
Lost in Transmission:
When and Why LLMs Fail to Reason Globally

Tobias Schnabel∗
Microsoft Research

Kiran Tomlinson∗

Microsoft Research
Adith Swaminathan

Netflix
Jennifer Neville

Microsoft Research

Abstract

Despite their many successes, transformer-based large language models (LLMs)
continue to struggle with tasks that require complex reasoning over large parts of
their input. We argue that these failures arise due to capacity limits on the accu-
rate flow of information within LLMs. To formalize this issue, we introduce the
bounded attention prefix oracle (BAPO) model, a new computational framework
that models bandwidth constraints on attention heads, the mechanism for internal
communication in LLMs. We show that several important reasoning problems like
graph reachability require high communication bandwidth for BAPOs to solve; we
call these problems BAPO-hard. Our experiments corroborate our theoretical pre-
dictions: GPT-4o, Claude, and Gemini succeed on BAPO-easy tasks and fail even
on relatively small BAPO-hard tasks. BAPOs also reveal another benefit of chain
of thought (CoT): we prove that breaking down a task using CoT can turn any
BAPO-hard problem into a BAPO-easy one. Our results offer principled explana-
tions for key LLM failures and suggest directions for architectures and inference
methods that mitigate bandwidth limits.

1 Introduction

Despite the empirical successes of transformer-based large language models (LLMs), they exhibit
persistent failures on global problems that require integrating information across the entire input,
such as chaining syllogisms [1], function composition [10], and formal language recognition [5].
Our core hypothesis is that these failures arise due to an inability of LLMs to accurately commu-
nicate information across residual streams [13], the sequences of transformer blocks correspond-
ing to each input token. For an LLM to solve a problem, information about early tokens must be
transmitted through attention into the last token’s residual stream. While some problems, such as
needle-in-a-haystack tasks, do not require much information to cross residual streams, we show that
global problems with complex inter-token dependencies require substantial communication. We
conjecture that LLMs fail on such problems due to a limit on the amount of information they can
accurately transmit between residual streams, which we refer to as their effective bandwidth. This
is supported by prior work on capacity bounds on attention [12] and sparse attention [9, 4, 32, 41].
Causal attention exacerbates communication issues by forcing preprocessing in early streams to be
independent of later tokens, increasing the representation size of problems. Figure 1 illustrates the
issue of information flow and previews our empirical results.

To formally analyze these issues, we propose the bounded attention prefix oracle (BAPO) model—a
new computational model designed to capture the communication constraints and causal attention of
transformer-based LLMs. BAPOs capture how much information must be communicated between
residual streams to solve a problem, abstracting away other details of the transformer architecture.
When producing an output, there are two ways in which transformers can integrate information about
the last token with information from earlier tokens (i.e., from a prefix of the input): they can attend to

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0 50 100 150 200

0.2
0.4
0.6
0.8

1

GPT-4o Gemini 1.5 Pro
Claude 3.5 Sonnet

ac
cu

ra
cy ↯ ↯

0 50 100 150 200

0.2
0.4
0.6
0.8

1

GPT-4o Gemini 1.5 Pro
Claude 3.5 Sonnet

ac
cu

ra
cy

high bandwidth hard for LLMslow bandwidth easy for LLMs

x1 x2 x3 x4 x5 3 (a, b) (e, f) (c, d) (b, c) (d, e) (d, g) a→f ?

↯

↯

Figure 1: We conjecture that LLMs have a limit on their effective bandwidth, which we illustrate
above by constrained information flow across one particular prefix–suffix split of the input. The
BAPO model quantifies the communication bandwidth needed for transformers with causal attention
to solve a problem. INDEX requires low communication bandwidth and LLMs solve it without issue;
REACHABILITY requires high bandwidth and LLMs struggle with it.

precomputed values from higher layers of prefix streams, or they can attend to the raw prefix token
values (or both; see Figure 2a). The BAPO model captures these two types of information flow and
quantifies limits on the amount of information transmitted. In contrast with existing theoretical work
on the expressivity of the transformer model class [40, 23, 15, 36, 33, 6], we seek to characterize
the (in)ability of LLMs to solve global reasoning problems in practice. Strikingly, our experiments
suggest that the effective bandwidth of modern LLMs is a small constant, so we call problems
BAPO-hard if they cannot be solved by a constant-bandwidth BAPO and BAPO-easy if they can.

Theoretical contributions. We begin by highlighting the power of attention, which makes several
hard communication problems (EQUALITY, DISJOINTNESS, and INDEX) BAPO-easy. In contrast,
we show that a variety of important global problems are BAPO-hard, thus posing a challenge to
LLMs with imprecise internal communication. In particular, we prove BAPO-hardness for REACH-
ABILITY, MAJORITY, MATCH3n [33], UNIQUE, and SETDIFF, with lower bounds on the commu-
nication bandwidth required for each problem. On the positive side, we show that chain of thought
(CoT) allows us to break down any BAPO-hard problem into a sequence of BAPO-easy steps, sug-
gesting one mechanism for the success of CoT [24, 15, 29]. Specifically, we show that CoT renders
constant-bandwidth BAPOs Turing-complete. This enables them to solve any decidable problem
given a enough output tokens (although this number might be impractically large).

Empirical contributions. Our experimental results confirm the predictive power of the BAPO
model: GPT-4o, Claude, and Gemini systematically fail to solve even relatively small instances
of BAPO-hard problems, while performing well on BAPO-easy tasks across instance size (as pre-
viewed in Figure 1). We also demonstrate how real-world LLM tasks such as aggregating reviews
and variable-tracking in code contain BAPO-hard components, namely MAJORITY and REACHA-
BILITY, and thus present a challenge for LLMs. This illustrates the significance of our theoretical
work in practice. Supporting our CoT result, the reasoning models o3 and Gemini 2.5 Flash perform
very well even on BAPO-hard problems, albeit with a very large number of reasoning tokens. Our
code is available at https://github.com/microsoft/bapo.

Implications. Identifying BAPO-hard and BAPO-easy subtasks enables practitioners to anticipate
LLM limitations and proactively employ mitigation techniques like inference-time scaling, hybrid
architectures, or tool-calling. A key feature of the BAPO model is that it abstracts away the low-
level details of transformers and instead focuses on how much information must flow to solve a
problem, yielding a characterization that can be applied more broadly and intuitively. Our work
also shows how chain-of-thought reasoning can alleviate the communication needs of problems by
breaking a problem down into steps requiring only a small amount of information flow, suggesting
low bandwidth requirement as an additional objective in learning from reasoning chains. Ultimately,
BAPOs offer an explanatory foundation for observed LLM failures on global reasoning problems
and can unlock principled innovations to overcome these limitations.

2 A communication model of LLMs

The goal of our model is to represent the information processing flow within transformers while
abstracting away lower level details. At a high level, recall that a transformer with causal attention

2

https://github.com/microsoft/bapo

x1 x2 x3 . . . xk xk+1 . . . xn

sn3

sk2 sn2

s21 sn1

(a) A three-layer transformer with input tokens
x1, . . . , xn. Node sij is the transformer block at
position i and layer j. Information from the prefix
needed for the solution output at sn3 is gathered by
attending to either (i) past tokens (here, x3 and xk) or
(ii) intermediate outputs (here, s21 and sk2). The at-
tention to prefix tokens is captured by the attention g
of a BAPO, while the prefix oracle f of a BAPO mod-
els all other transmitted information from the prefix.

x1 x2 x3 . . . xk xk+1 . . . xn

attention g

suffix oracle h

prefix oracle f

bandwidth a

ba
nd

w
id

th
b

(b) An (a, b)-BAPO computes its result from the out-
put of the prefix oracle f (limited to a bits), atten-
tion function g (limited to b tokens), and suffix to-
kens k+1, . . . , n. The attention function can choose
which tokens to attend to as a function of the suffix,
but the decision to attend to each prefix token is inde-
pendent from other prefix tokens. An arbitrary subset
G of size b is received by h if g attends to more than b
tokens. Every component has access to token indices.

Figure 2: A simplified view of a transformer and our bounded attention prefix oracle (BAPO) model.

makes next-token predictions at every token position in parallel. Additionally, no residual stream
knows how far from the end of the input it is or what tokens come later in the input, due to causal
attention. As such, if a transformer needs to solve a problem and we split its input into a prefix and
suffix, any preprocessing done in the prefix streams should be useful no matter the suffix tokens.
Moreover, information about the prefix must be communicated to the suffix streams, as they need
to make next-token predictions that may depend on prefix tokens. This communication must occur
across every possible prefix–suffix split, but for simplicity, we will model and analyze an arbitrary
(usually worst case) split.

To make this more concrete, Figure 2a visualizes the computation of the next token xn+1 inside a
transformer, with nodes contributing to the prediction of xn+1 highlighted (other attention weights
are 0). A particular prefix–suffix split is shown with a dashed gray line, dividing the input tokens
and their residual streams (i.e., the columns above each token). The output stream in the suffix must
have all relevant information about the prefix tokens to solve a problem that depends on the whole
input. That is, all needed information about the prefix tokens must cross the dashed gray line. This
information can either come from (i) attending to input tokens directly (arrows crossing the split into
sn1) or (ii) attending to intermediate outputs from the prefix streams (arrows crossing the split into
sn2 and sn3). As we have emphasized, any intermediate outputs from prefix layers must be usable
for all possible suffixes, since prefix streams cannot depend on future tokens due to causal attention.

Our central hypothesis is that LLMs have a limited ability to exactly communicate a large number of
tokens or a large intermediate result across residual streams, thus causing failures on problems that
require high information flow. We call this the effective bandwidth of an LLM. This hypothesis is
informed by prior work that has derived capacity limits on attention heads [12], shown that problems
requiring reasoning over many tokens pose a challenge [1], and proved that individual token impacts
on attention tend to zero as the input length grows [18].

BAPOs. Our model isolates the issue of limited effective bandwidth as it plays a role in LLMs with
causal attention. For simplicity, we consider problems with single-token solutions, which includes
all decision problems. More formally, we consider tasks where an LLM is prompted with a fixed
problem description P ∈ Σ∗ concatenated with an input x1 . . . xn ∈ Σ∗, where Σ is the token
vocabulary. The goal is to produce a solution y ∈ Σ, which we represent with the function p : Σ∗ →
Σ with p(x1 . . . xn) = y. We begin with an intuitive overview of the model.

Informal Definition 1. A bounded attention prefix oracle (BAPO; see Figure 2b) must solve a
problem given an input split arbitrarily into a prefix and a suffix. A BAPO computes the solution
given the suffix, a bits output by a prefix oracle f that accesses only the prefix, and b prefix tokens
selected individually by a binary attention function g, with full positional information. The prefix

3

oracle f models the intermediate processing in prefix residual streams, which has no access to the
suffix due to causal attention. The limits on the output size of f and on the number of tokens g may
attend to are the key bandwidth constraints of the model, capturing limited attention head capacity.

Given this intuition, we provide the formal definition of BAPOs (using N = Z>0), which makes
explicit how BAPOs account for positional encodings and what happens if g tries to attend to too
many tokens (intuitively, the BAPO must work given any set of b tokens to which g attends).

Definition 1. An (a, b)-BAPO (bounded attention prefix oracle) is defined by a prefix oracle f :
Σ∗ → {0, 1}a, an attention function g : Σ∗ × N × Σ × N → {0, 1}, and a suffix oracle h :
{0, 1}a×∪bi=0(Σ×N)i×Σ∗×N→ Σ. An (a, b)-BAPO solves a computational problem p : Σ∗ → Σ
if h(f(x1 . . . xk), G, xk+1 . . . xn, k) = p(x1 . . . xn) for all k < n and all G ⊆ G = {(xi, i) : 1 ≤
i ≤ k, g(xk+1 . . . xn, k, xi, i) = 1} with |G| = min{b, |G|}.

We call a the prefix bandwidth (measured in bits) and b the attention bandwidth (measured in tokens)
of the BAPO. We call a problem BAPO-easy if it can be solved by a BAPO with constant bandwidths
(w.r.t. n) and BAPO-hard otherwise. If a problem requires bandwidths that scale with |Σ|, we say
it is BAPO-Σ-hard. Note that any problem with n-token inputs can be solved by a (n⌈log2 |Σ|⌉, 0)-
BAPO or by a (0, n)-BAPO as the prefix oracle can forward the entire prefix or the attention function
can attend to the entire prefix; we call this the trivial upper bound on BAPO complexity.

Assumptions. We briefly discuss some trade-offs in the underlying assumptions for BAPOs. On
the generous side, we assume that the prefix streams and suffix streams have unbounded computa-
tional power. However, this fact is tempered by the fact that a BAPO must work for all possible
prefix-suffix splits. Regarding the attention function, our model is pairwise in the sense that g can
only look at a single prefix token xi at a time, as in real transformers. BAPOs differ though in that
g can base its attention decisions on the entire suffix. However, transformers can compensate for
this by communicating information between the suffix streams across multiple layers. Our model
also assumes perfect positional encoding, whereas this is a point of failure in real transformers [11].
Finally, the attention g can only operate on the token layer, whereas in transformers, attention can
also attend to outputs of subsequent layers. However, this is offset by the ability of the suffix oracle
in our model to perform arbitrary computation on the attended tokens.

3 BAPO theory

We prove that a variety of important global reasoning problems like graph reachability are BAPO-
hard and therefore pose a challenge for LLMs under our effective bandwidth hypothesis. Table 1
summarizes our hardness and tractability results. Strikingly, we also prove that chain of thought en-
ables constant-bandwidth BAPOs to solve all decidable problems, suggesting a reduction in required
bandwidth as another mechanism for the empirical success of chain of thought.

3.1 One attention token is all you need to solve hard communication problems

Before turning to problems that BAPOs fail to solve, we first establish a separation from the stan-
dard one-way communication model [30] upon which BAPOs are based. First, BAPOs are at least
as powerful: any problem solvable with a(n) bits of one-way communication on n-bit inputs is also
solvable by a (a(n), 0)-BAPO by having the prefix oracle implement the communication protocol.
However, adding even just a little attention makes BAPOs strictly more powerful than pure one-way
communication. Strikingly, even (1, 1)-BAPOs can solve DISJOINTNESS, EQUALITY, and INDEX,
which are maximally hard problems for one-way communication requiring n bits of communica-
tion [30] (see Appendix A for full definitions). Low BAPO complexity suggests that LLMs should
be able to solve these problems well, which is corroborated by our empirical results in Section 4.
These problems are also known to be efficiently expressible by transformers [6]. Note also that
INDEX is conceptually very similar to the common needle-in-a-haystack benchmark tasks.

Theorem 1. DISJOINTNESS and EQUALITY have (1, 1)-BAPOs and INDEX has a (0, 1)-BAPO.

Proof sketch. Access to token indices allows the attention function to attend to bits that would be
counterexamples to EQUALITY or DISJOINTNESS, while the bit output by the prefix oracle is needed

4

Table 1: Overview of our BAPO upper and lower bounds in terms of (prefix bandwidth, attention
bandwidth). n: input length, m: number of edges, c: any integer ≥ 3, ϵ: arbitrary constant in (0, 1),
b(n): any o(n) function. Trivial upper bounds: (n⌈log2 |Σ|⌉, 0) or (0, n). Adding chain of thought
(CoT) brings the upper bound down to (2, 3) for all decidable problems, but may require a large
number of CoT steps.

Problem Lower bound Upper bound

BAPO-
easy


INDEX (Thm. 1) (0, 1)
EQUALITY (Thm. 1) (1, 1)
DISJOINTNESS (Thm. 1) (1, 1)
MATCH2n (Thm. 4) (0, 1)

BAPO-
hard

{ REACHABILITY (Thm. 2) (o(m1/c logm), o(m1−2/c)) trivial
MAJORITY (Thm. 3) (o(log n), o(n1−ϵ)) (⌈log2 n⌉, 0)
MATCH3n (Thm. 4) (o(n/b(n)), b(n)) trivial

BAPO-
Σ-hard

{
UNIQUE (Thm. 5) (o(|Σ|/b(|Σ|)), b(|Σ|)) (2|Σ|, 0)
SETDIFF (Thm. 6) (o(|Σ|/b(|Σ|)), b(|Σ|)) (|Σ|, 0)

when the prefix contains all of x and some of y. INDEX is trivial thanks to the attention function,
which can pick out the indexed token. See Appendix B for the full proof.

3.2 BAPO complexity

We now show that the following problems are BAPO-hard (see Appendix A for formal definitions):

• REACHABILITY: given a directed graph G and two nodes s, t, check if G has an s–t path.

• MAJORITY: determine whether a bitstring has strictly more ones than zeros.

• MATCH3n : given input x ∈ Zn
m, determine whether there are some i, j ∈ [n] such that

xn + xi + xj ≡ 0 (mod m). Additionally, MATCH2n (which we show is BAPO-easy) is
the problem of determining whether there is some i ∈ [n] such that xn + xi ≡ 0 (mod m).
These are last-token versions of MATCH2 and MATCH3 [33].

• UNIQUE (hard w.r.t. |Σ|): output any token that appears exactly once in the input.

• SETDIFF (hard w.r.t |Σ|): output a token that is in the first input string but not the second.

We begin our hardness results with the important REACHABILITY problem, which encompasses
many natural reasoning tasks, e.g., checking whether a conclusion follows from a chain of implica-
tions. We show that limited-bandwidth BAPOs cannot solve REACHABILITY, and our lower bound
smoothly trades off between the prefix and attention bandwidth requirements. We provide a high-
level sketch of the proof strategy, which is common to all of our hardness proofs. All full proofs
omitted from the paper can be found in Appendix B.

Theorem 2. No (o(m1/c logm), o(m1−2/c))-BAPO can solve REACHABILITY in graphs with n
nodes and m = Ω(n) edges for any integer constant c ≥ 3.

Proof sketch. Suppose for a contradiction that some limited-bandwidth BAPO (f, g, h) solves the
problem. We construct a family of prefixes and suffixes such that: (1) the prefixes have substantial
overlap with each other, (2) the attention function g pays attention to tokens that are common to all
prefixes and thus cannot distinguish between them, (3) the number of prefixes is sufficiently large
that the prefix oracle f is not one-to-one by the pigeonhole principle, and (4) given any two prefixes
for which f collides, we can find a suffix that results in different solutions when concatenated to
the colliding prefixes. This construction gives us a contradiction: two instances of the problem with
opposite answers which the BAPO cannot distinguish between, as it sees the same suffix, the same
output of f , and the same set of attended tokens (given some adversarial choice of G).

We suspect this bound is not tight; closing the gap between Theorem 2 and the trivial
(m⌈log2 m⌉, 0)- and (0,m)-BAPOs is an interesting open problem.

5

Next, we consider a simple problem where our lower bound is tight, MAJORITY. According to
the circuit-based analysis of transformer expressivity that shows they are in TC0 [23], this problem
should be trivial, as it is solved by a single majority gate. However, as we will see in our experiments,
LLMs struggle with MAJORITY; here, we show that BAPOs require super-constant bandwidth to
solve it and that even near-linear attention bandwidth is insufficient to improve the prefix bandwidth
requirement. Our proof follows the same high-level strategy as with REACHABILITY.
Theorem 3. No (o(log n), o(n1−ϵ))-BAPO can solve MAJORITY on length n inputs for any 0 <
ϵ < 1. This prefix bandwidth is tight: there is a (⌈log2 n⌉, 0)-BAPO solving MAJORITY.

In Appendix B, we show that increasing the attention bandwidth even beyond near-linear eventually
reduces the prefix bandwidth lower bound for MAJORITY.

Turning to the next problem, Sanford et al. [33] showed that 1-layer transformers can efficiently
solve MATCH2, but need to scale polynomially to solve MATCH3. To keep the single-token output
of our problems, we consider the contained subproblems of outputting the last item, which we call
MATCH2n and MATCH3n. We show that limited-bandwidth BAPOs can solve MATCH2n but not
MATCH3n, forming a parallel with the results of Sanford et al. [33]. Our proof again follows the
same high-level strategy as before, and as with REACHABILITY, our lower bound smoothly trades
off between the two bandwidths.
Theorem 4. For any b(n) = o(n) with b(n) ≥ 1, no (o(n/b(n)), b(n))-BAPO can solve MATCH3n

over Zn
n2 . In contrast, there is a (0, 1)-BAPO for MATCH2n.

Finally, we show two problems are BAPO-Σ-hard, starting with UNIQUE, the problem of finding an
item that appears exactly once in a sequence. Here, the difficulty of the problem is parametrized by
the size of the token vocabulary Σ rather than the length of the input n. A very similar approach
applies to SETDIFF, for which we find the same bound.
Theorem 5. Let k = |Σ|. For any b(k) = o(k) with b(k) ≥ 1, no (o(k/b(k)), b(k))-BAPO can
solve UNIQUE. This is tight for b(k) = O(1), as there is a (2k, 0)-BAPO solving UNIQUE.
Theorem 6. Let k = |Σ|. For any b(k) = o(k) with b(k) ≥ 1, no (o(k/b(k)), b(k))-BAPO can
solve SETDIFF. This is tight for b(k) = O(1), as there is a (k, 0)-BAPO solving SETDIFF.

3.3 BAPOs with chain of thought

We now show that any (decidable) BAPO-hard problem can be broken down into a sequence of
BAPO-easy steps in the spirit of chain of thought (CoT) [43]. Previous work has shown how CoT
makes transformers Turing-complete [24]. We show that CoT has an even stronger benefit: adding
CoT to BAPOs lets them solve all decidable problems with constant bandwidth, indicating that even
LLMs with constant effective bandwidth are Turing-complete with CoT.

To formalize CoT in the BAPO setting, we repeatedly apply a fixed BAPO to the input concatenated
with the BAPO’s previous output tokens, just as in autoregressive decoding in LLMs.
Definition 2. An (a, b)-bounded attention prefix oracle with chain of thought (BAPO-CoT) that
solves a computational problem p : Σ∗ → Σ is an (a, b)-BAPO over the token set Γ ⊇ Σ ∪ {□}
that solves some computational problem p′ : Γ∗ → Γ such that for all inputs x ∈ Σ∗ to p, there
exists some sequence of strings s1, . . . , sm ∈ Γ∗ with the following properties. (1) s1 = x (the
BAPO-CoT starts with x as its input), (2) si+1 = sip

′(si) for all i = 1, . . . ,m − 1 (at each step,
it produces some chain-of-thought token), (3) p′(si) = □ if and only if i = m − 1 (at the last step
only, it outputs the halt token), and (4) p′(sm−2) = p(x) (it solves the problem before halting).

We say that a BAPO decides a language L if it solves p(x) = 1[x ∈ L]. Let L≤n = {x ∈ L : |x| ≤
n}. We show that very low-bandwidth BAPO-CoTs exist for any decidable problem. The core idea
is that simulating a single Turing machine step is a low-bandwidth problem.
Theorem 7. Let L be a language decided by a Turing machine with s(n) space and input alphabet
Σ = {0, 1}. For any n, there exists a (2, 3)-BAPO-CoT that decides L≤n.

Proof sketch. The BAPO-CoT simulates a Turing machine M by writing out the contents of the tape
and the state at every step of M ’s execution. The attention function attends to the prefix to retrieve
the current state and the prefix oracle passes along the bit under the tape head (if they are not in the
suffix), allowing the suffix oracle to simulate a step of M . See Appendix B for details.

6

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n n

ac
cu

ra
cy

ac
cu

ra
cy

R����������� M������� M����3

I���� E������� M����2

Figure 3: BAPO-hard problems (bottom row) show much larger drops in accuracy compared to
BAPO-easy problems (top row). Not even large LLMs can solve BAPO-hard problems at length
200 with an accuracy above random guessing.

4 BAPO complexity predicts empirical LLM failures

Our experiments test whether BAPO complexity predicts LLM failures. Supporting our effective
bandwidth hypothesis, we find that LLMs across model families consistently struggle with BAPO-
hard problems and usually succeed on BAPO-easy problems. We choose three big model families
(GPT [26], Gemini [16] and Claude [3]) and focus first on model versions without (latent) reasoning
chains to align with the single-token-output BAPO model.

Except for INDEX and the BAPO-Σ-hard problems UNIQUE and SETDIFF, all problems have yes/no
answers (so random guessing achieves 50% accuracy). We designed problem instances such that
there would be no obvious shortcut or heuristic, pushing models to fully consider each problem.
LLMs are fed with inputs of various lengths n, where n corresponds to the parameter specified in
each problem’s definition. For all problems, we generate 100 i.i.d. instances and report average
accuracy along with the 95% t-test confidence interval. All data generating distributions, prompts,
and model details are available in Appendix C.1 and our code is available at https://github.
com/microsoft/bapo.

4.1 BAPO hardness aligns well with LLM failures

Figure 3 shows the accuracy of LLMs across six different tasks (see Appendix C.2 for additional
problems). The top row shows three BAPO-easy problems and the bottom row three BAPO-hard
problems (cf. Table 1). Performance is low or rapidly dropping for BAPO-hard problems; in par-
ticular, there is no LLM that performs well for all n. In contrast, most LLMs perform consistently
well across all n on BAPO-easy problems, with MATCH2 appearing the hardest. We suspect that
representational issues interfere in this setting, as the LLM needs perfect understanding of integers.

Comparing models of different scales (solid vs. dashed lines), we can see that in line with the typical
observations, larger models appear to perform better overall. However, even with increased scale,
no model is able to avoid the degradation our BAPO framework predicts.

4.2 Chain-of-thought reasoning helps on BAPO-hard problems

Given how powerful BAPO-CoTs are in theory, the obvious question is whether CoT improves
performance on BAPO-hard tasks. To test this, we prompted each LLM to perform CoT before
producing the answer, with a soft limit of 250 words. We also tested o3 [27] and Gemini 2.5
Flash [17], which use (potentially many) internal chain of thought tokens. As Figure 4 shows, CoT
modestly improves non-reasoning LLM performance on BAPO-hard problems for smaller input
sizes n. The fact that issues still persist indicates that these LLMs may not be applying good low-

7

https://github.com/microsoft/bapo
https://github.com/microsoft/bapo

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash
o3
Gemini 2.5 Flash

n n n

ac
cu

ra
cy

ac
cu

ra
cy

R����������� (�/ C�T) M������� (�/ C�T) M����3 (�/ C�T)

I���� (�/ C�T) E������� (�/ C�T) M����2 (�/ C�T)

Figure 4: Adding CoT can help LLMs do better on BAPO-hard problems, but substantial perfor-
mance drops still occur with limited CoT budget (soft limit of 250 words for non-reasoning models).
Without imposing a limit on their internal reasoning, o3 and, to a lesser extent, Gemini 2.5 Flash
perform extremely well (see Appendix C.1.2 for their CoT token counts, often in the thousands).

0 50 100

0.2

0.4

0.6

0.8

1

0 50 100 0 50 100

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n n

ac
cu

ra
cy

F���N�������R�����
(I���� / N�����-I�-H�������)

M������� R�����
(M�������)

V������� T�������
(R�����������)

Figure 5: There is good evidence that BAPO-difficulty translates to real-world settings. LLMs can
solve real-world tasks that contain BAPO-easy problems (left plot) with much greater accuracy than
BAPO-hard problems (two plots on the right).

bandwidth CoT procedures, or that they may require more reasoning tokens. Indeed, without the
limit on CoT tokens, o3 and Gemini 2.5 Flash succeed on BAPO-hard problems. This is likely due
to the much larger number of CoT tokens they use (over 10k in some cases; see Appendix C.1.2)
and the fact that they are (presumably) trained to use CoT tokens effectively.

4.3 BAPO hardness in real-world tasks

We finally turn to a set of experiments that examine real-world tasks corresponding to BAPO prob-
lems. For the first domain, inspired by the ZeroScrolls benchmark [37], we consider hotel reviews
from the SPACE dataset [2] and either ask the LLM to find a negative review in a collection of
positive reviews (analogous to the BAPO-easy INDEX problem) or decide whether the majority of
reviews are positive (analogous to the BAPO-hard MAJORITY problem). We ensure that a baseline
LLM can determine the sentiment of each review. The second domain is programming, where we
define two chains of assignments and ask whether the final variable has value "a" or "b", extending
the variable tracking task from the RULER benchmark [20]. This task is a special case of REACHA-
BILITY, one of our BAPO-hard problems. See Appendix C.1.3 for experiment and data details. The
plots in Figure 5 show that again, BAPO-hardness is a good predictor of LLM performance.

5 Related work

Theoretically, limitations of transformers have been studied via communication complexity [34, 28],
circuit analysis [23, 39] and parallel computation frameworks [34, 36], among other methods. We

8

contribute to this toolbox with the BAPO model, which provides a natural way to study how causal
attention exacerbates limits on information flow in LLM architectures.

Among the best known results on transformer expressivity is that transformers are in log-space
uniform TC0 (no more powerful than constant-depth threshold circuits) [23, 39]. Strobl et al. [40]
survey the known theoretical results showing an inherent expressivity gap for transformers to rec-
ognize formal languages involving unbounded counting or recursion for sufficiently long inputs.
For instance, Hahn [18] show that transformers with one-hot hard attention cannot solve PARITY
and 2DYCK, whereas Bhattamishra et al. [6] show that a two-layer transformer can solve INDEX,
EQUALITY, and DISJOINTNESS. RASP [44] offers a higher-level way to establish similar upper
bounds by constructing a transformer as a program, although without causal masking. Some expres-
sivity analyses depend on the size of the transformer: Sanford et al. [34], Fagnou et al. [14] derive
logarithmic lower bounds on the number of transformer layers required for graph and entity tracking
tasks (related to similar bounds for map-reduce [31]), while Sanford et al. [33] show that a single
transformer layer can efficiently reason over pairs of tokens (MATCH2) but not triplets (MATCH3).
However, transformer expressivity does not always align with empirical observations of LLM per-
formance. Rather than characterizing theoretical expressivity, the BAPO model captures high-level
information flow, which we hypothesize underlies many problem-solving failures in practice.

Even when a task is, in principle, solvable by a transformer, it might still be hard to learn [8]. Edel-
man et al. [12] argue that attention in transformers tends to represent dependencies among only a
small number of tokens, causing failures for global problems. Hahn and Rofin [19] show that al-
though PARITY is representable, it is hard to learn a length-generalizing solution because the training
loss landscape is highly sensitive to all the inputs. Similarly, Thomm et al. [42] show that LLMs are
data inefficient over compositional problems and Liu et al. [22] argue that transformers learn short-
cuts to simulating finite-state automata. Our BAPO model captures this representability-learnability
gap by positing that although architecturally the communication bandwidth from prefix tokens of a
transformer can be large, the effective communication bandwidth in LLMs is very limited.

Lastly, the success of CoT [43] has been also been analyzed theoretically. Merrill and Sabhar-
wal [24] showed that CoT makes transformers Turing-complete, and Feng et al. [15] argue that
CoT enables transformers to solve dynamic programming problems that bounded-depth transform-
ers cannot. Our theory shows that CoT has another benefit, as it dramatically lowers bandwidth
requirements: any Turing machine can be simulated by a constant-bandwidth BAPO-CoT.

6 Discussion

The fact that the effective bandwidth of LLMs appears to be so small despite their massive size sug-
gests that simply adding more layers, attention heads, or embedding dimensions might not translate
directly to higher BAPO bandwidth. We still lack a full understanding of the root causes of this
severely limited bandwidth. It might even be a feature rather than a bug of LLMs: low effective
bandwidth may aid flexible and generalizable next-token prediction, and there could be a tradeoff
between generalization ability (required for natural language) and exact representation of inputs
(required for global reasoning tasks).

Beyond the precise mathematical framework of BAPOs, applying the intuition that lower-bandwidth
problems are easier for LLMs can help us understand their successes. For instance, many in-context
learning tasks can be solved by a k-nearest neighbor approach, matching a new instance to a small
number of in-context examples. This is a procedure whose bandwidth requirement does not scale
with the number of in-context examples, but whose accuracy does; this provides a possible ex-
planation for the success of LLMs on such tasks. As another example, needle-in-a-haystack tasks
commonly used to benchmark LLMs also require a small amount of cross-stream communication.

Lowering bandwidth. Our model also deepens the understanding of CoT by proving that it re-
duces the communication requirements of problems—although the number of reasoning steps can be
impractically large. This motivates future work to take better advantage of the bandwidth-lowering
benefits of CoT or directly optimizing for low bandwidth as part of the training objective when fine-
tuning on reasoning chains. Our work also motivates the investigation of methods beyond inference
time scaling for reducing the communication burden of problems. For some problems, preprocessing
such as simplifying inputs [45] or retrieval [21] may reduce communication load.

9

BAPO variants. Another future direction is in exploring variations of the BAPO model that could
help it align even more closely with the behavior of LLMs. For instance, one limitation of BAPOs
that seems overly restrictive is an inability to link information across neighboring tokens. This
makes the induction heads task, thought to be an important mechanism in LLMs [25], challenging
for BAPOs (we conjecture it to be BAPO-Σ-hard). To address this limitation, we could augment the
BAPO model with another round of attention, modeling attention in higher layers. That is, we would
have g1 and g2, where g1 functions like the standard BAPO attention function, while g2 receives as
input the tokens G1 selected by g1 (as well as the inputs to g1). This would allow g2 to attend to
a token that follows another, implementing an induction head. We conjecture that with a constant
number of additional attention passes, problems like REACHABILITY and MATCH3n would remain
hard. This requirement of a second layer of processing for induction heads is analogous to known
results that the problem is efficiently solvable by two-layer but not one-layer transformers [7, 35]
(although, as we have seen, BAPOs in general are a good model for problem-solving by LLMs with
many layers).

Limitations. See Section 2 for discussion of the ways in which the BAPO model does not faith-
fully represent transformer computation. It also does not capture all failure modes of LLMs, such
as tokenization-driven errors; thus, a task being BAPO-easy does not guarantee that LLMs will be
able to solve it. Additionally, as discussed above, we do not know the root cause of effective band-
width limits on LLMs. Finally, many of our lower bounds are loose, and there are many important
problems whose BAPO bandwidths have yet to be explored.

7 Conclusions

We introduced the BAPO model of bandwidth-limited computation, designed to quantify and ana-
lyze hypothesized limits on the cross-stream communication of transformer-based LLMs. On the
theoretical side, we categorize a variety of problems as BAPO-easy, requiring only constant band-
width, and BAPO-hard, requiring super-constant bandwidth. This dividing line aligns well with
problems that modern trillion-parameter-scale LLMs consistently struggle with, supporting the hy-
pothesis that they are constrained in their internal communication and indicating that their effective
bandwidth for problem-solving is a small constant. For practitioners, the BAPO framework offers
a new lens through which they can view their LLM tasks, possibly opting for mitigation strate-
gies such as tool calling and reasoning in cases where they suspect failures due to BAPO-hardness.
Understanding that limited communication bandwidth is at the heart of why LLMs fail to reason
globally also unlocks a new set of directions for future work, such as different architectures, reason-
ing algorithms, or training paradigms.

Ackowledgments

We are grateful to Doug Burger, Philippe Laban, Suriya Gunasekar, Daniel Hsu, Besmira Nushi,
Siddharth Suri, Dawen Liang, Harald Steck, Chinmaya Kausik, Nathan Kallus, the MSR AI Inter-
action and Learning group, and the Netflix Machine Learning Inference Research group for helpful
discussions and feedback.

References
[1] Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can

transformers reason? The globality barrier and inductive scratchpad. In NeurIPS, 2024.

[2] Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko Suhara, Xiaolan Wang, and Mirella
Lapata. Extractive opinion summarization in quantized transformer spaces. TACL, 9, 2021.

[3] Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. https://www.anthropic.
com/news/claude-3-family, 2024. Accessed: 2025-04-17.

[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

10

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

[5] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of trans-
formers to recognize formal languages. In EMNLP, 2020.

[6] Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the
representational capabilities of transformers and recurrent architectures. In NeurIPS, 2024.

[7] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of
a transformer: A memory viewpoint. In NeurIPS, 2023.

[8] David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In ACL,
2022.

[9] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[10] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin,
Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal,
Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
formers on compositionality. In NeurIPS, 2023.

[11] Mohammad Reza Ebrahimi, Sunny Panchal, and Roland Memisevic. Your context is not an
array: Unveiling random access limitations in transformers. In COLM, 2024.

[12] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In ICML, 2022.

[13] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

[14] Erwan Fagnou, Paul Caillon, Blaise Delattre, and Alexandre Allauzen. Chain and causal at-
tention for efficient entity tracking. In EMNLP, 2024.

[15] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: A theoretical perspective. In NeurIPS, 2023.

[16] Google. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[17] Google. Gemini 2.5 flash. https://deepmind.google/technologies/gemini/flash/,
2025. Accessed: 2025-05-14.

[18] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. TACL, 8,
2020.

[19] Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In ACL,
2024.

[20] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia,
and Boris Ginsburg. RULER: What’s the real context size of your long-context language
models? In COLM, 2024.

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In
NeurIPS, 2020.

[22] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. In ICLR, 2023.

[23] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. TACL, 11, 2023.

11

https://transformer-circuits.pub/2021/framework/index.html
https://deepmind.google/technologies/gemini/flash/

[24] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. In ICLR, 2024.

[25] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

[26] OpenAI. GPT-4 technical report. arXiv preprint arxiv:2303.08774, 2023.

[27] OpenAI. Introducing o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. Accessed: 2025-05-14.

[28] Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. In COLM, 2024.

[29] Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden compu-
tation in transformer language models. In COLM, 2024.

[30] Tim Roughgarden. Communication complexity (for algorithm designers). Foundations and
Trends in Theoretical Computer Science, 11, 2016.

[31] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R Wang. Shuffles and circuits (on lower
bounds for modern parallel computation). JACM, 65, 2018.

[32] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. TACL, 9, 2021.

[33] Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limita-
tions of transformers. In NeurIPS, 2023.

[34] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Hal-
crow, Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities
via graph algorithms. In NeurIPS, 2024.

[35] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the
induction heads task. arXiv preprint arXiv:2408.14332, 2024.

[36] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and
logarithmic depth. In ICML, 2024.

[37] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A
zero-shot benchmark for long text understanding. In EMNLP, 2023.

[38] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2013.

[39] Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold cir-
cuits. arXiv preprint arXiv:2308.03212, 2023.

[40] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal
languages can transformers express? A survey. TACL, 12, 2024.

[41] Sainbayar Sukhbaatar, Édouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive atten-
tion span in transformers. In ACL, 2019.

[42] Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bernhard
Schölkopf, and Abbas Rahimi. Limits of transformer language models on learning to compose
algorithms. In NeurIPS, 2024.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

12

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

[44] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In ICML, 2021.

[45] Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. AgentOccam: A simple yet strong baseline for LLM-based web agents. In
ICLR, 2025.

13

A Full problem definitions

Definition 3. DISJOINTNESS: {0, 1}n × {0, 1}n → {0, 1} is the problem of finding if two sets
represented as bitstrings are disjoint, with DISJOINTNESS(x, y) =

∧
i∈[n] ¬(xi ∧ yi). We encode a

DISJOINTNESS instance (x, y) with the string x|y over Σ = {0, 1, |}.
Definition 4. EQUALITY: 0, 1n × 0, 1n → {0, 1} is the problem of finding if two bitstrings are
equal, with EQUALITY(x, y) = 1[x = y]. We encode an EQUALITY instance (x, y) with the string
x|y over Σ = {0, 1, |}.
Definition 5. INDEX: {0, 1}n × [n] → {0, 1} is the problem of identifying the bit at a given index
into the input, with INDEX(x, i) = xi. We encode an INDEX instance (x, i) with the string xi over
Σ = {0, 1} ∪ [n].

Definition 6. REACHABILITY: ([n]× [n])m × [n]× [n]→ {0, 1} is the problem of determining if
there is path from s to t in a directed graph G with n nodes and m edges. To encode the problem
with perfect tokenization, let Σ = [n] × [n] ∪ [n] where the token (i, j) ∈ Σ represents edge (i, j)
and the integer tokens represent nodes. An instance of REACHABILITY is specified by the edge list
of G in arbitrary order followed by the nodes s and t.

Definition 7. MAJORITY: {0, 1}n → {0, 1} is the problem of determining whether the input has
strictly more ones than zeros, with MAJORITY(x) = 1

[∑
i∈[n] xi > n/2

]
.

Definition 8. Given input x ∈ Zn
m, MATCH3n is the problem of determining whether there are

some i, j ∈ [n] such that xn + xi + xj ≡ 0 (mod m). Additionally, MATCH2n is the problem of
determining whether there is some i ∈ [n] such that xn + xi ≡ 0 (mod m). We encode instances of
these problems with the string x over Σ = Zm.

Definition 9. UNIQUE: Σ∗ → Σ ∪ {∅} is the problem of identifying any unique token in the input.
That is, UNIQUE(x1 . . . xn) = xi s.t.

∑n
j=1 1[xj = xi] = 1, or ∅ if no such xi exists.

Definition 10. SETDIFF: Σ∗ × Σ∗ → Σ ∪ {∅} is the problem of identifying any token in the first
part of the input that doesn’t appear in the second part. That is, SETDIFF(c1 . . . cn, d1 . . . dm) = ci
for some i ∈ [n] such that ci ̸= dj for all j ∈ [m], or ∅ if no such element exists. We encode a
SETDIFF instance (c, d) ∈ Σ∗ × Σ∗ with the string c|d over Σ ∪ {|}.

B Proofs

Proof of Theorem 1. For INDEX instances given as s = xi, the idea is simple: we set
g(sk+1 . . . sn, k, sj , j) = 1 if and only if j = sn. The suffix oracle returns whatever token is
attended to—unless the index is in the suffix (i.e., sn ≥ k + 1), in which case the suffix oracle
immediately returns sj . No output from f is required.

For a DISJOINTNESS instance encoded as s = x|y, the key is that we only need a single counterex-
ample bit where xi = yi = 1 to conclude that x and y are not disjoint. If no such counterexample
exists, then they are disjoint. We can construct a (1, 1)-BAPO using this fact. The prefix oracle
outputs 0 (“no counterexample found”) if (a) the token | is not in the prefix or (b) if the token |
is in the prefix and the starting bits of y present in the prefix are disjoint with the corresponding
bits of x. If there is a counterexample bit in y visible in the prefix, the prefix oracle outputs 1.
If the suffix oracle receives a 1 from f , it always outputs 0 indicating x and y are not disjoint.
Meanwhile, the attention function attends to any prefix bits that would be a counterexample to the
disjointness of x and y; i.e., g(sk+1 . . . sn, k, si, i) = 1 if and only if either (a) | is not in the suffix
and i′ = i + (k + |sk+1 . . . sn| − 1)/2 + 1 ≥ k + 1 (i.e., the token we need to compare to si is in
the suffix) and si′ = si = 1 or (b) | is in the suffix and si′ = si = 1. If the attended token set G is
nonempty, then x and y are not disjoint and the suffix oracle outputs 0. If the attended token set is
empty and | is in the suffix, the suffix oracle can check the portion of x present in the suffix against
the corresponding bits of y. If no counterexample bits are found (by f , g, or h), then none exists and
the suffix oracle outputs 1.

For EQUALITY, the same idea applies: we only need one counterexample xi ̸= yi to conclude
that x ̸= y. The construction is precisely the same as for DISJOINTNESS, except we look for
counterexamples where xi ̸= yi rather than xi = yi = 1.

14

s1 u11 u12

. . .

u17 t1

s2 u21 u22

. . .

u27 t2

s3 u31 u32

. . .

u37 t3

s1 u11 u12

. . .

u17 t1

s2 u21 u22

. . .

u27 t2

s3 u31 u32

. . .

u37 t3

Figure 6: Left: the graph P from the proof of Theorem 2 for p = c = 3, so n = pc = 27 and
m = pc− p = 24. Right: P with the permutation π = 231 applied to the targets of the second-layer
edges. Applying any non-identity permutation to a single layer changes the connectivity of at least
one s–t pair.

Proof of Theorem 2. Suppose such a BAPO exists for a contradiction, and let f and g be its prefix
oracle and attention function, with bandwidths a = o(m1/c logm) and b = o(m1−2/c), respectively.
We will construct a family of prefixes and suffixes where the prefixes contain the entire graph and
the suffixes contain the nodes s and t, taking care that the graphs in different prefixes are mostly
identical to saturate attention.

Let n = pc for some integer p for simplicity (if n is not expressible as an cth power of an integer,
the argument would involve various ceilings or floors, but these do not affect the asymptotics). Let
P be the graph consisting of p disjoint directed paths with start nodes s1, . . . , sp and target nodes
t1, . . . , tp, where each path has exactly pc−1 nodes. Then, for each i ∈ [p] and j ∈ [pc−1 − 2], let
uij be the unique node at distance j from si. See Figure 6 for a visualization of this graph with
p = c = 3. We will keep these node labels fixed but modify P by permuting edges based on the
attention function g to render attention useless. Note that we can apply a permutation π ∈ Sp to
the target nodes of the edges departing from u1j , . . . , upj while maintaining the property that P
is a disjoint collection of length pc−1 paths each starting from an s node and ending at a t node,
although the permutation changes which s–t pairs are connected (see Figure 6, right). To construct
our shared prefixes that saturate the attention function g, we will need to take care to place edges at
consistent indices in the prefixes. To this end, we fix the edge order to first list the edges departing
from s1, . . . , sp, then u11, . . . , up1, then u12, . . . , up2, etc. Call this the canonical edge order and
let I(u) denote the index in the canonical order where the edge departing u is placed. Note that the
length of the full edge list is m = pc − p. Given these observations, construct the shared prefix
graph P ∗ as follows:

1. Initialize P ∗ to have the same set of nodes as P . Initialize S to be the set of all si and uij

nodes, which will store the current set of nodes that still need an outgoing edge.

2. For each pair (i, j) ∈ [p]× [p]:

(a) For ℓ = 1, . . . , b:
i. If there is some node u in S and some node v in the layer to the right of u such

that g(sitj ,m, I(u), (u, v)) = 1 and v has indegree 0 in P ∗: add (u, v) to P ∗ and
remove u from S.
Check every feasible edge we could add; if g wants to attend to any edge (u, v),
add it to P ∗.

ii. Else: exit the inner for loop.
If there are no remaining edges g would attend to given suffix sitj , then we can
stop, as attention is now saturated for this suffix.

3. Let E∗ be the set of edges in P ∗ at this point in the algorithm. These will be shared among
all prefixes to saturate attention. To complete the paths in P ∗ arbitrarily, connect each node
with outdegree 0 (that is not a t node) to the first node with indegree 0 in the next layer.

This procedure produces a graph P ∗ which can be reached by starting with P and permuting the
targets of the edges in each layer by some π, since each edge we add connects a node with current
outdegree 0 to a node in the next layer with current indegree 0. That is, P ∗ is also a disjoint collection
of p paths of length pa−1 each connecting some si to some tj . We have placed edges in P ∗ such that
for any suffix sitj with i, j ∈ [p], there exists some attended token set G where every edge in G is in

15

E∗, so we can modify the other edges in P ∗ without alerting the attention. Each iteration of the outer
for loop ensures one suffix has its attention masked; if we complete b iterations of the for loop, then
we have ensured there is some G with |G| = b that contains only edges in E∗, and if we need to exit
early due to the nonexistence of an attended edge in line 2(a)i, then no other edges we end up placing
in P ∗ will ever be attended to given that suffix (as 2(a)i checks every feasible edge). Moreover, the
total number of edges in E∗ is at most bp2 = o(m1−2/cp2) = o((pc)1−2/cp2) = o(pc) (since there
are m = pc − p < pc edges in P ∗).

Now, since there are pc−1 − 1 layers of edges in P ∗, there must be some layer with Θ(p) edges not
contained in E∗—otherwise we would be able to find Θ(pc) edges in E∗, a contradiction. Call this
layer j∗ and let d = Θ(p) be the number of edges in layer j∗ that are not in E∗. Construct a family
of graphs P of size d! by taking P ∗ and applying each permutation π ∈ Sd to the targets of edges in
layer j∗ that are not in E∗. We now have our full collection of prefixes and suffixes: the d! prefixes
are the canonical edge lists of each graph in P and the p2 suffixes are every sitj pair.

By Stirling’s approximation and the fact that d = Θ(p), log2(d!) = Θ(d log d) = Θ(p log p).
Thus, since f has bandwidth o(m1/c logm) = o(p log p), f must have a collision on the size d!
family of prefixes generated by P (as it takes log2(d!) = Θ(p log p) bits to distinguish between
the prefixes). These two colliding graphs are generated by different permutations on the edges in
layer j∗, so there is some pair of start and target nodes s∗–t∗ connected in one of the graphs but
not the other (as the edges in all other layers are identical). Given the suffix s∗t∗, we find that the
BAPO fails to distinguish between the colliding graphs: it gets the same output from f and there
is some attended token set G that contains only edges in E∗, which are identical in the two graphs.
Given this adversarial G containing only attention-saturating edges, the suffix oracle h gets identical
inputs: the same output from f , the same G, the same suffix s∗t∗ and the same prefix size m. In this
case, the BAPO fails to solve the problem in one of the two graphs, as one has an s∗–t∗ path and the
other doesn’t.

Proof of Theorem 3. First, a (⌈log2 n⌉, 0)-BAPO can solve MAJORITY by having f(x) output the
number of 1s in x, which takes at most ⌈log2 n⌉ bits and requires no attention tokens.

Now suppose for a contradiction that (f, g, h) is a BAPO with prefix bandwidth a = o(log n) and
attention bandwidth b = o(n1−ϵ) that solves MAJORITY on inputs of length n. Let m be any positive
integer and let ℓ = m(1−ϵ)/ϵ (for simplicity assume ℓ is an integer; otherwise we could take a ceiling
without disrupting the proof). The proof follows three high-level steps: (1) set up the structure of
prefix–suffix pairs, (2) design the prefixes so that attention cannot distinguish between them, (3) find
a colliding pair of prefixes and suffixes that the BAPO cannot distinguish between but which have
different MAJORITY answers.

Given any π ∈ Sm (the permutations on [m]), define Xπ =
{(π(0ℓm1ℓm0k1m−k), 0m−k−11k+1)}m−1

k=0 . Note that every prefix–suffix pair in Xπ has total
length n = 2(ℓ+1)m = 2m1+(1−ϵ)/ϵ+2m, with (ℓ+1)m+1 ones and (ℓ+1)m− 1 zeros; so all
of them have a majority of ones. Let sk be the suffix in Xπ with k + 1 ones and let S = {sk}m−1

k=0 .
We’ll show show to pick π based on g such that Xπ fools the BAPO. We’ll give the BAPO
ℓ = m(1−ϵ)/ϵ attention tokens. Note that m(1−ϵ)/ϵ = Θ(n1−ϵ), as (m1+(1−ϵ)/ϵ)1−ϵ = m(1−ϵ)/ϵ.

For any suffix s, define Γ0(s) = {i ∈ [(2ℓ+1)m] : g(s, (2ℓ+1)m, 0, i) = 1} to be the set of prefix
indices where g selects 0s given suffix s, and define Γ1(s) similarly to be the set of prefix indices
where g selects 1s. We’ll pick π so that for every s ∈ S, π permutes the prefixes so that it places
leading zeros and ones in at least ℓ indices selected by g (or such that g selects only indices masked
by leading zeros and ones) for every suffix in Xπ . We can construct such a π with the following
procedure.

1. Initialize Π0 = ∅ and Π1 = ∅.
These sets store indices to place leading zeros and ones so that we fool g for all suffixes.

2. For k = 0, . . . ,m− 1:

(a) While |Γ0(sk) ∩Π0|+ |Γ1(sk) ∩Π1| < ℓ:
If this is false, we have succeeded in masking ≥ ℓ positions selected by g given sk.

16

i. If ∃i ∈ Γ0(sk) \ (Π0 ∪Π1): add i to Π0.
Mask a position where g selects a zero.

ii. Else if ∃i ∈ Γ1(sk) \ (Π0 ∪Π1): add i to Π1.
Mask a position where g selects a one.

iii. Else: exit the while loop.
There are no unmasked positions selected by g on sk, so we have succeeded on sk.

3. Let i = 1. For each j ∈ Π0, set π(i) = j and increment i.
Make π permute leading zeros into the masking indices we have picked.

4. Let i = ℓm+ 1. For each j ∈ Π1, set π(i) = j and increment i.
Make π permute leading ones into the masking indices we have picked.

5. Fill in π where not yet defined with the remaining indices in order.

This procedure terminates, since each iteration of the while loop increases the combined sizes of the
intersections in (a) by 1 or exists the while loop. Additionally, it generates a valid permutation and
Π0 and Π1 are disjoint, since we only ever add indices i which are in neither of them to exactly one
of them. Next, for every (π(p), s) ∈ Xπ , either: (1) there are at least ℓ indices I selected by g on
input (π(p), s) with I ⊆ Π0 ∪Π1 or (2) on input (π(p), s), g selects only indices in Π0 ∪Π1. Case
(1) occurs if we are able to complete the while loop for s without ever hitting the else in iii, since
then we will have ℓ such indices in Π0 and Π1. In 3, we ensure the indices where g wishes to select
zeros are masked with leading zeros; in 4, we ensure the indices where g wishes to select ones are
masked with leading ones. Case (2) occurs if we hit the else in iii, as in that case, there are no prefix
indices selected by g which are not already in Π0 ∪Π1 and thus all selected indices will be masked
by leading zeros and ones.

This π gives us a set Xπ where the set of attended tokens G is entirely useless over every prefix-
suffix combination, in the worst case over adversarial choices of which ℓ tokens are attended to.
That is, for any prefix π(p) and any suffix s from Xπ that may be from different pairs, G(π(p),s) (the
attended token set for the given prefix–suffix combination) can be identical: an adversary picking
which ℓ tokens are attended to can pick all ℓ of them to come from indices masked by leading zeros
and ones (i.e., indices from Π0∪Π1), which are identical across all m prefixes in Xπ , as the prefixes
only differ in indices not in Π0 ∪Π1.

Now, there are m distinct strings in Xπ . Since the prefix bandwidth of f is o(log n) =
o(logm1+(1−ϵ)/ϵ) = o(logm), there are fewer than 2log2 m = m distinct outputs of f , so by
the pigeonhole principle there are two elements (a, b), (c, d) ∈ Xπ where f(a) = f(c). If (a, b) has
k + 1 ones in b and (c, d) has k′ + 1 ones in d (without loss of generality assuming k′ > k), then
the string ab has a majority of ones (ℓm+m− k + k′ + 1 > (ℓ+ 1)m+ 1 ones total) but cb does
not (ℓm + k′ + m − k − 1 ≥ (ℓ + 1)m zeros total). Thus, consider the inputs (a, b) and (c, b).
The prefix oracle f outputs the same thing in both cases, and as we have seen that G(a,b) can equal
G(c,b). Moreover, the suffix oracle gets the same suffix in both cases, so there exist attended token
sets where the suffix oracle outputs the same answer on both input pairs (having received all the
same inputs: same prefix oracle output, same suffix, same attended tokens, same split index). But
(a, b) and (c, b) have opposite answers to MAJORITY: (a, b) has a majority of ones and (c, b) does
not. Thus the BAPO answers one of these instances incorrectly for some attended token set.

While near-linear attention does nothing to help the required asymptotic prefix bandwidth over zero
attention, our proof technique does result in a weaker lower bound on prefix bandwidth with even
more attention.
Corollary 1. No (o(log log n), o(n/ log n))-BAPO can solve MAJORITY on length n inputs.

Proof. Now we use even more masking bits, m2m zeros and ones, so n = m2m+1 + 2m. With
2m = Θ(n/ log n) attention tokens, using the same argument shows that o(log log n) = o(logm)
prefix bandwidth can cause a collision.

We suspect that this lower bound is loose, and that in fact log n prefix bandwidth is still required
even with Θ(n/ log n) attention. However, we can increase the attention bandwidth even more (all
the way to Θ(n), but still less than n) so that we do finally lower the asymptotic prefix bandwidth

17

requirement. For instance, with n− log n attention tokens, we only need Ω(log log n) prefix band-
width.

Proposition 1. For any a(n) = o(n), there is a (⌈log2 a(n)⌉, n− a(n))-BAPO solving MAJORITY
on length n inputs.

Proof. The BAPO is simple: g attends to the first n− a(n) tokens of the prefix and f passes on the
ones count in the remaining part of the prefix, which takes at most ⌈log2 a(n)⌉ bits. This information
suffices to allow the suffix oracle to solve the problem.

The hardness of MAJORITY immediately implies at least the same degree of hardness for MEDIAN,
the problem of finding the median of a input sequence of integers, and MODE, the problem of finding
the most frequent item in a stream. We believe these bounds are very loose.

Corollary 2. No (o(log n), O(n1−ϵ))-BAPOs solve MEDIAN or MODE on length n inputs for any
0 < ϵ < 1.

Proof. On bitstrings, the median and mode are 1 if and only if the string has a majority of 1s.

For proving MATCH3n is BAPO-hard, the following lemma helps us find xi–xj pairs that form a
match with some particular suffix s = xn, but such that xi and xj do not form matches with any
suffix s ∈ S and other prefix integer z ∈ Z, where Z is the set of integers we have already decided
to place in prefixes.

Lemma 1. Let S,Z ⊂ Zm with m > 100, maxs∈S s ≤
√
m, |S| ≤

√
m/2, and |Z| ≤

√
m/2. For

every s ∈ S, there exist x, y ∈ Zm \ Z s.t.:

1. x+ y + s ≡m 0,

2. for all z ∈ Z and all s ∈ S, x+ z + s ̸≡m 0 and y + z + s ̸≡m 0.

Proof. Condition 2 is satisfied as long as x, y ∈ Zm\Z are not in−(S+Z) = {−(s+z) mod m :
s ∈ S, z ∈ Z}, which has size at most (

√
m/2)2 = m/4. This leaves at least 3m/4 −

√
m/2

admissible values in Zm \ Z. We’ll show that there are enough x–y pairs with distinct values of x
and y satisfying Condition 1 that they cannot all be disallowed by Condition 2 and the requirement
that x, y /∈ Z.

Consider all pairs x, y ∈ Zm such that x+ y+ s ≡m 0: for each i ∈ Zm, we can set x = i mod m
and y = −s − i mod m. If we consider 0 ≤ i ≤ m/4 +

√
m/2 + 1, the values x and y take on

are all distinct (since s ≤
√
m and m/4 > 2

√
m, every y value is larger than every x value). Since

there are only m/4 +
√
m/2 disallowed values for x and y, there must be some x, y pair in this

range of more than m/4 +
√
m/2 values of i where both x and y are admissible.

Proof of Theorem 4. First, consider MATCH22. The attention function g can select any prefix ele-
ments xi such that xn + xi ≡ 0 (mod m), since xn is always in the suffix. The suffix oracle only
needs a single such example to confirm that this is a yes instance. If the set of attended tokens is
empty, then the suffix oracle can check if there are any matches in the suffix. If not, this is a no
instance. We do not need f at all.

Now we show that MATCH3n is BAPO-hard. Suppose for a contradiction that (f, g, h) is a BAPO
solving MATCH3n with prefix bandwidth o(n/b(n)) and attention bandwidth b(n). We’ll construct
a collection of prefixes and suffixes that fools the BAPO with total input length n. Let n > 10 and
pick m = n2.

Consider the set of suffixes S = {i : 0 ≤ i < n/(8b(n))}. Note than since b(n) = o(n), |S| =
Θ(n/b(n)) is growing with n. For a suffix s, let G(s) = {(x, i) : i ∈ [n − 1], x ∈ Zn2 , g(s, n −
1, xi, i) = 1} be the set of integer–index pairs that g attends to given suffix s.

1. Initialize P ∗ = {(⌊n2/3⌋), 1} and I = {1}
We’ll use ⌊n2/3⌋ as filler; placing it in P ∗ here ensures it doesn’t match any prefix integer.

2. For s ∈ S:

18

(a) While |P ∗ ∩G(s)| < b(n):
i. If there exists some (x, i) ∈ Zn2 × ([n − 1] \ I) for which (1) (x, i) ∈ G(s) and

(2) x+ y + s′ ̸≡n2 0 for all s′ ∈ S and all (y, j) ∈ P ∗: add (x, i) to P ∗ and add i
to I
Add a masking integer to the prefix, but only allow masking integers that don’t
form a match with existing masking integers and any suffix.

ii. Else: break out of the while loop
If there are no integers that g wants to attend to (among those not forming matches
with existing masking integers), then we’re done with this suffix.

After the procedure, P ∗ contains at most b(n)|S|+ 1 ≤ n/8 + 1 occupied indices. Let Z be the set
of values in P ∗, with |Z| ≤ n/8 + 1. Moreover, we have ensured that no pair of integers in P ∗ can
form a match with any suffix integer s, since we only add x to P ∗ if for every y in P ∗ and s ∈ S,
x + y + s ̸≡n2 0. Lastly, if for some suffix s, we were unable to saturate attention and hit the else
in 2(a)ii, then no other integers we add to a prefix can be attended to, since we will only be adding
integers to prefixes that do not form matches with any integer in P ∗ and any suffix (and therefore
were already checked for attention in 2(a)i).

Now, for each s ∈ S, we find some xs and ys using Lemma 1 such that xs + ys + s ≡n2 0, but
xs and ys do not form matches with any other z ∈ Z (recall that we have initialized Z to contain
all values in P ∗). Add each xs and ys to Z before the next application of Lemma 1 to ensure
that we do not create any matches across x–y pairs. After doing this for each s ∈ S, the final
size of Z is ≤ n/8 + 1 + n/(4b(n)) ≤ 3n/8 + 1, so the size limit on Z required by Lemma 1,
namely |Z| ≤

√
m/2 = n/2, is always satisfied (since we picked n > 10, n/2 > 3n/8 + 1). Let

P = {(xs, ys)}s∈S be the x–y pairs we find using this procedure.

For every subset R ⊆ P , construct a prefix of length n − 1 by first filling in all of the masking
integers in P ∗ (filling at most n/8 + 1 positions) and then adding in the x and y values in R in
arbitrary indices (filling at most 2|S| = n/(4b) additional positions). Fill the remaining indices with
⌊n2/3⌋, which cannot form a match with itself and any suffix integer (since the suffix integers are
at most n/(4b(n))), and which we already ensured cannot form a match with any integer in P or
P ∗ by placing it in Z. This gives us 2|S| distinct prefixes, each of which has matches with a distinct
set of suffixes. That is, for any two prefixes p1 ̸= p2, there exists some suffix integer s where p1s
and p2s have opposite answers to MATCH3n, since there is some pair (xs, ys) in one prefix, but not
the other, which forms a match with s, while no other pair of integers forms a match with s. But
with prefix bandwidth o(n/b(n)) = o(|S|), there is some prefix oracle collision (as there are 2o(|S|)

distinct outputs of f , too few for the 2|S| distinct prefixes). Moreover, these colliding prefixes are
indistinguishable to attention for all suffixes, since we have ensured that for every suffix, attention
can be saturated by integers in P ∗, which are identical across all prefixes. Therefore the BAPO fails
to solve the problem.

Proof of Theorem 5. For the (2k, 0)-BAPO, the prefix oracle transmits two bitstrings of length k,
one indicating which elements of Σ appear exactly once in the prefix and one indicating which
elements of Σ appear in the prefix one or more times. The suffix oracle outputs (a) any element that
appears exactly once in the prefix but not in the suffix, which it finds from the first bitstring; (b)
any element that appears exactly once in the suffix but not in the prefix, which it can find from the
second bitstring; or (c) ∅ otherwise. This allows the suffix oracle to correctly solve UNIQUE.2

For the lower bound, suppose for a contradiction that (f, g, h) is an (o(k/b(k)), b(k))-BAPO solving
UNIQUE. We will first construct a set of partial prefixes P ∗ for which the attention mechanism
cannot distinguish all following suffixes. This leads to a pair of fooling prefixes with different
answers that the BAPO cannot distinguish.

Fix an arbitrary order over the symbols in Σ = {Σ1, . . . ,Σk}. For any A ⊆ Σ, let cat(A) denote
the string consisting of each token Σi ∈ A concatenated in order. Let b′ = 4b(k). We’ll construct
a collection of k/b′ suffixes (for convenience, assume k/b′ is an integer; otherwise, the construction
would involve ceilings and floors, but this this would not affect the argument): let σi = cat(Σ \

2Additionally, there is a clever (⌈log2 |Σ|⌉, 0)-BAPO for the special case of UNIQUE where every element
appears an even number of times, except a single unique item: with this restriction, taking the bitwise exclusive
or over binary encodings of the tokens solves the problem—but this fails in general.

19

Σ1 Σ2
. . . Σb′ . . . Σ(i−1)b′+1 Σ(i−1)b′+2 . . . Σib′ . . . Σk−b′+1 Σk−b′+2 . . . Σk

block 1 block i (omitted) block k/b′

Figure 7: Constructing σi involves leaving out the ith block from the vocabulary Σ, leaving k − b′

tokens.

{Σb′(i−1)+j}b
′

j=1) and S = {σiσi}k/b
′

i=1 . As Figure 7 shows, this means that the partial suffix σi is
missing the ith block of b′ contiguous tokens in Σ, so each full suffix si = σiσi has length 2(k− b′)
and |S| = k/b′ by construction. Note that we have duplicated each σi to ensure that no suffix token
is unique.

Now, we perform the usual overloading procedure to start building up prefixes of length k that
saturate the attention function for every suffix. Let G(s) = {(x, i) ∈ Σ × [k] : g(s, k, x, i) = 1}.
Perform the following procedure to construct a partial prefix P ∗.

Initialize P ∗ ← ∅, I ← ∅
for s ∈ S do

while |P ∗ ∩G(s)| < b(k) do
if ∃ x ∈ Σ, i ∈ [k] \ I such that (x, i) ∈ G(s) then

Add (x, i) to P ∗; add i to I
else

break

This procedure results in at most b(k)|S| = b(k) k
b′ = b(k) k

4b(k) = k/4 positions in P ∗ being filled
with masking symbols. Let Z be the set of unique symbols in P ∗, with |Z| ≤ |P ∗| ≤ k/4. To
ensure none of these are unique, fill in another ≤ k/4 arbitrary indices in P ∗ with an additional
copy of each symbol in Z. As in the previous proofs, attention has now been rendered useless for
every suffix, regardless of what additional symbols we add in remaining prefix indices. Consider the
blocks we used to construct the suffixes, namely {Σb′(i−1)+j}b

′

j=1 for i ∈ [k/b′] (Figure 7). It must
be the case that more than half of the blocks have an element not in Z (suppose this wasn’t the case
and > |S|/2 blocks have all of their elements in Z, then |Z| > b′|S|/2 = k/2, contradicting that
|Z| ≤ k/4). Thus, we can find a collection of tokens Y = {y1, . . . , y|S|/2} such that each yi is in a
different block and Y ∩ Z = ∅, as well as one extra filler token y0 from yet another different block.

For each subset R ⊆ Y , construct a prefix pR by starting with P ∗, placing each yi ∈ R in an arbitrary
unfilled index (so that the prefix now has ≤ k/2 + |S|/2 filled indices) and filling the remaining
indices with copies of y0. This gives us 2|S|/2 = 2k/(2b

′) distinct prefixes. With o(k/b(k)) prefix
bandwidth, we only have 2o(k/b(k)) distinct outputs of f , so there are two prefixes pR and pR′ that
collide. These two prefixes have different subsets R and R′ of Y values, so there is some yi in one
prefix but not the other (say yi ∈ R, yi /∈ R′). Consider the suffix s−i that is missing the block of
tokens to which yi belongs.

We observe that:

• s−i has no unique tokens due to its construction

• [pR′ , s−i] has no unique tokens, since all of its Y values in the prefix appear in the suffix
due to the fact that every element of Y comes from a different suffix block. Thus, every
element of Y except yi appears in s−i.

• [pR, s−i] only has yi as a unique token, since (a) all other tokens in Y have a copy in the
suffix due to the above fact, (b) the masking and filler tokens in the prefix are all duplicated
at least twice

Since the BAPO can observe the same attention set G given both of these strings and receives the
same output of f from the two prefixes, it gets one of these instances wrong for some G.

20

Proof of Theorem 6. For the (k, 0)-BAPO, the prefix oracle sends a bitstring denoting all elements
of Σ appearing in c but not d (as far as it can tell). The suffix oracle can then remove all elements of
d in the suffix and compute an answer.

For the lower bound, as usual, suppose for a contradiction that (f, g, h) is an (o(k/b(k)), b(k))-
BAPO solving SETDIFF. We will use the a similar collection of omitted-block suffixes as we did
for UNIQUE. As we did in that proof, order the elements of Σ and define cat(A). Let b′ = b(k)/4.
We’ll construct a collection of k/b′ suffixes (again assuming for convenience that k/b′ is an integer):
let σi = cat(Σ \ {Σb′(i−1)+j}b

′

j=1) and S = {σi}k/b
′

i=1 (recall Figure 7; note that in contrast with
UNIQUE, there is no need to duplicate the suffixes).

Now, we perform the usual overloading procedure to start building up prefixes of length 3k + 1
that saturate the attention function for every suffix. The prefixes we build up will be of the form
c1 . . . ck|d1 · · · d2k. That is, the prefix–suffix split occurs somewhere in the middle of the d input to
SETDIFF. Let G(σ) = {(x, i) ∈ Σ× [3k+1] : g(σ, k, x, i) = 1}. Perform the following procedure
to construct a partial prefix P ∗, which we initialize to already contain the divider token |.

Initialize P ∗ ← {(|, k + 1)}, I ← {k + 1}
for σ ∈ S do

while |P ∗ ∩G(σ)| < b(k) do
if ∃ x ∈ Σ, i ∈ [3k + 1] \ I such that (x, i) ∈ G(σ) then

Add (x, i) to P ∗; add i to I
else

break

This procedure results in at most b(k)|S| = b(k) k
b′ = b(k) k

4b(k) = k/4 positions in P ∗ being filled
with symbols that saturate g. Let Z be the set of unique symbols in P ∗, with |Z| ≤ |P ∗| ≤ k/4.
For each symbol in Z, place another copy of it in P ∗ on the opposite side of the divider as its first
copy. This ensures that no symbols in Z can be SETDIFF answers, while leaving at least 3k/4 open
positions in P ∗ before the divider and more than k open positions after the divider.

Now, consider the blocks we used to construct the suffixes, namely {Σb′(i−1)+j}b
′

j=1 for i ∈ [k/b′]
(Figure 7). Just as before, it must be the case that more than half of the blocks have an element
not in Z. Thus, we can find a collection of tokens Y = {y1, . . . , y|S|/2} such that each yi is in a
different block and Y ∩ Z = ∅, as well as one extra filler token y0 from yet another different block.
Let X = Σ \ (Z ∪ Y). Place every x ∈ X in an unfilled index of P ∗ after the divider (i.e., in the d
portion) and fill all remaining empty spots of P ∗ after the divider with the filler y0.

For each subset R ⊆ Y , construct a prefix pR by starting with P ∗ (which is now full after the divider,
but has at least 3k/4 open positions before the divider), placing each r ∈ R in an arbitrary unfilled
index before the divider, and then filling in all remaining indices with y0. As before, this gives
us 2|S|/2 = 2k/(2b

′) distinct prefixes. With prefix bandwidth o(k/b(k)), we only have 2o(k/b(k))

distinct outputs of f , so there are two prefixes which have identical f outputs, call them pR and pR′ .
These contain different sets R and R′ of Y values; thus, there is some yi ∈ Y in one prefix but not
the other. Suppose without loss of generality that yi ∈ R, yi /∈ R′. Consider the suffix σi that is
missing the block of tokens to which yi belongs. Notice that:

• pRσi has only a single SETDIFF answer, which is yi: we ensured that every Y element only
appears in a prefix before the divider, and yi does not appear in σi. Every other symbol in
the missing block of σi is in pR after the divider by construction, and thus is not a valid
answer.

• pR′σi has SETDIFF answer ∅: the only symbol not appearing after the divider in pR′σi is
yi, which is not before the divider.

Thus these two instances have different SETDIFF answers, but they are indistinguishable to the
BAPO (for some adversarially chosen G) due to the saturation of attention and the f collision.

Proof of Theorem 7. Let M = (Q, {0, 1},Λ, δ, q0, qaccept, qreject) be a Turing machine deciding L
using space s(n), using the definition of Turing machines from Sipser [38].

21

yj−2 yj−1 q λ yj+2

j − 2 j − 1 j j + 1 j + 2

yj−2 q′ yj−1 λ′ yj+2

yj−2 yj−1 λ′ q′ yj+2

D = L

D = R

Figure 8: The tape head contents around the previous tape head’s chunk offset after a step of the
Turing machine M . All indices before j − 1 and after j + 1 are identical in the new chunk. For
simplicity, the indices are shown relative to the start of the chunk.

A slight wrinkle arises due to the fact that BAPOs cannot attend to the last instance of a token, which
would enable the efficient “tape diff” Turing machine simulation used by Merrill and Sabharwal
[24]. As such, our construction requires a fixed maximum tape size, which means different BAPO-
CoTs are needed for larger problem instances—but crucially, their bandwidths are identical. This
is analogous to the requirement of Merrill and Sabharwal [24] that the precision of the transformer
grows with the problem instance (although in our case, the scaling increases the number of chain-
of-thought steps).

Given n, we will construct a (2, 3)-BAPO-CoT that simulates M on inputs of size at most n. Let
Γ = Σ ∪ Λ ∪Q ∪ { , □} be the token set for the BAPO-CoT. The BAPO-CoT will simulate M by
writing out the contents of the tape at each step of M , along with the current state, which will be
written to the left of the tape cell where the tape head is currently positioned. Since only s(n) tape
cells are required, the BAPO-CoT will simulate a tape with exactly s(n) cells. So, on input x1 . . . xn,
the first state the BAPO-CoT will write out is q0x1 . . . xn . . . , with total length c = s(n) + 1,
which we will call the chunk size. Let chunk(i) = ⌊i/c⌋. We use m to denote the current length of
the BAPO-CoT’s input (with m = n at the first step) and y = y1, . . . , ym the current BAPO-CoT
input itself (with y1 . . . yn = x).

The prefix oracle f is defined as follows:

f(y1 . . . yk) =


00 if the last symbol of y1 . . . yk is some q ∈ Q

01 if the symbol to the right of the last q ∈ Q in y1 . . . yk is 0
10 if the symbol to the right of the last q ∈ Q in y1 . . . yk is 1
11 otherwise (y1 . . . yk contains no symbols in Q; every q is followed by 0 or 1).

Thanks to this f , the suffix oracle always knows the symbol to the right of the state from the previous
chunk. The attention function g is defined as follows:

g(yk+1 . . . ym, k, yi, i) =


1 if i = n− c

1 if i = n− c− 1

1 if chunk(i) = chunk(n)− 1 and yi ∈ Q

0 otherwise

Thanks to this g, the suffix oracle always knows (a) the symbol at the current chunk offset index in
the previous chunk, (b) the symbol before the one from (a), and (c) the state in the previous chunk
and its chunk offset index (i.e., the tape head position). If any of these positions are in the suffix,
they are directly observed by the suffix oracle and if they are in the prefix, then they are contained
in the attended set G.

The suffix oracle h performs the following procedure given f(y1 . . . yk), G, k, and yk+1 . . . ym:

1. If chunk(n) = 0, return

2. If chunk(n) = 1:

(a) If n = c+ 1: return q0
(b) Else: return yn−c−1 (yn−c−1 is either in the suffix or in G)

3. Else: let i = n mod c. Let j be the head position in the previous chunk and let q be the
state in the previous chunk. Note that q, j, yn−c, and yn−c−1 are all known to h, since they

22

are either included in the suffix or in G (j is computable from the positional encoding of q).
Moreover, λ = ychunk(n−c)·c+j+1 (the symbol under the tape head in the previous chunk)
is either in the suffix or can be inferred given the suffix and f(y1 . . . yk). The suffix oracle
can thus compute the step of the Turing machine δ(q, λ) = (q′, λ′, D), where q′ ∈ Q is the
next state, λ′ is the symbol written to the tape, and D ∈ {L,R} is the direction the tape
head moves.

First, we check to see if M has halted. If q′ = qaccept: if ym is not 1, return 1, otherwise
return □. If q′ = qreject: if xm is not 0, return 0, otherwise return □. This ensures we output
the answer and then terminate. Otherwise, we proceed to simulate M . To output the next
symbol given a step of the Turing machine M applied to the previous chunk (see Figure 8):

(a) If i = j − 1: if D = L, return q′; if D = R, return yn−c

(b) Else if i = j: if D = L, return xn−c−1; if D = R, return λ′

(c) Else if i = j + 1: if D = L, return λ′; if D = R, return q′

(d) Else: return yn−c

This procedure results in the updated tape of M being written out symbol-by-symbol into the next
chunk. Since M decides L, it will eventually halt, at which point the above BAPO-CoT outputs the
answer (0 or 1) and then outputs □ to terminate.

C Experiments

C.1 Implementation Details

All models were forced to output a pre-set JSON schema, shown in the tables below. The model
versions and API settings were as follows:

Family Model Version Specifier Temperature Other
Params

GPT 4o gpt-4o-2024-11-20 0
4o mini gpt-4o-mini-2024-07-18 0
o3 o3-2025-04-16 n/a {effort:

medium}
Claude 3.5 Sonnet claude-3-5-sonnet-20241022 0

3.5 Haiku claude-3-5-haiku-20241022 0

Gemini 1.5 Pro gemini-1.5-pro-002 0
1.5 Flash gemini-1.5-flash-002 0
2.5 Flash gemini-2.5-flash-preview-04-17 0

The experiments took ≤ 1 day and ∼$400 of API credits to run ($93 of which were for o3 alone),
with preliminary experiments taking an additional ∼$150 of API credits.

C.1.1 Base Experiments

Below are the instructions used for each task, illustrated using one example instance:

Experiment Example Prompt Example Output

23

INDEX Output the element at the
specified index (starting at 0)
of the list: List: [{"index":
0, "value": 117}, {"index": 1,
"value": 30}, {"index": 2,
"value": 169}, {"index": 3,
"value": 113}, {"index": 4,
"value": 52}, {"index": 5,
"value": 168}] Index: 0

{"element value":
117}

EQUALITY Output true if the left and
right lists are identical:
Left: [1, 1, 0, 1, 0, 1, 1,
0, 0, 1] Right: [0, 1, 0, 1, 0,
1, 1, 0, 1, 1]

{"equals": false}

MATCH2 You are given a list of numbers
and a number x. Determine
whether list[i] + x = 0 for
some i. List: [-300, 62, 144,
-490, 469] x: -144

{"found i": true}

REACHABILITY You are given an directed graph
with 6 nodes as a list of edges
(i, j). An edge (i,j) means
that node i points to j. The
edges in G are: [[5, 4], [2,
0], [4, 1], [3, 2]] Is there a
path from node 5 to node 1?

{"path exists": true}

MAJORITY Output true if the majority of
elements of this list are 1,
else false: [0, 1, 0, 0, 1, 1,
1]

{"majority is 1s":
true}

MATCH3 You are given a list of numbers
and a number x. Determine
whether list[i] + list[j] + x
= 0 for some i, j. List: [508,
567, -178, 382, -240] x: -890

{"found i and j":
true}

DISJOINTNESS These left and right lists
represent sets using binary
indicators for each item.
Output true if these sets are
disjoint and false if they have
a non-empty intersection. That
is, output true if and only if
there is no index where both
lists contain 1. Left: [0, 1,
1, 1, 0, 1] Right: [0, 0, 0, 0,
1, 0]

{"is disjoint": true}

INTDISJOINTNESS Output true if left and right
lists are disjoint (share no
elements) and false otherwise:
Left: [73, 290, 133, 342, 142,
279] Right: [236, 16, 306, 144,
279, 242]

{"is disjoint":
false}

UNIQUE Output the element in the list
that occurs only once: [4, 4,
4, 4, 6]

{"unique": 6}

24

SETDIFF You are given two sets of
numbers A and B. Output the
element in set A that is not
in set B. If there is no such
element, output -1. Set A: [3,
5] Set B: [5, 2, 3]

{"element": -1}

To generate the problem instances, we used the procedures below. We use a grid of n ∈
{6, 50, 100, 200} but resulting list lengths might deviate slightly if a problem requires odd num-
bers. We generated an equal amount and positive and negative instances where applicable.

• INDEX: For each run, sample a permutation π of {0, . . . , 199}; set x = π1:n−1, choose
i ∼ Unif(0, n−1).

• EQUALITY: Sample x ∈ {0, 1}n uniformly. Let y = x for positives. For negatives, choose
i ̸= j with xi ̸= xj , swap yi, yj .

• MATCH2: Generate permutation π ∼ Perm(0, 999). Set x = π1:n. Then, to generate
– Positives: inject −xn into x1:n−1 at a random position
– Negatives: ensure −xn /∈ x1:n by replacing it with a random element from π.

• REACHABILITY: Construct k = 2 node-disjoint paths of length ℓ = n/k−1. Let graph G
be union of paths, map node names to integers via random bijection σ. Choose (s, t) such
that:

– Positives: s, t on same path⇒ path exists
– Negatives: s, t on different paths⇒ no path

• MAJORITY: Generate x ∈ {0, 1}n+1 such that majority bit occurs ⌈(n + 1)/2⌉ times.
Shuffle x.

• MATCH3: Sample π ∼ Perm(−250, 1000). Reject if x = π1:n has a triplet that satisfies
xi+xj+xn = 0 (negative). For positives, generate negative instance and then select i ̸= j,
set xn = −(xi + xj).

• DISJOINTNESS: Sample (xi, yi) uniformly from {(0, 0), (0, 1), (1, 0)}.
– Positives: already disjoint
– Negatives: pick j, set aj = bj = 1

• INTDISJOINTNESS: This is slightly different from DISJOINTNESS to avoid shortcuts from
varying set sizes. Generate permutation π ∼ Perm(0, 399). Set x = π1:n/2 and y =
πn/2:n. For negatives, set xj = yj for random index j.

• UNIQUE: Generate permutation π ∼ Perm(0, n − 1). Then, place one unique element u
and fill remaining with elements of frequency ≥ 2 by drawing from π1:n/4.

• SETDIFF: Generate permutation π ∼ Perm(0, n − 1). Sample unique element u. Split π
into parts and recombine:

A = S ∪ {u}, Bpos = S ∪ V ∪ {u}, Bneg = S ∪ V ∪ {v}
where S = shared, V = unique-to-B, v = randomly sampled replacement element from S.
|S| = |V |+ 1.

C.1.2 CoT Experiments

For the chain of thought variants, we prepended the following instructions:

Think step by step on the CoT, but stay under 250 words.

The output JSON object then contained a cot field before the actual answer, e.g.,

{"cot": "To determine if there exist indices i and j ...", "found_i_and_j": true}

Additionally, we ran experiments with two reasoning models that also supported structured outputs,
OpenAI’s o3 and Google’s Gemini Flash 2.5. Model version and parameters can be found above.
Figure 9 shows the number of reasoning tokens the models used.

25

10 50 100 200
10

100

1000

10k

100k

10 50 100 200 10 50 100 200

10

100

1000

10k

100k
model

Gemini 2.5 Flash
o3

n n n

re
as

on
in

g
to

ke
ns

re
as

on
in

g
to

ke
ns

R����������� M������� M����3

I���� E������� M����2

Figure 9: Number of reasoning tokens used by o3 and Gemini 2.5 Flash for each problem. The
models perform well on BAPO-hard tasks in line with our BAPO-CoT result, but they use thousands
or even tens of thousands of CoT tokens to do so.

C.1.3 Real-World Experiments

Experiment Example Prompt Example Output
VARIABLETRACKING In the Python code below,

is x7 == "a" at the end of
execution?
‘‘‘python
x6 = "a"
x4 = "b"
x0 = x6
x2 = x4
x3 = x0
x8 = x2
x9 = x3
x7 = x3
x1 = x8
x5 = x8
‘‘‘

{"is equal": true}

26

MAJORITYREVIEW Output true if the majority
of the following reviews is
positive, else false.
[{ "id": 0, "review":
"I loved the grand
entrance hall with its
two impressive chandaliers
and a player grand piano.
I took advantage of the
exercise room in the
basement and loved getting
a coffee from the bar
to take up to my room.
The cleaning staff were
particularly pleasant,
greeting me every time we
happened to pass. The lift
[...]

{"majority is positive":
true}

FINDNEGATIVEREVIEW Return the id of the most
negative review.
[{ "id": 0, "review":
"Lovely hotel and great
location. I can recomend
this hotel, the location
is great for all tourist
attractions and the
airport. Very friendly
staff and worth every
penny." }, { "id": 1,
"review": "We stayed at
the Boston Park Plaza Hotel
in April and couldn’t have
been happier. The hotel
is centrally located near
the Public Gardens, Theater
District and Boston Commons
which [...]

{"most negative": 8}

Dataset Processing Details. We used hotel reviews from the SPACE dataset3 [2]. Reviews with
a rating of 5 get a positive labels, reviews with a rating of 1 get a negative label to ensure a clear
separation between classes. We annotate the resulting reviews with GPT4.1-nano to check for con-
sistency and only keep the ones where the original label agrees with the LLM annotation. Finally,
we only keep hotels with at least 101 positive and 53 negative labels to make sure we have a large
enough set to subsample from.

• VARIABLETRACKING: Follow the same process as for REACHABILITY to construct a
graph with k = 2 paths. Let these two paths be p and p′.

– Then choose i, j with j < i and insert a cross path edge from pj → p′i, erasing
p′i−1 → p′i.

– Map nodes to variable names x0, x1, . . . via random bijection and initialize all nodes
with no incoming edges to a letter from the alphabet.

– Choose s and t as with REACHABILITY

– Finally, generate assignment statements via sampling a random topological ordering
of the overall graph.

3Available at https://github.com/stangelid/qt under an MIT License.

27

https://github.com/stangelid/qt

• MAJORITYREVIEW: For each label y ∈ {True,False}, sample n/2+ s reviews of label y,
and n/2 of the opposite label, where s = 3 is a slack variable to help reduce any remaining
noise in the reviews. Shuffle the combined list of reviews.

• FINDNEGATIVEREVIEW: Go through hotels in round-robin fashion. Sample n−1 positive
and 1 negative review to generate data for one task instance. Shuffle those in random order.

C.2 Additional Results

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n

ac
cu

ra
cy

D����������� I��D�����������

Figure 10: Additional results on BAPO-easy problems. INTDISJOINTNESS is a variant of DIS-
JOINTNESS where sets are represented by the indices of elements they contain instead of binary
vectors to show that positional encodings rather than BAPO-hardness are likely to be responsible
for the poor performance on this task.

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n

ac
cu

ra
cy

D����������� (�/ C�T) I��D����������� (�/ C�T)

Figure 11: Adding CoT to BAPO-easy problems provides a boost to larger models on DISJOINT-
NESS, especially Gemini 1.5 Pro, while performance remains high on the other problems..

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n

ac
cu

ra
cy

U����� S��D���

Figure 12: The hardness of UNIQUE and SETDIFF scales with the vocabulary size which we try
to increase via input length n here. Drops still occur, but appear to be less pronounced, perhaps
because pre-trained LLMs have fixed token representations and scaling input length is only a proxy
for increased vocabulary size.

28

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

model
GPT-4o
GPT-4o mini
Claude 3.5 Sonnet
Claude 3.5 Haiku
Gemini 1.5 Pro
Gemini 1.5 Flash

n n

ac
cu

ra
cy

U����� (�/ C�T) S��D��� (�/ C�T)

Figure 13: Adding CoT to BAPO-Σ-hard problems does not result in substantial changes. We
conjecture that this is again due to the static nature of the underlying vocabulary representations.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state in the abstract and introduction what are hypotheses are, what
our theoretical results state, and what our experiments indicate.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

30

Justification: All results are stated precisely and have proofs in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix C.1 includes all experimental details, including exact models,
prompts, and data generation procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of our code is available at https://github.com/microsoft/bapo.
The code includes instructions for downloading public data and for running the experi-
ments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details are available in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As described in Section 4, all of our plots show 95% t-test confidence inter-
vals across n = 100 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://github.com/microsoft/bapo
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix C.1 states that the experiments are reproducible with in less than a
day with ∼$400 of API credits, with preliminary experiments taking an additional ∼$150
of API credits.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We see no potential for societal harm or other ethical concerns in this research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As our work proposes and analyzes a mathematical model of LLM capability,
we see no broader societal impact.

Guidelines:

33

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not provide data or models (in the sense of an LLM; we do
introduce a mathematical model).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite authors of the SPACE dataset, link to the data source, and explicitly
mention the MIT License under which it is released in Appendix C.1.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

34

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We attach our code along with documentation as Supplementary Material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not concern research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not concern research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

35

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are our object of study, but they are not a part of our research method-
ology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	A communication model of LLMs
	BAPO theory
	One attention token is all you need to solve hard communication problems
	BAPO complexity
	BAPOs with chain of thought

	BAPO complexity predicts empirical LLM failures
	BAPO hardness aligns well with LLM failures
	Chain-of-thought reasoning helps on BAPO-hard problems
	BAPO hardness in real-world tasks

	Related work
	Discussion
	Conclusions
	Full problem definitions
	Proofs
	Experiments
	Implementation Details
	Base Experiments
	CoT Experiments
	Real-World Experiments

	Additional Results

