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Abstract

Large language models show strong potential for molecular editing, but progress
has been constrained by the limited scale and quality of available training data.
To address this, we introduce MEGA, a family of large-scale datasets comprising
57M molecule pairs, each representing a single property-improving chemical edit
annotated with an explicit action: Replace, Insert, or Delete a functional group. We
demonstrate MEGA’s utility in a controlled supervised fine-tuning (SFT) setting,
where a model trained on MEGA outperforms models trained on existing datasets
by up to +21.47 percentage points in hit ratio. Furthermore, we show that Group
Relative Policy Optimization (GRPO) post-training with a similarity-aware reward
achieves state-of-the-art performance and a remarkable ∼ 36× improvement in
data efficiency, while also preserving edit locality. We release MEGA in open
access to the community to enable data-centric benchmarks and accelerate progress
in molecular editing with generative models.

1 Introduction

Molecular optimization is critical to drug discovery, guiding chemists in turning initial molecular
hits into drug-like candidates. Unlike unconstrained molecule generation [1, 2], molecular editing
involves targeted modifications, such as scaffold decoration, fragment substitutions, or precise
structural refinements, that carefully balance therapeutic properties with chemical feasibility and
synthetic practicality [3, 4].

To assist chemists in this iterative lead optimization process, recent approaches leverage large
language models (LLMs), either through fine-tuning or by using them as reasoning agents capable
of interpreting textual prompts (e.g. “increase solubility”) and proposing relevant molecular edits
[5, 6]. Additionally, reinforcement learning (RL)-based post-training can align these models even
more closely with practical constraints, improving both chemical plausibility and edit precision [7, 8].
Progress, however, is limited by data. Training and evaluating editing models requires goal-aligned
edit datasets that pair a parent molecule with a proposed child and standardized outcomes, at a scale
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Figure 1: Morgan-fingerprint t-SNE for a parent SMILES and child molecules generated by fragment
edits, delete, replace, insert. Colors encode the applied edit, highlighting neighborhood exploration
under the given task.

that supports both supervised fine-tuning and post-training [9, 10]. Nevertheless, existing corpora
either lack the scale required for robust training or omit explicit edit annotations needed for guided
policy learning.

To close this gap, we curate MEGA (Molecular Editing with Guided Action), a large-scale, molecule
editing dataset of (parent, child) molecule pairs spanning 28 tasks. The dataset is offered in in
two scales, the primary MEGA dataset, containing 522 thousand successful edits, and an expanded
version, MEGA-Large, with 31.4 million positive samples. We also release an additional 41 million
valid and chemically close negative examples to enable contrastive learning and Reinforcement
Learning (RL) reward shaping [11, 12].

Using a fixed LLM and a shared evaluation protocol, we first quantify the effect of data alone by
fine-tuning on MEGA versus other public datasets. We then show that post-training with GRPO [13],
using a composite reward that combines a thresholded property gain term and a Tanimoto similarity
term [14], yields further gains with reduced number of training samples.

Concretely, this work introduces the following contributions:

1. We release MEGA, a family of molecular editing datasets with fragment-level Replace,
Insert, and Delete annotations. It contains two variants: MEGA (522K positive pairs, 522K
negative pairs) for resource-constrained regimes, and MEGA-Large (31M positive and
26M negative pairs) for scaling and contrastive studies. MEGA-Large is over an order of
magnitude larger than any existing dataset for molecular editing.

2. We demonstrate that under fixed model and training protocol, fine-tuning on MEGA increases
hit ratios by up to +21.47 percentage points over established datasets on shared tasks, while
its explicit edit labels enable per-action supervision and diagnostics.

3. We show that GRPO post-training on MEGA with a similarity-aware reward improves
property alignment and edit minimality, while also achieving state-of-the-art performance
on established benchmarks. With only 14K training examples, the GRPO post-trained model
matches the performance of the SFT model trained on the full MEGA set, corresponding to
a ∼ 36× improvement in data efficiency.

2 Related Work

2.1 Datasets for Molecular Editing

Public corpora vary in task formulation and scale. MoleculeSTM [15] trains a multimodal struc-
ture–text model on hundreds of thousands of molecule–caption pairs through contrastive learning
and proposes instruction-guided retrieval and editing tasks, establishing a text-based benchmark
for property-aware modification. Another example is MolOpt-Instructions [16], released alongside
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DrugAssist, which compiles a large instruction dataset to fine-tune language models for molecule
optimization from natural language goals. Furthermore, MolEdit-Instruct [17] scales property-
conditioned edits by pairing each parent molecule with an explicit edit instruction and target property
change. The dataset is used to evaluate diffusion and RL models under joint constraints on molecular
similarity and property improvement, reflecting a shift toward instruction-plus-constraint benchmarks.
Together, these datasets illustrate the available range for training and evaluating molecular editing
models, despite differences in construction, supervision signals, and scale.

2.2 LLMs for Chemistry

General-purpose language models trained on broad text data already exhibit useful zero-shot chemistry
skills answering property prediction questions, translating line notations, or suggesting functional-
group swaps straight out of the box [18, 19, 20]. When wrapped in a tool-calling framework, the
same models can act as agents: ChemCrow, for example, prompts an off-the-shelf LLM to invoke
cheminformatics utilities (parsers, property predictors, similarity search) and carry out multi-step
design tasks from natural language instructions [21].

Researchers also adapt these open language models to chemistry via domain fine-tuning and task-
specific supervision. For instance, LlamoLe trains on ∼128k USPTO reactions with textual de-
scriptions to strengthen reasoning and route identification [22, 23], while DrugAssist uses MolOpt-
Instructions to instruction-tune models for property-directed optimization from text in a single-shot
fashion [16].

A further layer of refinement uses reinforcement learning such as with Ether0, trained on 640k
experimentally-grounded chemistry problems across 375 tasks, to excel at tasks like retrosynthesis
and solubility editing [24]. Another example is MolEditRL, which pairs property-conditioned
prompts with structure-preserving edit operators and reinforcement-style objectives to promote local,
similarity-respecting modifications [17].

2.3 Editors Beyond LLMs for Lead Optimization

While LLM-based editors are comparatively recent, lead optimization has a long history of non-LLM
approaches that emphasize local, property-directed modifications to a given scaffold. Earlier rule-
based strategies, such as matched molecular pairs (MMPs) [25] and fixed reaction templates, encoded
medicinal-chemistry heuristics for systematic substitution. More recent machine learning methods
operate directly on strings or graphs to propose minimal edits, including JT-VAE [2], GCPN [26],
and MARS [27, 28]. In parallel, diffusion models adapt continuous generative dynamics to discrete
molecular modifications: DiffLink designs linkers between fixed fragments [29], while DiffHop
performs constrained scaffold hopping [30]. Taken together, these approaches chart a progression
from rules to learned editors to diffusion frameworks, all aimed at controllable, chemically plausible
edits central to lead optimization.

3 MEGA Dataset

3.1 Dataset Construction Overview

MEGA is a family of large-scale datasets with a total of 31.4M parent–child SMILES pairs. Each
child comes from applying a single functional-group edit to a ZINC250K parent, without a constraint
to preserve the scaffold [31]. Candidate modification sites are located with established retrosynthetic
slicing rules (BRICS [32], Hussain–Rea (HR) [33] and RECAP [34]) and exactly one action is applied
at a chosen site: Delete, Insert, or Replace a functional group. The child is rebuilt and sanitized in
RDKit [35], and task properties are computed deterministically. We adopt the MoleculeSTM protocol
for task labeling: for each objective (e.g. “increase solubility”), we use RDKit to verify whether
the child clears the threshold for that task. Each record includes parent SMILES, child SMILES, a
coarse action tag (Insert/Delete/Replace), the task identifier and threshold level, and the parent/child
property vectors. The computational budget for MEGA amounted to approximately 184k CPU-hours
(or around 21 CPU years) on a 128-core cluster.

For efficient training, we define MEGA as a uniformly sampled subset of 522K positive examples
drawn from the full 31M-pair dataset, which we refer to as MEGA-Large. MEGA mirrors the
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Figure 2: t-SNE projection of Morgan fingerprints showing chemical space coverage of statistical
significant subsets of MEGA, MolEdit-Instruct, and MolOpt-Instructions.

action distribution of MEGA-Large (3.1% Delete, 43.6% Insert, 53.3% Replace), making it suitable
for resource-constrained settings while retaining the statistical properties of the full collection. In
addition to the positives, we also provide 41 million valid but chemically close negative pairs that,
while not meeting the improvement threshold, offer valuable hard negatives for contrastive learning
or reinforcement learning setups.

To emphasize drug discovery relevance, our tasks target widely used objectives including aqueous
solubility, drug-likeness (QED), H-bond donors/acceptors, permeability proxies and topological
polar surface area (TPSA). Each one evaluated at two thresholds, loose and strict. Restricting
edits to a single modification per pair enables controlled exploration of the parent’s local chemical
neighborhood. A parent molecule may appear in multiple pairs if it contains eligible sites for several
actions across tasks. For each edit–task combination, we retain up to five successful and five near-miss
children, ranked to maximize diversity while avoiding redundancy. Further details on tasks and
dataset composition are provided in Appendix A.

3.2 Dataset Coverage

Figure 1 shows a representative parent alongside three children, one per action. The edits are local
and chemically rational: removing an atom (Delete), adding a small moiety (Insert) or swapping one
group for another (Replace). Together they illustrate the targeted nature of MEGA’s pairs; in this
example, all children satisfy the “increase aqueous solubility” objective.

Figure 2 visualizes a statistically significant subset of MEGA in the 2048-bit Morgan-fingerprint
space [36] using t-SNE [37]. The overlay shows that MEGA occupies the shared high-density core
with existing molecular editing datasets and also reaches beyond it, consistent with its scale and edit
policy. Moreover, Table 1 quantifies this comparison: in terms of successful (positive) edits, the full
set is roughly an order of magnitude larger than the next largest dataset. Furthermore, unlike other
datasets, MEGA includes a coarse action label (Insert/Delete/Replace) for every pair, supporting
per-action supervision, diagnostics, and reproducibility.

4 Experiments

We evaluate MEGA in a two-stage protocol: (1) supervised fine-tuning (SFT) to benchmark perfor-
mance under identical model and training settings against existing datasets, and (2) RL post-training
with a hybrid reward combining property gains and structural similarity. We also analyze edit action
distributions, locality, and sample efficiency in single- and multi-objective tasks.
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Table 1: Comparison of molecular editing datasets used in this study. Reported sizes count only
successful (positive) parent-child pairs. Unique molecules counts distinct SMILES across both
parents and children. Action provided indicates whether a dataset records the edit label.

Dataset Size Unique Molecules # Tasks Action Provided
MoleculeSTM 280K 250K 34 No
MolEdit-Instruct 3.03M 967K 20 No
MolOpt-Instructions 1.24M 1.596M 16 No

MEGA 522K 372K 28 Yes
MEGA-Large 31.4M 22.126M 28 Yes

Table 2: Performance comparison of SFT models on shared molecular editing tasks. The best results
are marked in bold. We report the mean and standard deviation of five runs.

Task Description Threshold Dataset
MEGA MolEdit MolOpt

Instruct Instructions

103 More like a drug 0.0 62.46 ± 2.18 23.92 ± 0.99 16.38 ± 2.03
0.1 28.43 ± 1.38 12.85 ± 0.58 8.38 ± 0.53

104 Less like a drug 0.0 97.81 ± 0.91 98.97 ± 0.33 96.87 ± 0.82
0.1 83.94 ± 3.43 98.86 ± 0.51 94.43 ± 1.47

107 More H-bond acceptors 0.0 99.28 ± 0.25 94.96 ± 1.70 89.33 ± 1.18
1.0 93.06 ± 0.66 43.35 ± 1.65 34.06 ± 0.58

108 More H-bond donors 0.0 99.80 ± 0.25 97.66 ± 0.59 96.21 ± 0.91
1.0 99.29 ± 0.25 67.57 ± 1.78 56.67 ± 1.10

Average 83.01 67.27 61.54

4.1 Supervised Fine-Tuning

Protocol. We fine-tune a Llama-3 8B model [38] with LoRA adapters [39] on MolOpt-Instructions,
MolEdit-Instruct, and MEGA. All runs use the same hyperparameters, training schedule, and LoRA
configuration. Training last approximately 23 H100-equivalent hours per model until the validation
loss no longer improves.

Evaluation follows the MoleculeSTM protocol [15] and is restricted to the 4 single-objective tasks
shared by all three datasets. The test set contains 200 unique parent SMILES not present in any of the
training sets. For each task, we assess performance at two property thresholds (loose and strict) and
report the hit ratio, defined as the fraction of generated molecules that achieve the required property
improvement. Each experiment is repeated five times, with a decoding temperature of 1.0, and we
report the mean and standard deviation of the hit ratio across runs. The resulting models are referred
to as MEGA SFT. For further comparisons and training settings details see Appendix B.

Results. Table 2 shows that the LLM trained on MEGA outperforms the same architecture trained
on MolEdit-Instruct and MolOpt-Instructions by +15.74 (pp) and +21.47 (pp), respectively. The
largest gain occurs in the “more like a drug” objective, a target known to be particularly challenging
due to its composite nature [18]. Variance is low and comparable to the other benchmarks, indicating
that improvements are stable across repeated evaluations.

4.2 Reward-Guided Post-Training

Protocol. We further refine the best checkpoint from above using GRPO [13] to improve property
alignment while preserving local edits. During training, for each parent SMILES, the model generates
a batch of multiple candidates, which are scored relative to each other. This feedback is used for
updating the model weights. The scalar reward is defined as:
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Table 3: Comparison on DrugAssist benchmark. MEGA GRPO (522k) outperforms DrugAssist and
Gemini 2.5 Pro across five shared tasks under loose and strict thresholds.

Task Description Threshold Model
DrugAssist Gemini 2.5 Pro MEGA GRPO

101 More soluble in water 0 80.00 94.91 97.49
0.5 41.00 79.64 91.10

103 More like a drug 0 76.00 87.58 83.49
0.1 63.00 63.31 50.00

107 More H-bond acceptors 0 71.00 91.63 98.60
1 67.00 24.89 86.74

108 More H-bond donors 0 72.00 96.05 99.31
1 76.00 3.54 91.45

201 More soluble & more HBA 0 - 0 50.00 94.31 95.19
0.5 - 1 27.00 34.96 84.21

Average 62.30 67.08 87.76

R = µ · 1[∆p(parent, child) ≥ τ ]︸ ︷︷ ︸
property hit

+γ 1valid(child)︸ ︷︷ ︸
validity hit

+λ htan(parent, child)︸ ︷︷ ︸
Tanimoto hit level

htan(parent, child) =


1.0, if T > 0.65,

0.5, if 0.4 ≤ T ≤ 0.65,

0.0, otherwise,

where the first term awards a hit when ∆p meets or exceeds τ , with µ = 0.5 for satisfying the
task without margin (loose threshold) and µ = 1.0 for satisfying it with a strict margin (strict
threshold). The second term rewards valid and sanitized child smiles, and the third rewards scaffold-
local modifications via Tanimoto coefficient discretization. The coefficients γ and λ were selected
empirically to 1.0. We train with 3,000 rollouts per task under a KL-constrained objective. To assess
the data efficiency of the post-training stage, we repeat this experiment with training sets ranging
from 1.4k parent SMILES up to the full MEGA dataset. The resulting models are referred to as
MEGA GRPO. Complete experimental details are provided in Appendix C.

We first compare MEGA GRPO against DrugAssist [17], a state-of-the-art specialized LLM, and
Gemini 2.5 Pro [40], a strong general-purpose LLM, on five single- and multi-objective molecular
editing tasks. For this evaluation, we use the 500-SMILES test set provided by DrugAssist and report
hit ratios under both loose and strict thresholds in Table 3.

We then compare MEGA GRPO against ChatDrug Turbo, a strong in-context learning LLM, and
MoleculeSTM, a contrastive-trained encoder–decoder, on the full 28-task suite of the MEGA dataset.
For this evaluation, we follow the protocol described in the SFT section and report results in Table 4.
We verified that none of the test SMILES appeared in our training data to maintain evaluation integrity.

Results. Despite its size, MEGA GRPO outperforms both DrugAssist and Gemini 2.5 Pro on
the DrugAssist benchmark (Table 3), achieving the highest hit ratio in 8 of 10 settings. The most
pronounced gains appear on the dual-objective solubility + HBA task (201), where it reaches 95.19%
under loose and 84.21% under strict thresholds, substantially ahead of both baselines. Gemini 2.5 Pro
exhibits a competitive performance, and leads on the drug-likeness objectives (103). Nevertheless, it
under performs on strict thresholds, underscoring an implicit alignment towards minimum property
changes that hinders its effectiveness when large improvements are required.

On the 28-task MoleculeSTM benchmark (Table 4), MEGA GRPO attains the best mean hit ratio on
all task/threshold pairs. It reaches ≥95% on most single-property edits under loose thresholds (e.g.,
101–102, 104, 106–108) and remains strong under stricter criteria. The notable hard case is Task 103
(drug-likeness), where absolute rates drop for all methods; even so, MEGA GRPO leads by 12 pp
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Table 4: Performance comparison of MEGA GRPO (522K) against editing methods across single
and multi objective tasks and thresholds. We report the mean and standard deviation over five runs.
The best results are shown in bold.

Task Threshold Random MoleculeSTM ChatDrug Turbo MEGA GRPO

101 0 35.33±1.31 61.87±2.67 94.13±1.04 99.31±0.10
0.5 11.04±2.40 49.02±1.84 88.67±0.95 94.43±0.24

102 0 43.36±3.06 52.71±1.67 96.86±1.10 99.71±0.21
0.5 19.75±1.56 30.47±3.26 70.08±3.44 95.52±0.51

103 0 38.06±2.57 36.52±2.46 48.65±3.39 60.48±2.28
0.1 5.27±0.24 8.81±0.82 19.37±5.54 23.38±1.71

104 0 36.96±2.25 58.59±1.01 70.75±2.92 97.81±0.73
0.1 6.16±1.87 37.56±1.76 30.99±2.66 93.42±0.58

105 0 25.23±2.13 57.74±0.60 56.56±1.84 90.19±1.34
10 17.41±1.43 47.51±1.88 43.08±2.95 87.88±0.94

106 0 16.79±2.54 34.13±0.59 77.35±1.98 100.00±0.00
10 11.02±0.71 26.48±0.97 66.69±2.74 99.43±0.01

107 0 12.64±1.64 54.01±5.26 95.35±0.62 98.92±0.41
1 0.69±0.01 27.33±2.62 72.60±2.51 87.32±1.27

108 0 2.97±0.61 28.55±0.76 96.54±1.31 99.24±0.79
1 0.00±0.00 7.69±0.56 76.43±3.32 95.22±0.34

201 0 – 0 9.88±1.03 27.87±3.86 79.62±0.64 98.53±0.44
0.5 – 1 0.23±0.33 8.80±0.04 49.64±2.66 90.34±0.47

202 0 – 0 2.99±0.38 8.55±2.75 51.59±3.79 94.18±1.20
0.5 – 1 0.45±0.32 2.93±0.30 24.92±4.85 72.59±1.41

203 0 – 0 2.28±1.15 33.51±4.08 89.34±0.96 99.64±0.48
0.5 – 1 0.00±0.00 9.98±1.03 53.64±5.81 98.35±0.90

204 0 – 0 0.69±0.58 17.03±2.75 39.90±3.86 86.72±1.95
0.5 – 1 0.00±0.00 2.59±1.14 24.19±2.19 60.33±1.83

205 0 – 0 5.06±1.21 35.69±3.19 12.85±2.68 89.30±0.93
0.5 – 10 1.16±0.68 19.15±0.73 10.44±5.75 82.86±0.75

206 0 – 0 12.17±1.05 44.35±0.68 65.33±2.16 99.54±0.43
0.5 – 10 6.20±0.64 28.67±2.22 52.90±2.23 94.31±0.23

(60.48 vs. 48.65) at loose and 4 pp (23.38 vs. 19.37) at strict. MEGA GRPO’s advantage is most
pronounced on multi-objective tasks (201, 203, and 206), indicating better balancing of potentially
competing constraints. Variance across runs is small (typically ≤ 2), suggesting the gains are stable
across several runs. Overall, MEGA GRPO establishes a robust state-of-the-art baseline for both
single- and multi-objective molecular editing. These outcomes reflect the synergy between the MEGA
dataset and locality-aware GRPO training. MEGA provides informative and diverse demonstrations
of guided optimization through single-local edits, while GRPO further aligns the model’s behavior
with task-specific reward signals.

Data Efficiency. Figure 3 shows that GRPO with Tanimoto reward outperforms SFT across all data
regimes while maintaining scaffold edits within our targeted Tanimoto similarity range (0.6–0.8).
With only 14k training examples, MEGA GRPO (14K) matches the performance of MEGA SFT
trained on 522k by +2.11 pp, achieving ∼ 36× data efficiency multiplier with the same Llama 3 base
model.

Guided-Action Editing. Figure 4 shows the distribution of fragment-level edit actions across tasks.
The MEGA SFT model roughly reproduce the action distribution of the MEGA dataset. This indicates
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Figure 4: Distribution of fragment-level edit actions during inference for MEGA SFT (522K) and
MEGA GRPO (14K), on single and double-molecule optimization tasks.

internalization of single-fragment edit patterns (replace, insert, delete) present in the demonstrations.
In contrast, MEGA GRPO learns, via RL, heavily favors replace actions, reflecting an optimization
bias towards minimal yet property-aligned functional group modifications. The performance increase
of the GRPO model, suggest that replace-dominant strategies are, on average, more efficient than the
dataset’s action distribution.

5 Conclusion

In this work we release MEGA, a family of large-scale datasets comprising 57M annotated molecule
pairs designed to advance property-guided molecular editing. By systematically generating single
chemically rational edits that improve a target property (replace, insert, delete), MEGA provides
dense, high-quality supervision for exploring local chemical space. Our experiments demonstrate its
value: models fine-tuned on MEGA significantly outperform those trained on existing datasets in
supervised settings. Furthermore, when combined with RL post-training, models trained on MEGA
achieve state-of-the-art performance on established benchmarks and demonstrate a remarkable ∼ 36×
improvement in data efficiency.
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A MEGA Dataset Details

Tasks. For curating MEGA we used single-objective tasks (101–108) that targets one property, and
multi-objective tasks (201–206) for two properties. Table 5 lists the desired direction of change (↑
increase, ↓ decrease), variable name (consistent with RDKit), alongside the requirement in natural-
language. For each task we evaluate 2 threshold with different levels of property change. Table 6 gives
the evaluation thresholds under loose and strict criteria. For multi-objective tasks, each threshold
vector follows the property order in the Target(s) column.

Task ID Target(s) Task Requirement 1 Task Requirement 2
101 ↓ logP more soluble in water None
102 ↑ logP less soluble in water None
103 ↑ QED more like a drug None
104 ↓ QED less like a drug None
105 ↓ TPSA higher permeability None
106 ↑ TPSA lower permeability None
107 ↑ HBA more hydrogen bond acceptors None
108 ↑ HBD more hydrogen bond donors None
201 ↓ logP , ↑ HBA more soluble in water more hydrogen bond acceptors
202 ↑ logP , ↑ HBA less soluble in water more hydrogen bond acceptors
203 ↓ logP , ↑ HBD more soluble in water more hydrogen bond donors
204 ↑ logP , ↑ HBD less soluble in water more hydrogen bond donors
205 ↓ logP , ↓ TPSA more soluble in water higher permeability
206 ↓ logP , ↑ TPSA more soluble in water lower permeability

Table 5: Task catalog for small-molecule property edits. All tasks require the output molecule to
remain similar to the input. Arrows indicate desired property direction.

Task ID Loose Strict
101 [0] [0.5]
102 [0] [0.5]
103 [0] [0.1]
104 [0] [0.1]
105 [0] [10]
106 [0] [10]
107 [0] [1]
108 [0] [1]
201 [0, 0] [0.5, 1]
202 [0, 0] [0.5, 1]
203 [0, 0] [0.5, 1]
204 [0, 0] [0.5, 1]
205 [0, 0] [0.5, 10]
206 [0, 0] [0.5, 10]

Table 6: Evaluation thresholds per task. For multi-objective tasks, each vector’s order follows the
Target(s) order in Table 5.
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Dataset Statistics. This subsection summarizes the scale and composition of MEGA-Large (31M)
and MEGA (522K) and quantifies how representative the smaller split is of the full corpus. Table 7
reports dataset-level counts. MEGA-31M contains 246,532 unique parent molecules directly taken
from the Zinc-250 dataset. In includes 72,366,584 evaluated edits, of which 31,354,522 are successful.
MEGA mirrors this profile at smaller scale with 4,105 unique parents and 1,205,430 edits, including
522,058.

Metric MEGA-Large (31M) MEGA (522K)
Unique parent molecules 246,532 4,105
Successful edits 31,354,522 522,058
Unique successful SMILES 21,879,431 367,954
Negative edits 41,012,062 683,372
Unique negative SMILES 8,129,138 137,012
Total SMILES 72,366,584 1,205,430

Table 7: Side-by-side summary of MEGA datasets.

Table 8 compares the distribution of successful edits by operation. The proportions are stable across
scales: delete ≈3.1%, insert ≈43.6%, and replace ≈53.3% in both MEGA (522K) and MEGA-
Large (31M). This alignment suggests that MEGA preserves the operational mix of the full dataset
and is suitable for compute-friendly budgets.

MEGA (522K) MEGA-Large (31M)
Operation Count % Count %
Delete 15,924 3.1% 960,992 3.1%
Insert 227,789 43.6% 13,677,420 43.6%
Replace 278,345 53.3% 16,716,110 53.3%
Total 522,058 100% 31,354,522 100%

Table 8: Distribution of successful edit operations for MEGA-Large and MEGA.

Table 9 reports successful edits per task for MEGA-Large (31M) and MEGA (522K). Counts are
broadly balanced across tasks and per-task ranking is consistent across scales. Tasks 101/102/104
yield the largest winner pools, while 103 (increase QED) and 205 (reduce logP& decrease TPSA)
show markedly consistent with results from the literature. MEGA preserves the relative task difficulty
profile of the full corpus.

Task MEGA-Large MEGA
101 2,613,794 43,463
102 2,609,126 43,443
103 1,061,168 17,774
104 2,570,496 42,793
105 1,645,706 27,401
106 2,462,800 41,005
107 2,462,791 41,005
108 2,462,781 41,005
201 2,462,711 41,005
202 2,457,965 40,933
203 2,462,768 41,005
204 2,400,936 39,978
205 1,218,686 20,243
206 2,462,794 41,005
Total 31,354,522 522,058

Table 9: Number of successful edit examples per task for MEGA-Large (31M) and MEGA (522K).

Mean shifts, Table 10, align with the instructions for every task. Examples: LogP↓ (101) moves the
mean by −0.975 (winners vs. parents) and separates winners from losers by −1.577; LogP↑ (102)
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shifts by +0.965 with a winner–loser gap of +1.133; QED↓ (104) shifts by −0.217; TPSA↑ (106)
exhibits a large increase of +31.611; HBA↑ (107) and HBD↑ (108) increase by +2.749 and +2.316,
respectively. The consistent sign and sizable winner–loser separations (last column) provide evidence
of strong task-wise consistency on MEGA.

Task Property Obj. Parent x̄ Winner x̄ ∆ W–P Loser x̄ ∆ W–L
101 LogP ↓ 2.475 1.501 −0.975 3.078 −1.577
102 LogP ↑ 2.475 3.440 +0.965 2.307 +1.133
103 QED ↑ 0.733 0.797 +0.064 0.614 +0.183
104 QED ↓ 0.733 0.516 −0.217 0.727 −0.211
105 TPSA ↓ 64.918 49.669 −15.249 77.022 −27.353
106 TPSA ↑ 64.918 96.530 +31.611 61.857 +34.673
107 HBA ↑ 3.990 6.739 +2.749 4.224 +2.515
108 HBD ↑ 1.237 3.553 +2.316 1.248 +2.305

Table 10: MEGA: mean target-property values and deltas. ∆W–P = x̄W − x̄P (winners minus parents)
and ∆W–L = x̄W − x̄L (winners minus losers). “Winners” and “losers” correspond to successful and
unsuccessful edits, on strict threshold respectively. Signs follow the task objective (increase/decrease).

Figure 5 visualizes the single-objective shifts via kernel density estimates of the target property
for parent (orange) and edited child (blue) molecules. Across all eight tasks, the child distribution
moves in the instructed direction (reduce/increase or count increase), demonstrating strong task-wise
consistency in MEGA.

Figure 5: Molecular property distributions between parent and child molecules for MEGA.

For comparison to prior datasets, we report the Fréchet ChemNet Distance (FCD; lower is closer)
[41]. As shown in Table 11, the distance between MolEdit-Instruct and MolOpt-Instructions roughly
4x lower compared to MEGA. This indicates that MEGA occupies a distinct region of the chemical
space, while the incumbent datasets exhibit notable overlap, thus, expanding the resources available
in the existing literature.

Table 11: Fréchet distance between datasets computed in Morgan-fingerprint space (lower is closer).

Dataset MEGA MolEdit-Instruct MolOpt-Instructions
MEGA 0.000 2.790 2.738
MolEdit-Instruct 2.790 0.000 0.696
MolOpt-Instructions 2.738 0.696 0.000
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Prompts. Unless otherwise stated, prompts request one candidate molecule in SMILES, with no
extra explanation.

Single-objective prompts:

101: Reduce logP

User: Can you make molecule SMILESmore soluble in water? The output molecule
should be similar to the input molecule.
Output: One valid SMILES.

102: Increase logP

User: Can you make molecule SMILESless soluble in water? The output molecule
should be similar to the input molecule.
Output: One valid SMILES.

103: Increase QED

User: Can you make molecule SMILESmore like a drug? The output molecule should
be similar to the input molecule.
Output: One valid SMILES.

104: Reduce QED

User: Can you make molecule SMILESless like a drug? The output molecule should
be similar to the input molecule.
Output: One valid SMILES.

105: Decrease TPSA

User: Can you make molecule SMILEShigher permeability? The output molecule
should be similar to the input molecule.
Output: One valid SMILES.

106: Increase TPSA

User: Can you make molecule SMILESlower permeability? The output molecule
should be similar to the input molecule.
Output: One valid SMILES.

107: Increase HBA

User: Can you make molecule SMILESwith more hydrogen bond acceptors? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.

108: Increase HBD

User: Can you make molecule SMILESwith more hydrogen bond donors? The output
molecule should be similar to the input molecule.
Output: One valid SMILES.
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Two-objective prompts:

201: Reduce logP & Increase HBA

User: Can you make molecule SMILESmore soluble in water and more hydrogen bond
acceptors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

202: Increase logP & Increase HBA

User: Can you make molecule SMILESless soluble in water and more hydrogen bond
acceptors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

203: Reduce logP & Increase HBD

User: Can you make molecule SMILESmore soluble in water and more hydrogen bond
donors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

204: Increase logP & Increase HBD

User: Can you make molecule SMILESless soluble in water and more hydrogen bond
donors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

205: Reduce logP & Decrease TPSA

User: Can you make molecule SMILESmore soluble in water and higher
permeability? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

206: Reduce logP & Increase TPSA

User: Can you make molecule SMILESmore soluble in water and lower permeability?
The output molecule should be similar to the input molecule.
Output: One valid SMILES.
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B Supervised Fine-tuning (SFT) details

For all our fine-tuning experiments, we utilize a memory-efficient, 4-bit quantized LLaMA 3.1 8B
Instruct model as the backbone. Our datasets are consistently formatted as prompt-completion pairs,
where the prompts are detailed in the main text and the corresponding completions are the child
SMILES.

To ensure a fair comparison across benchmarks, we trained three models, as detailed in Table 2, each
on a different dataset that has been filtered to contain comparable tasks. For the MEGA dataset,
we retain tasks 101, 102, 103, 104, 107, and 108, resulting in 229K prompt-completion pairs. For
MolEdit-Instruct, we use tasks 103, 104, 107, and 108 (as tasks 101 and 102 are not available),
yielding 650K prompt-completion pairs. For MolOpt-Instructions, we include tasks 101, 102, 103,
104, 107, and 108, producing 301K prompt-completion pairs.

All models are trained using Low-Rank Adaptation (LoRA) with a rank of r=32 and α=16, targeting
all attention projection matrices and feed-forward layers. We use a training batch size of 16 with a
gradient accumulation of 2 steps, resulting in an effective batch size of 32. Optimization is performed
with an 8-bit quantized AdamW optimizer for memory efficiency. The learning rate is set to 1e− 4
with a cosine annealing scheduler and a linear warm-up period of 100 steps. For regularization, a
weight decay of 0.01 is applied. All models are trained with a maximum sequence length of 512
tokens, using mixed-precision training (bfloat16) when supported. All trainings are conducted on a
single A100 (40GB) GPU for approximately 23 hours.

B.1 Evaluation

We perform a sanity check to ensure that test SMILES are not present in any of the training sets using
canonical SMILES notation to prevent data leakage. To ensure a fair evaluation, each model is tested
with the prompt templates corresponding to its training dataset (e.g., MolEdit-Instruct, MEGA, or
MolOpt-Instructions) eliminating bias from prompt format differences.
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Figure 6: Training loss curves for three SFT models on MEGA-Small, MolEdit-Instruct, and MolOpt-
Instructions. MEGA-Small achieves the lowest final loss ( 0.18), followed by MolOpt-Instructions
and MolEdit-Instruct respectively.

As shown in Figure 6 the model trained on MEGA exhibits significantly faster convergence and
substantially lower final loss values. The better training dynamics observed with MEGA indicates
that our dataset leads to more sample-efficient learning, achieving better optimization faster.

In addition, for Table 3, we report hit ratio results comparing MEGA GRPO against Gemini 2.5 Pro
(June 17, 2025 official API release) and DrugAssist on the 500 test SMILES provided by DrugAssist.
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This evaluation is performed over a single run, and we carefully verify that none of these 500 SMILES
are included in our training set to avoid any possibility of data contamination.

B.2 Extra Comparisons

To further assess the utility of the MEGA dataset and extend the results in Table 2, we conducted
an pair-wise comparison between MEGA and each external dataset on their overlapping task sets.
Specifically, MEGA shares five tasks with MolEdit-Instruct and six with MolOpt-Instructions.

In the first experience, we trained models exclusively on the five tasks shared between MEGA and
MolEdit-Instruct, namely tasks 103, 104, 107, 108, and 201 (Table 12). This setting corresponds
to 678K training examples from MolEdit-Instruct and 183K examples from MEGA restricted to
these five tasks. In the second, we trained models on the six tasks shared between MEGA and
MolOpt-Instructions, namely tasks 101, 102, 103, 104, 107, and 108 (Table 13), which amounts to
301K training examples from MolOpt-Instructions and 229K examples from MEGA. All training
hyperparameters and conditions described in Appendix B were kept identical to ensure a fair and
controlled comparison.

In these head-to-head evaluations, we found that models trained on the MEGA data partitions, in
average, outperform those trained on the corresponding data from MolEdit-Instruct and MolOpt-
Instructions. This finding further validates the quality and effectiveness of our dataset, demonstrating
that its superior performance is not limited to a small task intersection, but holds true in expanded
comparisons.

Table 12: Performance comparison: MEGA vs
MolEdit Instruct

Task Threshold MolEdit-Instruct MEGA

103 0.0 27.19 ± 0.84 61.05 ± 2.88
0.1 14.37 ± 0.95 24.36 ± 1.73

104 0.0 99.28 ± 0.52 95.84 ± 0.89
0.1 97.94 ± 0.55 80.95 ± 3.41

107 0.0 95.72 ± 0.61 98.02 ± 0.90
1.0 43.05 ± 1.64 94.58 ± 0.76

108 0.0 98.10 ± 0.71 99.80 ± 0.25
1.0 66.53 ± 2.05 97.25 ± 0.60

201 0.0 87.14 ± 1.99 96.18 ± 1.03
0.5 81.66 ± 1.72 87.86 ± 1.58

Average 71.10 83.59

Table 13: Performance comparison: MEGA vs
MolOpt-Instructions
Task Threshold MolOpt-Instructions MEGA

101 0.0 96.71 ± 0.70 98.04 ± 0.51
0.5 96.41 ± 0.58 92.47 ± 0.79

102 0.0 88.41 ± 1.85 97.41 ± 0.74
0.5 88.41 ± 1.85 92.53 ± 2.25

103 0.0 16.82 ± 1.57 59.71 ± 1.29
0.1 8.68 ± 1.16 26.72 ± 2.31

104 0.0 97.92 ± 1.40 97.42 ± 0.32
0.1 93.68 ± 1.88 84.54 ± 2.15

107 0.0 92.33 ± 2.42 98.35 ± 0.50
1.0 33.41 ± 3.03 93.36 ± 0.57

108 0.0 94.76 ± 0.91 100.00 ± 0.00
1.0 56.10 ± 1.74 98.56 ± 0.89

Average 71.97 86.59
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C GRPO Details

C.1 GRPO Algorithm for Molecular Editing

For each molecular editing prompt (xin, xt), GRPO operates as follows:

1. Sample a group of candidate molecules:
{y1, y2, ..., yG} ∼ πθ(·|xin, xt) (1)

where G is the number of generations by our policy model
2. Compute rewards for all candidates using batch molecular property evaluation:

ri = R(yi, xin, xt) for i = 1, ..., G (2)

3. Calculate group-relative advantages:

Âi =
ri − r̄

σr + ϵ
(3)

where r̄ = 1
G

∑G
j=1 rj and σr =

√
1
G

∑G
j=1(rj − r̄)2 are the mean and standard deviation

of rewards within the group, and ϵ = 10−8 for numerical stability.
4. Update the policy using the GRPO objective:

LGRPO(θ) = − 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
t=1

[
min

(
ρi,tÂi, clip(ρi,t, 1− ε, 1 + ε)Âi

)
− βDKL[πθ∥πref]

]
(4)

where:
• ρi,t =

πθ(yi,t|xin,xt,yi,<t)
πθold (yi,t|xin,xt,yi,<t)

is the probability ratio

• ε = 0.2 is the clipping parameter
• β = 0.0 by default
• If β > 0, the KL divergence is estimated as shown previously

C.2 Experimental Details

For locality-aware GRPO training, we ensured strict consistency between supervised fine-tuning
(SFT) and post-training data. For example, the MEGA GRPO (14K) model used the same 14K
SMILES for both SFT and GRPO. Similarly, the results in Table 4 were obtained from a policy model
first fine-tuned on the full 522K prompt–completion pairs of MEGA, with the same data reused
during GRPO. In this phase, we sampled G = 12 generations per prompt and computed rewards for
each candidate molecule.

Our composite reward function is designed to guide the model toward valid, improved, and struc-
turally related molecules using three distinct signals. First, the validity reward provides a binary
signal that ensures chemical correctness through RDKit sanitization while rejecting any outputs that
are unchanged or fragmented. Second, the property reward implements a task-specific evaluation
using a dual-threshold mechanism to provide fine-grained control over property modifications. Strict
thresholds (e.g., ∆LogP > 0.5, ∆QED > 0.1) yield a reward of 1.0, whereas loose thresholds that only
require a correct directional change yield 0.5. This encourages the model to learn both conservative
and substantial improvements. Third, the Tanimoto similarity reward enforces structural conserva-
tion, assigning a reward of 1.0 for high similarity (Tanimoto coefficient > 0.65), 0.5 for moderate
modifications (coefficients ∈ [0.4, 0.65]), and 0.0 for major scaffold modifications (coefficients <
0.4).

All GRPO training was conducted on a single A100 GPU, with convergence achieved in approximately
10 hours at around 3,000 steps. We used an 8-bit quantized AdamW optimizer with a learning rate
of α = 5 × 10−6, β1 = 0.9, β2 = 0.999, a weight decay of 0.01, and gradient norm clipping at
0.5. The learning rate followed a cosine annealing schedule with a 10% linear warmup. To ensure
memory efficiency, the model incorporated 4-bit quantization and LoRA adaptation with a rank of
r = 32. We used an effective batch size of 8 (4 samples per device with 2 gradient accumulation
steps) and maximum sequence lengths of 256 and 128 for prompts and completions, respectively. All
computations were performed using bfloat16 mixed precision.
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D Impact of GRPO and Tanimoto Reward on Scaffold Similarity

(a) Dataset size: 1.4K (b) Dataset size: 7K (c) Dataset size: 14K

(d) Dataset size: 70K (e) Dataset size: 140K (f) Dataset size: 500K

Figure 7: Tanimoto similarity distributions for different training data sizes. Each plot shows the
distribution for SFT (purple), GRPO without Tanimoto reward (turquoise), and GRPO with Tanimoto
reward (orange) models. The green shaded region (0.6–0.8) indicates the targeted tanimoto similarity
range.

Figure 7 shows the results of LLM postraining across varying dataset sizes sampled from MEGA
using GRPO with and without incorporating a Tanimoto similarity component into the reward system.
When trained without the Tanimoto reward on small datasets, the models achieve high hit ratios
but tend to alter the scaffold substantially, yielding molecules with low similarity to their parent
compounds. As the dataset size increases, however, the model implicitly recovers the similarity
distribution observed in the SFT baseline, ultimately reaching the target similarity regime even
without an explicit reward signal. In contrast, when the Tanimoto reward is included, the model
attains this small-edit regime with as few as 1.4k training examples (roughly 100 per task type).
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E Qualitative examples

Table 14: Visualization of molecular editing with three actions: Replace, Insert, and Delete. The yellow
regions indicate replaced substructures, the blue regions indicate inserted substructures, and the red regions
indicate deleted substructures. Each example shows the transformation from the input molecule xin to the output
molecule xout.

Action: REPLACE

(a) 101 (strict) (b) 106 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.3398 → 2.2743 TPSA: 79.3700 → 103.1600

(c) 102 (strict) (d) 103 (loose)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 1.6861 → 3.2998 QED: 0.8626 → 0.9025

(e) 105 (strict) (f) 107 (loose)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA: 89.3500 → 72.2800 H-Bond Acceptors: 2 → 3

(g) 108 (strict) (h) 205 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

H-Bond Donors: 1 → 3 LogP: 3.0216 → 1.3313, TPSA: 44.81 → 32.18
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Action: INSERT

(i) 101 (strict) (j) 102 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 0.4971 → -0.0816 LogP: 4.0895 → 4.6941

(k) 104 (strict) (l) 201 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

QED: 0.3421 → 0.1626 LogP: 0.4971 → -0.1731, H-Acceptors: 9 → 11

(m) 202 (strict) (n) 204 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.7027 → 4.9789, H-Acceptors: 8 → 10 LogP: 5.7082 → 6.4651, H-Donors: 1 → 3

(o) 206 (strict) (p) 108 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 4.0895 → 3.3751, TPSA: 45.67 → 83.72 H-Bond Donors: 0 → 3

Action: DELETE

(q) 102 (strict) (r) 103 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.0114 → 3.5138 QED: 0.5656 → 0.8620

(s) 105 (strict) (t) 105 (strict)

Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA: 31.3500 → 18.4600 TPSA: 55.4000 → 38.3300

F Dataset License

We used the ZINC 250K dataset [42] available here, which is distributed under the GNU General
Public License v3 or later (GPL-3.0+). In accordance with this license, we release our derived dataset
under the same terms, preserving the freedoms to use, share, and modify the data.
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