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Abstract

Large language models show strong potential for molecular editing, but progress
has been constrained by the limited scale and quality of available training data. To
address this, we introduce MEGA, a large-scale dataset of 31.4 million molecule
pairs, where each pair represents a single property-improving chemical edit anno-
tated with an explicit action: Replace, Insert, or Delete. We demonstrate MEGA’s
utility in a controlled supervised fine-tuning (SFT) setting, where a model trained
on MEGA outperforms models trained on existing datasets by up to +21.47 per-
centage points in hit ratio. Furthermore, we show that Group Relative Policy
Optimization (GRPO) post-training with a similarity-aware reward achieves state-
of-the-art performance and a remarkable ~ 36 x improvement in data efficiency,
while also preserving edit locality. We release MEGA in open access to the com-
munity to enable data-centric benchmarks and accelerate progress in molecular
editing with generative models.

1 Introduction

Molecular optimization is critical to drug discovery, guiding chemists in turning initial molecular
hits into drug-like candidates. Unlike unconstrained molecule generation [l 2], molecular editing
involves targeted modifications, such as scaffold decoration, fragment substitutions, or precise
structural refinements, that carefully balance therapeutic properties with chemical feasibility and
synthetic practicality [3} 14].

To assist chemists in this iterative lead optimization process, recent approaches leverage large
language models (LLMs), either through fine-tuning or by using them as reasoning agents capable
of interpreting textual prompts (e.g. “increase solubility”) and proposing relevant molecular edits
[5,16]]. Additionally, reinforcement learning (RL)-based post-training can align these models even
more closely with practical constraints, improving both chemical plausibility and edit precision [7, [8]].
Progress, however, is limited by data. Training and evaluating editing models requires goal-aligned
edit datasets that pair a parent molecule with a proposed child and standardized outcomes, at a scale
that supports both supervised fine-tuning and post-training [9, [10]. Nevertheless, existing corpora
either lack the scale required for robust training or omit explicit edit annotations needed for guided
policy learning.

To close this gap, we curate MEGA (Molecular Editing with Guided Action): a large-scale, molecule
editing dataset composed of (parent, child) molecule pairs spanning 28 tasks. It contains 31.4M
successful edits and a compute-friendly subset, MEGA-Small, with 522k positive samples. We also
release an additional 41M valid and chemically close negative examples to enable contrastive learning
and RL reward shaping [[11} [12]].
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Figure 1: Morgan-fingerprint t-SNE for a parent SMILES and child molecules generated by fragment
edits, delete, replace, insert. Colors encode the applied edit, highlighting neighborhood exploration
under the given task.

Using a fixed LLM and a shared evaluation protocol, we first quantify the effect of data alone by
fine-tuning on MEGA-Small versus other public datasets. We then show that post-training with
GRPO [[13]], using a composite reward that combines a thresholded property gain term and a Tanimoto
similarity term [[14]], yields further gains with reduced number of training samples.

Concretely, this work introduces the following contributions:

1. We release MEGA, a 31.4M-pair molecular editing dataset with fragment-level Replace,
Insert, and Delete annotations across 28 property optimization tasks, alongside MEGA-
Small (522k pairs) for compute-limited settings. MEGA is over an order of magnitude larger
than any existing dataset for molecular editing.

2. We demonstrate that under fixed model and training protocol, fine-tuning on MEGA-Small
subset increases hit ratios by up to +21.47 percentage points over established datasets on
shared tasks, while its explicit edit labels enable per-action supervision and diagnostics.

3. We show that RL post-training on MEGA-Small with a similarity-aware reward further
improves property alignment and edit minimality, sets strong performance on established
benchmarks, and delivers large improvements in data efficiency. With only 14k train-
ing examples, GRPO matches the SFT model trained on the full 522k MEGA-Small set,
corresponding to a ~ 36 x improvement in data efficiency.

2 Related Work

2.1 Datasets for Molecular Editing

Public corpora vary in task formulation and scale. MoleculeSTM [15]] trains a multimodal struc-
ture—text model on hundreds of thousands of molecule—caption pairs through contrastive learning
and proposes instruction-guided retrieval and editing tasks, establishing a text-based benchmark
for property-aware modification. Another example is MolOpt-Instructions [16]], released alongside
DrugAssist, which compiles a large instruction dataset to fine-tune language models for molecule
optimization from natural language goals. Furthermore, MolEdit-Instruct [17] scales property-
conditioned edits by pairing each parent molecule with an explicit edit instruction and target property
change. The dataset is used to evaluate diffusion and RL models under joint constraints on molecular
similarity and property improvement, reflecting a shift toward instruction-plus-constraint benchmarks.
Together, these datasets illustrate the available range for training and evaluating molecular editing
models, despite differences in construction, supervision signals, and scale.
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Figure 2: t-SNE projection of Morgan fingerprints showing chemical space coverage for MEGA
(31M), MolEdit-Instruct (3M), and MolOpt-Instructions (1.2M).

2.2 LLMs for Chemistry

General-purpose language models trained on broad text data already exhibit useful zero-shot chemistry
skills answering property prediction questions, translating line notations, or suggesting functional-
group swaps straight out of the box [[18, 19, 20]. When wrapped in a tool-calling framework, the
same models can act as agents: ChemCrow, for example, prompts an off-the-shelf LLM to invoke
cheminformatics utilities (parsers, property predictors, similarity search) and carry out multi-step
design tasks from natural language instructions [21]].

Researchers also adapt these open language models to chemistry via domain fine-tuning and task-
specific supervision. For instance, LlamoLe trains on ~128k USPTO reactions with textual de-
scriptions to strengthen reasoning and route identification [22} 23|, while DrugAssist uses MolOpt-
Instructions to instruction-tune models for property-directed optimization from text in a single-shot
fashion [16].

A further layer of refinement uses reinforcement learning such as with Ether0, trained on 640k
experimentally-grounded chemistry problems across 375 tasks, to excel at tasks like retrosynthesis
and solubility editing [24]]. Another example is MolEditRL, which pairs property-conditioned
prompts with structure-preserving edit operators and reinforcement-style objectives to promote local,
similarity-respecting modifications [17]].

2.3 Editors Beyond LLMs for Lead Optimization

While LLM-based editors are comparatively recent, lead optimization has a long history of non-LLM
approaches that emphasize local, property-directed modifications to a given scaffold. Earlier rule-
based strategies, such as matched molecular pairs (MMPs) [25]] and fixed reaction templates, encoded
medicinal-chemistry heuristics for systematic substitution. More recent machine learning methods
operate directly on strings or graphs to propose minimal edits, including JT-VAE [2]], GCPN [26]],
and MARS [27,28]). In parallel, diffusion models adapt continuous generative dynamics to discrete
molecular modifications: DiffLink designs linkers between fixed fragments [29], while DiffHop
performs constrained scaffold hopping [30]. Taken together, these approaches chart a progression
from rules to learned editors to diffusion frameworks, all aimed at controllable, chemically plausible
edits central to lead optimization.
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Table 1: Comparison of molecular editing datasets used in this study. Reported sizes count only
successful (positive) parent-child pairs. Unique molecules counts distinct SMILES across both
parents and children. Action provided indicates whether a dataset records the edit label.

Dataset Size Unique Molecules # Tasks Action Provided
MoleculeSTM 280K 250K 34 No
MolEdit-Instruct 3.03M 967K 20 No
MolOpt-Instructions  1.24M 1.596M 16 No
MEGA-Small 522K 372K 28 Yes
MEGA 31.4M 22.126M 28 Yes

3 MEGA Dataset

3.1 Dataset Construction Overview

MEGA contains 31.4 million parent—child SMILES pairs, where each child comes from applying a
single functional-group edit to a ZINC250K parent, without a constraint to preserve the scaffold [31]].
Candidate modification sites are located with established retrosynthetic slicing rules (BRICS [32],
Hussain—Rea (HR) [33] and RECAP [34]]) and exactly one action is applied at a chosen site: Delete,
Insert, or Replace a functional group. The child is rebuilt and sanitized in RDKit [35]], and task
properties are computed deterministically. We adopt the MoleculeSTM protocol for task labeling:
for each objective (e.g. “increase solubility”), we use RDKit to verify whether the child clears the
threshold for that task. The computational budget for MEGA amounted to approximately 184k
CPU-hours on a 128-core cluster.

Each record includes parent SMILES, child SMILES, a coarse action tag (Insert/Delete/Replace), the
task identifier and threshold level, and the parent/child property vectors. For efficient training, we
also release MEGA-Small (522k positives), drawn uniformly from MEGA, which mirrors the full
set’s action distribution (14% Delete, 39% Insert, 46% Replace). In addition to the positives, we also
release 41 million valid, chemically close negative pairs. While they fail to meet the threshold, they
are useful as hard negatives for contrastive or RL setups.

To emphasize drug discovery relevance, our tasks target widely used objectives—aqueous solubility,
drug-likeness (QED), H-bond donors/acceptors, permeability proxies, and topological polar surface
area (TPSA)—each evaluated at two thresholds. Restricting edits to a single modification per pair
enables controlled exploration of the parent’s local chemical neighborhood. A parent molecule
may appear in multiple pairs if it contains eligible sites for several actions across tasks. For each
edit-task combination, we retain up to five successful and five near-miss children, ranked to maximize
diversity while avoiding redundancy. Further details on tasks and dataset composition are provided in

Appendix [A]

3.2 Dataset Coverage

Figure[I|shows a representative parent alongside three children, one per action. The edits are local
and chemically rational: removing an atom (Delete), adding a small moiety (/nsert) or swapping one
group for another (Replace). Together they illustrate the targeted nature of MEGA’s pairs; in this
example, all children satisfy the “increase aqueous solubility” objective.

Figure [2] visualizes a statistically significant subset of MEGA in the 2048-bit Morgan-fingerprint
space [36] using t-SNE [37]]. The overlay shows that MEGA occupies the shared high-density core
with existing molecular editing datasets and also reaches beyond it, consistent with its scale and
edit policy. Moreover, Table [I] quantifies this comparison: in terms of successful (positive) edits,
MEGA is roughly an order of magnitude larger than the next largest dataset. Furthermore, unlike
other datasets, MEGA and MEGA-Small include a coarse action label (Insert/Delete/Replace) for
every pair, supporting per-action supervision, diagnostics, and reproducibility.
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Table 2: Performance comparison of SFT models on shared molecular editing tasks. We report the
mean and std of five random seeds. The best results are marked in bold. Llama 3.

Task Description Threshold Dataset
MEGA- MolEdit MolOpt
Small Instruct Instruction
. 0.0 62.46 +2.18 23.92+099 16.38 +2.03
103 More like a drug 0.1 28.43+138 12854058 838+ 0.53
104 Less like a d 0.0 97.81+091 98.97+0.33 96.87 +0.82
ess like a drug 0.1 83.94+3.43 98.86+0.51 94.43+1.47
0.0 9928 +0.25 9496+1.70 89.33+1.18
107 More H-bond acceptors 1.0 93.06+0.66 4335+ 1.65 34.06+ 058
0.0 99.80 + 0.25 97.66+0.59 96.21 +0.91
108 More H-bond donors 1.0 9929 £025 67.57+1.78 56.67+1.10
Average 83.01 67.27 61.54

4 Experiments

We evaluate MEGA in a two-stage protocol: (1) supervised fine-tuning (SFT) to benchmark perfor-
mance under identical model and training settings against existing datasets, and (2) RL post-training
with a hybrid reward combining property gains and structural similarity. We also analyze edit action
distributions, locality, and sample efficiency in single- and multi-objective tasks.

4.1 Supervised Fine-Tuning

Protocol. We fine-tune a Llama-3 8B model [38] with LoRA adapters [39] on MolOpt Instruction,
MolEdit Instruct, and MEGA-Small datasets. All runs use the same hyperparameters, training
schedule, and LoRA configuration. Training last approximately 23 A100-equivalent hours per model
until the validation loss no longer improves.

Evaluation follows the MoleculeSTM protocol [[15] and is restricted to the 4 single-objective tasks
shared by all three datasets. The test set contains 200 unique parent SMILES not present in any of the
training sets. For each task, we assess performance at two property thresholds (loose and strict) and
report the hit ratio, defined as the fraction of generated molecules that achieve the required property
improvement. Each experiment is repeated five times, with a decoding temperature of 1.0, and we
report the mean and standard deviation of the hit ratio across runs. For further comparisons and
training settings details see Appendix B}

Results. Table[2]shows that the LLM trained on MEGA-Small outperforms the same architecture
trained on MolEdit Instruct and MolOpt Instruction by +15.74 (pp) and +21.47 (pp), respectively. The
largest gain occurs in the “more like a drug” objective, a target known to be particularly challenging
due to its composite nature [18]. Variance is low and comparable to the other benchmarks, indicating
that improvements are stable across repeated evaluations.

4.2 Reward-Guided Post-Training

Protocol. We further refine the best MEGA-Small SFT checkpoint using Group Relative Policy
Optimization (GRPO) [13] to improve property alignment while preserving local edits. During
training, for each parent SMILES, the model generates a batch of multiple candidates, which are
scored relative to each other. This feedback is used for updating the model weights. The scalar reward
is defined as:

R = 1[Ap(parent, child) > 7] +7 Lyaa(child) +A hiap (parent, child)

property hit validity hit Tanimoto hit level
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Table 3: Comparison on DrugAssist benchmark. MEGA-Small GRPO (522k) outperforms DrugAssist
and Gemini 2.5 Pro across five shared tasks under loose and strict thresholds.

Task Description Threshold Model
DrugAssist Gemini 2.5 Pro MEGA-Small GRPO
; 0 80.00 82.23 97.49
101 More soluble in water 05 41.00 50 45 91.10
. 0 76.00 60.14 83.49
103 More like a drug 0.1 63.00 23.46 50.00
0 71.00 64.97 98.60
107 More H-bond acceptors 1 67.00 557 86.74
0 72.00 73.54 99.31
108 More H-bond donors 1 76.00 632 91.45
0-0 50.00 80.32 95.19
201 More soluble & more HBA 05-1 27.00 24.43 84.21
Average 62.30 48.05 87.76

1.0, if T > 0.65,
htan (parent, child) = < 0.5, if 0.4 < T < 0.65,
0.0, otherwise,

where the first term awards a hit when the property change Ap meets or exceeds the task threshold 7,
the second term rewards valid and sanitized child smiles, and the third rewards scaffold-local modifi-
cations via Tanimoto coefficient discretization. The coefficients v and A were selected empirically
to 1.0. We train with 3,000 rollouts per task under a KL-constrained objective. To assess the data
efficiency of the post-training stage, we repeat this experiment with training sets ranging from 1.4k
parent SMILES up to the full MEGA-Small dataset (522k). The resulting models are referred to as
MEGA-Small GRPO. Complete experimental details are provided in Appendix [C]

We first compare MEGA-Small GRPO against DrugAssist [17], a state-of-the-art specialized LLM,
and Gemini 2.5 Pro [40], a strong general-purpose LLM, on five single- and multi-objective molecular
editing tasks. For this evaluation, we use the 500-SMILES test set provided by DrugAssist and report
hit ratios under both loose and strict thresholds in Table 31

We then compare MEGA-Small GRPO against ChatDrug Turbo, a strong in-context learning LLM,
and MoleculeSTM, a contrastive-trained encoder—decoder, on the full 28-task suite of the MEGA
dataset. For this evaluation, we follow the protocol described in the SFT section and report results in
Table[d We verified that none of the test SMILES appeared in our training data to maintain evaluation
integrity.

Results. MEGA-Small GRPO outperforms both DrugAssist and Gemini 2.5 Pro on the DrugAssist
benchmark (Table[3)), achieving the highest hit ratio in 9 of 10 settings. The most pronounced gains
appear on the dual-objective solubility + HBA task (201), where it reaches 95.19% under loose
and 84.21% under strict thresholds, substantially ahead of both baselines. The only case where
MEGA-Small GRPO underperforms is the strict drug-likeness objective, where DrugAssist retains
an edge. Gemini 2.5 Pro consistently trails, particularly under strict thresholds, underscoring the
difficulty of zero-shot general-purpose LLMs in molecular editing.

On the 28-task MoleculeSTM benchmark (Table @), MEGA-Small GRPO attains the best mean
hit ratio on all task/threshold pairs. It reaches >95% on most single-property edits under loose
thresholds (e.g., 101-102, 104, 106-108) and remains strong under stricter criteria. The notable hard
case is Task 103 (drug-likeness), where absolute rates drop for all methods; even so, MEGA-Small
GRPO leads by 14 pp (62.60 vs. 48.65) at loose and 7 pp (26.75 vs. 19.37) at strict. MEGA-Small
GRPO’s advantage is most pronounced on multi-objective tasks (201, 203, and 206), indicating
better balancing of potentially competing constraints. Variance across runs is small (typically < 1.5),
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Table 4: Performance comparison of MEGA-Small GRPO (522K) against editing methods across
single and multi objective tasks and thresholds. We report the mean and standard deviation over five

runs. The best results are shown in bold.

Task Threshold Random MoleculeSTM ChatDrug Turbo MEGA-Small GRPO

101 0 35.33£1.31 61.87£2.67 94.13£1.04 99.31+0.10
0.5 11.04£2.40 49.02+1.84 88.67£0.95 94.43+0.24

102 0 43.36+3.06 52.71£1.67 96.86+1.10 99.71+0.21
0.5 19.75+1.56  30.47£3.26 70.08+3.44 95.52+0.51

103 0 38.06£2.57 36.52+2.46 48.65+3.39 62.60+2.41
0.1 5.27£0.24  8.81+£0.82 19.37+£5.54 26.75+1.64

104 0 36.96+2.25 58.59+£1.01 70.754+2.92 97.55+0.64
0.1 6.16£1.87 37.56%£1.76 30.99£2.66 93.63+0.56

105 0 25.234£2.13  57.74+£0.60 56.56+1.84 90.19+1.34
10 17.41+1.43 47.51£1.88 43.08+2.95 87.88+0.94
106 0 16.79+2.54 34.13+0.59 77.35+1.98 100.00+0.00
10 11.02+0.71 26.48+0.97 66.69+2.74 99.43+0.01

107 0 12.64+1.64 54.01£5.26 95.35+0.62 99.86+0.29
1 0.69£0.01 27.33£2.62 72.60+2.51 92.35+0.50

108 0 297£0.61 28.55+0.76 96.54+1.31 98.45+0.83
1 0.00£0.00  7.69+£0.56 76.43+3.32 95.224+0.34

201 0-0 9.88£1.03 27.87+3.86 79.62+0.64 98.53+0.44
05-1 0.23+033 8.80+0.04 49.64+2.66 90.34+0.47

202 0-0 2.99+£0.38  8.55+2.75 51.59+3.79 97.24+0.92
05-1 045+032 2.934+0.30 24.9244.85 92.04+0.53

203 0-0 2.28£1.15 33.51+4.08 89.34+0.96 99.64+0.48
05-1 0.00+£0.00 9.98+1.03 53.64+5.81 98.35+0.90

204 0-0 0.69£0.58  17.03£2.75 39.90+3.86 92.60+1.44
05-1 0.00+£0.00 2.59+1.14 24.1942.19 60.06+1.83

205 0-0 5.06£1.21 35.69£3.19 12.85+2.68 89.30+0.93
0.5-10 1.16£0.68 19.154+0.73 10.44+5.75 82.86+0.75

206 0-0 12.17£1.05 44.35+£0.68 65.33+2.16 99.54+0.43
0.5-10 6.20£0.64 28.67+2.22 52.90+2.23 94.31+0.23

suggesting the gains are stable across several runs. Overall, MEGA-Small GRPO establishes a robust
state-of-the-art baseline for both single- and multi-objective molecular editing. These outcomes reflect
the synergy between the MEGA-Small dataset and locality-aware GRPO training. MEGA-Small
provides informative and diverse demonstrations of guided optimization through single-local edits,
while GRPO further aligns the model’s behavior with task-specific reward signals.

Data Efficiency. Figure[3]shows that GRPO with Tanimoto reward outperforms SFT across all data
regimes while maintaining scaffold edits within our targeted Tanimoto similarity range (0.6—0.8).
With only 14k training examples, MEGA-Small GRPO (14K) matches the performance of MEGA-
Small SFT trained on 522k by +2.11 pp, achieving ~ 36 x data efficiency multiplier with the same
Llama 3 base model. More details in Appendix [C}

Guided-Action Editing. Figure[d]shows the distribution of fragment-level edit actions across tasks.
Models trained with MEGA-Small SFT roughly reproduce the action distribution of the MEGA-Small
(522k) dataset. This indicates internalization of single-fragment edit patterns (replace, insert, delete)
present in the demonstrations. In contrast, MEGA-Small GRPO learns, via RL, heavily favors
replace actions, reflecting an optimization bias towards minimal yet property-aligned functional
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Figure 3: Data efficiency comparison of SFT and GRPO across training set sizes (based on loose
threshold). GRPO consistently outperforms SFT while keeping edits within the targeted Tanimoto
similarity range (0.6-0.8). Remarkably, MEGA-Small GRPO trained on only 14k examples matches
SFT trained on the full 522k dataset, demonstrating a ~36x improvement in data efficiency.
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Figure 4: Distribution of fragment-level edit actions across tasks using the 200 held-out test SMILES.
SFT models replicate the dataset’s mixture of replace, insert, and delete operations, whereas GRPO
strongly favors replace actions. This shift reflects an RL-driven bias toward minimal, property-aligned
substitutions, which align with the improved performance reported in earlier results.

group modifications. The performance increase of the GRPO model, suggest that replace-dominant
strategies yield, on average, better results than the dataset’s action distribution.

5 Conclusion

In this work, we introduce MEGA, a new large-scale dataset of 31.4 million molecule pairs designed to
advance property-guided molecular editing. By systematically generating single chemically rational
edits that improves a target property (replace, insert, delete), MEGA provides dense, high-quality
supervision for exploring local chemical space. Our experiments demonstrate its value: a model
fine-tuned on a small subset, MEGA-Small, significantly outperforms models trained on existing
datasets in supervised settings. Furthermore, when combined with reinforcement learning, models
trained on MEGA achieves state-of-the-art performance on established benchmarks and demonstrates
a remarkable ~ 36 x improvement in data efficiency. By providing controlled, high-quality examples
at scale, MEGA facilitates the development of better models and optimization workflows.
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sz A MEGA Dataset Details

s73  Tasks. For curating MEGA we used single-objective tasks (101-108) that targets one property, and
s74  multi-objective tasks (201-206) for two properties. Table [5]lists the desired direction of change (1
375 increase, | decrease), variable name (consistent with RDKit), alongside the requirement in natural-
a76 language. For each task we evaluate 2 threshold with different levels of property change. Table[6] gives
377 the evaluation thresholds under loose and strict criteria. For multi-objective tasks, each threshold
are  vector follows the property order in the Target(s) column.

Task ID  Target(s) Task Requirement 1 Task Requirement 2

101 Jlog P more soluble in water None

102 1 log P less soluble in water None

103 1T QED more like a drug None

104 + QED less like a drug None

105 J TPSA higher permeability None

106 1T TPSA lower permeability None

107 T HBA more hydrogen bond acceptors None

108 T HBD more hydrogen bond donors None

201 Jlog P, 1+ HBA more soluble in water more hydrogen bond acceptors
202 1 log P, T HBA less soluble in water more hydrogen bond acceptors
203 Jlog P,T HBD more soluble in water more hydrogen bond donors
204 1 log P, T HBD less soluble in water more hydrogen bond donors
205 Jlog P, ] TPSA  more soluble in water higher permeability

206 Jlog P, TPSA  more soluble in water lower permeability

Table 5: Task catalog for small-molecule property edits. All tasks require the output molecule to
remain similar to the input. Arrows indicate desired property direction.

Task ID Loose Strict

101 [o] [0.5]
102 [o] [0.5]
103 [o] [0.1]
104 [o] [0.1]
105 [o] [10]

106 [o] [10]

107 [o] [1]

108 [o] [1]

201 [0, 0] [o.5, 1]
202 [0, 0] [0.5, 1]
203 [0, 0] [0.5, 1]
204 [0, 0] [0.5, 1]
205 [0, 01 [0.5, 10]
206 [0, 0] [0.5, 10]

Table 6: Evaluation thresholds per task. For multi-objective tasks, each vector’s order follows the
Target(s) order in Table@
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Dataset Statistics. This subsection summarizes the scale and composition of MEGA (31M) and
MEGA-Small (522K) and quantifies how representative the smaller split is of the full corpus. Table
reports dataset-level counts. MEGA-31M contains 246,532 unique parent molecules directly taken
from the Zinc-250 dataset. In includes 72,366,584 evaluated edits, of which 31,354,522 are successful.
MEGA-Small mirrors this profile at smaller scale with 4,105 unique parents and 1,205,430 edits,
including 522,058.

Metric MEGA (31M) MEGA-Small (522K)
Unique parent molecules 246,532 4,105
Successful edits 31,354,522 522,058
Unique successful SMILES 21,879,431 367,954
Negative edits 41,012,062 683,372
Unique negative SMILES 8,129,138 137,012
Total SMILES 72,366,584 1,205,430

Table 7: Side-by-side summary of MEGA datasets.

Table 8| compares the distribution of successful edits by operation. The proportions are stable across
scales: delete ~3.1%, insert ~43.6%, and replace ~53.3% in both MEGA-Small (522K) and
MEGA (31M). This alignment suggests that MEGA-Small preserves the operational mix of the full
dataset and is suitable for compute-friendly budgets.

MEGA-Small (522K) MEGA (31M)
Operation  Count % Count %o
delete 15,924 3.1% 960,992  3.1%
insert 227,789 43.6% 13,677,420 43.6%
replace 278,345 53.3% 16,716,110 53.3%
Total 522,058 100% 31,354,522 100%

Table 8: Distribution of successful edit operations for MEGA and MEGA-Small.

Table 0] reports successful edits per task for MEGA (31M) and MEGA-Small (522K). Counts are
broadly balanced across tasks and per-task ranking is consistent across scales. Tasks 101/102/104
yield the largest winner pools, while 103 (increase QED) and 205 (reduce log P& decrease TPSA)
show markedly consistent with results from the literature. MEGA-Small preserves the relative task
difficulty profile of the full corpus.

Task MEGA MEGA-Small
101 2,613,794 43,463
102 2,609,126 43,443
103 1,061,168 17,774
104 2,570,496 42,793
105 1,645,706 27,401
106 2,462,800 41,005
107 2,462,791 41,005
108 2,462,781 41,005
201 2,462,711 41,005
202 2,457,965 40,933
203 2,462,768 41,005
204 2,400,936 39,978
205 1,218,686 20,243
206 2,462,794 41,005
Total 31,354,522 522,058

Table 9: Number of successful edit examples per task for MEGA (31M) and MEGA-Small (522K).

Mean shifts, Table[I0] align with the instructions for every task. Examples: LogP/ (101) moves the
mean by —0.975 (winners vs. parents) and separates winners from losers by —1.577; LogP 1 (102)
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shifts by +0.965 with a winner—loser gap of +1.133; QED/ (104) shifts by —0.217; TPSA 1 (106)
exhibits a large increase of +-31.611; HBA1 (107) and HBD 1 (108) increase by +2.749 and +2.316,
respectively. The consistent sign and sizable winner—loser separations (last column) provide evidence
of strong task-wise consistency on MEGA-Small.

Task Property Obj. Parentz Winnerz A W-P Loserz A W-L

101  LogP J 2475 1.501  —0.975 3.078 —1.577
102 LogP T 2.475 3.440  +0.965 2307  +1.133
103 QED T 0.733 0.797  +0.064 0.614 +0.183
104  QED I 0.733 0.516 —0.217 0.727 —0.211
105 TPSA N 64.918 49.669 —15.249 77.022 —27.353
106  TPSA T 64.918 96.530 +31.611 61.857 +434.673
107 HBA T 3.990 6.739  42.749 4224  +2.515
108  HBD T 1.237 3.553  +2.316 1.248  +2.305

Table 10: MEGA-Small: mean target-property values and deltas. Aw_p = Zw — Zp (winners minus
parents) and Ayw_ = Zw — Zp (winners minus losers). “Winners” and “losers” correspond to
successful and unsuccessful edits, on strict threshold respectively. Signs follow the task objective
(increase/decrease).

Figure [3] visualizes the single-objective shifts via kernel density estimates of the target property
for parent (orange) and edited child (blue) molecules. Across all eight tasks, the child distribution
moves in the instructed direction (reduce/increase or count increase), demonstrating strong task-wise
consistency in MEGA-Small.

LogP (Parent) N LogP (Parent)
0.25[|— LogP (Child) 0.25{|— LogP (Child)

QED (Parent) 35 QED (Parent)
4 —— QED (Child) 3.0H—— QED (Child)

0.10 0.10,
L 1.0
0.0 0.0 05
LR e S S S S 0.00] L v S T D S S 0.0
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Figure 5: Molecular property distributions between parent and child molecules for MEGA-Small.

For comparison to prior datasets, we report the Fréchet ChemNet Distance (FCD; lower is closer)
[41]. As shown in Table[TT] the distance between MolEdit and MolOpt roughly 4x lower compared
to MEGA-Small. This indicates that MEGA occupies a distinct region of the chemical space, while
the incumbent datasets exhibit notable overlap, thus, expanding the resources available in the existing
literature.

Table 11: Fréchet distance between datasets computed in Morgan-fingerprint space (lower is closer).

Dataset MEGA-Small MolEdit MolOpt
MEGA-Small 0.000 2.790 2.738
MolEdit 2.790 0.000 0.696
MolOpt 2.738 0.696 0.000
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400 Prompts. Unless otherwise stated, prompts request one candidate molecule in SMILES, with no
410 extra explanation.

jre

4

e

1 Single-objective prompts:

101: Reduce log P

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water? The
output molecule should be similar to the input molecule.

OQutput: One valid SMILES.

412

102: Increase log P

User: Can you make molecule <SMILES_PLACEHOLDER>less soluble in water? The
output molecule should be similar to the input molecule.

Output: One valid SMILES.
413

103: Increase QED

User: Can you make molecule <SMILES_PLACEHOLDER>more like a drug? The output
molecule should be similar to the input molecule.

OQutput: One valid SMILES.

414

104: Reduce QED

User: Can you make molecule <SMILES_PLACEHOLDER>less like a drug? The output
molecule should be similar to the input molecule.

OQutput: One valid SMILES.

415

105: Decrease TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>higher permeability? The
output molecule should be similar to the input molecule.

Output: One valid SMILES.

416

106: Increase TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>lower permeability? The output
molecule should be similar to the input molecule.

Output: One valid SMILES.

417

107: Increase HBA

User: Can you make molecule <SMILES_PLACEHOLDER>with more hydrogen bond
acceptors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

418

108: Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>with more hydrogen bond donors?
The output molecule should be similar to the input molecule.

Output: One valid SMILES.

419
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422

423

424

425

426

427

Two-objective prompts:

201: Reduce log P & Increase HBA

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and more
hydrogen bond acceptors? The output molecule should be similar to the input
molecule.

Qutput: One valid SMILES.

User:

Output:

202: Increase log P & Increase HBA

hydrogen bond acceptors? The output molecule should be similar to the input
molecule.

Can you make molecule <SMILES_PLACEHOLDER>less soluble in water and more

One valid SMILES.

203: Reduce log P & Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and
more hydrogen bond donors? The output molecule should be similar to the input
molecule.

Qutput: One valid SMILES.

204: Increase log P & Increase HBD

User: Can you make molecule <SMILES_PLACEHOLDER>less soluble in water and
more hydrogen bond donors? The output molecule should be similar to the input
molecule.

OQutput: One valid SMILES.

205: Reduce log P & Decrease TPSA

User: Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and
higher permeability? The output molecule should be similar to the input
molecule.

Output: One valid SMILES.

User:

Output:

206: Reduce log P & Increase TPSA

permeability? The output molecule should be similar to the input molecule.

Can you make molecule <SMILES_PLACEHOLDER>more soluble in water and lower

One valid SMILES.
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B Supervised Fine-tuning (SFT) details

For all our fine-tuning experiments, we utilize a memory-efficient, 4-bit quantized LLaMA 3.1 8B
Instruct model as the backbone. Our datasets are consistently formatted as prompt-completion pairs,
where the prompts are detailed in the main text and the corresponding completions are the child
SMILES.

To ensure a fair comparison across benchmarks, we trained three models, as detailed in Table @,
each on a different dataset that has been filtered to contain comparable tasks. For the MEGA-Small
dataset, we retain tasks 101, 102, 103, 104, 107, and 108, resulting in 229K prompt-completion pairs.
For MolEdit-Instruct, we use tasks 103, 104, 107, and 108 (as tasks 101 and 102 are not available),
yielding 650K prompt-completion pairs. For MolOpt-Instructions, we include tasks 101, 102, 103,
104, 107, and 108, producing 301K prompt-completion pairs.

All models are trained using Low-Rank Adaptation (LoRA) with a rank of =32 and a=16, targeting
all attention projection matrices and feed-forward layers. We use a training batch size of 16 with a
gradient accumulation of 2 steps, resulting in an effective batch size of 32. Optimization is performed
with an 8-bit quantized AdamW optimizer for memory efficiency. The learning rate is set to le — 4
with a cosine annealing scheduler and a linear warm-up period of 100 steps. For regularization, a
weight decay of 0.01 is applied. All models are trained with a maximum sequence length of 512
tokens, using mixed-precision training (bfloat16) when supported. All trainings are conducted on a
single A100 (40GB) GPU for approximately 23 hours.

B.1 Evaluation

We perform a sanity check to ensure that test SMILES are not present in any of the training sets using
canonical SMILES notation to prevent any data leakage. Importantly, to ensure the fairest possible
evaluation, we evaluate each model using the prompt templates specific to their respective training
datasets. This means models trained on MolEdit-Instruct data are evaluated with MolEdit-Instruct
prompt templates, while models trained on MEGA-Small use MEGA templates, and models trained
on MolOpt-Instructions use MolOpt-Instructions templates, eliminating any potential bias from
prompt format differences.

Training Loss for Three SFT Models

T T I I
——  MEGA 522K (Train)
0.6 MolEdit-Instruct (Train) n
MolOpt-Instructions (Train)

0.5 |
3 04| .
0.3 |
0.2 | | | \ |
0 5000 10000 15000 20000 25000 30000

Step

Figure 6: Training loss curves for three SFT models on MEGA-Small, MolEdit-Instruct, and MolOpt-
Instructions. MEGA-Small achieves the lowest final loss ( 0.18), followed by MolOpt-Instructions
and MolEdit-Instruct respectively.

As shown in Figure [6]the model trained on MEGA-Small exhibits significantly faster convergence
and substantially lower final loss values. The better training dynamics observed with MEGA-Small
indicates that our dataset leads to more sample-efficient learning, achieving better optimization faster.
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458 In addition, for Table 3] we report hit ratio results comparing MEGA-Small GRPO against Gemini
459 2.5 Pro (June 17, 2025 official API release) and DrugAssist on the 500 test SMILES provided by
460 DrugAssist.

461 This evaluation is performed over a single run, and we carefully verify that none of these 500 SMILES
462 are included in our training set to avoid any possibility of data contamination.

463 B.2 Extra Comparisons

a64 To further assess the utility of the MEGA dataset and extend the results in Table 2] we conducted
465 an pair-wise comparison between MEGA and each external dataset on their overlapping task sets.
466 Specifically, MEGA shares five tasks with MolEdit-Instruct and six with MolOpt-Instructions.

467 In the first experience, we trained models exclusively on the five tasks shared between MEGA and
468 MolEdit-Instruct, namely tasks 103, 104, 107, 108, and 201 (Table . This setting corresponds to
469 678K training examples from MolEdit-Instruct and 183K examples from the MEGA-Small subset
470 restricted to these five tasks. In the second, we trained models on the six tasks shared between
471 MEGA and MolOpt-Instructions, namely tasks 101, 102, 103, 104, 107, and 108 (Table @]), which
472 amounts to 301K training examples from MolOpt-Instructions and 229K examples from the filtered
473 MEGA-Small subset. All training hyperparameters and conditions described in Appendix B were
474 kept identical to ensure a fair and controlled comparison.

475 In these head-to-head evaluations, we found that models trained on the MEGA data partitions, in
476 average, outperform those trained on the corresponding data from MolEdit-Instruct and MolOpt-
477 Instructions. This finding further validates the quality and effectiveness of our dataset, demonstrating
478 that its superior performance is not limited to a small task intersection, but holds true in expanded
479 comparisons.

Table 13: Performance comparison: MEGA-
Small vs MolOpt-Instructions

Task Threshold MolOpt-Instruction MEGA-Small

Table 12: Performance comparison: MEGA-
Small vs MolEdit Instruct

Task Threshold MolEdit-Instruct MEGA-Small 0.0 96.71 = 0.70 98.04 + 0.51

103 00 27.19+0.84  61.05+2.88 1 s 96.41 £ 0.58 92.47+0.79

0.1 14.37£095  24.36+1.73 0.0 88.41 % 1.85 97.41 +0.74

104 00 99.28+0.52  95.84 +0.89 12 05 8841+ 1.85 92.53 +2.25

0.1 97.94£0.55  80.95 341 103 00 16.82 + 1.57 59.71 +1.29

107 00 9572+0.61  98.02 £ 0.90 0.1 8.68+1.16 26.72 £2.31

1.0 43.05+£1.64  94.58+0.76 0.0 97.92 + 1.40 97.42 +0.32

1o 00 98.10£0.71  99.80 % 0.25 1% 01 93.68 + 1.88 84.54 £2.15

1.0 06.53+2.05  97.25 £ 0.60 0.0 92.33+2.42 98.35 + 0.50

501 00 87.14+1.99  96.18 + 1.03 97 10 33.41+3.03 93.36 + 0.57

0.5 81.66+1.72  87.86 + 1.58 Lo 00 9476 £0.91  100.00  0.00

Average 71.10 83.59 1.0 56.10 £ 1.74 98.56 £ 0.89
Average 71.97 86.59
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w0 C GRPO Details

481 C.1 GRPO Algorithm for Molecural Editing

as2  For each molecular editing prompt (i, z;), GRPO operates as follows:

483 1. Sample a group of candidate molecules:
{ylvaa“'ayG} Nﬂ_e('lximxt) (D
484 where G is the number of generations by our policy model
485 2. Compute rewards for all candidates using batch molecular property evaluation:
ri = R(yi, Tm,x¢) fori=1,..,G )
486 3. Calculate group-relative advantages:
A ri—1T
A= — 3
pa—— 3)
487 where 7 = & Zf:l rjand o, = \/ & Zle (rj — 7)? are the mean and standard deviation
488 of rewards within the group, and € = 10~® for numerical stability.
489 4. Update the policy using the GRPO objective:
G Iyz .
Lorpo(0) = ——g—— > > [min (psedi,clip(pis, 1 =1+ ) A:) = BDie[o | ]
z 1 ‘yz i=1 t=1
“
490 where:
491 * pii = W’;"(?(JL{tlT,“,‘ﬁmf’y;'_<<t)) is the probability ratio
old \Yi, t [TinsTt,Yi, <t
492 * ¢ = 0.2 is the clipping parameter
493 * 3 = 0.0 by default
494 * If § > 0, the KL divergence is estimated as shown previously

495 C.2 Experimental Details

496 For locality-aware GRPO training, we ensured strict consistency between supervised fine-tuning
497 (SFT) and post-training data. For example, the MEGA-Small GRPO (14K) model used the same
498 14K SMILES for both SFT and GRPO. Similarly, the results in Table 4 were obtained from a policy
499 model first fine-tuned on the full 522K prompt—completion pairs of MEGA-Small, with the same
s00 data reused during GRPO. In this phase, we sampled G = 12 generations per prompt and computed
so1 rewards for each candidate molecule.

502 Our composite reward function is designed to guide the model toward valid, improved, and struc-
s03 turally related molecules using three distinct signals. First, the validity reward provides a binary
504 signal that ensures chemical correctness through RDKit sanitization while rejecting any outputs that
s05 are unchanged or fragmented. Second, the property reward implements a task-specific evaluation
s06 using a dual-threshold mechanism to provide fine-grained control over property modifications. Strict
507 thresholds (e.g., ALogP > 0.5, AQED > 0.1) yield a reward of 1.0, whereas loose thresholds that only
s08 require a correct directional change yield 0.5. This encourages the model to learn both conservative
s09 and substantial improvements. Third, the Tanimoto similarity reward enforces structural conserva-
510 tion, assigning a reward of 1.0 for high similarity (Tanimoto coefficient > 0.65), 0.5 for moderate
511 modifications (coefficients € [0.4, 0.65]), and 0.0 for major scaffold modifications (coefficients <
512 0.4).

513 All GRPO training was conducted on a single A100 GPU, with convergence achieved in approximately
514 10 hours at around 3,000 steps. We used an 8-bit quantized AdamW optimizer with a learning rate
555 ofa =5 x 1075, 31 = 0.9, B2 = 0.999, a weight decay of 0.01, and gradient norm clipping at
st6  0.5. The learning rate followed a cosine annealing schedule with a 10% linear warmup. To ensure
517 memory efficiency, the model incorporated 4-bit quantization and LoRA adaptation with a rank of
si8 = 32. We used an effective batch size of 8 (4 samples per device with 2 gradient accumulation
519 steps) and maximum sequence lengths of 256 and 128 for prompts and completions, respectively. All
520 computations were performed using bfloat16 mixed precision.
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D Impact of GRPO and Tanimoto Reward on Scaffold Similarity
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Figure 7: Tanimoto similarity distributions for different training data sizes. Each plot shows the
distribution for SFT (purple), GRPO without Tanimoto reward (turquoise), and GRPO with Tanimoto
reward (orange) models. The green shaded region (0.6-0.8) indicates the targeted tanimoto similarity
range.

We trained MEGA across varying dataset sizes using GRPO, either with or without incorporating a
Tanimoto similarity component into the reward system.

When trained without the Tanimoto reward on small datasets, the model achieves high benchmark
performance but tends to alter the scaffold substantially, yielding molecules with low similarity to
their parent compounds.

As the dataset size increases, however, the model implicitly recovers the similarity distribution
observed in the SFT baseline (MEGA-Small), ultimately reaching the target similarity regime even
without an explicit similarity signal. In contrast, when the Tanimoto reward is included, the model
attains this small-edit regime with as few as 1.4k training examples (roughly 100 per task type).
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ssi - E Qualitative examples

Table 14: Visualization of molecular editing with three actions: Replace, Insert, and Delete. The yellow
regions indicate replaced substructures, the blue regions indicate inserted substructures, and the red regions
indicate deleted substructures. Each example shows the transformation from the input molecule x;, to the output
molecule Xou.

Action: REPLACE

(a) 101 (strict)

(b) 106 (strict)

Input Molecule x;, — Output Molecule Xou

OO~ QO
W Wan ()

LogP: 3.3398 — 2.2743

Input Molecule x;, — Output Molecule Xou

TPSA: 79.3700 — 103.1600

(c) 102 (strict)

(d) 103 (loose)

Input Molecule x;, — Output Molecule Xout

L, A |
% el

LogP: 1.6861 — 3.2998

Input Molecule x;, — Output Molecule Xout
O~ o

QED: 0.8626 — 0.9025

(e) 105 (strict)

(f) 107 (loose)

Input Molecule x;, — Output Molecule Xout

TPSA: 89.3500 — 72.2800

Input Molecule x;, — Output Molecule Xout

eSS R R

H-Bond Acceptors: 2 — 3

(g) 108 (strict)

(h) 205 (strict)

Input Molecule x;, — Output Molecule Xqut
OO Oy C
U\J 27/N\/(\ \J wl_ o \/1\

H-Bond Donors: 1 — 3

Input Molecule x;, — Output Molecule Xout
Oy - ( C[/\
{j k/(\

LogP: 3.0216 — 1.3313, TPSA: 44.81 — 32.18
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Action: INSERT

(i) 101 (strict)

(j) 102 (strict)

Input Molecule x;, — Output Molecule Xqut

- o
o

o
7

e b
/

LogP: 0.4971 — -0.0816

Input Molecule x;, — Output Molecule Xqut
QO40 Qo
S Ty

LogP: 4.0895 — 4.6941

(k) 104 (strict)

(1) 201 (strict)

Input Molecule x;, — Output Molecule Xou

@H«i% OHJ% |

QED: 0.3421 — 0.1626

Input Molecule x;, — Output Molecule Xou

Q

WN /@i M’\N
‘ k’N\J 0 NN
! /

LogP: 0.4971 — -0.1731, H-Acceptors: 9 — 11

(m) 202 (strict)

(n) 204 (strict)

Input Molecule x;, — Output Molecule Xout

LogP: 3.7027 — 4.9789, H-Acceptors: § — 10

\\\

Input Molecule x;, — Output Molecule Xout

e Y @
Ak

LogP: 5.7082 — 6.4651, H-Donors: 1 — 3

(0) 206 (strict)

(p) 108 (strict)

Input Molecule x;, — Output Molecule Xout
M\ o
QO4 52 o04i
> \\f > < s

LogP: 4.0895 — 3.3751, TPSA: 45.67 — 83.72

Input Molecule x;, — Output Molecule Xout

H-Bond Donors: 0 — 3

Action: DELETE

(q) 102 (strict)

(r) 103 (strict)

Input Molecule x;, — Output Molecule Xy

0,00 E

LogP: 3.0114 — 3.5138

Input Molecule x;, — Output Molecule Xy

QED: 0.5656 — 0.8620

(s) 105 (strict)

(t) 105 (strict)

Input Molecule x;, — Output Molecule Xy

O N A o U

TPSA: 31.3500 — 18.4600

Input Molecule x;, — Output Molecule Xy

H

TPSA: 55.4000 — 38.3300

s2. F Dataset License
533  We used the ZINC 250K dataset available here , which is distributed under the GNU General

534 Public License v3 or later (GPL-3.0+). In accordance with this license, we release our derived dataset
535 under the same terms, preserving the freedoms to use, share, and modify the data.
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