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Abstract

Large language models show strong potential for molecular editing, but progress1

has been constrained by the limited scale and quality of available training data. To2

address this, we introduce MEGA, a large-scale dataset of 31.4 million molecule3

pairs, where each pair represents a single property-improving chemical edit anno-4

tated with an explicit action: Replace, Insert, or Delete. We demonstrate MEGA’s5

utility in a controlled supervised fine-tuning (SFT) setting, where a model trained6

on MEGA outperforms models trained on existing datasets by up to +21.47 per-7

centage points in hit ratio. Furthermore, we show that Group Relative Policy8

Optimization (GRPO) post-training with a similarity-aware reward achieves state-9

of-the-art performance and a remarkable ∼ 36× improvement in data efficiency,10

while also preserving edit locality. We release MEGA in open access to the com-11

munity to enable data-centric benchmarks and accelerate progress in molecular12

editing with generative models.13

1 Introduction14

Molecular optimization is critical to drug discovery, guiding chemists in turning initial molecular15

hits into drug-like candidates. Unlike unconstrained molecule generation [1, 2], molecular editing16

involves targeted modifications, such as scaffold decoration, fragment substitutions, or precise17

structural refinements, that carefully balance therapeutic properties with chemical feasibility and18

synthetic practicality [3, 4].19

To assist chemists in this iterative lead optimization process, recent approaches leverage large20

language models (LLMs), either through fine-tuning or by using them as reasoning agents capable21

of interpreting textual prompts (e.g. “increase solubility”) and proposing relevant molecular edits22

[5, 6]. Additionally, reinforcement learning (RL)-based post-training can align these models even23

more closely with practical constraints, improving both chemical plausibility and edit precision [7, 8].24

Progress, however, is limited by data. Training and evaluating editing models requires goal-aligned25

edit datasets that pair a parent molecule with a proposed child and standardized outcomes, at a scale26

that supports both supervised fine-tuning and post-training [9, 10]. Nevertheless, existing corpora27

either lack the scale required for robust training or omit explicit edit annotations needed for guided28

policy learning.29

To close this gap, we curate MEGA (Molecular Editing with Guided Action): a large-scale, molecule30

editing dataset composed of (parent, child) molecule pairs spanning 28 tasks. It contains 31.4M31

successful edits and a compute-friendly subset, MEGA-Small, with 522k positive samples. We also32

release an additional 41M valid and chemically close negative examples to enable contrastive learning33

and RL reward shaping [11, 12].34
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Figure 1: Morgan-fingerprint t-SNE for a parent SMILES and child molecules generated by fragment
edits, delete, replace, insert. Colors encode the applied edit, highlighting neighborhood exploration
under the given task.

Using a fixed LLM and a shared evaluation protocol, we first quantify the effect of data alone by35

fine-tuning on MEGA-Small versus other public datasets. We then show that post-training with36

GRPO [13], using a composite reward that combines a thresholded property gain term and a Tanimoto37

similarity term [14], yields further gains with reduced number of training samples.38

Concretely, this work introduces the following contributions:39

1. We release MEGA, a 31.4M-pair molecular editing dataset with fragment-level Replace,40

Insert, and Delete annotations across 28 property optimization tasks, alongside MEGA-41

Small (522k pairs) for compute-limited settings. MEGA is over an order of magnitude larger42

than any existing dataset for molecular editing.43

2. We demonstrate that under fixed model and training protocol, fine-tuning on MEGA-Small44

subset increases hit ratios by up to +21.47 percentage points over established datasets on45

shared tasks, while its explicit edit labels enable per-action supervision and diagnostics.46

3. We show that RL post-training on MEGA-Small with a similarity-aware reward further47

improves property alignment and edit minimality, sets strong performance on established48

benchmarks, and delivers large improvements in data efficiency. With only 14k train-49

ing examples, GRPO matches the SFT model trained on the full 522k MEGA-Small set,50

corresponding to a ∼ 36× improvement in data efficiency.51

2 Related Work52

2.1 Datasets for Molecular Editing53

Public corpora vary in task formulation and scale. MoleculeSTM [15] trains a multimodal struc-54

ture–text model on hundreds of thousands of molecule–caption pairs through contrastive learning55

and proposes instruction-guided retrieval and editing tasks, establishing a text-based benchmark56

for property-aware modification. Another example is MolOpt-Instructions [16], released alongside57

DrugAssist, which compiles a large instruction dataset to fine-tune language models for molecule58

optimization from natural language goals. Furthermore, MolEdit-Instruct [17] scales property-59

conditioned edits by pairing each parent molecule with an explicit edit instruction and target property60

change. The dataset is used to evaluate diffusion and RL models under joint constraints on molecular61

similarity and property improvement, reflecting a shift toward instruction-plus-constraint benchmarks.62

Together, these datasets illustrate the available range for training and evaluating molecular editing63

models, despite differences in construction, supervision signals, and scale.64
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Figure 2: t-SNE projection of Morgan fingerprints showing chemical space coverage for MEGA
(31M), MolEdit-Instruct (3M), and MolOpt-Instructions (1.2M).

2.2 LLMs for Chemistry65

General-purpose language models trained on broad text data already exhibit useful zero-shot chemistry66

skills answering property prediction questions, translating line notations, or suggesting functional-67

group swaps straight out of the box [18, 19, 20]. When wrapped in a tool-calling framework, the68

same models can act as agents: ChemCrow, for example, prompts an off-the-shelf LLM to invoke69

cheminformatics utilities (parsers, property predictors, similarity search) and carry out multi-step70

design tasks from natural language instructions [21].71

Researchers also adapt these open language models to chemistry via domain fine-tuning and task-72

specific supervision. For instance, LlamoLe trains on ∼128k USPTO reactions with textual de-73

scriptions to strengthen reasoning and route identification [22, 23], while DrugAssist uses MolOpt-74

Instructions to instruction-tune models for property-directed optimization from text in a single-shot75

fashion [16].76

A further layer of refinement uses reinforcement learning such as with Ether0, trained on 640k77

experimentally-grounded chemistry problems across 375 tasks, to excel at tasks like retrosynthesis78

and solubility editing [24]. Another example is MolEditRL, which pairs property-conditioned79

prompts with structure-preserving edit operators and reinforcement-style objectives to promote local,80

similarity-respecting modifications [17].81

2.3 Editors Beyond LLMs for Lead Optimization82

While LLM-based editors are comparatively recent, lead optimization has a long history of non-LLM83

approaches that emphasize local, property-directed modifications to a given scaffold. Earlier rule-84

based strategies, such as matched molecular pairs (MMPs) [25] and fixed reaction templates, encoded85

medicinal-chemistry heuristics for systematic substitution. More recent machine learning methods86

operate directly on strings or graphs to propose minimal edits, including JT-VAE [2], GCPN [26],87

and MARS [27, 28]. In parallel, diffusion models adapt continuous generative dynamics to discrete88

molecular modifications: DiffLink designs linkers between fixed fragments [29], while DiffHop89

performs constrained scaffold hopping [30]. Taken together, these approaches chart a progression90

from rules to learned editors to diffusion frameworks, all aimed at controllable, chemically plausible91

edits central to lead optimization.92
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Table 1: Comparison of molecular editing datasets used in this study. Reported sizes count only
successful (positive) parent-child pairs. Unique molecules counts distinct SMILES across both
parents and children. Action provided indicates whether a dataset records the edit label.

Dataset Size Unique Molecules # Tasks Action Provided
MoleculeSTM 280K 250K 34 No
MolEdit-Instruct 3.03M 967K 20 No
MolOpt-Instructions 1.24M 1.596M 16 No

MEGA-Small 522K 372K 28 Yes
MEGA 31.4M 22.126M 28 Yes

3 MEGA Dataset93

3.1 Dataset Construction Overview94

MEGA contains 31.4 million parent–child SMILES pairs, where each child comes from applying a95

single functional-group edit to a ZINC250K parent, without a constraint to preserve the scaffold [31].96

Candidate modification sites are located with established retrosynthetic slicing rules (BRICS [32],97

Hussain–Rea (HR) [33] and RECAP [34]) and exactly one action is applied at a chosen site: Delete,98

Insert, or Replace a functional group. The child is rebuilt and sanitized in RDKit [35], and task99

properties are computed deterministically. We adopt the MoleculeSTM protocol for task labeling:100

for each objective (e.g. “increase solubility”), we use RDKit to verify whether the child clears the101

threshold for that task. The computational budget for MEGA amounted to approximately 184k102

CPU-hours on a 128-core cluster.103

Each record includes parent SMILES, child SMILES, a coarse action tag (Insert/Delete/Replace), the104

task identifier and threshold level, and the parent/child property vectors. For efficient training, we105

also release MEGA-Small (522k positives), drawn uniformly from MEGA, which mirrors the full106

set’s action distribution (14% Delete, 39% Insert, 46% Replace). In addition to the positives, we also107

release 41 million valid, chemically close negative pairs. While they fail to meet the threshold, they108

are useful as hard negatives for contrastive or RL setups.109

To emphasize drug discovery relevance, our tasks target widely used objectives—aqueous solubility,110

drug-likeness (QED), H-bond donors/acceptors, permeability proxies, and topological polar surface111

area (TPSA)—each evaluated at two thresholds. Restricting edits to a single modification per pair112

enables controlled exploration of the parent’s local chemical neighborhood. A parent molecule113

may appear in multiple pairs if it contains eligible sites for several actions across tasks. For each114

edit–task combination, we retain up to five successful and five near-miss children, ranked to maximize115

diversity while avoiding redundancy. Further details on tasks and dataset composition are provided in116

Appendix A.117

3.2 Dataset Coverage118

Figure 1 shows a representative parent alongside three children, one per action. The edits are local119

and chemically rational: removing an atom (Delete), adding a small moiety (Insert) or swapping one120

group for another (Replace). Together they illustrate the targeted nature of MEGA’s pairs; in this121

example, all children satisfy the “increase aqueous solubility” objective.122

Figure 2 visualizes a statistically significant subset of MEGA in the 2048-bit Morgan-fingerprint123

space [36] using t-SNE [37]. The overlay shows that MEGA occupies the shared high-density core124

with existing molecular editing datasets and also reaches beyond it, consistent with its scale and125

edit policy. Moreover, Table 1 quantifies this comparison: in terms of successful (positive) edits,126

MEGA is roughly an order of magnitude larger than the next largest dataset. Furthermore, unlike127

other datasets, MEGA and MEGA-Small include a coarse action label (Insert/Delete/Replace) for128

every pair, supporting per-action supervision, diagnostics, and reproducibility.129
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Table 2: Performance comparison of SFT models on shared molecular editing tasks. We report the
mean and std of five random seeds. The best results are marked in bold. Llama 3.

Task Description Threshold Dataset
MEGA- MolEdit MolOpt

Small Instruct Instruction

103 More like a drug 0.0 62.46 ± 2.18 23.92 ± 0.99 16.38 ± 2.03
0.1 28.43 ± 1.38 12.85 ± 0.58 8.38 ± 0.53

104 Less like a drug 0.0 97.81 ± 0.91 98.97 ± 0.33 96.87 ± 0.82
0.1 83.94 ± 3.43 98.86 ± 0.51 94.43 ± 1.47

107 More H-bond acceptors 0.0 99.28 ± 0.25 94.96 ± 1.70 89.33 ± 1.18
1.0 93.06 ± 0.66 43.35 ± 1.65 34.06 ± 0.58

108 More H-bond donors 0.0 99.80 ± 0.25 97.66 ± 0.59 96.21 ± 0.91
1.0 99.29 ± 0.25 67.57 ± 1.78 56.67 ± 1.10

Average 83.01 67.27 61.54

4 Experiments130

We evaluate MEGA in a two-stage protocol: (1) supervised fine-tuning (SFT) to benchmark perfor-131

mance under identical model and training settings against existing datasets, and (2) RL post-training132

with a hybrid reward combining property gains and structural similarity. We also analyze edit action133

distributions, locality, and sample efficiency in single- and multi-objective tasks.134

4.1 Supervised Fine-Tuning135

Protocol. We fine-tune a Llama-3 8B model [38] with LoRA adapters [39] on MolOpt Instruction,136

MolEdit Instruct, and MEGA-Small datasets. All runs use the same hyperparameters, training137

schedule, and LoRA configuration. Training last approximately 23 A100-equivalent hours per model138

until the validation loss no longer improves.139

Evaluation follows the MoleculeSTM protocol [15] and is restricted to the 4 single-objective tasks140

shared by all three datasets. The test set contains 200 unique parent SMILES not present in any of the141

training sets. For each task, we assess performance at two property thresholds (loose and strict) and142

report the hit ratio, defined as the fraction of generated molecules that achieve the required property143

improvement. Each experiment is repeated five times, with a decoding temperature of 1.0, and we144

report the mean and standard deviation of the hit ratio across runs. For further comparisons and145

training settings details see Appendix B.146

Results. Table 2 shows that the LLM trained on MEGA-Small outperforms the same architecture147

trained on MolEdit Instruct and MolOpt Instruction by +15.74 (pp) and +21.47 (pp), respectively. The148

largest gain occurs in the “more like a drug” objective, a target known to be particularly challenging149

due to its composite nature [18]. Variance is low and comparable to the other benchmarks, indicating150

that improvements are stable across repeated evaluations.151

4.2 Reward-Guided Post-Training152

Protocol. We further refine the best MEGA-Small SFT checkpoint using Group Relative Policy153

Optimization (GRPO) [13] to improve property alignment while preserving local edits. During154

training, for each parent SMILES, the model generates a batch of multiple candidates, which are155

scored relative to each other. This feedback is used for updating the model weights. The scalar reward156

is defined as:157

R = 1[∆p(parent, child) ≥ τ ]︸ ︷︷ ︸
property hit

+γ 1valid(child)︸ ︷︷ ︸
validity hit

+λ htan(parent, child)︸ ︷︷ ︸
Tanimoto hit level
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Table 3: Comparison on DrugAssist benchmark. MEGA-Small GRPO (522k) outperforms DrugAssist
and Gemini 2.5 Pro across five shared tasks under loose and strict thresholds.

Task Description Threshold Model
DrugAssist Gemini 2.5 Pro MEGA-Small GRPO

101 More soluble in water 0 80.00 82.23 97.49
0.5 41.00 59.45 91.10

103 More like a drug 0 76.00 60.14 83.49
0.1 63.00 23.46 50.00

107 More H-bond acceptors 0 71.00 64.97 98.60
1 67.00 5.57 86.74

108 More H-bond donors 0 72.00 73.54 99.31
1 76.00 6.32 91.45

201 More soluble & more HBA 0 - 0 50.00 80.32 95.19
0.5 - 1 27.00 24.43 84.21

Average 62.30 48.05 87.76

158

htan(parent, child) =


1.0, if T > 0.65,

0.5, if 0.4 ≤ T ≤ 0.65,

0.0, otherwise,

where the first term awards a hit when the property change ∆p meets or exceeds the task threshold τ ,159

the second term rewards valid and sanitized child smiles, and the third rewards scaffold-local modifi-160

cations via Tanimoto coefficient discretization. The coefficients γ and λ were selected empirically161

to 1.0. We train with 3,000 rollouts per task under a KL-constrained objective. To assess the data162

efficiency of the post-training stage, we repeat this experiment with training sets ranging from 1.4k163

parent SMILES up to the full MEGA-Small dataset (522k). The resulting models are referred to as164

MEGA-Small GRPO. Complete experimental details are provided in Appendix C.165

We first compare MEGA-Small GRPO against DrugAssist [17], a state-of-the-art specialized LLM,166

and Gemini 2.5 Pro [40], a strong general-purpose LLM, on five single- and multi-objective molecular167

editing tasks. For this evaluation, we use the 500-SMILES test set provided by DrugAssist and report168

hit ratios under both loose and strict thresholds in Table 3.169

We then compare MEGA-Small GRPO against ChatDrug Turbo, a strong in-context learning LLM,170

and MoleculeSTM, a contrastive-trained encoder–decoder, on the full 28-task suite of the MEGA171

dataset. For this evaluation, we follow the protocol described in the SFT section and report results in172

Table 4. We verified that none of the test SMILES appeared in our training data to maintain evaluation173

integrity.174

Results. MEGA-Small GRPO outperforms both DrugAssist and Gemini 2.5 Pro on the DrugAssist175

benchmark (Table 3), achieving the highest hit ratio in 9 of 10 settings. The most pronounced gains176

appear on the dual-objective solubility + HBA task (201), where it reaches 95.19% under loose177

and 84.21% under strict thresholds, substantially ahead of both baselines. The only case where178

MEGA-Small GRPO underperforms is the strict drug-likeness objective, where DrugAssist retains179

an edge. Gemini 2.5 Pro consistently trails, particularly under strict thresholds, underscoring the180

difficulty of zero-shot general-purpose LLMs in molecular editing.181

On the 28-task MoleculeSTM benchmark (Table 4), MEGA-Small GRPO attains the best mean182

hit ratio on all task/threshold pairs. It reaches ≥95% on most single-property edits under loose183

thresholds (e.g., 101–102, 104, 106–108) and remains strong under stricter criteria. The notable hard184

case is Task 103 (drug-likeness), where absolute rates drop for all methods; even so, MEGA-Small185

GRPO leads by 14 pp (62.60 vs. 48.65) at loose and 7 pp (26.75 vs. 19.37) at strict. MEGA-Small186

GRPO’s advantage is most pronounced on multi-objective tasks (201, 203, and 206), indicating187

better balancing of potentially competing constraints. Variance across runs is small (typically ≤ 1.5),188
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Table 4: Performance comparison of MEGA-Small GRPO (522K) against editing methods across
single and multi objective tasks and thresholds. We report the mean and standard deviation over five
runs. The best results are shown in bold.

Task Threshold Random MoleculeSTM ChatDrug Turbo MEGA-Small GRPO

101 0 35.33±1.31 61.87±2.67 94.13±1.04 99.31±0.10
0.5 11.04±2.40 49.02±1.84 88.67±0.95 94.43±0.24

102 0 43.36±3.06 52.71±1.67 96.86±1.10 99.71±0.21
0.5 19.75±1.56 30.47±3.26 70.08±3.44 95.52±0.51

103 0 38.06±2.57 36.52±2.46 48.65±3.39 62.60±2.41
0.1 5.27±0.24 8.81±0.82 19.37±5.54 26.75±1.64

104 0 36.96±2.25 58.59±1.01 70.75±2.92 97.55±0.64
0.1 6.16±1.87 37.56±1.76 30.99±2.66 93.63±0.56

105 0 25.23±2.13 57.74±0.60 56.56±1.84 90.19±1.34
10 17.41±1.43 47.51±1.88 43.08±2.95 87.88±0.94

106 0 16.79±2.54 34.13±0.59 77.35±1.98 100.00±0.00
10 11.02±0.71 26.48±0.97 66.69±2.74 99.43±0.01

107 0 12.64±1.64 54.01±5.26 95.35±0.62 99.86±0.29
1 0.69±0.01 27.33±2.62 72.60±2.51 92.35±0.50

108 0 2.97±0.61 28.55±0.76 96.54±1.31 98.45±0.83
1 0.00±0.00 7.69±0.56 76.43±3.32 95.22±0.34

201 0 – 0 9.88±1.03 27.87±3.86 79.62±0.64 98.53±0.44
0.5 – 1 0.23±0.33 8.80±0.04 49.64±2.66 90.34±0.47

202 0 – 0 2.99±0.38 8.55±2.75 51.59±3.79 97.24±0.92
0.5 – 1 0.45±0.32 2.93±0.30 24.92±4.85 92.04±0.53

203 0 – 0 2.28±1.15 33.51±4.08 89.34±0.96 99.64±0.48
0.5 – 1 0.00±0.00 9.98±1.03 53.64±5.81 98.35±0.90

204 0 – 0 0.69±0.58 17.03±2.75 39.90±3.86 92.60±1.44
0.5 – 1 0.00±0.00 2.59±1.14 24.19±2.19 60.06±1.83

205 0 – 0 5.06±1.21 35.69±3.19 12.85±2.68 89.30±0.93
0.5 – 10 1.16±0.68 19.15±0.73 10.44±5.75 82.86±0.75

206 0 – 0 12.17±1.05 44.35±0.68 65.33±2.16 99.54±0.43
0.5 – 10 6.20±0.64 28.67±2.22 52.90±2.23 94.31±0.23

suggesting the gains are stable across several runs. Overall, MEGA-Small GRPO establishes a robust189

state-of-the-art baseline for both single- and multi-objective molecular editing. These outcomes reflect190

the synergy between the MEGA-Small dataset and locality-aware GRPO training. MEGA-Small191

provides informative and diverse demonstrations of guided optimization through single-local edits,192

while GRPO further aligns the model’s behavior with task-specific reward signals.193

Data Efficiency. Figure 3 shows that GRPO with Tanimoto reward outperforms SFT across all data194

regimes while maintaining scaffold edits within our targeted Tanimoto similarity range (0.6–0.8).195

With only 14k training examples, MEGA-Small GRPO (14K) matches the performance of MEGA-196

Small SFT trained on 522k by +2.11 pp, achieving ∼ 36× data efficiency multiplier with the same197

Llama 3 base model. More details in Appendix C.198

Guided-Action Editing. Figure 4 shows the distribution of fragment-level edit actions across tasks.199

Models trained with MEGA-Small SFT roughly reproduce the action distribution of the MEGA-Small200

(522k) dataset. This indicates internalization of single-fragment edit patterns (replace, insert, delete)201

present in the demonstrations. In contrast, MEGA-Small GRPO learns, via RL, heavily favors202

replace actions, reflecting an optimization bias towards minimal yet property-aligned functional203
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group modifications. The performance increase of the GRPO model, suggest that replace-dominant204

strategies yield, on average, better results than the dataset’s action distribution.205

5 Conclusion206

In this work, we introduce MEGA, a new large-scale dataset of 31.4 million molecule pairs designed to207

advance property-guided molecular editing. By systematically generating single chemically rational208

edits that improves a target property (replace, insert, delete), MEGA provides dense, high-quality209

supervision for exploring local chemical space. Our experiments demonstrate its value: a model210

fine-tuned on a small subset, MEGA-Small, significantly outperforms models trained on existing211

datasets in supervised settings. Furthermore, when combined with reinforcement learning, models212

trained on MEGA achieves state-of-the-art performance on established benchmarks and demonstrates213

a remarkable ∼ 36× improvement in data efficiency. By providing controlled, high-quality examples214

at scale, MEGA facilitates the development of better models and optimization workflows.215
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A MEGA Dataset Details372

Tasks. For curating MEGA we used single-objective tasks (101–108) that targets one property, and373

multi-objective tasks (201–206) for two properties. Table 5 lists the desired direction of change (↑374

increase, ↓ decrease), variable name (consistent with RDKit), alongside the requirement in natural-375

language. For each task we evaluate 2 threshold with different levels of property change. Table 6 gives376

the evaluation thresholds under loose and strict criteria. For multi-objective tasks, each threshold377

vector follows the property order in the Target(s) column.378

Task ID Target(s) Task Requirement 1 Task Requirement 2
101 ↓ logP more soluble in water None
102 ↑ logP less soluble in water None
103 ↑ QED more like a drug None
104 ↓ QED less like a drug None
105 ↓ TPSA higher permeability None
106 ↑ TPSA lower permeability None
107 ↑ HBA more hydrogen bond acceptors None
108 ↑ HBD more hydrogen bond donors None
201 ↓ logP , ↑ HBA more soluble in water more hydrogen bond acceptors
202 ↑ logP , ↑ HBA less soluble in water more hydrogen bond acceptors
203 ↓ logP , ↑ HBD more soluble in water more hydrogen bond donors
204 ↑ logP , ↑ HBD less soluble in water more hydrogen bond donors
205 ↓ logP , ↓ TPSA more soluble in water higher permeability
206 ↓ logP , ↑ TPSA more soluble in water lower permeability

Table 5: Task catalog for small-molecule property edits. All tasks require the output molecule to
remain similar to the input. Arrows indicate desired property direction.

Task ID Loose Strict
101 [0] [0.5]
102 [0] [0.5]
103 [0] [0.1]
104 [0] [0.1]
105 [0] [10]
106 [0] [10]
107 [0] [1]
108 [0] [1]
201 [0, 0] [0.5, 1]
202 [0, 0] [0.5, 1]
203 [0, 0] [0.5, 1]
204 [0, 0] [0.5, 1]
205 [0, 0] [0.5, 10]
206 [0, 0] [0.5, 10]

Table 6: Evaluation thresholds per task. For multi-objective tasks, each vector’s order follows the
Target(s) order in Table 5.
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Dataset Statistics. This subsection summarizes the scale and composition of MEGA (31M) and379

MEGA-Small (522K) and quantifies how representative the smaller split is of the full corpus. Table 7380

reports dataset-level counts. MEGA-31M contains 246,532 unique parent molecules directly taken381

from the Zinc-250 dataset. In includes 72,366,584 evaluated edits, of which 31,354,522 are successful.382

MEGA-Small mirrors this profile at smaller scale with 4,105 unique parents and 1,205,430 edits,383

including 522,058.384

Metric MEGA (31M) MEGA-Small (522K)
Unique parent molecules 246,532 4,105
Successful edits 31,354,522 522,058
Unique successful SMILES 21,879,431 367,954
Negative edits 41,012,062 683,372
Unique negative SMILES 8,129,138 137,012
Total SMILES 72,366,584 1,205,430

Table 7: Side-by-side summary of MEGA datasets.

Table 8 compares the distribution of successful edits by operation. The proportions are stable across385

scales: delete ≈3.1%, insert ≈43.6%, and replace ≈53.3% in both MEGA-Small (522K) and386

MEGA (31M). This alignment suggests that MEGA-Small preserves the operational mix of the full387

dataset and is suitable for compute-friendly budgets.388

MEGA-Small (522K) MEGA (31M)
Operation Count % Count %
delete 15,924 3.1% 960,992 3.1%
insert 227,789 43.6% 13,677,420 43.6%
replace 278,345 53.3% 16,716,110 53.3%
Total 522,058 100% 31,354,522 100%

Table 8: Distribution of successful edit operations for MEGA and MEGA-Small.

Table 9 reports successful edits per task for MEGA (31M) and MEGA-Small (522K). Counts are389

broadly balanced across tasks and per-task ranking is consistent across scales. Tasks 101/102/104390

yield the largest winner pools, while 103 (increase QED) and 205 (reduce logP& decrease TPSA)391

show markedly consistent with results from the literature. MEGA-Small preserves the relative task392

difficulty profile of the full corpus.393

Task MEGA MEGA-Small
101 2,613,794 43,463
102 2,609,126 43,443
103 1,061,168 17,774
104 2,570,496 42,793
105 1,645,706 27,401
106 2,462,800 41,005
107 2,462,791 41,005
108 2,462,781 41,005
201 2,462,711 41,005
202 2,457,965 40,933
203 2,462,768 41,005
204 2,400,936 39,978
205 1,218,686 20,243
206 2,462,794 41,005
Total 31,354,522 522,058

Table 9: Number of successful edit examples per task for MEGA (31M) and MEGA-Small (522K).

Mean shifts, Table 10, align with the instructions for every task. Examples: LogP↓ (101) moves the394

mean by −0.975 (winners vs. parents) and separates winners from losers by −1.577; LogP↑ (102)395
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shifts by +0.965 with a winner–loser gap of +1.133; QED↓ (104) shifts by −0.217; TPSA↑ (106)396

exhibits a large increase of +31.611; HBA↑ (107) and HBD↑ (108) increase by +2.749 and +2.316,397

respectively. The consistent sign and sizable winner–loser separations (last column) provide evidence398

of strong task-wise consistency on MEGA-Small.399

Task Property Obj. Parent x̄ Winner x̄ ∆ W–P Loser x̄ ∆ W–L
101 LogP ↓ 2.475 1.501 −0.975 3.078 −1.577
102 LogP ↑ 2.475 3.440 +0.965 2.307 +1.133
103 QED ↑ 0.733 0.797 +0.064 0.614 +0.183
104 QED ↓ 0.733 0.516 −0.217 0.727 −0.211
105 TPSA ↓ 64.918 49.669 −15.249 77.022 −27.353
106 TPSA ↑ 64.918 96.530 +31.611 61.857 +34.673
107 HBA ↑ 3.990 6.739 +2.749 4.224 +2.515
108 HBD ↑ 1.237 3.553 +2.316 1.248 +2.305

Table 10: MEGA-Small: mean target-property values and deltas. ∆W–P = x̄W − x̄P (winners minus
parents) and ∆W–L = x̄W − x̄L (winners minus losers). “Winners” and “losers” correspond to
successful and unsuccessful edits, on strict threshold respectively. Signs follow the task objective
(increase/decrease).

Figure 5 visualizes the single-objective shifts via kernel density estimates of the target property400

for parent (orange) and edited child (blue) molecules. Across all eight tasks, the child distribution401

moves in the instructed direction (reduce/increase or count increase), demonstrating strong task-wise402

consistency in MEGA-Small.403

Figure 5: Molecular property distributions between parent and child molecules for MEGA-Small.

For comparison to prior datasets, we report the Fréchet ChemNet Distance (FCD; lower is closer)404

[41]. As shown in Table 11, the distance between MolEdit and MolOpt roughly 4x lower compared405

to MEGA-Small. This indicates that MEGA occupies a distinct region of the chemical space, while406

the incumbent datasets exhibit notable overlap, thus, expanding the resources available in the existing407

literature.408

Table 11: Fréchet distance between datasets computed in Morgan-fingerprint space (lower is closer).

Dataset MEGA-Small MolEdit MolOpt
MEGA-Small 0.000 2.790 2.738
MolEdit 2.790 0.000 0.696
MolOpt 2.738 0.696 0.000
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Prompts. Unless otherwise stated, prompts request one candidate molecule in SMILES, with no409

extra explanation.410

Single-objective prompts:411

101: Reduce logP

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.

412

102: Increase logP

User: Can you make molecule <SMILES_PLACEHOLDER>less soluble in water? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.

413

103: Increase QED

User: Can you make molecule <SMILES_PLACEHOLDER>more like a drug? The output
molecule should be similar to the input molecule.
Output: One valid SMILES.

414

104: Reduce QED

User: Can you make molecule <SMILES_PLACEHOLDER>less like a drug? The output
molecule should be similar to the input molecule.
Output: One valid SMILES.

415

105: Decrease TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>higher permeability? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.

416

106: Increase TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>lower permeability? The output
molecule should be similar to the input molecule.
Output: One valid SMILES.

417

107: Increase HBA

User: Can you make molecule <SMILES_PLACEHOLDER>with more hydrogen bond
acceptors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

418

108: Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>with more hydrogen bond donors?
The output molecule should be similar to the input molecule.
Output: One valid SMILES.

419
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Two-objective prompts:420

421

201: Reduce logP & Increase HBA

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and more
hydrogen bond acceptors? The output molecule should be similar to the input
molecule.
Output: One valid SMILES.

422

202: Increase logP & Increase HBA

User: Can you make molecule <SMILES_PLACEHOLDER>less soluble in water and more
hydrogen bond acceptors? The output molecule should be similar to the input
molecule.
Output: One valid SMILES.

423

203: Reduce logP & Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and
more hydrogen bond donors? The output molecule should be similar to the input
molecule.
Output: One valid SMILES.

424

204: Increase logP & Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>less soluble in water and
more hydrogen bond donors? The output molecule should be similar to the input
molecule.
Output: One valid SMILES.

425

205: Reduce logP & Decrease TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and
higher permeability? The output molecule should be similar to the input
molecule.
Output: One valid SMILES.

426

206: Reduce logP & Increase TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and lower
permeability? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

427

17



B Supervised Fine-tuning (SFT) details428

For all our fine-tuning experiments, we utilize a memory-efficient, 4-bit quantized LLaMA 3.1 8B429

Instruct model as the backbone. Our datasets are consistently formatted as prompt-completion pairs,430

where the prompts are detailed in the main text and the corresponding completions are the child431

SMILES.432

To ensure a fair comparison across benchmarks, we trained three models, as detailed in Table 2,433

each on a different dataset that has been filtered to contain comparable tasks. For the MEGA-Small434

dataset, we retain tasks 101, 102, 103, 104, 107, and 108, resulting in 229K prompt-completion pairs.435

For MolEdit-Instruct, we use tasks 103, 104, 107, and 108 (as tasks 101 and 102 are not available),436

yielding 650K prompt-completion pairs. For MolOpt-Instructions, we include tasks 101, 102, 103,437

104, 107, and 108, producing 301K prompt-completion pairs.438

All models are trained using Low-Rank Adaptation (LoRA) with a rank of r=32 and α=16, targeting439

all attention projection matrices and feed-forward layers. We use a training batch size of 16 with a440

gradient accumulation of 2 steps, resulting in an effective batch size of 32. Optimization is performed441

with an 8-bit quantized AdamW optimizer for memory efficiency. The learning rate is set to 1e− 4442

with a cosine annealing scheduler and a linear warm-up period of 100 steps. For regularization, a443

weight decay of 0.01 is applied. All models are trained with a maximum sequence length of 512444

tokens, using mixed-precision training (bfloat16) when supported. All trainings are conducted on a445

single A100 (40GB) GPU for approximately 23 hours.446

B.1 Evaluation447

We perform a sanity check to ensure that test SMILES are not present in any of the training sets using448

canonical SMILES notation to prevent any data leakage. Importantly, to ensure the fairest possible449

evaluation, we evaluate each model using the prompt templates specific to their respective training450

datasets. This means models trained on MolEdit-Instruct data are evaluated with MolEdit-Instruct451

prompt templates, while models trained on MEGA-Small use MEGA templates, and models trained452

on MolOpt-Instructions use MolOpt-Instructions templates, eliminating any potential bias from453

prompt format differences.454
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Figure 6: Training loss curves for three SFT models on MEGA-Small, MolEdit-Instruct, and MolOpt-
Instructions. MEGA-Small achieves the lowest final loss ( 0.18), followed by MolOpt-Instructions
and MolEdit-Instruct respectively.

As shown in Figure 6 the model trained on MEGA-Small exhibits significantly faster convergence455

and substantially lower final loss values. The better training dynamics observed with MEGA-Small456

indicates that our dataset leads to more sample-efficient learning, achieving better optimization faster.457
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In addition, for Table 3, we report hit ratio results comparing MEGA-Small GRPO against Gemini458

2.5 Pro (June 17, 2025 official API release) and DrugAssist on the 500 test SMILES provided by459

DrugAssist.460

This evaluation is performed over a single run, and we carefully verify that none of these 500 SMILES461

are included in our training set to avoid any possibility of data contamination.462

B.2 Extra Comparisons463

To further assess the utility of the MEGA dataset and extend the results in Table 2, we conducted464

an pair-wise comparison between MEGA and each external dataset on their overlapping task sets.465

Specifically, MEGA shares five tasks with MolEdit-Instruct and six with MolOpt-Instructions.466

In the first experience, we trained models exclusively on the five tasks shared between MEGA and467

MolEdit-Instruct, namely tasks 103, 104, 107, 108, and 201 (Table 12). This setting corresponds to468

678K training examples from MolEdit-Instruct and 183K examples from the MEGA-Small subset469

restricted to these five tasks. In the second, we trained models on the six tasks shared between470

MEGA and MolOpt-Instructions, namely tasks 101, 102, 103, 104, 107, and 108 (Table 13), which471

amounts to 301K training examples from MolOpt-Instructions and 229K examples from the filtered472

MEGA-Small subset. All training hyperparameters and conditions described in Appendix B were473

kept identical to ensure a fair and controlled comparison.474

In these head-to-head evaluations, we found that models trained on the MEGA data partitions, in475

average, outperform those trained on the corresponding data from MolEdit-Instruct and MolOpt-476

Instructions. This finding further validates the quality and effectiveness of our dataset, demonstrating477

that its superior performance is not limited to a small task intersection, but holds true in expanded478

comparisons.479

Table 12: Performance comparison: MEGA-
Small vs MolEdit Instruct
Task Threshold MolEdit-Instruct MEGA-Small

103 0.0 27.19 ± 0.84 61.05 ± 2.88
0.1 14.37 ± 0.95 24.36 ± 1.73

104 0.0 99.28 ± 0.52 95.84 ± 0.89
0.1 97.94 ± 0.55 80.95 ± 3.41

107 0.0 95.72 ± 0.61 98.02 ± 0.90
1.0 43.05 ± 1.64 94.58 ± 0.76

108 0.0 98.10 ± 0.71 99.80 ± 0.25
1.0 66.53 ± 2.05 97.25 ± 0.60

201 0.0 87.14 ± 1.99 96.18 ± 1.03
0.5 81.66 ± 1.72 87.86 ± 1.58

Average 71.10 83.59

Table 13: Performance comparison: MEGA-
Small vs MolOpt-Instructions
Task Threshold MolOpt-Instruction MEGA-Small

101 0.0 96.71 ± 0.70 98.04 ± 0.51
0.5 96.41 ± 0.58 92.47 ± 0.79

102 0.0 88.41 ± 1.85 97.41 ± 0.74
0.5 88.41 ± 1.85 92.53 ± 2.25

103 0.0 16.82 ± 1.57 59.71 ± 1.29
0.1 8.68 ± 1.16 26.72 ± 2.31

104 0.0 97.92 ± 1.40 97.42 ± 0.32
0.1 93.68 ± 1.88 84.54 ± 2.15

107 0.0 92.33 ± 2.42 98.35 ± 0.50
1.0 33.41 ± 3.03 93.36 ± 0.57

108 0.0 94.76 ± 0.91 100.00 ± 0.00
1.0 56.10 ± 1.74 98.56 ± 0.89

Average 71.97 86.59
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C GRPO Details480

C.1 GRPO Algorithm for Molecural Editing481

For each molecular editing prompt (xin, xt), GRPO operates as follows:482

1. Sample a group of candidate molecules:483

{y1, y2, ..., yG} ∼ πθ(·|xin, xt) (1)
where G is the number of generations by our policy model484

2. Compute rewards for all candidates using batch molecular property evaluation:485

ri = R(yi, xin, xt) for i = 1, ..., G (2)

3. Calculate group-relative advantages:486

Âi =
ri − r̄

σr + ϵ
(3)

where r̄ = 1
G

∑G
j=1 rj and σr =

√
1
G

∑G
j=1(rj − r̄)2 are the mean and standard deviation487

of rewards within the group, and ϵ = 10−8 for numerical stability.488

4. Update the policy using the GRPO objective:489

LGRPO(θ) = − 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
t=1

[
min

(
ρi,tÂi, clip(ρi,t, 1− ε, 1 + ε)Âi

)
− βDKL[πθ∥πref]

]
(4)

where:490

• ρi,t =
πθ(yi,t|xin,xt,yi,<t)
πθold (yi,t|xin,xt,yi,<t)

is the probability ratio491

• ε = 0.2 is the clipping parameter492

• β = 0.0 by default493

• If β > 0, the KL divergence is estimated as shown previously494

C.2 Experimental Details495

For locality-aware GRPO training, we ensured strict consistency between supervised fine-tuning496

(SFT) and post-training data. For example, the MEGA-Small GRPO (14K) model used the same497

14K SMILES for both SFT and GRPO. Similarly, the results in Table 4 were obtained from a policy498

model first fine-tuned on the full 522K prompt–completion pairs of MEGA-Small, with the same499

data reused during GRPO. In this phase, we sampled G = 12 generations per prompt and computed500

rewards for each candidate molecule.501

Our composite reward function is designed to guide the model toward valid, improved, and struc-502

turally related molecules using three distinct signals. First, the validity reward provides a binary503

signal that ensures chemical correctness through RDKit sanitization while rejecting any outputs that504

are unchanged or fragmented. Second, the property reward implements a task-specific evaluation505

using a dual-threshold mechanism to provide fine-grained control over property modifications. Strict506

thresholds (e.g., ∆LogP > 0.5, ∆QED > 0.1) yield a reward of 1.0, whereas loose thresholds that only507

require a correct directional change yield 0.5. This encourages the model to learn both conservative508

and substantial improvements. Third, the Tanimoto similarity reward enforces structural conserva-509

tion, assigning a reward of 1.0 for high similarity (Tanimoto coefficient > 0.65), 0.5 for moderate510

modifications (coefficients ∈ [0.4, 0.65]), and 0.0 for major scaffold modifications (coefficients <511

0.4).512

All GRPO training was conducted on a single A100 GPU, with convergence achieved in approximately513

10 hours at around 3,000 steps. We used an 8-bit quantized AdamW optimizer with a learning rate514

of α = 5 × 10−6, β1 = 0.9, β2 = 0.999, a weight decay of 0.01, and gradient norm clipping at515

0.5. The learning rate followed a cosine annealing schedule with a 10% linear warmup. To ensure516

memory efficiency, the model incorporated 4-bit quantization and LoRA adaptation with a rank of517

r = 32. We used an effective batch size of 8 (4 samples per device with 2 gradient accumulation518

steps) and maximum sequence lengths of 256 and 128 for prompts and completions, respectively. All519

computations were performed using bfloat16 mixed precision.520
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D Impact of GRPO and Tanimoto Reward on Scaffold Similarity521

(a) Dataset size: 1.4K (b) Dataset size: 7K (c) Dataset size: 14K

(d) Dataset size: 70K (e) Dataset size: 140K (f) Dataset size: 500K

Figure 7: Tanimoto similarity distributions for different training data sizes. Each plot shows the
distribution for SFT (purple), GRPO without Tanimoto reward (turquoise), and GRPO with Tanimoto
reward (orange) models. The green shaded region (0.6–0.8) indicates the targeted tanimoto similarity
range.

We trained MEGA across varying dataset sizes using GRPO, either with or without incorporating a522

Tanimoto similarity component into the reward system.523

When trained without the Tanimoto reward on small datasets, the model achieves high benchmark524

performance but tends to alter the scaffold substantially, yielding molecules with low similarity to525

their parent compounds.526

As the dataset size increases, however, the model implicitly recovers the similarity distribution527

observed in the SFT baseline (MEGA-Small), ultimately reaching the target similarity regime even528

without an explicit similarity signal. In contrast, when the Tanimoto reward is included, the model529

attains this small-edit regime with as few as 1.4k training examples (roughly 100 per task type).530
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E Qualitative examples531

Table 14: Visualization of molecular editing with three actions: Replace, Insert, and Delete. The yellow
regions indicate replaced substructures, the blue regions indicate inserted substructures, and the red regions
indicate deleted substructures. Each example shows the transformation from the input molecule xin to the output
molecule xout.

Action: REPLACE

(a) 101 (strict) (b) 106 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.3398 → 2.2743 TPSA: 79.3700 → 103.1600

(c) 102 (strict) (d) 103 (loose)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 1.6861 → 3.2998 QED: 0.8626 → 0.9025

(e) 105 (strict) (f) 107 (loose)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA: 89.3500 → 72.2800 H-Bond Acceptors: 2 → 3

(g) 108 (strict) (h) 205 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

H-Bond Donors: 1 → 3 LogP: 3.0216 → 1.3313, TPSA: 44.81 → 32.18
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Action: INSERT

(i) 101 (strict) (j) 102 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 0.4971 → -0.0816 LogP: 4.0895 → 4.6941

(k) 104 (strict) (l) 201 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

QED: 0.3421 → 0.1626 LogP: 0.4971 → -0.1731, H-Acceptors: 9 → 11

(m) 202 (strict) (n) 204 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.7027 → 4.9789, H-Acceptors: 8 → 10 LogP: 5.7082 → 6.4651, H-Donors: 1 → 3

(o) 206 (strict) (p) 108 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 4.0895 → 3.3751, TPSA: 45.67 → 83.72 H-Bond Donors: 0 → 3

Action: DELETE

(q) 102 (strict) (r) 103 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.0114 → 3.5138 QED: 0.5656 → 0.8620

(s) 105 (strict) (t) 105 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA: 31.3500 → 18.4600 TPSA: 55.4000 → 38.3300

F Dataset License532

We used the ZINC 250K dataset [42] available here , which is distributed under the GNU General533

Public License v3 or later (GPL-3.0+). In accordance with this license, we release our derived dataset534

under the same terms, preserving the freedoms to use, share, and modify the data.535
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