
Supercharging Graph Transformers with Advective Diffusion

Qitian Wu 1 Chenxiao Yang 2 Kaipeng Zeng 3 Michael Bronstein 4 5

Abstract
The capability of generalization is a cornerstone
for the success of modern learning systems. For
non-Euclidean data, e.g., graphs, that particu-
larly involves topological structures, one impor-
tant aspect neglected by prior studies is how ma-
chine learning models generalize under topologi-
cal shifts. This paper proposes ADVDIFFORMER,
a physics-inspired graph Transformer model de-
signed to address this challenge. The model is
derived from advective diffusion equations which
describe a class of continuous message passing
process with observed and latent topological struc-
tures. We show that ADVDIFFORMER has prov-
able capability for controlling generalization er-
ror with topological shifts, which in contrast can-
not be guaranteed by graph diffusion models,
i.e., the generalization of common graph neural
networks in continuous space. Empirically, the
model demonstrates superiority in various predic-
tive tasks across information networks, molecular
screening and protein interactions1.

1. Introduction
Learning representations for non-Euclidean data is essential
for geometric deep learning. Graph-structured data in partic-
ular has attracted increasing attention, as graphs are a very
popular mathematical abstraction for systems of relations
and interactions that can be applied from microscopic scales
(e.g. molecules) to macroscopic ones (social networks).
Common frameworks for learning on graphs include graph
neural networks (GNNs) (Scarselli et al., 2008; Gilmer et al.,
2017; Kipf & Welling, 2017), which operate by propagating
information between adjacent nodes of the graph networks,

1Eric and Wendy Schmidt Center, Broad Institute of MIT and
Harvard 2Toyota Technological Institute at Chicago 3Shanghai Jiao
Tong University 4University of Oxford 5Aithyra. Correspondence
to: Qitian Wu <wuqitian@broadinstitute.org>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Codes are available at https://github.com/
qitianwu/AdvDIFFormer

and graph Transformers (Ying et al., 2021; Wu et al., 2021;
Rampásek et al., 2022; Wu et al., 2022b), which propagate
information among arbitrary node pairs through global at-
tention. GNNs can be seen as discretized versions of local
diffusion equations on graphs (Atwood & Towsley, 2016;
Klicpera et al., 2019; Chamberlain et al., 2021a), while
graph Transformers can be considered as the counterparts
of non-local diffusion (Wu et al., 2023; 2024c). Linking
graph learning models with diffusion equations offers pow-
erful tools from the domain of partial differential equations
(PDEs), allowing us to study the expressive power (Bod-
nar et al., 2022), behaviors such as over-smoothing (Rusch
et al., 2023) and over-squashing (Topping et al., 2022), the
settings of missing features (Rossi et al., 2022), and guide
architectural choices (Di Giovanni et al., 2022).

While significant efforts have been devoted to understanding
the expressive power of graph learning models, the gener-
alization capabilities of such methods are largely an open
question. Recent works attempt to study generalization of
graph learning models (particularly GNNs) from various
perspectives such as extrapolation in feature space (Xu et al.,
2021), subgroup fairness (Ma et al., 2021), invariance prin-
ciple (Wu et al., 2022a), feature propagation (Yang et al.,
2023), causality (Wu et al., 2024a), and training dynam-
ics (Yang et al., 2024). However, most of these works focus
on the distribution shifts of features and labels. In many
critical real-world settings, the training and testing graph
topologies can be generated from different distributions
(e.g., molecular structures with diverse drug likeness) (Koh
et al., 2021; Hu et al., 2021; Bazhenov et al., 2023; Zhang
et al., 2023), a phenomenon we refer to as “topological
distribution shift”. This can be a predominant nature of non-
Euclidean data in contrast with commonly studied feature
and label shifts in Euclidean space. Despite its practical sig-
nificance, how to enable graph learning models to generalize
under topological shifts still remains unclear.

In this paper, we aim to address generalization under topo-
logical shifts through the lens of a physics-inspired graph
learning model dubbed as Advective Diffusion Transformer
(ADVDIFFORMER). The model is derived from advective
diffusion equations which describe a class of continuous
message passing process with observed and latent topo-
logical structures. On top of this, we connect advective
diffusion with a graph Transformer architecture for gener-

1

https://github.com/qitianwu/AdvDIFFormer
https://github.com/qitianwu/AdvDIFFormer

Supercharging Graph Transformers with Advective Diffusion

advection: local message passing
diffusion: global attentive propagation

latent spaceobserved
space

Advective Diffusion Transformer

output
space

Figure 1: Illustration of Advective Diffusion Transformers.

alization against topological shifts (Fig. 1): the non-local
diffusion term (instantiated as global attention) aims to cap-
ture latent interactions learned from data; the advection term
(instantiated as local message passing) accommodates the
topological features pertaining to observed graphs.

To justify the model designs, we show that the closed-form
solution of this advective diffusion system possesses the
capability to control the generalization error caused by topo-
logical shifts, which further guarantees the desired level of
generalization. In contrast, commonly used local diffusion
models that can be considered as a simplified variant of our
model leads to the generalization error whose upper bound
exponentially grows with topological shifts.

For implementation, we resort to numerical scheme based on
the Padé-Chebyshev theory (Golub & Van Loan, 1989) for
efficiently computing the diffusion equation’s closed-form
solution. Experiments show that our model offers supe-
rior generalization performance across various downstream
predictive tasks in diverse domains, including information
networks, molecular screening, and protein interactions.

2. Background and Preliminaries
We recapitulate diffusion equations on manifolds (Freidlin
& Wentzell, 1993; Medvedev, 2014) and their connection
with graph learning.

Diffusion on Riemannian manifolds. Let Ω denote an
abstract domain, which we assume here to be a Riemannian
manifold (Eells & Sampson, 1964). A key feature distin-
guishing an n-dimensional Riemannian manifold from a
Euclidean space is the fact that it is only locally Euclidean,
in the sense that at every point u ∈ Ω one can construct
n-dimensional Euclidean tangent space TuΩ ∼= Rn that
locally models the structure of Ω. The collection of such
spaces (referred to as the tangent bundle and denoted by TΩ)
is further equipped with a smoothly-varying inner product

(Riemannian metric).

Now consider some quantity (e.g., temperature) as a func-
tion of the form q : Ω → R, which we refer to as a
scalar field. Similarly, we can define a (tangent) vector field
Q : Ω → TΩ, associating to every point u on a manifold a
tangent vector Q(u) ∈ TuΩ, which can be thought of as a
local infinitesimal displacement. We use Q(Ω) and Q(TΩ)
to denote the functional spaces of scalar and vector fields,
respectively. The gradient operator ∇ : Q(Ω) → Q(TΩ)
takes scalar fields into vector fields representing the local
direction of the steepest change of the field. The diver-
gence operator is the adjoint of the gradient and maps in the
opposite direction, ∇∗ : Q(TΩ) → Q(Ω).

A manifold diffusion process models the evolution of a
quantity (e.g., chemical concentration) due to its differ-
ence across spatial locations on Ω. Denoting by q(u, t) :
Ω × [0,∞) → R the quantity over time t, the process is
described by a PDE (diffusion equation) (Romeny, 2013):

∂q(u, t)

∂t
= ∇∗ (S(u, t)⊙∇q(u, t)) , t ≥ 0, u ∈ Ω,

with initial conditions q(u, 0) = q0(u) and possibly ad-
ditional boundary conditions if Ω has a boundary. S de-
notes the diffusivity of the domain. It is typical to dis-
tinguish between an isotropic (location-independent diffu-
sivity), non-homogeneous (location-dependent diffusivity
S = s(u) ∈ R), and anisotropic (location- and direction-
dependent S(u) ∈ Rn×n) settings. In the cases studied be-
low, we assume the dependence of diffusivity on locations
is via a function of the quantity itself, i.e., S = S(q(u, t)).

Diffusion on Graphs. Recent works adopt diffusion equa-
tions as a foundation principle for graph representation learn-
ing (Chamberlain et al., 2021a;b; Thorpe et al., 2022; Bod-
nar et al., 2022; Choi et al., 2023; Rusch et al., 2023; Wu
et al., 2024b), employing analogies between calculus on
manifolds and graphs. Let G = (V, E) be a graph with
nodes V and edges E , represented by the |V| × |V| ad-
jacency matrix A. Let X = [xu]u∈V denote a |V| × D
matrix of node features, analogous to scalar fields on
manifolds. The graph gradient (∇X)uv = xv − xu de-
fines edge features for (u, v) ∈ E , analogous to vector
fields on manifolds. Similarly, the graph divergence of
edge features E = [euv](u,v)∈E , defined as the adjoint
(∇∗E)u =

∑
v:(u,v)∈E euv, produces node features. Dif-

fusion models replace discrete GNN layers with continu-
ous time-evolving node embeddings Z(t) = [zu(t)], where
zu(t) : [0,∞) → Rd driven by the diffusion equation:

∂Z(t)

∂t
= ∇∗ (S(Z(t);A)⊙∇Z(t)) , t ≥ 0, (1)

with initial conditions Z(0) = ϕenc(X) where ϕenc is
a node-wise MLP encoder and w.l.o.g., the diffusivity

2

Supercharging Graph Transformers with Advective Diffusion

S(Z(t);A) over the graph can be defined as a |V| × |V|
matrix-valued function dependent on A, which measures
the rate of information flows between node pairs. With the
graph gradient and divergence, Eqn. 1 becomes

∂Z(t)

∂t
= (C(Z(t);A)− I)Z(t), 0 ≤ t ≤ T, (2)

with initial conditions Z(0) = ϕenc(X) where C(Z(t);A)
is a |V|× |V| coupling matrix associated with the diffusivity.
Eqn. 2 yields a dynamics from t = 0 to an arbitrary given
stopping time T , where the latter yields node representations
for prediction, e.g., Ŷ = ϕdec(Z(T)). The coupling matrix
determines the interactions between different nodes in the
graph, and its common instantiations include normalized
graph adjacency (non-parametric) and learnable attention
matrix (parametric), in which cases the finite-difference
numerical iterations for solving Eqn. 2 correspond to the
discrete propagation layers of common GNNs (Chamberlain
et al., 2021a) and graph Transformers (Wu et al., 2023;
2024c) (see Appendix A for details).

It is typical to tacitly make a closed-world assumption, i.e.,
the graph topologies of training and testing data are gener-
ated from the same distribution. However, the challenge of
generalization arises when the testing topology is different
from the training one. In such an open-world regime, it still
remains unclear how graph diffusion equations and, more
broadly, learning-based models on graphs (e.g., GNNs) ex-
trapolate and generalize to new unseen structures.

3. Generalization by Advective Diffusion
As a prerequisite for analyzing the generalization behaviors
of learning-based models on graphs, we need to charac-
terize how topological shifts occur in nature. In general
sense, extrapolation is impossible without any exposure to
the new data or prior knowledge about the data-generating
mechanism. In our work, we assume testing data is strictly
unknown during training, in which case structural assump-
tions become necessary for authorizing generalization.

3.1. Problem Formulation: Data Generation Hypothesis

We present the causal mechanism of graph data genera-
tion in Fig. 2 as a hypothesis, inspired by the graph lim-
its (Lovász & Szegedy, 2006; Medvedev, 2014) and random
graph models (Snijders & Nowicki, 1997). In graph theory,
the topology of a graph G = (V, E) can be assumed to be
generated by a graphon (or continuous graph limit), a ran-
dom symmetric measurable function W : [0, 1]2 → [0, 1],
which is an unobserved latent variable. In our work, we gen-
eralize this data-generating mechanism to include alongside
graph adjacency also node features and labels:

i) Each node u ∈ V has a latent i.i.d. variable Uu ∼ U [0, 1].
The node features are a random variable X = [Xu] gen-

Figure 2: The data-generating mechanism with topological
shifts caused by environment E. The solid (resp. dashed)
nodes represents observed (resp. latent) random variables.

erated from each Uu through a certain node-wise function
Xu = g(Uu;W). We denote by matrix X a particular real-
ization of the random variable X .

ii) Similarly, the graph adjacency A = [Auv] is a ran-
dom variable generated through a pairwise function Auv =
h(Uu, Uv;W,E) additionally dependent on the environment
E. The change of E happens when it transfers from train-
ing to testing, resulting in a different distribution of A. We
denote by A a particular realization of the adjacency matrix.

iii) The label Y can be specified in certain forms. As we
assume in below, Y is generated by a function over sets,
Y = r({Uv∈V}, A;W). Denote by Y a realization of Y .

The above process formalizes the data-generating mecha-
nism behind various data of inter-dependent nature, where
the graph data (X,A,Y) is generated from the joint dis-
tribution p(X,A, Y |E) with a specific environment. The
learning problem boils down to finding parameters θ of a
parametric function Γθ(A,X) that establishes the predic-
tive mapping from observed node features X and graph
adjacency A to the label Y. Γθ is typically implemented as
a GNN, which is expected to possess sufficient expressive
power (in the sense that ∃θ such that Γθ(A,X) ≈ Y) as
well as generalization capability under topological shifts
(i.e., when the observed graph topology varies from training
to testing, which in our model amounts to the change in E).
While significant attention in the literature has been devoted
to the former property (Morris et al., 2019; Xu et al., 2019;
Bouritsas et al., 2023; Papp et al., 2021; Balcilar et al., 2021;
Bodnar et al., 2022); the latter is largely an open question.

3.2. Proposed Model: Advective Diffusion Transformers

To deal with the problem formulated in the previous subsec-
tion, we next present a new diffusion equation model that of-
fers a provable level of generalization in the data-generating
mechanism as stipulated in Sec. 3.1. The model is inspired
by a particular class of diffusion equations, called advec-
tive diffusion, that describe common physical phenomenons
driven by both diffusion and advection effects.

3

Supercharging Graph Transformers with Advective Diffusion

Advective Diffusion Equations. The classic advective dif-
fusion is commonly used for characterizing physical sys-
tems with convoluted quantity transfers, where the term
advection refers to the evolution caused by the movement
of the diffused quantity (Chandrasekhar, 1943). Consider
the abstract domain Ω of our interest defined in Sec. 2, and
assume V (u, t) ∈ TuΩ (a vector field in Ω) to denote the
velocity of the particle at location u and time t. The advec-
tive diffusion of the physical quantity q on Ω is governed by
the PDE as (Leveque, 1992): ∂q(u,t)

∂t =

∇∗ (S(u, t)⊙∇q(u, t)) + β∇∗ (V (u, t) · q(u, t)) , (3)

where t ≥ 0, u ∈ Ω and β ≥ 0 is a weight for the advection
term. For example, if we consider q(u, t) as the water salin-
ity in a river, then Eqn. 3 describes the temporal evolution
of salinity at each location that equals to the spatial trans-
fers of both diffusion process (caused by the concentration
difference of salt and S reflects the molecular diffusivity in
the water) and advection process (caused by the movement
of the water and V characterizes the flowing directions).

Advective Diffusion on Graphs. Similarly, on a graph
G = (V, E), we can define the velocity for each node u as
a |V|-dimensional vector-valued function V(t) = [vu(t)].
We thus have (∇∗(V(t) ·Z(t)))u =

∑
v∈V vuv(t)zv(t) and

the advective diffusion equation on graphs:

∂Z(t)

∂t
= [C(Z(t)) + βV(t)− I]Z(t), 0 ≤ t ≤ T. (4)

We next instantiate the coupling matrix and the velocity to
endow the model with generalizability under topological
shifts, by drawing inspirations from physical phenomenons.

◦ Non-local diffusion as global attention. The diffusion
process led by the concentration gradient acts as an internal
driving force, where the diffusivity keeps invariant across
environments (e.g., the molecular diffusivity stays constant
in different rivers). With this intuition in mind, we consider
the non-local diffusion operator allowing instantaneous in-
formation flows among arbitrary locations (Chasseigne et al.,
2006). In the context of learning on graphs, the non-local
diffusion can be seen as generalizing the feature propagation
to a complete or fully-connected (latent) graph (Wu et al.,
2023; 2024c), in contrast with common GNNs that allow
message passing only between neighboring nodes. Formally
speaking, we can define the gradient and divergence opera-
tors on a complete graph: (∇X)uv = xv − xu (u, v ∈ V)
and (∇∗E)u =

∑
v∈V euv (u ∈ V). This resonates with the

latent interactions among nodes, determined by the under-
lying data manifold, that induce all-pair information flows
over a complete graph and stay invariant w.r.t. the change
of E. We thus instantiate C as a global attention matrix that
computes the similarities between arbitrary node pairs:

C = [cuv]u,v∈V , cuv =
η(zu(0), zv(0))∑

w∈V η(zu(0), zw(0))
, (5)

where η is a learnable pairwise similarity function.

◦ Advection as local message passing. The advection pro-
cess driven by the directional movement belongs to an exter-
nal force, with the velocity depending on contexts (e.g., dif-
ferent rivers). This is analogous to the environment-sensitive
graph topology that is informative for prediction in specific
environments. We instantiate the velocity as the normal-
ized graph adjacency, i.e., V = D−1/2AD−1/2, reflecting
observed structural information, where D is the diagonal
degree matrix of A. Then our advective diffusion model
can be formulated as:

∂Z(t)

∂t
= [C+ βV − I]Z(t), 0 ≤ t ≤ T, (6)

with initial conditions Z(0) = ϕenc(X) where β ∈ [0, 1]
is a hyper-parameter. The integration of non-local diffu-
sion (implemented through attention) and advection (imple-
mented as MPNNs) give rise to a new architecture, which we
call Advective Diffusion Transformer (ADVDIFFORMER).

Remark. Eqn. 6 has a closed-form solution Z(t) =
e−(I−C−βV)tZ(0). A special case of β = 0 (no advec-
tion) can be used in situations where the graph structure is
not useful. Moreover, one can extend Eqn. 6 to a non-linear
equation with time-dependent C(Z(t)), in which case the
equation has no closed-form solution and needs numerical
schemes for solving. Similarly to (Di Giovanni et al., 2022),
we found in our experiments a simple linear diffusion to
be sufficient to yield promising performance. We therefore
leave the study of the non-linear variant for the future.

3.3. Theoretical Justification

We proceed to analyze the generalization capability of our
proposed model w.r.t. topological shifts as defined in Sec 3.1.
We are interested in the generalization error of Γθ instan-
tiated as the continuous diffusion model in Eqn. 6, when
transferring from training data generated with the environ-
ment Etr to testing data generated with Ete. The latter
causes varied graph topologies as stipulated in Sec. 3.1.

We denote by {(X(i),A(i),Y(i))}Ntr
i the training data set

sized Ntr generated from p(X,A, Y |E = Etr), and l(·, ·)
any bounded loss function. The training error (i.e., empirical
risk) can be defined as Remp(Γθ;Etr) ≜

1

Ntr

∑Ntr

i=1
l(Γθ(X

(i),A(i)),Y(i)). (7)

Our target is to reduce the generalization error on testing
data generated from p(X,A, Y |E = Ete): R(Γθ;Ete) ≜

E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)]. (8)

Particularly, if Ete = Etr, the learning setting degrades
to the standard one commonly studied in the closed-world

4

Supercharging Graph Transformers with Advective Diffusion

assumption, wherein the in-distribution generalization error
has an upper bound (Shalev-Shwartz & Ben-David, 2014):

R(Γθ;Etr)−Remp(Γθ;Etr) ≤ Din(Γθ, Etr, Ntr)

= 2H(Γθ) +O
(√

log(1/δ)/Ntr

)
,

(9)

where H(Γθ) denotes the Rademacher complexity of the
function class induced by Γθ, and Din(Γθ, Etr, Ntr) is de-
termined by training data size and model complexity.

When Ete ̸= Etr that occurs in the open-world regime, i.e.,
our focused learning setting, the analysis becomes more dif-
ficult due to the topological shifts. In the diffusion equation
(either Eqn. 6 or 2), the change of graph topologies leads to
the change of node representations (solution of the diffusion
equation Z(T)). Thereby, the output of the diffusion pro-
cess can be expressed as Z(T ;A) = f(Z(0),A). Our first
result below decouples the out-of-distribution generalization
gap R(Γθ;Ete)−Remp(Γθ;Etr) into three error terms.

Theorem 3.1. Assume l and ϕdec are Lipschitz continu-
ous. For any graph data generated with the mechanism of
Sec. 3.1, it holds with the probability 1− δ that the general-
ization gap of Γθ satisfies

|R(Γθ;Ete)−Remp(Γθ;Etr)| ≤ Din(Γθ, Etr, Ntr)

+O(EA∼p(A|Etr),A′∼p(A|Ete)[∥Z(T ;A
′)− Z(T ;A)∥2])︸ ︷︷ ︸

Dood−model(Γθ,Etr,Ete)

+O(E(A,Y)∼p(A,Y |Etr),(A′,Y′)∼p(A,Y |Ete) [∥Y
′ −Y∥2])︸ ︷︷ ︸

Dood−label(Etr,Ete)

.

Remark. Since Din is independent of the testing data gener-
ated with Ete ̸= Etr, the impact of topological shifts on the
out-of-distribution generalization error is largely dependent
on Dood−model and Dood−label: the former reflects the vari-
ation magnitude of Z(T ;A) yielded by Γθ w.r.t. varying
topologies; the latter measures the difference of labels gener-
ated with different environments. Notice that Dood−label is
fully determined by the data-generating mechanism, while
Dood−model is mainly dependent on the model Γθ, particu-
larly the sensitivity of node representations w.r.t. topological
shifts. We thus next zoom in on the specific design of Γθ

as Eqn. 6, and the next result shows the upper bound of the
change rate of Z(T ;A) w.r.t. variation of graph topologies.

Theorem 3.2. For any graph data generated with the mech-
anism of Sec. 3.1, if g is injective, then the model Eqn. 6 can
reduce the variation magnitude of the node representation
∥Z(T ;A′)−Z(T ;A)∥2 to any orderO(ψ(∥∆Ã∥2)) where
ψ denotes an arbitrary polynomial function, ∆Ã = Ã′−Ã
and Ã = D−1/2AD−1/2.

This suggests that the advective diffusion model is capable
of controlling the change rate of node representations to
arbitrary rates w.r.t. ∥∆Ã∥2. The injectivity of g is a mild

condition since g establishes a mapping from a smooth and
compact latent space to a high-dimensional space. Apply-
ing Theorem 3.1 we have the generalization error of the
advective diffusion model.

Corollary 3.3. On the same condition of Theorem 3.1
and 3.2, the model-dependent generalization error bound
of Eqn 6 can be reduced to arbitrary polynomial orders
w.r.t. topological shifts, i.e., Dood−model(Γθ, Etr, Etr) =
O(EA∼p(A|Etr),A′∼p(A|Ete)[ψ(∥∆Ã∥2)]).

This implies that the generalization error of the model
in Eqn. 6 can be controlled within an arbitrary rate w.r.t.
∥∆Ã∥2. The model has provable capacity for achieving
a desired level of generalization with topological shifts.
To verify the efficacy of the model, we consider syn-
thetic data that simulates the topological shifts as defined
in Sec. 3.1 and investigate into three types of topologi-
cal shifts as shown in Fig. 3 (see experimental details in
Sec. 5.1). We found that our model (ADVDIFFORMER-
I and ADVDIFFORMER-S whose implementation is pre-
sented in Sec. 4) keeps the testing error nearly constant as
∥∆Ã∥2 increases.

3.4. Comparisons with Other Models

To further illuminate the effectiveness of the proposed
model, we next compare with two related models that are
commonly adopted and can be considered as the simplified
variants of our model.

Local Diffusion Model. We first consider a typical
model instantiation, i.e., local diffusion equation on graphs,
wherein the model discards the advection term in Eqn. 6
and degrades to Eqn. 2 with the coupling matrix dependent
on A. In such a situation, the propagation of node signals
is constrained within connected neighbored nodes. The
common choice for the coupling matrix is the symmetric
normalized graph adjacency matrix Ã = D−1/2AD−1/2.
In this case, the finite-difference iteration for solving Eqn. 2
would induce the discrete propagation layers akin to the mes-
sage passing rule of SGC (Wu et al., 2019) and GCN (Kipf
& Welling, 2017) if the feature transformation and non-
linearity are neglected (see more illustration in Appendix A).
Given the constant coupling matrix C, Eqn. 2 has a closed-
form solution Z(t) = e−(I−C)tZ(0). However, unlike the
advective diffusion model, the change rate of Z(T ;A) w.r.t.
∆Ã = Ã′ − Ã produced by the local diffusion model has
an exponential upper bound.

Proposition 3.4. For local diffusion model (defined by
Eqn. 2) with the coupling matrix C = D−1/2AD−1/2

or C = D−1A, the yielded node representation satisfies
∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2T)).

The label prediction Ŷ = ϕdec(Z(T ;A)) could be highly
sensitive to the change of the graph topology. Pushing fur-

5

Supercharging Graph Transformers with Advective Diffusion

0 10 20 30 40 50 60
||ΔA||2

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
Sq

ua
re

 E
rr

or

(a) Homophily Shift

Diff− Linear Diff−MultiLayer Diff− Time Diff−NonLocal AdvDIFFormer−l AdvDIFFormer−s

60 70 80 90 100 110 120
||ΔA||2

0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
ea

n
Sq

ua
re

 E
rr

or

(b) Density Shift

0 20 40 60 80 100
||ΔA||2

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

 E
rr

or

(c) Block Shift

Figure 3: Testing errors (y-axix) w.r.t. differences in graph topologies (x-axis) on synthetic datasets that simulate the
topological distribution shifts according to the data generation hypothesis of Fig. 2.

ther, we have the following corollary on the generalization
capability of local diffusion models under topological shifts.

Corollary 3.5. Under the same condition as in Theorem 3.1,
for diffusion models Eqn. 2 with the normalized graph adja-
cency as the coupling matrix, the model-dependent gen-
eralization error on testing data generated with Ete ̸=
Etr has an upper bound: Dood−model(Γθ, Etr, Etr) =
O(EA∼p(A|Etr),A′∼p(A|Ete)[∥∆Ã∥2 exp (∥∆Ã∥2T)]).

By definition in Sec. 3.1, the graph adjacency is a realization
of a random variable A = h(Uu, Uv;W,E) dependent on
a varying environment E. Topological shifts caused by
different distributions of A’s between training and testing
environments may result in large Dood−model. 2 This result
together with Theorem 3.1 suggests that local diffusion
models may lead to undesirably poor generalization in cases
where models are expected to be insensitive to the change
of topologies. For example, for situations where the ground-
truth labels do not dramatically change with topological
shifts (i.e., Dood−label is small), local diffusion models may
induce large Dood−model that prejudices generalization. The
above conclusion can be extended to models with layer-wise
feature transformations and non-linearity (see Appendix B.6
for illustration). While the upper bound result does not mean
the exponentially growing error would definitely happen in
practice, our empirical comparison in Fig. 3 shows that the
generalization error of local diffusion models (Diff-Linear,
Diff-MultiLayer and Diff-Time) on test data grows super-
linearly w.r.t. ∥∆Ã∥2 across three types of topological
shifts (see experimental details in Sec. 5.1).

Non-Local Diffusion Model. We next discuss the non-
local diffusion model without the advection term, which as
previously mentioned can be essentially treated as a gener-
alization of local diffusion to a complete or fully-connected

2The influence of topology variation is inherently associated
with h. For example, if one considers h as the stochastic block
model (Snijders & Nowicki, 1997), then the change of E may
lead to generated graph data with different edge probabilities. In
the case of real-world data with intricate topological patterns, the
functional forms of h can be more complex, consequently inducing
different types of topological shifts.

graph. The corresponding diffusion equation still exhibits
the form of Eqn. 2 but allows non-zero entries for arbitrary
(u, v)’s in the coupling matrix to accommodate the all-pair
information flows. Then we can easily derive a result that if
Y is conditionally independent fromA with given {Uu}u∈V
in the data generation hypothesis of Sec. 3.1, the non-local
diffusion model (i.e., Eqn. 2 with the attention-based cou-
pling matrix) leads to the generalization gap

R(Γθ;Ete)−Remp(Γθ;Etr) ≤ Din(Γθ, Etr, Ntr), (10)

which holds with the probability 1− δ. The assumption of
conditional independence between Y and A, however, can
be violated in many situations where labels strongly corre-
late with observed graph structures. Furthermore, the per-
formance on testing data (i.e., what we care about) depends
on both the model’s expressiveness and generalization. The
non-local diffusion alone, discarding any observed topology,
has insufficient expressiveness for capturing the structural
information. By contrast, the advective diffusion model pro-
posed in Sec. 3.2 that accommodates the observed structures
can provably generalize under topological shifts without the
conditional independence assumption between Y and A.
This makes the advective diffusion model more powerful in
real cases. Furthermore, as empirically validated in Fig. 3,
the non-local diffusion model (Diff-NonLocal) indeed yields
comparably stable yet obviously inferior performance to our
models (ADVDIFFORMER-I and ADVDIFFORMER-S).

4. Model Implementation
The remaining question concerning model implementation
boils down to how to solve the advective diffusion equa-
tion Eqn. 6. One straightforward solution is to harness the
scheme adopted by (Chen et al., 2018) for back-propagation
through PDE dynamics. However, since it is known that
the equation has a closed-form solution e−(I−C−βV)t, we
resort to a implementation-wise simpler method by comput-
ing the solution instead of numerically solving the equation.
Nevertheless, direct computation of the matrix exponential
through eigendecomposition is computationally intractable
for large matrices. As an alternative, we leverage numer-

6

Supercharging Graph Transformers with Advective Diffusion

ical techniques based on series expansion that produces
two model versions. Due to space limit, we present the
main ideas in this subsection and defer details on model
implementation to Appendix D.1.

ADVDIFFORMER-I uses a numerical method based on
the extension of Padé-Chebyshev theory to rational frac-
tions (Golub & Van Loan, 1989; Gallopoulos & Saad, 1992),
which has shown empirical success in 3D shape analy-
sis (Patané, 2014). The matrix exponential is approximated
by solving multiple linear systems (see more details and
derivations in Appendix C) and we generalize it as a multi-
head network where each head propagates in parallel:

Lh = (1 + θ)I−Ch − βV, h = 1, · · · , H,

Z(T) ≈
∑H

h=1
ϕ
(h)
FC(linsolver(Lh,Z(0))).

(11)

The linsolver computes the matrix inverse Zh =
(Lh)

−1Z(0) and can be efficiently implemented via
torch.linalg.solve() that enables automated dif-
ferentiation. Each head contains propagation with the pre-
computed attention Ch and node-wise transformation ϕ(h)FC .

ADVDIFFORMER-S resorts to approximation by finite ge-
ometric series (see Appendix C for derivations):

Ph = Ch + βÃ, h = 1, · · · , H,

Z(T) ≈
∑H

h=1
ϕ
(h)
FC([Z(0),PhZ(0), · · · , (Ph)

KZ(0)]).

(12)

This model aggregates K-order propagated results with the
propagation matrix Ph in each head. One advantage of
this model version lies in its good scalability with linear
complexity w.r.t. the number of nodes in the feed-forward
computation (see detailed illustration in Appendix D.1.2).

5. Experiments
We apply our model to a wide variety of downstream tasks
of disparate scales and granularities that involve topolog-
ical shifts led by distinct factors. Due to the diversity of
datasets and tasks, the competing models that are applicable
to specific cases can vary case by case, so the goal of our
experiments is to showcase the wide applicability and supe-
riority of ADVDIFFORMER against commonly used GNNs
and graph Transformers as well as bespoke methods tailored
for specific tasks. In the following, we delve into each case
separately with the overview of experimental setup and dis-
cussions. More detailed dataset information is provided in
Appendix E.1. Details on baselines and hyper-parameters
are deferred to Appendix E.2 and E.3, respectively.

5.1. Synthetic Datasets

To validate our model and theoretical analysis, we create
synthetic datasets simulating the data generation hypothesis

Table 1: Results on Arxiv and Twitch, where we use
time and spatial contexts for data splits, respectively. We
report the Accuracy (↑) for three testing sets of Arxiv and
average ROC-AUC (↑) for all testing graphs of Twitch
(results for each case are reported in Appendix F.1). Top
performing methods are marked as first/second/third. OOM
indicates out-of-memory error.

Arxiv (2018) Arxiv (2019) Arxiv (2020) Twitch (avg)

MLP 49.91 ± 0.59 47.30 ± 0.63 46.78 ± 0.98 61.12 ± 0.16
GCN 50.14 ± 0.46 48.06 ± 1.13 46.46 ± 0.85 59.76 ± 0.34
GAT 51.60 ± 0.43 48.60 ± 0.28 46.50 ± 0.21 59.14 ± 0.72
SGC 51.40 ± 0.10 49.15 ± 0.16 46.94 ± 0.29 60.86 ± 0.13
GDC 51.53 ± 0.42 49.02 ± 0.51 47.33 ± 0.60 61.36 ± 0.10
GRAND 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24 61.65 ± 0.23
A-DGNs 50.91 ± 0.41 47.54 ± 0.61 45.79 ± 0.39 60.11 ± 0.09
CDE 50.54 ± 0.21 47.31 ± 0.52 45.32 ± 0.26 60.69 ± 0.10
GraphTrans OOM OOM OOM 61.65 ± 0.23
GraphGPS 51.11 ± 0.19 48.91 ± 0.34 46.46 ± 0.95 62.13 ± 0.34
DIFFormer 50.45 ± 0.94 47.37 ± 1.58 44.30 ± 2.02 62.11 ± 0.11
ADVDIFFORMER-S 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54 62.51 ± 0.07

in Sec. 3.1. We instantiate h as a stochastic block model
which generates edges Auv according to block numbers
(b), intra-block edge probability (p1) and inter-block edge
probability (p2). Then we study three types of topological
distribution shifts: homophily shift (changing p2 with fixed
p1); density shift (changing p1 and p2); and block shift
(varying b). The predictive task is node regression. More
details on data generation are presented in Appendix E.1.1.

Fig. 3 plots the testing error (i.e., Mean Square Er-
ror) w.r.t. differences in graph topologies ∥∆A∥2 (i.e.,
the gap between training and testing graphs) in three
cases. We compare our model (ADVDIFFORMER-I and
ADVDIFFORMER-S) with other diffusion-based models as
competitors. The latter includes Diff-Linear (graph diffu-
sion with constant C), Diff-MultiLayer (the extension of
Diff-Linear with intermediate feature transformations), Diff-
Time (graph diffusion with time-dependent C(Z(t))) and
Diff-NonLocal (non-local diffusion with the global attention-
based C(Z(t))). The results show that three local graph
diffusion models exhibit clear performance degradation, i.e.,
the regression error grows super-linearly w.r.t. topological
shifts, while our two models yield consistently low error
across environments. In contrast, the non-local diffusion
model produces comparably stable performance yet inferior
to our models due to its ignorance of the useful information
in input graphs. These empirical observations are consistent
with our theoretical results presented in Sec. 3.3 and 3.4.

5.2. Real-World Datasets

We next evaluate ADVDIFFORMER on real-world datasets
with more complex topological shifts concerning non-
Euclidean data in a diverse set of applications.

Information Networks. We first consider citation net-
works Arxiv (Hu et al., 2020) and social networks

7

Supercharging Graph Transformers with Advective Diffusion

Table 2: Results of RMSE (↓) for node regression and edge regression on dynamic networks of protein-protein interactions.

Node Regression Edge Regression
Valid Test Average Test Worst Valid Test Average Test Worst

MLP 0.768 ± 0.011 0.672 ± 0.014 0.768 ± 0.014 0.150 ± 0.004 0.192 ± 0.003 0.204 ± 0.003
GCN 1.791 ± 0.023 1.308 ± 0.013 1.797 ± 0.007 0.185 ± 0.003 0.196 ± 0.001 0.213 ± 0.001
GAT 1.255 ± 0.022 1.057 ± 0.030 1.708 ± 0.067 0.210 ± 0.010 0.204 ± 0.006 0.216 ± 0.010
SGC 1.622 ± 0.004 1.154 ± 0.006 1.616 ± 0.002 0.193 ± 0.000 0.191 ± 0.001 0.209 ± 0.001
GraphTrans 3.798 ± 1.146 3.203 ± 0.889 3.795 ± 1.123 0.189 ± 0.005 0.189 ± 0.008 0.202 ± 0.003
GraphGPS 0.713 ± 0.050 0.671 ± 0.040 0.803 ± 0.081 0.168 ± 0.004 0.182 ± 0.007 0.216 ± 0.019
DIFFormer 0.672 ± 0.046 0.637 ± 0.034 0.710 ± 0.028 0.171 ± 0.007 0.183 ± 0.005 0.197 ± 0.003
ADVDIFFORMER-I 0.681 ± 0.010 0.643 ± 0.019 0.679 ± 0.021 0.159 ± 0.002 0.166 ± 0.006 0.184 ± 0.011
ADVDIFFORMER-S 0.547 ± 0.040 0.574 ± 0.028 0.644 ± 0.040 0.156 ± 0.006 0.167 ± 0.004 0.188 ± 0.010

 AdvDIFFormer (0.697)Ground Truth GCN (0.685) GAT (0.664) GraphGPS (0.694) DIFFormer (0.674)

Figure 4: Testing cases for molecular mapping operators generated by different models with averaged testing Accuracy (↑)
reported. The task is to generate subgraph-level partitions (marked by different colors) resembling the ground-truth.

Twitch (Rozemberczki et al., 2021) with graph sizes rang-
ing from 2K to 0.2M, where we use the scalable version
ADVDIFFORMER-S. To introduce topological shifts, we
partition the data according to publication years and geo-
graphic information for Arxiv and Twitch, respectively.
The predictive task is node classification, and we follow
the common practice comparing Accuracy (resp. ROC-
AUC) for Arxiv (resp. Twitch). We compare with
three types of state-of-the-art baselines: (i) classical GNNs
(GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018)
and SGC (Wu et al., 2019)); (ii) diffusion-based GNNs
(GDC (Klicpera et al., 2019), GRAND (Chamberlain et al.,
2021a), A-DGNs (Gravina et al., 2023) and CDE (Zhao et al.,
2023)), and (iii) graph Transformers (GraphTrans (Wu
et al., 2021), GraphGPS (Rampásek et al., 2022), and
the diffusion-based DIFFormer (Wu et al., 2023)). Ap-
pendix E.2 presents detailed descriptions for these models.
Table 1 reports the results, showing that our model offers
significantly superior generalization for node classification.

Protein Interactions. We then test on protein-protein inter-
actions (Fu & He, 2022). Each node denotes a protein with
a time-aware gene expression value and the edges indicate
co-expressed protein pairs at each time. The dataset con-
sists of 12 dynamic networks each of which is obtained by
one protein identification method and records the metabolic
cycles of yeast cells. The networks have distinct topological
features (e.g., distribution of cliques) (Fu & He, 2022), and
we use 6/1/5 networks for train/valid/test. To test the gen-

eralization of the model in different scenarios, we consider
two predictive tasks: i) node regreesion for gene expression
values (measured by RMSE), and 2) edge regression for
predicting the co-expression correlation coefficients (mea-
sured by RMSE). Table 2 reports the averaged scores and
worst-case scores across all testing graphs. The results
show that ADVDIFFORMER-S and ADVDIFFORMER-I are
ranked in the top three (resp. two) models in terms of the
averaged (resp. worst-case) testing performance. More-
over, ADVDIFFORMER-S performs better in node regres-
sion tasks, while ADVDIFFORMER-I exhibits (slightly)
better competitiveness for edge regression. The possible
reason might be that ADVDIFFORMER-I can better exploit
high-order structural information as the matrix inverse can
be treated as ADVDIFFORMER-S with K → ∞.

Molecular Mapping Operator Generation. We next con-
sider the generation of molecular coarse-grained mapping
operators, an important step for molecular dynamics sim-
ulation, aiming to find a representation of how atoms are
grouped in a molecule (Li et al., 2020). The task is a graph
segmentation problem which can be modeled as predicting
edges that indicate where to partition the graph. We use the
relative molecular mass to split the data and test how the
model extrapolates to larger molecules. Fig. 4 compares the
testing cases (with more cases shown in Appendix F.1) gen-
erated by different models, which shows the more accurate
estimation of our model (we use ADVDIFFORMER-S for
experiments) that demonstrates desired generalization.

8

Supercharging Graph Transformers with Advective Diffusion

0 0.2 0.5 0.8 1.0 1.5 2.0 5.0 10.0
β

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

0 0.3 0.5 0.8 1.0
β

1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58

RM
SE

DDPIN-nr

0 0.3 0.5 0.8 1.0
β

0.140

0.145

0.150

0.155

RM
SE

DDPIN-er

Figure 5: Analysis of β on Arxiv and node regression (nr) and edge regression (er) tasks on DPPIN.

Hyper-Parameter Analysis. The hyper-parameter β con-
trols the importance weight for the advection term. Fig. 5
shows the model performance of ADVDIFFORMER-S on
Arxiv and DPPIN with different β’s. We found that the
optimal settings for β can be different across datasets and
tasks. For node classification on Arxiv, the model gives
the best performance with β ∈ [0.7, 1.0]. The performance
degrades when β is too small (<0.5) or too large (>2.0).
The reason could be that the graph structural information
is useful for the predictive task on Arxiv yet too much
emphasis on the graph structure can lead to undesired gen-
eralization. Differently, for DPPIN, we found that using
smaller β can bring up more satisfactory performance across
node regression and edge regression tasks. In particular, set-
ting β = 0, in which case the advection term is completely
dropped, can yield optimal performance for the node re-
gression task. This is possibly because the graph structure
is uninformative and pure global attention can learn gen-
eralizable topological patterns from latent interactions. To
sum up, in practice, the model enables much flexibility for
adjusting the weight on the advection effect (the importance
of observed structural information) to accommodate the
diversity of graph-structured data. More hyper-parameter
analysis (w.r.t. θ and K) is deferred to Appendix F.2.

Ablation Studies. We defer ablation studies on the diffusion
and advection terms of our model to Appendix F.2.

6. Conclusions
This paper studies generalization with topological shifts,
a largely open question in machine learning, and the in-
sights in this work open new possibilities of leveraging
diffusion PDEs as principled guidance for navigating gener-
alizable neural network models. As exemplified in this work,
our proposed Advective Diffusion Transformer, inspired by
advective diffusion equations, has provable potentials for
generalization and shows superior performance in various
downstream tasks across different scenarios.

Impact Statement
This paper presents work whose goal is to advance the cur-
rent understandings for the generalization of neural network

models. In general sense, improving the generalizability
of the model is important for many aspects associated with
AI’s societal responsibilities, such as addressing the obser-
vational bias in training data and promoting the fairness
of the outcome on the test set. Specifically speaking, our
paper explores the generalization capability of neural net-
work models operated on varying graph topologies, which
has implications on several significant applications such as
social network analysis, drug discovery and healthcare. The
results and methodology presented in this work can shed
lights on enhancing the trustworthiness and reliability of
machine learning models in the open world regime.

Acknowledgement
QW is supported in part by funding from the Eric and Wendy
Schmidt Center at the Broad Institute of MIT and Harvard.
MB is partially supported by the EPSRC Turing AI World-
Leading Research Fellowship No. EP/X040062/1 and EP-
SRC AI Hub No. EP/Y028872/1.

References
Atwood, J. and Towsley, D. Diffusion-convolutional neural

networks. In Advances in Neural Information Processing
Systems, pp. 1993–2001, 2016.

Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S.,
and Honeine, P. Analyzing the expressive power of graph
neural networks in a spectral perspective. In International
Conference on Learning Representations, 2021.

Bazhenov, G., Kuznedelev, D., Malinin, A., Babenko, A.,
and Prokhorenkova, L. Evaluating robustness and un-
certainty of graph models under structural distributional
shifts. arXiv preprint arXiv:2302.13875, 2023.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Liò, P., and
Bronstein, M. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:
18527–18541, 2022.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M.
Improving graph neural network expressivity via sub-

9

Supercharging Graph Transformers with Advective Diffusion

graph isomorphism counting. IEEE Trans. Pattern Anal.
Mach. Intell., 45(1):657–668, 2023.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bron-
stein, M. M., Webb, S., and Rossi, E. GRAND: graph
neural diffusion. In International Conference on Machine
Learning (ICML), pp. 1407–1418, 2021a.

Chamberlain, B. P., Rowbottom, J., Eynard, D., Giovanni,
F. D., Dong, X., and Bronstein, M. M. Beltrami flow
and neural diffusion on graphs. In Advances in Neural
Information Processing Systems (NeurIPS), 2021b.

Chandrasekhar, S. Stochastic problems in physics and as-
tronomy. Reviews of modern physics, 15(1):1, 1943.

Chasseigne, E., Chaves, M., and Rossi, J. D. Asymptotic be-
havior for nonlocal diffusion equations. Journal de math-
ématiques pures et appliquées, 86(3):271–291, 2006.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in neural information processing systems, 2018.

Choi, J., Hong, S., Park, N., and Cho, S.-B. Gread: Graph
neural reaction-diffusion equations. In International Con-
ference on Machine Learning, 2023.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
International Conference on Learning Representations,
2021.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Understanding
convolution on graphs via energies. Transactions on Ma-
chine Learning Research, 2022.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. CoRR, abs/2012.09699, 2020.

Eells, J. and Sampson, J. H. Harmonic mappings of rieman-
nian manifolds. American journal of mathematics, 86(1):
109–160, 1964.

Freidlin, M. I. and Wentzell, A. D. Diffusion processes
on graphs and the averaging principle. The Annals of
probability, pp. 2215–2245, 1993.

Fu, D. and He, J. Dppin: A biological repository of dynamic
protein-protein interaction network data. In 2022 IEEE
International Conference on Big Data (Big Data), pp.
5269–5277. IEEE, 2022.

Gallopoulos, E. and Saad, Y. Efficient solution of parabolic
equations by krylov approximation methods. SIAM jour-
nal on scientific and statistical computing, 13(5):1236–
1264, 1992.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272, 2017.

Golub, G. H. and Van Loan, C. F. Matrix computations.
John Hopkins University Press, 1989.

Gravina, A., Bacciu, D., and Gallicchio, C. Anti-symmetric
DGN: a stable architecture for deep graph networks. In
International Conference on Learning Representations,
2023.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, 2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-lsc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Klicpera, J., Weißenberger, S., and Günnemann, S. Dif-
fusion improves graph learning. In Advances in neural
information processing systems, 2019.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo,
W., Earnshaw, B., Haque, I., Beery, S. M., Leskovec,
J., Kundaje, A., Pierson, E., Levine, S., Finn, C., and
Liang, P. WILDS: A benchmark of in-the-wild distri-
bution shifts. In International Conference on Machine
Learning (ICML), pp. 5637–5664, 2021.

Leveque, R. J. Numerical methods for conservation laws,
volume 214. Springer, 1992.

Li, Z., Wellawatte, G. P., Chakraborty, M., Gandhi, H. A.,
Xu, C., and White, A. D. Graph neural network based
coarse-grained mapping prediction. Chemical science, 11
(35):9524–9531, 2020.

Lovász, L. and Szegedy, B. Limits of dense graph sequences.
Journal of Combinatorial Theory, Series B, 96(6):933–
957, 2006.

Ma, J., Deng, J., and Mei, Q. Subgroup generalization and
fairness of graph neural networks. In Advances in Neural
Information Processing Systems, 2021.

10

Supercharging Graph Transformers with Advective Diffusion

Medvedev, G. S. The nonlinear heat equation on dense
graphs and graph limits. SIAM Journal on Mathematical
Analysis, 46(4):2743–2766, 2014.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In AAAI
Conference on Artificial Intelligence, pp. 4602–4609,
2019.

Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R.
Dropgnn: Random dropouts increase the expressiveness
of graph neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 21997–22009, 2021.

Patané, G. Laplacian spectral distances and kernels on 3d
shapes. Pattern Recognition Letters, 47:102–110, 2014.

Rampásek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In Advances in Neural Informa-
tion Processing Systems, pp. 5998–6008, 2022.

Romeny, B. M. H. Geometry-driven diffusion in computer
vision, volume 1. Springer Science & Business Media,
2013.

Rossi, E., Kenlay, H., Gorinova, M. I., Chamberlain, B. P.,
Dong, X., and Bronstein, M. M. On the unreasonable
effectiveness of feature propagation in learning on graphs
with missing node features. In Learning on Graphs Con-
ference, pp. 11–1. PMLR, 2022.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale at-
tributed node embedding. Journal of Complex Networks,
9(2), 2021.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bron-
stein, M. M., and Mishra, S. Gradient gating for deep
multi-rate learning on graphs. In International Confer-
ence on Learning Representations, 2023.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Snijders, T. A. and Nowicki, K. Estimation and prediction
for stochastic blockmodels for graphs with latent block
structure. Journal of classification, 14(1):75–100, 1997.

Thorpe, M., Xia, H., Nguyen, T., Strohmer, T., Bertozzi,
A. L., Osher, S. J., and Wang, B. GRAND++: graph
neural diffusion with a source term. In International
Conference on Learning Representations (ICLR), 2022.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Van Loan, C. The sensitivity of the matrix exponential.
SIAM Journal on Numerical Analysis, 14(6):971–981,
1977.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations
(ICLR), 2018.

Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Q. Simplifying graph convolutional networks.
In International Conference on Machine Learning, pp.
6861–6871, 2019.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distri-
bution shifts on graphs: An invariance perspective. In
International Conference on Learning Representations,
2022a.

Wu, Q., Zhao, W., Li, Z., Wipf, D., and Yan, J. Nodeformer:
A scalable graph structure learning transformer for node
classification. In Advances in Neural Information Pro-
cessing Systems, 2022b.

Wu, Q., Yang, C., Zhao, W., He, Y., Wipf, D., and Yan,
J. Difformer: Scalable (graph) transformers induced by
energy constrained diffusion. In International Conference
on Learning Representations, 2023.

Wu, Q., Nie, F., Yang, C., Bao, T., and Yan, J. Graph out-
of-distribution generalization via causal intervention. In
The Web Conference, pp. 850–860, 2024a.

Wu, Q., Nie, F., Yang, C., and Yan, J. Learning divergence
fields for shift-robust graph representations. In Interna-
tional Conference on Machine Learning, 2024b.

Wu, Q., Wipf, D., and Yan, J. Neural message passing
induced by energy-constrained diffusion. arXiv preprint
arXiv:2409.09111, 2024c.

Wu, Z., Jain, P., Wright, M. A., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. In Advances
in Neural Information Processing Systems, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

11

Supercharging Graph Transformers with Advective Diffusion

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. In International
Conference on Learning Representations (ICLR), 2021.

Yang, C., Wu, Q., Wang, J., and Yan, J. Graph neural
networks are inherently good generalizers: Insights by
bridging gnns and mlps. In International Conference on
Learning Representations, 2023.

Yang, C., Wu, Q., Wipf, D., Sun, R., and Yan, J. How graph
neural networks learn: Lessons from training dynamics.
In International Conference on Machine Learning, 2024.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T. Do transformers really perform bad for
graph representation? In Advances in Neural Information
Processing Systems, 2021.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., et al. Artificial intelli-
gence for science in quantum, atomistic, and continuum
systems. arXiv preprint arXiv:2307.08423, 2023.

Zhao, K., Kang, Q., Song, Y., She, R., Wang, S., and Tay,
W. P. Graph neural convection-diffusion with heterophily.
In International Joint Conference on Artificial Intelli-
gence, 2023.

12

Supercharging Graph Transformers with Advective Diffusion

A. Connection between Diffusion Equations and Message Passing
In this section, we provide a systematically introduction on the fundamental connections between graph diffusion equations
and neural message passing, as supplementary technical background for our analysis and methodology presented in the
main text. Consider graph diffusion equations of the generic form

∂Z(t)

∂t
= (C(Z(t);A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X). (13)

As demonstrated by existing works, e.g., (Chamberlain et al., 2021a), using finite-difference numerical schemes for solving
Eqn. 13 would induce the message passing neural networks of various forms. The latter is recognized as the common
paradigm in modern graph neural networks and Transformers whose layer-wise updating aggregates the embeddings of
other nodes to compute the embeddings for the next layer.

A.1. Graph Neural Networks as Local Diffusion

Consider the explicit Euler’s scheme as the commonly used finite-difference method for approximately solving the differential
equations, and Eqn. 13 will induce the discrete iterations with step size τ :

Z(k+1) − Z(k)

τ
≈ (C(Z(k);A)− I)Z(k). (14)

With some re-arranging we have
Z(k+1) = (1− τ)Z(k) + τC(Z(k);A)Z(k), (15)

with the initial states Z(0) = ϕenc(X). The above updating equation gives one-layer update through residual connection
and propagation with C(Z(k);A). There are some well-known graph neural network architectures that can be derived with
different instantiations of the coupling matrix.

Simplifying Graph Convolution (SGC). If one considers C(Z(k);A) = Ã = D−1/2AD−1/2, then we will get the
one-layer updating rule:

Z(k+1) = (1− τ)Z(k) + τD−1/2AD−1/2Z(k). (16)

This can be seen as one-layer propagation of SGC (Wu et al., 2019) with residual connection, and when τ = 1 it becomes
exactly the SGC layer. Since SGC model does not involve feature transformation layers and non-linearity throughout the
message passing, one often uses a pre-computed propagation matrix for one-step convolution that is much faster than the
multi-layer convolution:

Z(K) = PKZ(0), P = (1− τ)I+ τD−1/2AD−1/2. (17)

Graph Convolution Networks (GCN). The GCN network inserts feature transformation layers in-between the propagation
layers. This can be achieved by considering K stacked piece-wise diffusion equations, where the k-th dynamics is given by
the differential equation with time boundaries:

∂Z(t; k)

∂t
= (C− I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k − 1)), (18)

where ϕ(k)int denotes the node-wise feature transformation of the k-th layer. Assume C = D−1/2AD−1/2. Then consider
one-step feed-forward of the explicit Euler scheme for Eqn. 18, and one can obtain the updating rule at the k-th layer:

Z(k+1) = ϕ
(k+1)
int

(
(1− τ)Z(k) + τD−1/2AD−1/2Z(k)

)
. (19)

This corresponds to one GCN layer (Kipf & Welling, 2017) if one considers ϕ(k+1)
int as a fully-connected neural layer with

ReLU activation and simply sets τ = 1.

High-Order Propagation. Besides the explicit numerical scheme, one can also utilize the implicit scheme and multi-step
schemes (e.g., Runge-Kutta) for solving the diffusion equation, and the induced updating form will involve high-order
information (Chamberlain et al., 2021a).

13

Supercharging Graph Transformers with Advective Diffusion

A.2. Graph Transformers as Non-Local Diffusion

The original architectures of Transformers (Vaswani et al., 2017) involve self-attention layers as the key module, where
the attention measures the pairwise influence between arbitrary token pairs in the input. There are recent works, e.g.,
(Dwivedi & Bresson, 2020; Ying et al., 2021; Wu et al., 2021; Rampásek et al., 2022; Wu et al., 2022b) transferring the
Transformer architectures originally designed for sequence inputs into graph-structured data, and the attention is computed
for arbitrary node pairs in the graph, which can be seen as a counterpart of non-local diffusion (Wu et al., 2023; 2024c). In
specific, the coupling matrix allows non-zero entries for arbitrary location pairs and can be instantiated as a global attention
network. Then using the explicit Euler’s scheme as Eqn. 15 we can obtain the self-attention propagation layer of common
Transformers:

Z(k+1) = (1− τ)Z(k) + τC(k)Z(k), c(k)uv =
η(z

(k)
u , z

(k)
v)∑

w∈V η(z
(k)
u , z

(k)
w)

. (20)

For obtaining the fully-connected layers and non-linear activations adopted in Transformers, one can inherit the spirit of
GCN and extend the diffusion model to K piece-wise equations as Eqn. 18.

B. Proofs for Technical Results
B.1. Proof for Theorem 3.1

According to the data generation hypothesis in Fig. 2, for given node latents Uu’s, we can decompose the joint distribution
into (we omit all conditions on U for brevity)

p(X,A, Y |E) = p(X|E)p(A|E)p(Y |A,E). (21)

Also, by definition in Sec. 3.1 we have
p(X|E = Etr) = p(X|E = Ete), (22)

p(Y |A,E = Etr) = p(Y |A,E = Ete). (23)
Therefore we have p(X,A, Y |E) = p(X)p(A|E)p(Y |A). We next consider the gap between R(Γθ;Etr) and R(Γθ;Ete):

|R(Γθ;Ete)−R(Γθ;Etr)|
=

∣∣E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)]− E(X,A,Y)∼p(X,A,Y |E=Etr)[l(Γθ(X,A),Y)]

∣∣
=

∣∣EX′∼p(X),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X
′,A′),Y′)]

− EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A))[l(Γθ(X,A),Y)]
∣∣

≤
∣∣EX′∼p(X),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X

′,A′),Y′)]

− EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)]
∣∣

+
∣∣EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)]

− EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A))[l(Γθ(X,A),Y)]
∣∣

=
∣∣EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A′),Y′)− l(Γθ(X,A),Y′)]

∣∣
+

∣∣EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)]
∣∣

≤ EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))

[
|l(Γθ(X,A′),Y′)− l(Γθ(X,A),Y′)|

]
+ EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))

[
|l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)|

]
.

(24)

Moreover, due to the Lipschitz continuity of l and ϕdec, we have

|l(Γθ(X,A
′),Y′)− l(Γθ(X,A),Y′)| ≤ L1 · ∥Z(T ;A′)− Z(T ;A)∥2 , (25)

|l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)| ≤ L2 · ∥Y′ −Y∥2 , (26)

where L1 and L2 denote the Lipschitz constants. Combing Eqn. 25 and Eqn. 26 with Eqn. 24, we have

|R(Γθ;Ete)−R(Γθ;Etr)| ≤ L1 · EA∼p(A|Etr),A′∼p(A|Ete) [∥Z(T ;A
′)− Z(T ;A)∥2]

+ L2 · E(A,Y)∼p(A,Y |Etr),(A′,Y′)∼p(A,Y |Ete) [∥Y
′ −Y∥2] .

(27)

The conclusion for the main theorem can be obtained via combining Eqn. 27 and Eqn. 9 using the triangle inequality.

14

Supercharging Graph Transformers with Advective Diffusion

B.2. Proof for Theorem 3.2

For the advective diffusion equation with the coupling matrix C pre-computed by attention network η(zu(0), zv(0)) and
fixed velocity V = D−1/2AD−1/2, we have its closed-form solution

Z(t) = e−(I−C−βV)tZ(0), t ≥ 0. (28)

To prove the perturbation bound w.r.t. the change of graph structures, we introduce the following lemma.

Lemma B.1. Let X,E ∈ Rn×n, and let || · || be a submultiplicative matrix norm. Suppose there exist constants M ≥ 1,
ω ≥ 0 such that for all Y ∈ Rn×n, ||eY|| ≤Meω∥Y∥. Then the following perturbation bound holds:

∥eX+E − eX∥ ≤ ∥E∥ ·M2 · eω(∥X∥+∥E∥). (29)

Proof. Define path X(s) := X+ sE for s ∈ [0, 1]. Then:

eX+E − eX =

∫ 1

0

d

ds
eX(s) ds. (30)

Using the integral form of the derivative of the matrix exponential (Van Loan, 1977), we have:

d

ds
eX(s) =

∫ 1

0

e(1−θ)X(s)EeθX(s) dθ. (31)

Therefore:

eX+E − eX =

∫ 1

0

(∫ 1

0

e(1−θ)X(s)EeθX(s) dθ

)
ds. (32)

Taking norms and applying submultiplicativity:

∥eX+E − eX∥ ≤
∫ 1

0

∫ 1

0

∥e(1−θ)X(s)∥ · ∥E∥ · ∥eθX(s)∥ dθds. (33)

Using the growth bound assumption:

∥e(1−θ)X(s)∥ ≤Meω(1−θ)∥X(s)∥, ∥eθX(s)∥ ≤Meωθ∥X(s)∥. (34)

Multiplying these we have:
∥e(1−θ)X(s)∥ · ∥eθX(s)∥ ≤M2eω∥X(s)∥. (35)

Note that ∥X(s)∥ = ∥X+ sE∥ ≤ ∥X∥+ ∥E∥, so:

∥eX+E − eX∥ ≤ ∥E∥ ·M2 ·
∫ 1

0

∫ 1

0

eω∥X+sE∥dθds ≤ ∥E∥ ·M2 · eω(∥X∥+∥E∥). (36)

The existence of M and ω is guaranteed for every consistent matrix norm (Van Loan, 1977) such as spectral norm ∥ · ∥2
considered in our analysis.

Let L = I − C − βV and L′ = I − C′ − βV′. We then apply the above lemma that holds even if L and L⊤ are not
commutable:

∥e−L′T − e−LT ∥2 ≤M2T · ∥L′ − L∥2 · eωT∥L∥2 · eωT∥L′−L∥2 . (37)

For spectral norm || · ||2 in our case, the above result holds for M = 1 and ω = 1.

We next prove the bound for the last term of Eqn. 37 by construction. Notice that the initial states are given by the encoder
MLP: Z(0) = ϕenc(X). According to our data generation hypothesis in Fig. 2, we know that node embeddings are generated
from the latents of each node (we use uu to denote the realization of Uu), i.e., xu = g(uu;W) and the graph adjacency is
generated through a pair-wise function auv = h(uu,uv;W,E). Since g is injective, we assume g−1 as its inverse mapping.

15

Supercharging Graph Transformers with Advective Diffusion

We define by η ◦ ϕenc the function composition of η and ϕenc that establishes a mapping from input node features X to
the attention-based coupling C. According to the universal approximation results that hold for MLPs on the compact
set (Hornik et al., 1989), we can construct a mapping induced by η ◦ ϕenc to obtain a propagation matrix in the form of
C = C− (β+ ϵ)V, where C is independent from A and ϵ > 0 is an arbitrary small number. To be specific, the construction
of the mapping can be achieved by η ◦ ϕenc = m ◦ h ◦ g−1:

• g−1 maps the input feature xu to uu;

• h maps (uu,uv) to auv;

• m maps auv to cuv , where cuv denotes the (u, v)-th entry of C.

Then consider the difference of node representations under topological shifts and we have ∥(C′+βV′)− (C+βV)∥2 = ϵ ·
O(∥∆Ã∥2). Since ∥∆Ã∥2 is bounded, for any positive integer m, there exists ϵ > 0 such that exp (ϵ · ∥∆Ã∥2) ≤ ∥∆Ã∥m2 .
Therefore, we have the conclusion:

e||L
′−L||2 = e∥(C

′+βV′)−(C+βV)∥2 ≤ O(∥∆Ã∥m2). (38)

The theorem can be concluded by combining the result of Eqn. 37.

B.3. Proof for Corollary 3.3

The conclusion follows by combing the results of Theorem 3.1 and Theorem 3.2.

B.4. Proof for Proposition 3.4

The diffusion equation with the constant coupling matrix C has a closed-form solution Z(t) = e−(I−C)tZ(0), t ≥ 0. To
prove the proposition, we need to derive the bound of ∥e−(I−C′)T − e−(I−C)T ∥2 for any C′ ̸= C. According to the result
(3.5) of (Van Loan, 1977) we have

∥e−(I−C′)T − e−(I−C)T ∥2 ≤ T∥C′ −C∥2∥e−(I−C)T ∥2e∥(C
′−C)T∥2 . (39)

Given the fact C′ −C = Ã′ − Ã = ∆Ã, we have

∥e−(I−C′)T − e−(I−C)T ∥2 = O(∥∆Ã∥2 exp(∥∆Ã∥2T)). (40)

This gives rise to the conclusion that

∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp(∥∆Ã∥2T)), (41)

and we conclude the proof for the proposition.

B.5. Proof for Corollary 3.5

By combing the results of Theorem 3.1 and Proposition 3.4, we have

Dood−model(Γθ, Etr, Ete) = O(EA∼p(A|Etr),A′∼p(A|Ete)[∥Z(T ;A
′)− Z(T ;A)∥2])

≤ O(EA∼p(A|Etr),A′∼p(A|Ete)[∥∆Ã∥2 exp(∥∆Ã∥2T)]).
(42)

B.6. Extension with Feature Transformations

The conclusion of Proposition 3.4 and Corollary 3.5 can be extended to the cases incorporating feature transformations and
non-linear activation in-between propagation layers used in common GNNs, like GCN (Kipf & Welling, 2017). In particular,
the diffusion model becomes the piece-wise diffusion equations with K dynamics components as defined by Eqn. 18:

∂Z(t; k)

∂t
= (C− I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k − 1)), (43)

16

Supercharging Graph Transformers with Advective Diffusion

where ϕ(k)int denotes the node-wise feature transformation of the k-th layer. Based on this, can re-use the reasoning line of
proofs for Proposition 3.4 to each component, and arrive at the exponential bound of node representation within the k-th
dynamics:

∥Z(tk;A′, k)− Z(tk;A, k)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2(tk − tk−1))). (44)

By stacking the results for each component, one can obtain the variation magnitude of the node representation yielded by
the whole trajectory

∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2T)). (45)

C. Approximation Strategies for Diffusion PDE Solutions
The closed-form solutions of linear diffusion equations often involve the form of matrix exponential e−Lt, which is
intractable for computing its exact value. There are many established techniques based on numerical approximations, e.g.,
series expansion, in this fundamental challenge. In our presented model in Sec. 4, we propose two implementation versions
based on two approximation ways for handling the closed-form solution of the advective diffusion equations on graphs.

Approximation with Linear Systems. One scalable scheme proposed by (Gallopoulos & Saad, 1992) is via the extension
of the minimax Padé-Chebyshev theory to rational fractions (Golub & Van Loan, 1989). This approximation technique has
been utilized by (Patané, 2014) as an effective and efficient method for spectrum-free computation of the diffusion distances
in 3D shape analysis. In specific, the matrix exponential of the form e−Lt is approximated by the combination of multiple
matrix inverses:

exp (−Lt) ≈ −
r∑

i=1

αi(L+ θiI)
−1, (46)

where αi and θi can be pre-defined parameters (Gallopoulos & Saad, 1992). To unleash the capacity of neural networks, in
Sec. 4, our model implementation (ADVDIFFORMER-I) extends this scheme to a multi-head network where each head
contributes to propagation with independently parameterized attention networks. The matrix inverse is computed with the
linear system solver that is available in common deep learning tools (e.g., PyTorch) and supports automatic differentiation.

Approximation with Geometric Series. When the graph sizes become large, the matrix inverse can be computationally
expensive. For better scalability, we can use the geometric series for approximation:

(L+ θiI)
−1 =

∞∑
k=0

(−1)kθ
−(k+1)
i Lk ≈

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (47)

In this way, the matrix exponential can be approximately computed via a combination of finite series:

exp (−Lt) ≈ −
r∑

i=1

αi

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (48)

In our model, the closed-form solution for the PDE induces L = (I −C − βV), and the summation in Eqn. 48 can be
expressed as a weighted sum of Pk = (C+ βV)k for k = 0, · · · ,K. Our model implementation (ADVDIFFORMER-S)
proposed in Sec. 4 generalizes the weighted sum to a one-layer neural network.

D. Model Implementations and Algorithms
In this section, we provide detailed and self-contained descriptions about our model architectures in Appendix D.1. Then
in Appendix D.2, we discuss how to apply our model to various graph-structured data with additional input information.
To make the presentation clear and focused on the model implementation side, we will re-define some notations that are
originally defined in Sec. 4, where we formulate the model with the terminology of the PDE domain.

D.1. Model Architectures

The model takes a graph G = (V, E ,X,A) as input, and output prediction in the downstream tasks. We assume the number
of nodes in the graph |V| = N , node feature matrix X ∈ RN×D and graph adjacency matrix A ∈ {0, 1}N×N . We use D to
denote the diagonal degree matrix of A. The normalized adjacency is denoted by Ã = D−1/2AD−1/2, and 1 is an all-one
N -dimensional column vector. In this subsection, we assume G has no edge weight or edge feature for presentation, and
with loss of generality, we will discuss how to incorporate these additional attributes in Appendix D.2.

17

Supercharging Graph Transformers with Advective Diffusion

D.1.1. INSTANTIATIONS AND PARAMETERIZATIONS

Our model is comprised of three modules: the encoder ϕenc, the decoder ϕdec, and the propagation network in-between the
first two.

Encoder: The node features X = [xu]u∈V ∈ RN×D are first mapped to embeddings in the latent space Z(0) = [z
(0)
u]u∈V ∈

RN×d via the encoder: Z(0) = ϕenc(X). The encoder ϕenc(·) is instantiated as a shallow MLP with non-linear activation
(e.g., ReLU).

Propagation: The propagation network converts the initial node embeddings Z(0) to the node representations Z =
[zu]u∈V ∈ RN×d (where Z(0) and Z are the re-defined counterparts of Z(0) and Z(T), respectively, presented in Sec. 4).
The propagation network is implemented via a multi-head network with H heads involving the attention network η(h)(·, ·)
and feature transformation network ϕ(h)FC(·). The latter is instantiated as a fully-connected layer WO,h, and the attention
network is instantiated as a normalized dot-product positive similarity function:

η(h)(z(0)u , z(0)v) = 1 +

(
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

)⊤(
WK,hz

(0)
v

∥WK,hz
(0)
v ∥2

)
,

Ch = {c(h)uv }, c(h)uv =
η(h)(z

(0)
u , z

(0)
v)∑

w∈V η
(h)(z

(0)
u , z

(0)
w)

,

(49)

where WQ,h ∈ Rd×d and WK,h ∈ Rd×d are trainable weights for query and key, respectively, of the h-th head. Then the
node representations will be computed in different ways by two models.

• For ADVDIFFORMER-I, the node representations are calculated via

Lh = (1 + θ)I−Ch − βÃ, h = 1, · · · , H
Zh = linsolver(Lh,Z

(0)), h = 1, · · · , H

Z =

H∑
h=1

ZhWO,h,

(50)

where WO,h ∈ Rd×d is a trainable weight matrix. Alg. 1 summarizes the feed-forward computation of
ADVDIFFORMER-I.

• For ADVDIFFORMER-S, the node representations are computed by

Ph = Ch + βÃ, h = 1, · · · , H

Z
(k)
h = PhZ

(k−1)
h , k = 1, · · ·K, h = 1, · · · , H

Z =

H∑
h=1

[Z
(0)
h ,Z

(1)
h , · · · ,Z(K)

h]WO,h,

(51)

where WO,h ∈ R(K+1)d×d is a trainable weight matrix. To accelerate the computation of Eqn. 51, we can inherit
the strategy used in (Wu et al., 2023) and alter the order of matrix products, which reduces the time and space
complexity to O(N) (see Appendix D.1.2 for detailed illustration). Alg. 2 presents the feed-forward computation of
ADVDIFFORMER-S that only requires O(N) algorithmic complexity.

Decoder: The decoder ϕdec(·) transforms the node representations into prediction. Depending on the specific downstream
tasks, the decoder can be implemented in different ways:

(node-level prediction): ŷu = MLP(zu)
(graph-level prediction): ŷ = MLP(SumPooling({zu}u∈V))

(edge-level prediction): ŷuv = MLP([zu, zv]).
(52)

In particular, the softmax activation is used for output in classification tasks. For training, we adopt standard loss functions,
i.e., cross-entropy for classification and mean square loss for regression.

18

Supercharging Graph Transformers with Advective Diffusion

Algorithm 1 Feed-Forward of the Model ADVDIFFORMER-I.

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Uh = 11⊤ + ZQ,h(ZK,h)
⊤

Ch = diag−1 (Uh1)Uh

Lh = (1 + θ)I− Sh − βÃ
Zh = linsolver(Lh,Z)

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

Algorithm 2 Feed-Forward of the Model ADVDIFFORMER-S (with O(N) complexity).

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Nh = diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

Z
(0)
h = Z(0)

for k = 1, · · · ,K do
Z

(k)
h = Nh ·

[
1
(
1⊤Z

(k−1)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k−1)
h

)]
+ βÃZ

(k−1)
h

Zh = [Z
0)
h ,Z

(1)
h , · · · ,Z(K)

h]

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

D.1.2. ACCELERATION OF ADVDIFFORMER-S WITH LINEAR COMPLEXITY

We illustrate how to achieve the propagation of ADVDIFFORMER-S in Eqn. 51 with O(N) complexity. With the query and

key matrices defined by ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

and ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

, the attention matrix Ch in Eqn. 49 is

computed by (in the matrix form used for implementation)

Ch = diag−1
(
N + ZQ,h (ZK,h)

⊤
1
)(

11⊤ + ZQ,h (ZK,h)
⊤
)
. (53)

Computing the above result requires O(N2) time and space complexity. Still, if we consider the feature propagation with
Ch, we have

ChZ
(k)
h = diag−1

(
N + ZQ,h (ZK,h)

⊤
1
)
·
(
11⊤ + ZQ,h (ZK,h)

⊤
)
· Z(k)

h

= diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

·
[
1
(
1⊤Z

(k)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k)
h

)]
,

(54)

where the equality is achieved by altering the order of matrix products. The above computation only requires O(N) time and
space complexity. The feed-forward computation of ADVDIFFORMER-S with O(N) acceleration is summarized in Alg. 2.

D.2. Applicability of Our Model

In the main paper, we assume unweighted graphs without edge attribute features for model formulation. Without loss of
generality, we next discuss how to extend our model to handle the edge weights and edge features.

Edge Weights. For weighted graphs, the adjacency matrix A would become a real matrix where the entry auv denotes

19

Supercharging Graph Transformers with Advective Diffusion

the weight on the edge (u, v) ∈ E . In this situation, we still have the corresponding normalized adjacency Ã = D−1A or
Ã = D−1/2AD−1/2, where D = diag([du]u∈V) and du =

∑
v,(u,v)∈E auv. Our model implementations can be trivially

generalized to this case by using Ã as the propagation matrix for local message passing.

Edge Features. If the graph contains edge features, denoted by E = [euv](u,v)∈E ∈ R|E|×D′
, we introduce an encoding

layer WE ∈ RD′×d for mapping the edge features into embeddings in the latent space and then incorporate them with node
embeddings. In specific, we first compute the edge-to-node signals:

M = [mu]u∈V , mu =
∑

v,(u,v)∈E

Ãu,vWEeuv. (55)

• For ADVDIFFORMER-I, we can modify Eqn. 50 as

Lh = (1 + θ)I−Ch − βÃ,

Zh = linsolver
(
Lh, (Z

(0) +M)
)
,

Z =

H∑
h=1

ZhWO,h.

(56)

• For ADVDIFFORMER-S, we can modify Eqn. 51 to be

Ph = Ch + βÃ,

Z(k) = Ph(Z
(k−1) +M), k = 1, · · ·K,

Z =

H∑
h=1

[Z(0),Z(1), · · · ,Z(K)]WO,h.

(57)

E. Experiment Details
We supplement details for our experiments, regarding datasets, competitors, and implementations, for facilitating the
reproducibility.

E.1. Datasets

The datasets we use for the experiments in Sec. 5 span diverse domains and learning tasks. We summarize the statistics and
brief descriptions for each dataset in Table 3, with the detailed information presented in the following subsections.

Table 3: Statistics and descriptions for experimental datasets.

Dataset #Nodes #Edges #Graphs Train/Val/Test Split Task Metric

Synthetic-h 1,000 14,064 - 32,066 12 SBM (Homophily) Node Regression RMSE
Synthetic-d 1,000 7,785 - 13,912 12 SBM (Density) Node Regression RMSE
Synthetic-b 1,000 14,073 - 59,936 12 SBM (Block Number) Node Regression RMSE

Twitch 1,912 - 9,498 31,299 - 153,138 7 Geographic Domain Node Classification ROC-AUC
Arxiv 169,343 1,166,243 1 Publication Time Node Classification Accuracy

OGB-BACE 10 - 97 10 - 101 1,513 Molecular Scaffold Graph Classification ROC-AUC
OGB-SIDER 1 - 492 0 - 505 1,427 Molecular Scaffold Graph Classification ROC-AUC

DPPIN-nr 143 - 5,003 22 - 25,924 12 Protein Identification Method Node Regression RMSE
DPPIN-er 143 - 5,003 22 - 25,924 12 Protein Identification Method Edge Regression RMSE
DPPIN-lp 143 - 5,003 22 - 25,924 12 Protein Identification Method Link Prediction ROC-AUC

HAM 8 - 25 7 - 29 1,987 Relative Molecular Mass Edge Classification Accuracy

E.1.1. SYNTHETIC DATASETS

The synthetic datasets used in Sec. 5.1 simulate the graph data generation in Sec. 3.1, where the topological distribution
shifts are caused by the difference of environments across training and testing data. In specific, we generate graphs of

20

Supercharging Graph Transformers with Advective Diffusion

|V| = 1000 nodes, with the node features X, graph adjacency matrix A and labels Y generated by the following process.

• Each node u ∈ V is assigned with a scalar uu randomly sampled from the uniform distribution U [0, 1].

• For the generation of node features X = [xu]u∈V , we instantiate the node-wise function g as a 2-layer MLP with
ReLU activation and 4-dimensional output. Then the node feature xu is generated through xu = MLP(uu).

• For the generation of graph adjacency A = [auv]u,v∈V , we instantiate the pairwise function h as the stochastic block
model (Snijders & Nowicki, 1997) which generates edges according to the intra-block edge probability (p1) and the
inter-block edge probability (p2). We map the nodes into b blocks by the following rule: for node u ∈ V , we assign
it to the k-th block if vu ∈ [k−1

b , kb) (where 1 ≤ k ≤ b). Then the edge auv is randomly generated from a bernoulli
distribution with p1 if u and v are in the same block, and p2 otherwise.

• For the generation of labels Y, we consider the regression tasks and each node has a label yu generated through an
ensemble model of a 2-layer GCN and a 1-layer DIFFormer (without using the graph-based propagation) with random
initializations: Y = gcn(U,A) + difformer(U,A), where U = [uu]u∈V .

Using the above data generation, we create 12 graphs with the indices #1∼ #12, and use the graph #1 for training, the graph
#2 for validation, and the graphs #3∼ #12 for testing. The topological distribution shifts are introduced in three different
ways as described in Sec. 5.1, where in each case, the detailed configurations for p1, p2 and b are illustrated below.

• Homophily Shift: p1 = 0.1, b = 5 and p2 = 0.01 + 0.05 ∗ 1
12 ∗ (i− 1) for the graph #i.

• Density Shift: b = 5, p1 = 0.1 + 0.1 ∗ 1
12 ∗ (i− 1) and p2 = 0.01 + 0.1 ∗ 1

12 ∗ (i− 1) for the graph #i.

• Block Shift: p1 = 0.1, p2 = 0.01 and b = 5 + (i− 1) for the graph #i.

E.1.2. INFORMATION NETWORKS

The citation network Arxiv provided by (Hu et al., 2020) consists of a single graph with 0.16M nodes, where each node
represents a paper with the publication year (ranging from 1960 to 2020) and a subarea id (from 40 different subareas in
total). The node attribute features are 128-dimensional obtained by averaging the word embeddings of the paper’s title and
abstract. The edges are given by the citation relationship between papers. The predictive task is to estimate the paper’s
subarea. We use the publication years to split the data: papers published before 2014 for training, within the range from
2014 to 2017 for validation, and on 2018/2019/2020 for testing. Since there is a single graph, to increase the difficulty
of generalization, we consider the inductive setting: the testing nodes are not contained in the training graph. Table 5
demonstrates the dissimilar statistics for training/validation/testing graphs, manifesting the existence of topological shifts.
Following the common practice, we use Accuracy as the evaluation metric.

Table 4: Statistics for training/validation/testing graphs on Arxiv. There is a single citation network that augments with
time evolving, and with the data splits in the inductive setting, the previous graph is contained by the subsequent one.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)

Target Nodes 41,125 49,816 29,799 39,711 8,892
All Nodes 41,125 90,941 120,740 160,451 169,343
All Edges 102,316 374,839 622,466 1,061,197 1,166,243
Max Degrees 275 3,036 6,251 12,006 13,161
Avg Degrees 4.98 8.24 10.31 13.23 13.77

Twitch (Rozemberczki et al., 2021) is comprised of seven dis-connected graphs, where each node represents a Twitch
user and edges indicate the friendship. Each graph is collected from the social newtork in a particular region, including DE,
ENGB, ES, FR, PTBR, RU and TW. The node features are multi-hot with 2,545 dimensions indicating the user’s profile.
The predictive task is to classify the gender of the user. The seven networks with sizes ranging from 2K to 9K have distinct
structural characteristics (such as densities and maximum degrees) as observed by (Wu et al., 2022a). We therefore split the
data according to the geographic information: use the network DE for training, ENGB for validation, and the remaining
networks for testing. The evaluation metric is ROC-AUC for binary classification.

21

Supercharging Graph Transformers with Advective Diffusion

E.1.3. BIOLOGICAL PROTEIN INTERACTIONS

DPPIN (Fu & He, 2022) contains 12 individual dynamic network datasets at different scales, and each dataset is a dynamic
protein-protein interaction network that describes the protein-level interactions of yeast cells. Each graph dataset is obtained
by one protein identification method and consists of 36 graph snapshots, wherein each node denotes a protein that has a
sequence of 1-dimensional continuous features with 36 time stamps. This records the evolution of gene expression values
within metabolic cycles of yeast cells. The edges in the graph are determined by co-expressed protein pairs at one time, and
each edge is associated with a co-expression correlation coefficient.

We consider the predictive tasks within each graph snapshot and ignore the temporal evolution between different snapshots.
In specific, we use the graph topology of each snapshot as the observed graph adjacency A and use the gene expression
values at the previous 10 time steps as node features X. On top of this, we consider three different predictive tasks: 1)
node regression for gene expression value at the current time (measured by RMSE); 2) edge regression for predicting the
co-expression correlation coefficient (measured by RMSE); 3) link prediction for identifying co-expressed protein pairs
(measured by ROC-AUC). Given the fact that each graph dataset has distinct sizes (ranging from 143 to 5,003 nodes) and
distributions of 3-cliques and 4-cliques (ranging from 0 to hundreds) (Fu & He, 2022), we consider the dataset-level data
splitting and use 6/1/5 graph datasets for training/validation/testing, which introduces topological distribution shifts.

E.1.4. MOLECULAR MAPPING OPERATOR GENERATION

The Human Annotated Mappings (HAM) dataset (Li et al., 2020) consists of 1,206 molecules with expert annotated mapping
operators, i.e., a representation of how atoms are grouped in a molecule. The latter segments the atoms of a molecule
into groups of varying sizes. As an important step in molecular dynamics simulation, generating coarse-grained mapping
operators aims to reproduce the mapping operators produced by experts. This task can be modeled as a graph segmentation
problem (Li et al., 2020) which takes a molecule graph as input and outputs the labels for each edge that indicates if there is
cut needed to partition the source and end atoms into different groups.

For data splits, we calculate the relative molecular mass of each molecule using the RDKit package3, and rank the molecules
with increasing mass. Then we use the first 70% molecules for training, the following 15% for validation, and the remaining
for testing. This splitting protocol partitions molecules with different weights, and requires generalization from small
molecules in the training set to larger molecules in the testing set.

Table 5: The range of relative molecular mass for training/validation/testing molecules in HAM.

Train Valid Test

Relative Molecular Mass 108.18 ∼ 273.34 273.34 ∼ 311.14 311.14 ∼ 762.94

E.2. Competitors

In our experiments, we compare with peer encoder backbones for graph learning tasks. The competitors span three aspects:
1) classical GNNs, 2) diffusion-based GNNs, and 3) graph Transformers. We briefly introduce the competitors and illuminate
their connections with our model.

• GCN (Kipf & Welling, 2017) is a popular model that propagates node embeddings over observed graphs for com-
puting node representations, which can be seen as the discretized version of graph diffusion equations with feature
transformations.

• GAT (Velickovic et al., 2018) introduces attention networks for computing pairwise weights for neighboring nodes in
the graph and propagates node signals with adaptive strengths given by the attention weights. GAT can be seen as the
discretized version of the graph diffusion equation with time-dependent coupling matrices.

• SGC (Wu et al., 2019) proposes to simplify the GCN architecture by removing the feature transformations in-between
propagation layers, reducing multi-layer propagation to one-layer. This brings up significant acceleration for training
and inference. SGC can be seen as the discretization of the linear diffusion equation on graphs.

3https://github.com/rdkit/rdkit

22

https://github.com/rdkit/rdkit

Supercharging Graph Transformers with Advective Diffusion

• GDC (Klicpera et al., 2019) extends the graph convolution operator to graph diffusion convolution derived from
the linear diffusion equation on graphs. We use its implementation version based on the heat kernel for diffusion
coefficients.

• GRAND (Chamberlain et al., 2021a) proposes graph neural diffusion, a continuous PDE model, that generalizes
manifold diffusion to graphs and then uses numerical schemes to solve the PDE. We compare with its linear version
that implements the linear graph diffusion equation.

• A-DGNs (Gravina et al., 2023) is a stable graph neural architecture inspired by ODE on graphs that has provable
capability to preserve long-range information between nodes and avoid gradient vanishing or explosion in training.

• CDE (Zhao et al., 2023) is a recently proposed continuous model derived from convection diffusion equations that is
designed for addressing heterophilic graphs.

• GraphTrans (Wu et al., 2021) is a recently proposed Transformer for graph-structured data that satisfies the permutation-
invariant property. The model architecture sequentially combines GNNs and Transformers in order, where the GNN
can learn local, short-range structures and the Transformer can capture global, long-range relationships.

• GraphGPS (Rampásek et al., 2022) introduces a scalable and powerful Transformer model class for graph data and
achieves state-of-the-art results on molecular property prediction benchmarks. We use its scalable implementation
version with the Performer attentions (Choromanski et al., 2021).

• DIFFormer (Wu et al., 2023) is a scalable Transformer inspired by diffusion on graphs. The model is comprised of
principled attention layers, which implements the diffusion iterations minimizing a global energy. The architecture
integrates graph-based feature propagation and global attention in each layer. We use its version with simple diffusivity
that only requires linear complexity and yields state-of-the-art results on some large-graph benchmarks.

E.3. Implementation Details

Computation Systems. All the experiments are run on NVIDIA 3090 with 24GB memory. The environment is based on
Ubuntu 18.04.6, Cuda 11.6, Pytorch 1.13.0 and Pytorch Geometric 2.1.0.

Evaluation Protocol. For all the experiments, we run the training and evaluation of each model with five independent trials,
and report the mean and standard deviation results in our tables and figures. In each run, we train the model with a fixed
budget of epochs and record the testing performance produced by the epoch where the model yields the best performance on
validation data.

Hyper-Parameters. We use the grid search for hyper-parameter tuning on the validation dataset with the searching space
described below.

• For information networks, hidden size d ∈ {32, 64, 128}, learning rate ∈ {0.0001, 0.001}, head number H ∈
{1, 2, 4}, the weight for local message passing β ∈ {0.2, 0.5, 0.8, 1.0}, and the order of propagation (only used for
ADVDIFFORMER-S) K ∈ {1, 2, 4}.

• For molecular datasets, hidden size d = 256, learning rate ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}, dropout
∈ {0.0, 0.1, 0.3, 0.5}, head number H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.5, 0.75, 1.0}, the
coefficient for identity matrix (only used for ADVDIFFORMER-I) θ ∈ {0.5, 1.0}, and the order of propagation (only
used for ADVDIFFORMER-S) K ∈ {1, 2, 3, 4}.

• For protein interaction networks, hidden size d ∈ {32, 64}, learning rate ∈ {0.01, 0.001, 0.0001}, head number
H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.3, 0.5, 0.8, 1.0}, the coefficient for identity matrix (only
used for ADVDIFFORMER-I) θ ∈ {0.5, 1.0}, and the order of propagation (only used for ADVDIFFORMER-S)
K ∈ {1, 2, 3, 4}.

F. Additional Experimental Results
In this section, we supplement more experimental results including additional results for main experiments, ablation studies
and hyper-parameter analysis.

23

Supercharging Graph Transformers with Advective Diffusion

1 2 3 4 5 6
K

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

1 2 3 4 5 6
K

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

RM
SE

DDPIN-nr

1 2 3 4 5 6
K

0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165

RM
SE

DDPIN-er

Figure 6: Model performance on Arxiv and DPPIN with different settings of K. The latter involves node regression (nr)
and edge regression (er) tasks.

F.1. Supplementary Results for Main Experiments

In Table 6, we present the ROC-AUC for each graph of Twitch. In Fig. 7 and 8, we show the generated results for more
testing cases of molecular mapping operators in HAM.

Table 6: Result of ROC-AUC for each graph on Twitch where we use nodes in different networks to split the training,
validation and testing data.

Train (DE) Valid (ENGB) Test 1 (ES) Test 2 (FR) Test 3 (PTBR) Test 4 (RU) Test 5 (TW)
MLP 75.26 ± 1.49 63.48 ± 0.15 65.19 ± 0.37 62.25 ± 0.28 65.01 ± 0.19 54.92 ± 0.33 58.23 ± 0.13
GCN 69.55 ± 0.34 60.76 ± 0.21 63.75 ± 0.44 61.56 ± 0.56 63.26 ± 0.42 54.51 ± 0.21 55.72 ± 0.28
GAT 69.28 ± 1.14 59.80 ± 0.42 62.81 ± 1.16 60.65 ± 0.92 63.13 ± 1.25 53.80 ± 0.27 55.31 ± 0.94
SGC 71.68 ± 0.33 61.98 ± 0.07 65.12 ± 0.15 63.06 ± 0.12 64.14 ± 0.19 55.17 ± 0.06 56.83 ± 0.20
GDC 80.73 ± 1.69 62.14 ± 0.30 66.33 ± 0.25 60.70 ± 0.51 64.21 ± 0.23 56.60 ± 0.24 58.97 ± 0.37
GRAND 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
A-DGNs 78.91 ± 0.52 61.52 ± 0.34 65.82 ± 0.21 60.59 ± 0.56 63.49 ± 0.63 55.74 ± 0.32 58.31 ± 0.53
CDE 80.21 ± 0.35 62.51 ± 0.21 65.62 ± 0.17 60.93 ± 0.55 63.92 ± 0.57 55.79 ± 0.31 58.42 ± 0.42
GraphTrans 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
GraphGPS 74.49 ± 1.35 63.40 ± 0.31 66.85 ± 0.32 63.74 ± 0.37 65.03 ± 0.58 56.39 ± 0.39 58.63 ± 0.83
DIFFormer 73.12 ± 0.52 63.06 ± 0.09 66.68 ± 0.15 64.44 ± 0.13 65.23 ± 0.20 55.75 ± 0.12 58.91 ± 0.37
ADVDIFFORMER-S 75.46 ± 0.28 63.53 ± 0.14 66.78 ± 0.14 63.35 ± 0.10 65.68 ± 0.06 56.27 ± 0.06 60.48 ± 0.21

F.2. Ablation Studies and Hyper-Parameter Analaysis

We next conduct more analysis on our proposed model by ablation studies on some key components and investigating the
impact of hyper-parameters.

Diffusion and Advection. We conduct ablation studies on the advection term (i.e., the local message passing) and the
diffusion term (i.e., the global attention). In Table 7 we report the results for ADVDIFFORMER-S on Arxiv, which shows
that the two modules are indeed effective for producing superior generalization on node classification tasks.

Table 7: Ablation studies for ADVDIFFORMER-S on Arxiv.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)

ADVDIFFORMER 63.79 ± 0.66 55.25 ± 0.14 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54
ADVDIFFORMER w/o diffusion 64.65 ± 1.10 55.00 ± 0.12 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24
ADVDIFFORMER w/o advection 61.84 ± 0.79 54.31 ± 0.24 51.64 ± 0.59 49.65 ± 0.53 47.06 ± 0.69

Impact of K. The hyper-parameter K (used for ADVDIFFORMER-S) controls the number of propagation orders in the
model. In fact, the value of K would impact how the structural information is utilized by the model. If K is small, the model
only utilizes the low-order structure, and large K enables the usage of high-order structural information. Fig. 6 presents the
model performance on Arxiv and DPPIN with K ranging from 1 to 6. We observe that the optimal settings for K are
different across cases, and using larger K can not necessarily yield better performance. This is because in these cases, the
low-order structural information is informative enough for desired generalization.

24

Supercharging Graph Transformers with Advective Diffusion

Impact of θ. Finally, we study the impact of θ used for computing Lh in ADVDIFFORMER-I. Table 8 shows the performance
of ADVDIFFORMER-I on DPPIN with different θ’s. We found that using θ close to 1 can bring up stably good performance,
which is consistently manifested by experiments on other cases. Still, if θ is too small, e.g., close to 0, it would sometimes
lead to numerical instability. This is due to that, in such a case, the matrix Lh could become a singular matrix.

Table 8: Testing accuracy of ADVDIFFORMER-I with different θ’s in the edge regression task on DPPIN.

θ 0 0.5 1.0 2.0

Accuracy 0.241 0.154 0.147 0.149

G. Current Limitations and Future Works
The generalization analysis in the current work focuses on the data-generating mechanism as described in Fig. 2 which
is inspired and generalized by the random graph model. While this mechanism can in principle reflect real-world data
generation process in various graph-structured data, in the open-world regime, there could exist situations involving
topological distribution shifts by diverse factors or their combination. Future works can extend our framework for such cases
where inter-dependent data is generated with different causal mechanisms. Another future research direction lies in the
instantiation of the diffusion and advection operators in our model. Besides our choice of MPNN architecture to implement
the advection process, other possibilities include structural and positional embeddings. We leave this line of exploration
for the future, along with the analysis for the generalization capabilities of more general (e.g., non-linear) versions of the
advective diffusion equation and other architectural choices.

25

Supercharging Graph Transformers with Advective Diffusion

Ground Truth GCN (1.00) GAT (0.69) GraphGPS (0.92) Difformer (0.92)

 AdvDIFFormer (1.00)

(a)

Ground Truth GCN (0.22) GAT (0.22) GraphGPS (0.22) Difformer (0.22)AdvDIFFormer (1.00)

(b)

Ground Truth GCN (1.00) GAT (0.89) GraphGPS (0.86) Difformer (0.86)AdvDIFFormer (1.00)

(c)

Ground Truth GCN (0.54) GAT (0.87) GraphGPS (0.74) Difformer (0.74)

AdvDIFFormer (0.90)

(d)

Ground Truth GCN (0.70) GAT (0.70) GraphGPS (0.63) Difformer (0.60)

AdvDIFFormer (0.83)

(e)

Figure 7: Additional testing cases for molecular mapping operators generated by different models and the expert annotations
(ground-truth). For each case, we report the score (the higher is better) that measures the closeness between the generated
results and the expert annotations.

26

Supercharging Graph Transformers with Advective Diffusion

Ground Truth GCN (0.87) GAT (0.77) GraphGPS (0.85) Difformer (0.87)AdvDIFFormer (1.00)

(a)

Ground Truth GCN (0.84) GAT (0.76) GraphGPS (0.70) Difformer (0.64)AdvDIFFormer (1.00)

(b)

Ground Truth GCN (0.72) GAT (0.74) GraphGPS (0.56) Difformer (0.57)AdvDIFFormer (1.00)

(c)

Ground Truth GCN (0.77) GAT (0.77) GraphGPS (0.77) Difformer (0.89)AdvDIFFormer (1.00)

(d)

Ground Truth GCN (0.64) GAT (0.51) GraphGPS (0.51) Difformer (0.51)AdvDIFFormer (1.00)

(e)

Figure 8: Additional testing cases for molecular mapping operators generated by different models and the expert annotations
(ground-truth). For each case, we report the score (the higher is better) that measures the closeness between the generated
results and the expert annotations.

27

	Introduction
	Background and Preliminaries
	Generalization by Advective Diffusion
	Problem Formulation: Data Generation Hypothesis
	Proposed Model: Advective Diffusion Transformers
	Theoretical Justification
	Comparisons with Other Models

	Model Implementation
	Experiments
	Synthetic Datasets
	Real-World Datasets

	Conclusions
	Connection between Diffusion Equations and Message Passing
	Graph Neural Networks as Local Diffusion
	Graph Transformers as Non-Local Diffusion

	Proofs for Technical Results
	Proof for Theorem 3.1
	Proof for Theorem 3.2
	Proof for Corollary 3.3
	Proof for Proposition 3.4
	Proof for Corollary 3.5
	Extension with Feature Transformations

	Approximation Strategies for Diffusion PDE Solutions
	Model Implementations and Algorithms
	Model Architectures
	Instantiations and Parameterizations
	Acceleration of AdvDIFFormer-s with Linear Complexity

	Applicability of Our Model

	Experiment Details
	Datasets
	Synthetic Datasets
	Information Networks
	Biological Protein Interactions
	Molecular Mapping Operator Generation

	Competitors
	Implementation Details

	Additional Experimental Results
	Supplementary Results for Main Experiments
	Ablation Studies and Hyper-Parameter Analaysis

	Current Limitations and Future Works

