, Blue),
(Square, Texture, Solid),

(Text, Presence, True),
(Text, Color, Blue)

Figure 8: Top Row. The definition of an example Dataset generated by SpotCheck. Notice that this Dataset
has 3 Layers and 6 Rollable Attributes. Middle/Bottom Row. Two example images generated from this
Dataset along with their (Layer, Attribute, Value) triplet lists. Notice that Not Rollable Attributes in this
Dataset take on their Default Values in these images and are not in the images’ triplet lists.
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Table 6: The MetaAttributes that we calculate for each synthetic image.

Layer MetaAttribute Value Meaning
Background Relative Position 1 Square is above the horizontal centerline of the image

0 Square is bellow the horizontal centerline of the image
-1 No Square
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A.3 Defining the Blindspots for a Dataset

SpotCheck defines a Blindspot using a list of (Layer, (Meta)Attribute, Value) triplets. We measure a
Blindspot’s specificity using the length of its definition list. An image belongs to a blindspot if and only if the
Blindspot’s definition list is a subset of the image’s definition list. Figure 9 shows two example Blindspots.

Generating a Random Blindspot. SpotCheck generates a random Blindspot consisting of 5-7 (chosen
uniformly at random) (Layer, (Meta)Attribute, Value) triplets for a Dataset by iteratively:

• Selecting a Layer (uniformly at random from those that have at least one Rollable Attribute3 that is not
already in this Blindspot)

• Selecting a Rollable Attribute from that Layer:
• Object Layers: If the Layer’s Presence Attribute is not in this Blindspot, select its Presence Attribute.

Otherwise, select an Attribute uniformly at random from those that are not already in this Blindspot
and set the Layer’s Presence Attribute Value to True for this Blindspot.

• Background Layers: Select an Attribute uniformly at random from those that are not already in this
Blindspot.

• Selecting a Value for that Attribute (uniformly at random)

Notice that, if an Object Layer is selected more than once, then we ensure that the Object’s Presence
Attribute has a Value of True in the Blindspot definition. We enforce this Feasibility Constraint to ensure
that every triplet in the Blindspot’s definition list correctly describes the images belonging to the Blindspot
(e.g., [(Circle, Presence, False), (Circle, Color, Blue)] is infeasible because an image with a blue circle must
have a circle in it).

Generating an Unambiguous Set of Blindspots. For each Dataset, we generate 1-3 (chosen uniformly
at random) Blindspots using the process described above. However, when generating multiple blindspots,
they can be ambiguous which causes problems when using them to evaluate BDMs.

Definition. A set of Blindspots, S1, is ambiguous if there exists a different set of Blindspots, S2, such that
both:

1. The union of images belonging to S1 is equivalent to the union of images belonging to S2. As a result, S1
and S2 would both correctly describe the model’s blindspots.

2. An evaluation that uses Discovery Rate (Equation 6) would penalize a BDM if it returns S2 instead of S1.
More precisely, DR(S2, S1) < 1 for λp = λr = 1.

Example. Suppose that we have a very simple Dataset with two Rollable Attributes, X and Y which are
uniformly distributed and independent, and consider two different sets of Blindspots for this Dataset:

• S1 = {B1, B2} where B1 = [(X = 1)] and B2 = [(X = 0), (Y = 1)]
• S2 = {B

′

1, B
′

2} where B
′

1 = [(X = 1), (Y = 0)] and B
′

2 = [(Y = 1)]

Then, S1 is ambiguous because:

• S1 and S2 induce the same behavior in the model: they both mislabel an image if X = 1 ∨ Y = 1.
• A BDM would be penalized for returning S2:

BP(B
′

1, B1) = 1.0 ∧ BP(B
′

1, B2) = 0 ∧ BP(B
′

2, B1) = BP(B
′

2, B2) = 0.5 =⇒

BR(S2, B1) = 0.5 ∧ BR(S2, B2) = 0 =⇒

DR(S2, S1) = 0

In fact, for this example, there are only two sets of two unambiguous Blindspots, ({[(X = 0), (Y = 0)], [(X =
1), (Y = 1)]} and {[(X = 0), (Y = 1)], [(X = 1), (Y = 0)]}), and there exists no unambiguous set of three
Blindspots.

Preventing Ambiguity. In general, ambiguity occurs whenever the union of two blindspots forms a
contiguous region in the discrete space defined by the Rollable Attributes. Consequently, we prevent

3All MetaAttributes are considered to be “Rollable” when generating a random Blindspot.
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ambiguity by ensuring that any pair of blindspots has at least two of the same Rollable Attributes with
different Values in their definition lists. We call this the Ambiguity Constraint.

Implications of the Ambiguity and Feasibility Constraints. In our experiments, our goal is to generate
experimental configurations with a diverse set of Datasets and associated Blindspots. However, the Ambiguity
Constraint (AC) and Feasibility Constraint (FC) limit the number of valid Blindspots for any specific Dataset.

To see this, notice that the AC places more constraints on each successive Blindspot added to an experimental
configuration. This has two implications. First, that generating an experimental configuration with more
Blindspots requires a Dataset with more Rollable Attributes (more complexity) and Blindspots with more
triplets (more specificity). Further, because we cannot set the Attribute Values of a Blindspot’s triplets
independently of each other [FC], we need more complexity and specificty than a simple analysis based only
on the AC suggests. Second, that each successive Blindspot is more closely related to the previous ones which
means that larger sets of Blindspots are “less diverse” or “less random” in some sense.

With these trade-offs in mind, we generated experimental configurations with:

• Background, Square, and 1-3 other Object Layers
• A total of 6-8 Rollable Attributes
• 1-3 Blindspots
• 5-7 triplets per Blindspot

because an experimental configuration with any combination of these values is able to satisfy the AC and the
FC while still having a diverse set of Blindspots.

(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True),
(Text, Color, Orange)

Blindspot #1 Blindspot #2

“images with salt & pepper backgrounds, 
blue striped squares,
and orange text” 

Example Images

(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True)

“images with salt & pepper backgrounds, 
blue striped squares,
and text” 

Figure 9: Two example Blindspots, Blindspot #1 (Left) and Blindspot # 2 (Right) for the example Dataset
from Figure 8. Each Blindspot is defined by a list of (Layer, (Meta)Attribute, Value) triplets as shown above.
We also display example images belonging to each Blindspot: all of the images inside of the blue border
belong to Blindspot #1, while only the subset of images inside of the orange border belong to Blindspot
#2. In this example, Blindspot #2 is more specific (defined using 6 semantic features) than Blindspot #1
(defined using 5 semantic features).
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B Ablation: Method to Induce Blindspots

In this section, we present the results of additional experiments where we vary the method used to induce
true blindspots in several SpotCheck ECs. We also further justify why we chose to train using mislabeled
images, and possible limitations of this approach.

Why train with mislabeled images? In our experiments, we induce true blindspots by fine-tuning a
pretrained model using a dataset where all images that belong to a blindspot are mislabeled. This method
(training with mislabeled images to induce true blindspots) is shared by several prior studies, including
Domino (the other existing quantitative evaluation framework for BDMs) (Eyuboglu et al., 2022) and Kim
et al. (2022).

In Section 6.2, we note that the method that we used to induce blindspots may not be representative of how
blindspots emerge in practice (i.e. it is unlikely that all of the images in each true blindspot were mislabeled
during training). However, after trying multiple alternatives, we ultimately chose this method because we
found it to be the most reliable way to induce the desired blindspots in a fully synthetic setting. We describe
these experiments below.

Additional experiments. We ran a set of additional experiments where we varied the method used to
induce the true blindspots for 50 held-out SpotCheck ECs. We present results for two alternative methods:
training with lower label noise rates and excluding the true blindspot from training.

Method #1: Varying the label noise rate We also ran an ablation where instead of training on a
dataset where all of the images belonging to a blindspot were mislabeled (i.e. 100% label noise), we instead
randomly flipped each label with probability α. We tried two different label noise percentages: 50% and 30%
(the largest label noise rate used by Eyuboglu et al. (2022)). We observed that training with label noise rate
α results in succeeding to learn the intended blindspots for 36 out of 50 ECs (72%) for noise rate 0.5, and 5
out of 50 ECs (10%) for noise rate 0.3.

Method #2: Excluding each true blindspot from training We ran an ablation where we held out all
images belonging to a true blindspot during training. Unfortunately, we observed that this method results in
failing to learn the intended blindspots for all 50 ECs: i.e. when we exclude the blindspot from the train set,
the model does not have significantly worse recall on images belonging to each blindspot in the test set.

In summary, we observed that none of the alternative methods that we tried were as successful at inducing
all of the true blindspots. In contrast, training with mislabeled images had a 100% success rate at inducing
the true blindspots. As discussed in Section 5.2, failing to learn all of the intended blindspots can cause
undesirable confounding effects that make it difficult to study the experimental factors that influence blindspot
discovery.
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C How do our definitions of “belonging to” and “covering” build on similar ideas in
existing work?

At a high level, we refine these ideas so that they better reflect the fact that, in practice, a user is going to
look at the hypothesized blindspots returned by a BDM in order to come to conclusions about the model’s
true blindspots. This entails making three specific changes.

First, our definition of “belonging to” uses a high, in absolute terms, threshold for λp (i.e., 0.8) in order
to minimize the amount of noise the user has to deal with when determining the semantic definition of a
blindspot. This is in contrast to a relative definition (e.g., better than random chance) which would lead to
significant amounts of noise for uncommon blindspots. For example, Table 2 from Sohoni et al. (2020) shows
that as few as one in seven images in the hypothesized blindspots are actually from the true blindspots for
the Waterbirds and CelebA datasets. While better than random chance, the output of the BDM is still very
noisy, which is likely to create problems for the user.

Second, our definition of “covering” incorporates blindspot recall in order to prevent the user from coming
to conclusions that are too narrow. For example, consider the middle row of Figure 5 from Eyuboglu et al.
(2022). In these examples, the blindspots are defined as “people wearing glasses,” “people with brown hair,”
or “smiling people.” However, the BDM returns images that are of “men wearing glasses,” “women with
brown hair, and “smiling women.” As a result, the user may incorrectly conclude that the model is exhibiting
gender bias because the BDM led them to conclusions that are too narrow.

Third, our definition of “covering” allows for hypothesized blindspots to be combined in order to take
advantage of the user’s ability to synthesize what they see and come to more general conclusions, which
is something that would be very challenging to do algorithmically. Experimentally, we observe that this
combining is essential for some of these BDMs to work on SpotCheck. Further, in Appendix J, we qualitatively
observe that this useful for real problems as well. For example, the “ties without people” blindspots includes
a set of images of “cats wearing ties” that are separate, in the model’s representation space, from the other
images in the blindspot and that, as a result, are likely to be returned separately by a BDM.
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D PlaneSpot: Ablations

We run additional experiments where we vary the dimensionality reduction method used by PlaneSpot, using
both synthetic and real data:

Method d DR DR SE FDR FDR SE
scvis d = 2 0.85 0.045 0.027 0.016
scvis d = 4 0.86 0.043 0.021 0.015
scvis d = 8 0.66 0.059 0.029 0.017
scvis d = 16 0.53 0.066 0.016 0.016
PCA d = 2 0.70 0.062 0.026 0.018
tSNE d = 2 0.86 0.04 0.011 0.011

Table 7: (Synthetic Data) The average DR and FDR (and their standard errors, “SE”) on a hold-out set of
50 SpotCheck ECs when we run modified versions of PlaneSpot that use different dimensionality reduction
methods (with varying output dimension d).

Method d DR DR SE
scvis d = 2 0.48 0.047
PCA d = 2 0.33 0.047
tSNE d = 2 0.48 0.048

Table 8: (Real Data) The average DR and its standard error “SE” on the general pool of COCO ECs, when
we run modified versions of PlaneSpot that use different dimensionality reduction methods.

In summary, we find that scvis and tSNE (van der Maaten & Hinton, 2008) achieve a better DR and FDR
than PCA on both synthetic and real data. In our synthetic data experiments (Table 7), we observe that
scvis’s performance does not degrade as we decrease the output dimension d. Finally, we observe scvis and
tSNE have comparable performance on both synthetic and real data. We ultimately chose to use scvis rather
than tSNE for its relative computational efficiency on large datasets (Ding et al., 2018).
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E Hyperparameter Tuning

To tune hyperparameters, we use a secondary set of 20 ECs to calculate BDM DR and FDR. While some of
these BDMs have multiple hyperparameters, we focused on the main hyperparameter for each BDM and left
the others at their default values.

Barlow (Singla et al., 2021). The main hyperparameter is the maximum depth of the decision tree whose
leaves define the hypothesized blindspots. The results of the hyperparameter search are in Table 9.

Spotlight (d’Eon et al., 2021). The main hyperparameter is the minimum weight assigned to a hypothesized
blindspot. The results of the hyperparameter search are in Table 10.

Domino (Eyuboglu et al., 2022). The main hyperparmeter is γ which controls the relative importance of
coherence and under-performance in the hypothesized blindspots. The results of the hyperparameter search
are in Table 11.

PlaneSpot. For our BDM, the main hyperparameter is w which controls the weight of the model-confidence
dimension relative to the two spatial dimensions from the scvis embedding. The results of the hyperparameter
search are in Table 12.

Table 9: The hyperparameter tuning results for
Barlow. For maximum depths of 11 and 12, we
noticed that Barlow’s outputs matched exactly for
all of the configurations. This indicates that it never
learned a decision tree of depth 12. As a result, we
use a maximum depth of 11 for our experiments.

Maximum Depth DR FDR
3 0.07 0.0
4 0.14 0.0
5 0.19 0.0
6 0.27 0.12
7 0.36 0.15
8 0.37 0.09
9 0.43 0.11
10 0.43 0.08
11 0.48 0.07
12 0.48 0.07

Table 10: The hyperparameter tuning results for
Spotlight. We use a minimum weight of 0.01 in our
experiments. In Figure 2 we show that, despite the
fact that 0.01 and 0.02 have very similar average
results, they behave very differently.

Minimum Weight DR FDR
0.005 0.49 0.04
0.01 0.88 0.06
0.02 0.88 0.08
0.04 0.48 0.00

Table 11: The hyperparameter tuning results for
Domino. We use γ = 10 in our experiments.

γ DR FDR
5 0.48 0.06
10 0.72 0.03
15 0.70 0.06
20 0.60 0.09

Table 12: The hyperparameter tuning results for
PlaneSpot. We use w = 0.025 in our experiments.

w DR FDR
0 0.57 0.00
0.025 0.95 0.00
0.05 0.88 0.00
0.1 0.87 0.00
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F Why are these BDMs failing?

In this section, we are going to try to identify, from a methodological standpoint, why these BDMs are failing.
We start by defining some additional metrics that allow us to understand why a BDM failed to cover a
specific true blindspot. Then, we describe how we average those metrics across our ECs to observe general
patterns. Finally, we give some possible explanations for the observed trends.

Explaining a Specific Failure. Given the output of a BDM, Ψ̂, we want to understand why it failed to
cover a specific true blindspot, Ψm. To do this, we measure the fraction of the images in that true blindspot,
i ∈ Ψm, that fall into each of four categories:4

• i was not returned by the BDM. Intuitively, this tells us how often the BDM does not show an image to
the user that it should. Specifically, this means that i ̸∈ Ψ̂k ∀k.

• i is found by the BDM. Intuitively, this tells us how close the BDM is to covering Ψm. Specifically, this
means that ∃k | i ∈ Ψ̂k ∧ BP(Ψ̂k, Ψm) ≥ λp.

• i was part of a merged blindspot according to the BDM. Intuitively, this tells us how often the BDM
merges multiple true blindspots into a single hypothesized blindspot. Specifically, this means that
∃k | i ∈ Ψ̂k ∧ BP(Ψ̂k, ∪mΨm) ≥ λp. Note that BP(Ψ̂k, ∪mΨm) measures the fraction of the images in Ψ̂k

that belong to any true blindspot.
• i was part of a impure blindspot according to the BDM. Intuitively, this tells us how often the BDM includes

too many images that do not belong to any true blindspot into a hypothesized blindspot. Specifically, this
means that BP(Ψ̂k, ∪mΨm) < λp (∀k | i ∈ Ψ̂k).

Averaging to gain more general patterns. While these metrics can help us understand why a BDM
failed to cover a specific true blindspot from a specific EC, we want to arrive at more general results. To do
this, we first average these metrics across the true blindspots in an EC that are not covered by the BDM,
{Ψm | BR(Ψ̂, Ψm) < λr}, and then average them across the ECs where the BDM did not cover all of the
true blindspots, {Ψ | DR(Ψ̂, Ψ) ̸= 1}. Table 13 shows the results.

Explaining observed trends. Our main observation is that a significant portion of all of the BDMs’ failures
can be explained by the fact that they tend to merge multiple true blindspots into a single hypothesized
blindspot. However, this raises the question: is the a failure of the BDMs or are they simply inheriting the
problem from their image representation, which is failing to separate the true blindspots? To address this
question, we manually inspected the 2D scvis embedding used by PlaneSpot, which exhibits this failure the
most strongly, for the 10 ECs where at least 50% of the images in the true blindspots that were not covered
belonged to a hypothesized blindspot that merges multiple true blindspots. For 8 of those 10 ECs, the true
blindspots were easily visually separable in this 2D embedding, which means that the true blindspots are also
separable in the original image representation. Consequently, we conclude that this is a failing of the BDMs.

Additionally, we make two less significant observations. First, that Spotlight is the only BDM that fails to
return a non-trivial fraction of the images that it is should. Because it is the only BDM that does not do
this, we suggest that BDMs should partition the entire input space (including partitions that do not have
higher than average error). Second, that Barlow is the only that has more failures due to returning impure
hypothesized blindspots than merged blindspots. Between this and Barlow’s generally poor performance, this
suggests that axis-aligned decision trees are not a particularly promising hypothesis class for BDMs.

Table 13: The average value of each of the four metrics we use to explain why a BDM failed to cover a true
blindspot.

Method Not Returned Found Merged Impure
Barlow 0.02 0.15 0.39 0.44
Spotlight 0.13 0.46 0.33 0.04
Domino 0.0 0.38 0.36 0.24
PlaneSpot 0.0 0.0 0.57 0.42

4Every image, i, falls into exactly one of these categories. The definition of each category is written under the assumption
that i does not fall into any of the previous categories.
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G COCO Experiments, Details

We detail the methodology used to generate ECs using the COCO dataset (Lin et al., 2014).

G.1 Prediction Task & Data Preprocessing

COCO is a large-scale object detection dataset. We use the 2017 version of the dataset. We re-sample from
the given train-test-validation splits to have a larger test set of images for use in blindspot discovery. Our
final train, test, and validation sets have 66874, 44584, and 11829 images respectively.

Prediction Task. We define the binary classification task as detecting whether an object belonging to some
super-category (containing multiple of the 80 object categories) is present in the image. In our experiments,
each EC is associated with 1 of 3 different super-category prediction tasks: detecting if an animal (e.g., a
dog, cat, etc), a vehicle (e.g., a car, airplane, etc), or a furniture item (e.g., a chair, bed, etc) are present in
an image. We use the super-category definitions provided in the COCO paper (Lin et al., 2014). We sample
ECs from multiple (as opposed to only a single) prediction tasks so that we have a larger number of possible
blindspot definitions.

EC Preprocessing. For each EC, we use the EC’s prediction task to down-sample the original COCO
dataset to ensure that the dataset’s blindspots are identifiable (i.e., so that there is no ambiguity or overlap
in the blindspots we induce in our models). Specifically, we drop all images that have more than 1 unique
object category belonging to the task super-category (e.g., if the task is to detect animals, we drop all images
that have both a dog and a cat). We also down-sample so that the final train, test, and validation sets are all
class-balanced.

G.2 Blindspot Definitions

All blindspots in our ECs are defined using an object category that is a subset of those belonging to the task
super-category. For example, an EC with the “animal” prediction task can have the blindspot “zebra”, as the
zebra object category belongs to the animal super-category (Figure 5).

Specificity. To measure the effect of blindspot specificity, we generate two different types of blindspots:
more and less specific. Less-specific blindspots are defined using only one object category, such as the “zebra”
blindspot. More-specific blindspots are defined using two object categories. Like the less-specific blindspots,
one of the object categories must belong to the task super-category (e.g.,, must be an animal for an animal
prediction EC). But, the second object category used to define a more-specific blindspot must not belong to
the task super-category. For example, the second object can be “person” (but not “dog”) because a person is
not an animal.

Each more-specific blindspot is then defined using (1) the presence of the object belonging to the super-
category, and (2) either the presence or absence of the object outside of the super-category. For example,
valid blindspot definitions include “images of elephants with people” (task: animal), “images of bicycles
without a backpack” (task: vehicle), or “images of dining tables with forks” (task: furniture item). We chose
to allow some blindspots to be defined using the absence of a second object inspired by the past observation
that models can incorrectly rely on the presence of spurious artifact objects instead of identifying the true
object class (Plumb et al., 2022), consequently underperforming on images without these artifacts.

G.3 Model Training

Similarly to our experiments using SpotCheck, we induce true blindspots by training with the wrong labels
for images belonging to blindspots. For each EC, we train a Resnet-18. We perform model selection by
picking the model with the best validation set loss.

Validating that models learn the induced blindspots. Because real data is more complex than synthetic
data, it is possible that even when we train with the wrong labels for a particular subgroup, the model may
not underperform on other images belonging to the subgroup. We call this behavior failing to induce a true
blindspot. For each true blindspot, we measure if the blindspot was successfully induced by comparing the
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model’s performance on images belonging to, vs. outside of the blindspot in the separate test set. We only
retain ECs where the model has at least a 20% recall gap inside vs. outside of the blindspot.

G.4 ECs: General Pool

We began our analysis by replicating the procedure we used to sample random ECs using SpotCheck as
closely as possible. Recall that when using SpotCheck to measure the effect of various factors, we generated
a pool of ECs where each factor (e.g.,, the number of model blindspots and each blindspot’s specificty) were
chosen independently. We repeat this general procedure using the COCO dataset, and call these ECs the
“General Pool”.

We provide pseudocode that we use to sample a pool of N = 90 ECs:

• For each super-category prediction task in {animal, vehicle, furniture item }:
• For each number of blindspots in [1, 2, 3]:

• Generate 10 experimental configurations. For each configuration:
• For each blindspot, choose the blindspot’s definition:

• Choose the blindspot’s specificity uniformly at random from {More-Specific, Less-Specific}.
• Choose an object category that belongs to the task super-category uniformly at random from

those that were not already used in the EC’s other blindspots.
• If the blindspot is more-specific:

• Choose a second object category that does not belong to the task super-category uniformly
at random from those that are eligible. An object category is eligible if it has not yet been used
to define another of the ECs blindspots, and if both the intersection and set difference of the
first and second object categories have at least 100 images in the train set. We impose these
eligibility constraints to avoid selecting blindspots that are too small, as we hypothesize that
larger blindspots may be easier to induce.

• Choose if the blindspot will be defined using the {Presence, Absence} of the second object
uniformly at random.

Note that for each EC sampled using the above pseudocode, the EC’s number of blindspots and each indivudal
blindspot’s specificity are selected independently.

Table 14: Counts the retained ECs in the general pool (where all blindspots are successfully induced) for
each prediction task and number of blindspots.

Prediction Task Number of blindspots Count of (ECs retained for analysis) / (total ECs sampled)
animal 1 10 / 10

2 8 / 10
3 7 / 10

furniture 1 8 / 10
2 6 / 10
3 5 / 10

vehicle 1 8 / 10
2 6 / 10
3 7 / 10

Summary Statistics. Of the 90 sampled ECs in the general pool, we retain 65 for our analysis, dropping
25 where we failed to induce the sampled blindspot. Table 14 summarizes the prediction tasks and number of
blindspots in the retained general pool of ECs.

G.5 ECs: Conditioned Pools

Number of Blindspots: Conditioned Pool. We provide pseudocode that we use to sample a pool of
N = 84 ECs. We hold each blindspot’s specificity constant and only sample less-specific blindspots.

30



Published in Transactions on Machine Learning Research (07/2023)

Before sampling the conditioned pool ECs, we first train several models where for each model, we try to induce
a single COCO object category as a blindspot. We sample the blindspots for the conditioned distribution
only from the subset of C object categories that were successfully induced as singleton blindspots.

• For each super-category prediction task in {animal, vehicle, furniture item }:
• For each number of blindspots in [1, 2, 3]:

• Using the C object categories that belong to the task super-category and that were able to be learned
as singleton blindspots, sample up to N = 20 ECs from the list of C nCr (number of blindspots)
possible combinations.

We only have 22 ECs with 1 (singleton) blindspot because there are only 22 total object categories that can
be induced as singleton blindspots. All blindspots were successfully induced for the 84 sampled ECs. To
measure the effect of the number of blindspots, we compare BDM performance the 22, 30, and 30 ECs with 1,
2, and 3 blindspots respectively.

Blindspot Specificity: Conditioned Pool. We provide pseudocode that we use to sample a pool of
N = 70 ECs. We hold the number of blindspots constant and only sample ECs with a single blindspot.

• For each super-category prediction task in {animal, vehicle, furniture item }:
• Using the C object categories that belong to the task super-category and that were able to be learned as

singleton blindspots, construct a list of all of the eligible blindspots:
• For the less-specific blindspots, all C sub-categories are eligible.
• For the more-specific blindspots, we define eligibility equivalently to the general pool: i.e., for each

C object categories belonging to the task super-category, a second object category (that does not
belong to the task super-category) is a eligible if both the intersection and set difference of the first
and second object categories have at least 100 images in the train set. Concretely, the list of eligible
blindspots consists of all eligible pairs of objects with both options of whether the blindspot is defined
using the {Presence, Absence} of the second object.

• From the list of eligible blindspots, sample up to 20 ECs (each with 1 blindspot) without replacement.

Of the 60 generated more-specific ECs, we retain 48 ECs for analysis, dropping the 12 ECs where we failed
to induce the sampled blindspot. Like the other conditioned pool, there are only 22 possible less-specific ECs.
To measure the effect of blindspot specificity, we compare BDM performance on the 48 more-specific to the
24 less-specific ECs.

31



Published in Transactions on Machine Learning Research (07/2023)

H OpenImages Experiments

To validate if the trends we observed generalize to an additional large benchmark dataset, we designed
additional experiments using data from OpenImages (Kuznetsova et al., 2018). Like MS-COCO, OpenImages
is a large-scale object detection dataset of photographs that aims to depict objects in their natural contexts.
Because OpenImages is a multi-classification task, we have access to metadata about the objects present in
each image that we can use to define blindspots. We detail the methodology used to generate ECs below.

Figure 10: Images and their labels sampled from an example EC from our OpenImages experiments. Images
where all of the pictured animals are birds are given a positive label, vs. images of animals that are not birds
have a negative label. In this example EC, the blindspot is “chickens”, a type of bird, which are mislabeled
in the train set.

H.1 Predcition Task & Preprocessing

We use data from the 1.9M subset of OpenImages V7 which has labels that have been verified by human
annotators. This version of the dataset has 600 human-annotated classes, which are arranged in a hierarchy.
We use a subsample of the complete OpenImages dataset where an animal is present in the object. We define
the binary prediction task as detecting the animals’ species, i.e., whether the pictured animal(s) are birds.
We drop all images that have two or more animals belonging to different species, and label all images that
have an animal that is a child of the “bird” class as positive, and all other images of animals as negative.
Finally, we down-sample until we’ve achieved class balance. Our final dataset contained 8000 positive images
of birds, and 8000 negative images of other animals (that are not birds, such as mammals or invertebrates).
We show example images and their labels in Figure 10. We also defined a custom 50-40-10 train-test-val split
so that we had sufficient data to discover blindspots on the test set.

H.2 Blindspot Definitions

In our experiments, we generated a conditioned pool of blindspot definitions that were all defined using a
single object class (i.e., are “less specific” blindspots using our terminology from Section 5.2). Specifically,
each blindspot is defined as one of the 9 possible birds (children of the “bird” class) where we had at least
1000 images in the dataset: “chicken”, “eagle”, “duck”, “goose”, “swan”, “falcon”, “parrot”, and “sparrow”.
Like our COCO experiments, we exclude all images that have more than 1 unique type of bird (e.g., we would
exclude images that have both eagles and sparrows) so that the blindspots we induce are non-overlapping
and identifiable.

In total, we generated 49 total ECs: 9 ECs had a single blindspot, 20 ECs had 2 blindspots, and 20 ECs had
3 blindspots (selected uniformly at random from the set of all possible pairs and triples).
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H.3 Model Training

Like before, we induce true blindspots by training with the wrong labels for images belonging to blindspots.
For each EC, we train a pretrained (on ImageNet) Resnet-18 and perform model selection using the validation
set loss. We follow the same process as the COCO experiments (Section G.3) and validate that each model
learns the intended blindspots by calculating its recall gap inside vs. outside the blindspot. From the initial
56 ECs that we generated, we successfully induced all of the true blindspots for 48 of them (98%). We
retained 9 out of 9 ECs with a single blindspot, 19 out of 20 ECs with two blindspots, and 20 out of 20 ECs
with three blindspots.

Finally, we run each BDM using the same hyper-parameters as those detailed in Section 5.

H.4 Results

Overall Performance. We report the average DR across different BDMs with precision and recall
thresholds λp = 0.5 and λr = 0.3 in Table 15. We observe the same relative performance ranking as the
MS-COCO experiments: PlaneSpot achieves performance competitive with past BDMs. All three other
BDMs significantly outperform Barlow.

Method DR
Barlow 0.39 (0.05)
Spotlight 0.56 (0.04)
Domino 0.57 (0.05)
PlaneSpot 0.61 (0.05)

Table 15: (OpenImages) The average DR and its standard error for the pool containing all 49 OpenImages
ECs. Each blindspot is defined as a different type of bird.
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I Image Representation Ablation

In our experiments, we observe that Domino has a higher DR than Spotlight on COCO data (Table 4), which
differs from the result observed in the synthetic data experiments (Table 2) where Spotlight had a higher DR
than Domino. To better understand this discrepancy, we began by comparing the design choices made by
Domino and Spotlight (Table 1). Domino and Spotlight use different image representations and clustering
algorithms.

We decided to run a simple ablation experiment where we replace the image representation used by Domino
with the image representation that is used by Spotlight. We denote this modified version of Domino as
Domino-Model. Instead of using CLIP, Domino-Model runs Domino’s core clustering methodology on the
model’s penultimate layer activations. We chose to ablate the image representation because we hypothesize
that CLIP embeddings are relatively better at capturing semantic similarity on real photographic images
compared to synthetic images. One plausible explanation for this difference is that photographs from COCO
may be more similar to CLIP’s training dataset, which consists of text-image pairs scraped from the web
(Radford et al., 2021).

Method DR FDR
Spotlight (Unmodified) 0.79 (0.03) 0.09 (0.01)
Domino (Unmodified) 0.64 (0.04) 0.07 (0.01)
Domino-Model 0.80 (0.03) 0.02 (0.01)

Table 16: Average BDM DR and FDR with their standard errors across 100 SpotCheck ECs.

Results. Domino-Model achieves a DR competitive with Spotlight (DRs 0.80 vs. 0.79 respectively) on
SpotCheck. This finding supports our hypothesis that Domino’s relatively low performance on SpotCheck
(compared to its relatively high performance on COCO) is partially attributable to its image representation.
More broadly, our ablation illustrates how some BDM design choices may be more or less appropriate for
different types of data. In practice, certain image representations may be more or less appropriate for different
application domains.
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J Observations from a Qualitative Inspection of Real Data

In Appendix F, we used the 2D scvis embedding of the model’s learned representation as an analysis tool to
determine that these BDMs’ tendency to merge true blindspots is a failing of the methods themselves. In
this section, we do something similar and qualitatively inspect that 2D embedding for models trained on real
image datasets in order make additional observations that may be relevant to the design of future BDMs.

A low-dimensional embedding can work for real data. In the next subsections, we demonstrate that
this 2D embedding contains the information required to identify a wide range of blindspots from prior work
and to identify novel blindspots. As a result, it seems that dimensionality-reduction is a potentially important
aspect of BDM design or that an interactive approach based on this embedding could be effective.

Getting a maximally general definition of a specific blindspot often requires merging multiple
groups of images. For example, reaching the conclusions presented in Figures 16, 23, 34, and 31 all required
merging several distinct groups of images. As a result, it seems that being able to suggest candidate merges
is a potentially important goal for BDM design.

A small blindspot may appear as a a small cluster (Figure 22) or as a set of outliers (Figure 40).
The former is likely to cause problems for BDMs that use more standard supervised learning techniques (e.g.,
those that use Linear Models or Decision Trees for their hypothesis class). The later is likely to cause problems
for BDMs that model the data distribution (e.g., those that use Gaussian Kernels for their hypothesis class).
As a result, it seems that being able to identify blindspots of varying sizes and densities is a potentially
important and challenging goal for BDM design.

The boundaries of a blindspot can be “fuzzy” in the sense that there may be images that do
not belong to the blindspot that are both close, in the image representation space, to images
in the blindspot and that have higher error. For example, looking at Figure 20, we can see that the
model’s confidence decreases relatively smoothly as we approach the region that reflects “baseball gloves with
people, but not in a baseball field.” However, if we look at the region around this region (Figure 21), we
see that these images are almost all in baseball fields. As a result, it seems that being able to handle this
fuzziness is a potentially important and challenging goal for BDM design.
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J.1 Preliminaries

Before presenting the details of our results, there are two questions to address.

What blindspots do we study? We consider blindspots discovered by prior works (Hohman et al., 2019;
Sohoni et al., 2020; Singh et al., 2020; Plumb et al., 2022; Singla et al., 2021) as well as novel blindspots
(Adebayo et al., 2022). Note that these prior works:

• Are not all explicitly about blindspots (e.g., some consider “spurious patterns” which imply the existence
of blindspots).

• All consider a model that was trained with standard procedures (e.g., no adversarial training) on a real
dataset (e.g., no semi-synthetic images or sub-sampling the dataset).

• All consider blindspots that pertain to a single class.

How are our visualizations produced? To start, we use scvis (Ding et al., 2018) to learn a 2D embedding
of the model’s representation of all of the training images of the class of interest. Because scvis combines
the objective functions of tSNE and an AutoEncoder, we expect similar images to be near each other and
dissimilar images to be far from each other in this 2D embedding. Then, we visualize that embedding
and color code the points by the model’s confidence in its predictions for the class of interest. As a result,
blindspots should appear as groups of lighter colored points.

With this visualization, we start by first exploring what types of images were in different parts of the
embedding. Then, given a specific type of image, we go back and highlight the part of the embedding that
best represents that type of image. As a result, many of the figures we show are more like “summaries that
support our conclusions” than “exhaustive descriptions of all the types of images we identified.”
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J.2 Summit

In Figure 1 of their paper, Hohman et al. (2019) show that their method reveals that the model is relying on
“hands holding fish” to detect “tench.”

• Dataset: ImageNet
• Class: tench
• Blindspots: tench without people holding them

Results of inspecting the 2D embedding:

• The embedding also reveals this blindspot. However, our analysis suggests that this blindspot is too broadly
defined because “people holding tench” (Figure 11) has similar performance to “tench in a net” (Figure 12)
and that the performance drop comes from “tench underwater” (Figure 13). We confirmed hypothesis by
finding images on Google Images that match these descriptions and measuring the model’s accuracy on
them.

• Additionally, the embedding reveals mislabeled images (Figure 14).
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Figure 11: “tench with people holding them.” Model accuracy on images from Google Images: 100% (40/40).

Figure 12: “tench in a net.” Model accuracy on images from Google Images: 98% (39/40).
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Figure 13: “tench underwater.” Model accuracy on images from Google Images: 88% (35/40).

Figure 14: Mislabeled images
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J.3 George

In Appendix C.1.4 of their paper, Sohoni et al. (2020) discuss how their method is not effective at identifying
one of the blindspots commonly studied in Group Distributionally Robust Optimization without using an
external model’s representation for the image representation.

• Dataset: CelebA
• Class: blond hair
• Blindspot: men with blond hair

Results of inspecting the 2D embedding:

• By comparing Figure 15 to Figure 16, we can see that the embedding clearly reveals this blindspot.
• Additionally, Figure 17 shows that the embedding reveals an additional “blond women playing sports”

blindspot.
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Figure 15: “blond men”

Figure 16: “blond women”
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Figure 17: “blond women playing sports”
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J.4 Feature Splitting

In Table 6 of their paper, Singh et al. (2020) organize the spurious patterns that they identify by their own
measure of bias. We consider both the most and least biased spurious patterns from that table.

Most biased.

• Dataset: COCO
• Class: baseball glove
• Blindspot: baseball gloves without people

Results of inspecting the 2D embedding:

• Comparing Figure 18 to Figure 19, we see that the embedding also reveals this blindspot.
• However, we can also see that the model’s performance is not uniform across different types of images of

“baseball gloves with people.” In particular, the embedding reveals two other blindspots (Figures 20 and 22)

Least biased.

• Dataset: COCO
• Class: cup
• Blindspot: cups without dining tables

Results of inspecting the 2D embedding:

• Comparing Figure 23 to Figure 24, we see that the embedding also reveals this blindspot.
• However, we can also see that the model’s performance is not uniform across different types of “cups without

dining tables.” Figures 25, 26, and 27 show a few examples of the additional blindspots the embedding
reveals.

• These results highlight an interesting subtlety. The cups in images with dining tables take up a greater
portion of the image than the cups in images of sports stadiums, which raises the question: “Does this
blindspot exist solely because the model is relying on ‘context’ that it shouldn’t be? Or is the standard
image pre-processing making the cups too small (in terms of their size in pixels) to detect?”
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Figure 18: “baseball gloves without people”

Figure 19: “baseball gloves with people”
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Figure 20: “baseball gloves with people, but not in a baseball field”

Figure 21: If we look at the region around the “baseball gloves with people, but not in a baseball field” region
(Figure 20), we see that the model’s confidence is still lower despite the fact that these images still are in
baseball fields.
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Figure 22: “black and white images of baseball teams”

Figure 23: “Cups without dining tables”

46



Published in Transactions on Machine Learning Research (07/2023)

Figure 24: “Cups with dining tables”

Figure 25: “Cups in bathrooms”
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Figure 26: “Cups in living rooms or bedrooms”

Figure 27: “Cups in sports stadiums”. Is the model using ‘context’ that it shouldn’t be? Or is the image
pre-processing making detecting these cups very hard by compressing them to only a few pixels? Or is this a
limitation of the model architecture?
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J.5 Barlow

In Table 2 of their paper, Singla et al. (2021) summarize some of the blindspots that they identify. We
consider two of them. The first is “hog”, which is the class with the largest ALER-BER score (which they
use as a measurement of how important a blindspot is). The second is “tiger cat”, which is the class with the
largest increase in error rate for images in the blindspot.

Largest ALER-BER Score.

• Dataset: ImageNet
• Class: hog
• Blindspot: not “pinkish animals”

Results of inspecting the 2D embedding:

• By comparing Figure 28 to Figure 29, we can see that the embedding reveals this blindspot.

Largest increase in error rate.

• Dataset: ImageNet
• Class: tiger cat
• Blindspot: not “face close up”

Results of inspecting the 2D embedding:

• It does not appear that the embedding reveals this blindspot.
• By comparing Figure 30 to Figures 31 and 32, we can see that the embedding reveals a “grey tiger cats

inside” blindspot.
• Looking at Figure 33, we can see that the embedding reveals mislabeled images.
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Figure 28: “pink hogs”

Figure 29: “brown hogs”
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Figure 30: “grey tiger cats inside”

Figure 31: “grey tiger cats outside”
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Figure 32: “orange tiger cats”

Figure 33: Mislabeled Images
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J.6 Spire

Plumb et al. (2022) claim that, compared to past works on identifying spurious patterns, that theirs is the
first to identify negative spurious patterns. So we explore the example of a negative spurious pattern that
they give. Additionally, they note that this class is part of two spurious patterns.

• Dataset: COCO
• Class: tie
• Blindspot: ties without people
• Blindspot: ties with cats

Results of inspecting the 2D embedding:

• Comparing Figure 34 to Figure 35, we see that the embedding reveals the “ties without people” blindspot.
• Comparing Figure 36 to Figure 37, we see that the embedding reveals the “ties with cats” blindspot. Note

that this is a subset of the “ties without people” blindspot.
• Figures 38 and 39 show a few examples of the additional blindspots the embedding reveals.
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Figure 34: “ties without people”

Figure 35: “ties with people”
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Figure 36: “ties with cats”

Figure 37: “ties without cats”
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Figure 38: “ties with teddybears”

Figure 39: “ties with buses” Is the model using ‘context’ that it shouldn’t be or is the image pre-processing
making detecting these ties very hard (the bus driver is frequently wearing a tie, but that tie is very small)?
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Figure 40: Additionally, when we see that the embedding also reveals the “frisbees without dogs or people”
blindspot from (Plumb et al., 2022). However, these images look more like outliers than a proper cluster.
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J.7 New Blindspots

Because it has been observed that it is easier to find “bugs” in models when we know what to look for
(Adebayo et al., 2022), we also explore classes that have not been discussed in prior work. We asked a
colleague to pick a class from the list of ImageNet classes and they chose “library” because they thought that
it seemed related to or correlated with other ImageNet classes.

• Dataset: ImageNet
• Class: library
• Blindspot: images of the outside of libraries
• Blindspot: images of a single bookshelf

Results of inspecting the 2D embedding:

• Figure 41 shows that the model is less able to label an image as a library when the image is of the outside
of a library. Interestingly, this is even true when the building is labeled as a library.

• By comparing Figure 42 to Figures 43 and 44, we see that, without the context clues of “people” or
“multiple bookshelves” the model is less able to label an image as a library when the image contains only a
single bookshelf. This may be a data labeling problem because “bookcase” is another class in ImageNet.
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Figure 41: “outside of libraries”

Figure 42: “single bookshelf”
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Figure 43: “people near bookshelves’

Figure 44: “multiple bookshelves without people”
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K Evaluating BDMs without Knowledge of the Model’s True Blindspots

In this work, we evaluate BDMs by directly comparing the hypothesized blindspots that they return to the
model’s true blindspots. However, this does not help us evaluate BDMs in real settings, where we do not
know the model’s true blindspots. In this section, we address this limitation by describing a simple (if labor
intensive) process for evaluating BDMs without such knowledge.

Recall from Section 2, that there are two problems with existing approaches for evaluating BDMs without
knowledge of the model’s true blindspots. Specifically, they do not consider whether or not:

1. A hypothesized blindspot is coherent (e.g., a random sample of misclassified images has high error but
may not match a single semantically meaningful description).

2. The model’s performance on a hypothesized blindspot is representative of the model’s performance on
other similar images (e.g., suppose that f has a 90% accuracy on images of “squares and blue circles”;
then, by returning the 10% of such images that are misclassified, a BDM could mislead us into believing
that f has a 0% accuracy on this type of image).

Additionally, there is a third, more general, problem:

3. These evaluations only work for BDMs and cannot be used to compare BDMs to other methods (e.g.,
methods from explainable machine learning). Largely, this is because they are designed around the fact
that BDMs return hypothesized blindspots as sets of images.

To address these problems, we propose a two-step user-based evaluation process:

1. Using the output of the method, the user writes a text description that describes the images that belong
to their hypothesized blindspot.
• This address Problem 1 because, if the hypothesized blindspots returned by a BDM are not coherent,

the user will not be able to describe them.
• This addresses Problem 3 because the user is converting the output of the method into a standardized

format.
• In Appendix J, we essentially essentially did this step ourselves for the figure captions.

2. We gather new images that match that text description and use those images to measure the model’s
performance on the user’s hypothesized blindspot.
• This addresses Problem 2 because these newly gathered images were chosen without knowledge of the

model’s performance on them and are chosen only based on the user’s text description.
• Note that these images could come from an external source or they could be taken from the same set of

images that the method was given.
• In Appendix J.2, we did this step ourselves with images from Google Images.
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