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Abstract

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a
router, has achieved great success in deep learning. However, the understanding of
such architecture remains elusive. In this paper, we formally study how the MoE
layer improves the performance of neural network learning and why the mixture
model will not collapse into a single model. Our empirical results suggest that
the cluster structure of the underlying problem and the non-linearity of the expert
are pivotal to the success of MoE. This motivates us to consider a challenging
classification problem with intrinsic cluster structures. Theoretically, we proved
that this problem is hard to solve by a single expert such as a two-layer convolutional
neural network (CNN). Yet with the MoE layer with each expert being a two-layer
CNN, the problem can be solved successfully. In particular, our theory shows
that the router can learn the cluster-center features, which helps divide the input
complex problem into simpler classification sub-problems that individual experts
can conquer. To our knowledge, this is the first theoretical result toward formally
understanding the mechanism of the MoE layer for deep learning.

1 Introduction

The Mixture-of-Expert (MoE) structure (Jacobs et al., 1991; Jordan and Jacobs, 1994) is a classic
design that substantially scales up the model capacity and only introduces small computation overhead.
In recent years, the MoE layer (Eigen et al., 2013; Shazeer et al., 2017), which is an extension of the
MoE model to deep neural networks, has achieved remarkable success in deep learning. Generally
speaking, an MoE layer contains many experts that share the same network architecture and are
trained by the same algorithm, with a gating (or routing) function that routes individual inputs to a
few experts among all the candidates. Through the sparse gating function, the router in the MoE layer
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can route each input to the top-K(K ≥ 2) best experts (Shazeer et al., 2017), or the single (K = 1)
best expert (Fedus et al., 2021). This routing scheme only costs the computation of K experts for a
new input, which enjoys fast inference time.

Despite the great empirical success of the MoE layer, the theoretical understanding of such architecture
is still elusive. In practice, all experts have the same structure, initialized from the same weight
distribution (Fedus et al., 2021) and are trained with the same optimization configuration. The
router is also initialized to dispatch the data uniformly. It is unclear why the experts can diverge to
different functions that are specialized to make predictions for different inputs, and why the router can
automatically learn to dispatch data, especially when they are all trained using simple local search
algorithms such as gradient descent. Therefore, we aim to answer the following questions:

Why do the experts in MoE diversify instead of collapsing into a single model? And how can the
router learn to dispatch the data to the right expert?

In this paper, in order to answer the above question, we consider the natural “mixture of classification”
data distribution with cluster structure and theoretically study the behavior and benefit of the MoE
layer. We focus on the simplest setting of the mixture of linear classification, where the data
distribution has multiple clusters, and each cluster uses separate (linear) feature vectors to represent
the labels. In detail, we consider the data generated as a combination of feature patches, cluster
patches, and noise patches (See Definition 3.1 for more details). We study training an MoE layer based
on the data generated from the “mixture of classification” distribution using gradient descent, where
each expert is chosen to be a two-layer CNN. The main contributions of this paper are summarized as
follows:

• We first prove a negative result (Theorem 4.1) that any single expert, such as two-layer CNNs
with arbitrary activation function, cannot achieve a test accuracy of more than 87.5% on our data
distribution.

• Empirically, we found that the mixture of linear experts performs better than the single expert but
is still significantly worse than the mixture of non-linear experts. Figure 1 provides such a result
in a special case of our data distribution with four clusters. Although a mixture of linear models
can represent the labeling function of this data distribution with 100% accuracy, it fails to learn so
after training. We can see that the underlying cluster structure cannot be recovered by the mixture
of linear experts, and neither the router nor the experts are diversified enough after training. In
contrast, the mixture of non-linear experts can correctly recover the cluster structure and diversify.

• Motivated by the negative result and the experiment on the toy data, we study a sparsely-gated
MoE model with two-layer CNNs trained by gradient descent. We prove that this MoE model can
achieve nearly 100% test accuracy efficiently (Theorem 4.2).

• Along with the result on the test accuracy, we formally prove that each expert of the sparsely-
gated MoE model will be specialized to a specific portion of the data (i.e., at least one cluster),
which is determined by the initialization of the weights. In the meantime, the router can learn the
cluster-center features and route the input data to the right experts.

• Finally, we also conduct extensive experiments on both synthetic and real datasets to corroborate
our theory.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to
denote scalars, vectors, and matrices respectively. We denote a union of disjoint sets (Ai : i ∈ I)
by ti∈IAi. For a vector x, we use ‖x‖2 to denote its Euclidean norm. For a matrix W, we use
‖W‖F to denote its Frobenius norm. Given two sequences {xn} and {yn}, we denote xn = O(yn)
if |xn| ≤ C1|yn| for some absolute positive constant C1, xn = Ω(yn) if |xn| ≥ C2|yn| for some
absolute positive constant C2, and xn = Θ(yn) if C3|yn| ≤ |xn| ≤ C4|yn| for some absolute
constants C3, C4 > 0. We also use Õ(·) to hide logarithmic factors of d in O(·). Additionally, we
denote xn = poly(yn) if xn = O(yDn ) for some positive constant D, and xn = polylog(yn) if
xn = poly(log(yn)). We also denote by xn = o(yn) if limn→∞ xn/yn = 0. Finally we use [N ] to
denote the index set {1, . . . , N}.

2 Related Work

Mixture of Experts Model. The mixture of experts model (Jacobs et al., 1991; Jordan and Jacobs,
1994) has long been studied in the machine learning community. These MoE models are based
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Figure 1: Visualization of the training of MoE with nonlinear expert and linear expert. Different colors
denote router’s dispatch to different experts. The lines denote the decision boundary of the MoE model. The
data points are visualized on 2d space via t-SNE (Van der Maaten and Hinton, 2008). The MoE architecture
follows section 3 where nonlinear experts use activation function σ(z) = z3. For this visualization, we let the
expert number M = 4 and cluster number K = 4. We generate n = 1, 600 data points from the distribution
illustrated in Section 3 with α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (1, 2), and σp = 1. More details of the visualization
are discussed in Appendix A.

on various base expert models such as support vector machine (Collobert et al., 2002) , Gaussian
processes (Tresp, 2001), or hidden Markov models (Jordan et al., 1997). In order to increase the
model capacity to deal with the complex vision and speech data, Eigen et al. (2013) extended the
MoE structure to the deep neural networks, and proposed a deep MoE model composed of multiple
layers of routers and experts. Shazeer et al. (2017) simplified the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and reduces
the computational cost. Since then, the MoE layer with different base neural network structures
(Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017) has been proposed and achieved
tremendous successes in a variety of language tasks. Very recently, Fedus et al. (2021) improved the
performance of the MoE layer by routing one example to only a single expert instead of K experts,
which further reduces the routing computation while preserving the model quality.

Mixture of Linear Regressions/Classifications. In this paper, we consider a “mixture of clas-
sification” model. This type of models can be dated back to (De Veaux, 1989; Jordan and Ja-
cobs, 1994; Faria and Soromenho, 2010) and has been applied to many tasks including object
recognition (Quattoni et al., 2004) human action recognition (Wang and Mori, 2009), and machine
translation (Liang et al., 2006). In order to learn the unknown parameters for mixture of linear
regressions/classification model, (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty and Liang,
2013; Anandkumar et al., 2014; Li and Liang, 2018) studies the method of moments and tensor
factorization. Another line of work studies specific algorithms such as Expectation-Maximization
(EM) algorithm (Khalili and Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Wang et al., 2015).

Theoretical Understanding of Deep Learning. In recent years, great efforts have been made to
establish the theoretical foundation of deep learning. A series of studies have proved the convergence
(Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019; Allen-Zhu et al., 2019b; Zou et al., 2018) and
generalization (Allen-Zhu et al., 2019a; Arora et al., 2019a,b; Cao and Gu, 2019) guarantees in the
so-called “neural tangent kernel” (NTK) regime, where the parameters stay close to the initialization,
and the neural network function is approximately linear in its parameters. A recent line of works
(Allen-Zhu and Li, 2019; Bai and Lee, 2019; Allen-Zhu and Li, 2020a,b,c; Li et al., 2020; Cao et al.,
2022; Zou et al., 2021; Wen and Li, 2021) studied the learning dynamic of neural networks beyond
the NTK regime. It is worthwhile to mention that our analysis of the MoE model is also beyond the
NTK regime.
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3 Problem Setting and Preliminaries

We consider an MoE layer with each expert being a two-layer CNN trained by gradient descent (GD)
over n independent training examples {(xi, yi)}ni=1 generated from a data distribution D. In this
section, we will first introduce our data model D, and then explain our neural network model and the
details of the training algorithm.

3.1 Data distribution

We consider a binary classification problem over P -patch inputs, where each patch has d dimensions.
In particular, each labeled data is represented by (x, y), where input x = (x(1),x(2), . . . ,x(P )) ∈
(Rd)P is a collection of P patches and y ∈ {±1} is the data label. We consider data generated from
K clusters. Each cluster k ∈ [K] has a label signal vector vk and a cluster-center signal vector ck
with ‖vk‖2 = ‖ck‖2 = 1. For simplicity, we assume that all the signals {vk}k∈[K] ∪ {ck}k∈[K] are
orthogonal with each other.
Definition 3.1. A data pair (x, y) ∈ (Rd)P × {±1} is generated from the distribution D as follows.

• Uniformly draw a pair (k, k′) with k 6= k′ from {1, . . . ,K}.
• Generate the label y ∈ {±1} uniformly, generate a Rademacher random variable ε ∈ {±1}.
• Independently generate random variables α, β, γ from distribution Dα,Dβ ,Dγ . In this paper, we

assume there exists absolute constants C1, C2 such that almost surely 0 < C1 ≤ α, β, γ ≤ C2.
• Generate x as a collection of P patches: x = (x(1),x(2), . . . ,x(P )) ∈ (Rd)P , where

– Feature signal. One and only one patch is given by yαvk.
– Cluster-center signal. One and only one patch is given by βck.
– Feature noise. One and only one patch is given by εγvk′ .
– Random noise. The rest of the P − 3 patches are Gaussian noises that are independently drawn

from N(0, (σ2
p/d) · Id) where σp is an absolute constant.

How to learn this type of data? Since the positions of signals and noises are not specified in
Definition 3.1, it is natural to use the CNNs structure that applies the same function to each patch. We
point out that the strength of the feature noises γ can be as large as the strength of the feature signals
α. As we will see later in Theorem 4.1, this classification problem is hard to learn with a single expert,
such as any two-layer CNNs (any activation function with any number of neurons). However, such
a classification problem has an intrinsic clustering structure that may be utilized to achieve better
performance. Examples can be divided into K clusters ∪k∈[K]Ωk based on the cluster-center signals:
an example (x, y) ∈ Ωk if and only if at least one patch of x aligns with ck. It is not difficult to show
that the binary classification sub-problem over Ωk can be easily solved by an individual expert. We
expect the MoE can learn this data cluster structure from the cluster-center signals.

Significance of our result. Although this data can be learned by existing works on a mixture of
linear classifiers with sophisticated algorithms (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty
and Liang, 2013), the focus of our paper is training a mixture of nonlinear neural networks, a more
practical model used in real applications. When an MoE is trained by variants of gradient descent, we
show that the experts automatically learn to specialize on each cluster, while the router automatically
learns to dispatch the data to the experts according to their specialty. Although from a representation
point of view, it is not hard to see that the concept class can be represented by MoEs, our result is
very significant as we prove that gradient descent from random initialization can find a good MoE
with non-linear experts efficiently. To make our results even more compelling, we empirically show
that MoE with linear experts, despite also being able to represent the concept class, cannot be trained
to find a good classifier efficiently.

3.2 Structure of the MoE layer

An MoE layer consists of a set of M “expert networks” f1, . . . , fM , and a gating network which is
generally set to be linear (Shazeer et al., 2017; Fedus et al., 2021). Denote by fm(x; W) the output of
the m-th expert network with input x and parameter W. Define an M -dimensional vector h(x; Θ) =∑
p∈[P ] Θ

>x(p) as the output of the gating network parameterized by Θ = [θ1, . . . ,θM ] ∈ Rd×M .
The output F of the MoE layer can be written as follows:

F (x; Θ,W) =
∑
m∈Txπm(x; Θ)fm(x; W),
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where Tx ⊆ [M ] is a set of selected indices and πm(x; Θ)’s are route gate values given by

πm(x; Θ) =
exp(hm(x; Θ))∑M

m′=1 exp(hm′(x; Θ))
,∀m ∈ [M ].

Expert Model. In practice, one often uses nonlinear neural networks as experts in the MoE layer. In
fact, we found that the non-linearity of the expert is essential for the success of the MoE layer (see
Section 6). For m-th expert, we consider a convolution neural network as follows:

fm(x; W) =
∑
j∈[J]

∑P
p=1σ

(
〈wm,j ,x

(p)〉
)
, (3.1)

where wm,j ∈ Rd is the weight vector of the j-th filter (i.e., neuron) in the m-th expert, J is the
number of filters (i.e., neurons). We denote Wm = [wm,1, . . . ,wm,J ] ∈ Rd×J as the weight matrix
of the m-th expert and further let W = {Wm}m∈[M ] as the collection of expert weight matrices. For
nonlinear CNN, we consider the cubic activation function σ(z) = z3, which is one of the simplest
nonlinear activation functions (Vecci et al., 1998). We also include the experiment for other activation
functions such as RELU in Appendix Table 7.

Top-1 Routing Model. A simple choice of the selection set Tx is the whole experts set Tx = [M ]
(Jordan and Jacobs, 1994), which is the case for the so-called soft-routing model. However, it will
be time consuming to use soft-routing in deep learning. In this paper, we consider “switch routing”,
which is introduced by Fedus et al. (2021) to make the gating network sparse and save the computation
time. For each input x, instead of using all the experts, we only pick one expert from [M ], i.e.,
|Tx| = 1. In particular, we choose Tx = argmaxm{hm(x; Θ)}.

Figure 2: Illustration of an MoE layer. For each input x, the
router will only select one expert to perform computations. The
choice is based on the output of the gating network (dotted line).
The expert layer returns the output of the selected expert (gray
box) multiplied by the route gate value (softmax of the gating
function output).

Algorithm 1 Gradient descent with ran-
dom initialization
Require: Number of iterations T , expert

learning rate η, router learning rate ηr ,
initialization scale σ0, training set S =
{(xi, yi)}ni=1.

1: Generate each entry of W(0) indepen-
dently from N(0, σ2

0).
2: Initialize each entry of Θ(0) as zero.
3: for t = 0, 2, . . . , T − 1 do
4: Generate each entry of r(t) indepen-

dently from Unif[0,1].
5: Update W(t+1) as in (3.4).
6: Update Θ(t+1) as in (3.5).
7: end for
8: return (Θ(T ),W(T )).

3.3 Training Algorithm

Given the training data S = {(xi, yi)}ni=1, we train F with gradient descent to minimize the following
empirical loss function:

L(Θ,W) =
1

n

∑n
i=1`

(
yiF (xi; Θ,W)

)
, (3.2)

where ` is the logistic loss defined as `(z) = log(1 + exp(−z)). We initialize Θ(0) to be zero and
initialize each entry of W(0) by i.i.d N (0, σ2

0). Zero initialization of the gating network is widely
used in MoE training. As discussed in Shazeer et al. (2017), it can help avoid out-of-memory errors
and initialize the network in a state of approximately equal expert load (see (5.1) for the definition of
expert load).

Instead of directly using the gradient of empirical loss (3.2) to update weights, we add perturba-
tion to the router and use the gradient of the perturbed empirical loss to update the weights. In
particular, the training example xi will be distributed to argmaxm{hm(xi; Θ

(t)) + r
(t)
m,i} instead,

where {r(t)
m,i}m∈[M ],i∈[n] are random noises. Adding noise term is a widely used training strategy
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for sparsely-gated MoE layer (Shazeer et al., 2017; Fedus et al., 2021), which can encourage explo-
ration across the experts and stabilize the MoE training. In this paper, we draw {r(t)

m,i}m∈[M ],i∈[n]

independently from the uniform distribution Unif[0, 1] and denotes its collection as r(t). Therefore,
the perturbed empirical loss at iteration t can be written as

L(t)(Θ(t),W(t)) =
1

n

∑n
i=1`

(
yiπmi,t(xi; Θ

(t))fmi,t(xi; W
(t))
)
, (3.3)

where mi,t = argmaxm{hm(xi; Θ
(t)) + r

(t)
m,i}. Starting from the initialization W(0), the gradient

descent update rule for the experts is

W(t+1)
m = W(t)

m − η · ∇WmL(t)(Θ(t),W(t))/‖∇WmL(t)(Θ(t),W(t))‖F ,∀m ∈ [M ], (3.4)

where η > 0 is the expert learning rate. Starting from the initialization Θ(0), the gradient update rule
for the gating network is

θ(t+1)
m = θ(t)

m − ηr · ∇θm
L(t)(Θ(t),W(t)),∀m ∈ [M ], (3.5)

where ηr > 0 is the router learning rate. In practice, the experts are trained by Adam to make sure
they have similar learning speeds. Here we use a normalized gradient which can be viewed as a
simpler alternative to Adam (Jelassi et al., 2021).

4 Main Results

In this section, we will present our main results. We first provide a negative result for learning with a
single expert.
Theorem 4.1 (Single expert performs poorly). SupposeDα = Dγ in Definition 3.1, then any function
with the form F (x) =

∑P
p=1 f(x(p)) will get large test error P(x,y)∼D

(
yF (x) ≤ 0

)
≥ 1/8.

Theorem 4.1 indicates that if the feature noise has the same strength as the feature signal i.e.,
Dα = Dγ , any two-layer CNNs with the form F (x) =

∑
j∈[J] aj

∑
p∈[P ] σ(w>j x(p) + bj) can’t

perform well on the classification problem defined in Definition 3.1 where σ can be any activation
function. Theorem 4.1 also shows that a simple ensemble of the experts may not improve the
performance because the ensemble of the two-layer CNNs is still in the form of the function defined
in Theorem 4.1.

As a comparison, the following theorem gives the learning guarantees for training an MoE layer that
follows the structure defined in Section 3.2 with cubic activation function.
Theorem 4.2 (Nonlinear MoE performs well). Suppose the training data size n = Ω(d). Choose
experts number M = Θ(K logK log log d), filter size J = Θ(logM log log d), initialization scale
σ0 ∈ [d−1/3, d−0.01], learning rate η = Õ(σ0), ηr = Θ(M2)η. Then with probability at least
1− o(1), Algorithm 1 is able to output (Θ(T ),W(T )) within T = Õ(η−1) iterations such that the
non-linear MoE defined in Section 3.2 satisfies that

• Training error is zero, i.e., yiF (xi; Θ
(T ),W(T )) > 0,∀i ∈ [n].

• Test error is nearly zero, i.e., P(x,y)∼D
(
yF (x; Θ(T ),W(T )) ≤ 0

)
= o(1).

More importantly, the experts can be divided into a disjoint union of K non-empty sets [M ] =
tk∈[K]Mk and

• (Each expert is good on one cluster) Each expert m ∈ Mk performs good on the cluster Ωk,
P(x,y)∼D(yfm(x; W(T )) ≤ 0|(x, y) ∈ Ωk) = o(1).

• (Router only distributes example to good expert) With probability at least 1− o(1), an example
x ∈ Ωk will be routed to one of the experts inMk.

Theorem 4.2 shows that a non-linear MoE performs well on the classification problem in Definition 3.1.
In addition, the router will learn the cluster structure and divide the problem into K simpler sub-
problems, each of which is associated with one cluster. In particular, each cluster will be classified
accurately by a subset of experts. On the other hand, each expert will perform well on at least one
cluster.

Furthermore, together with Theorem 4.1, Theorem 4.2 suggests that there exist problem instances in
Definition 3.1 (i.e., Dα = Dγ) such that an MoE provably outperforms a single expert.
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5 Overview of Key Techniques

A successful MoE layer needs to ensure that the router can learn the cluster-center features and
divide the complex problem in Definition 3.1 into simpler linear classification sub-problems that
individual experts can conquer. Finding such a gating network is difficult because this problem is
highly non-convex. In the following, we will introduce the main difficulties in analyzing the MoE
layer and the corresponding key techniques to overcome those barriers.

Main Difficulty 1: Discontinuities in Routing. Compared with the traditional soft-routing model,
the sparse routing model saves computation and greatly reduces the inference time. However, this
form of sparsity also causes discontinuities in routing (Shazeer et al., 2017). In fact, even a small
perturbation of the gating network outputs h(x; Θ) + δ may change the router behavior drastically if
the second largest gating network output is close to the largest gating network output.

Key Technique 1: Stability by Smoothing. We point out that the noise term added to the gating
network output ensures a smooth transition between different routing behavior, which makes the
router more stable. This is proved in the following lemma.

Lemma 5.1. Let h, ĥ ∈ RM to be the output of the gating network and {rm}Mm=1 to be the noise
independently drawn from Unif[0,1]. Denote p, p̂ ∈ RM to be the probability that experts get routed,
i.e., pm = P(argmaxm′∈[M ]{hm′ + rm′} = m), p̂m = P(argmaxm′∈[M ]{ĥm′ + rm′} = m). Then
we have that ‖p− p̂‖∞ ≤M2‖h− ĥ‖∞.

Lemma 5.1 implies that when the change of the gating network outputs at iteration t and t′ is small, i.e.,
‖h(x; Θ(t))−h(x; Θ(t′))‖∞, the router behavior will be similar. So adding noise provides a smooth
transition from time t to t′. It is also worth noting that Θ is zero initialized. So h(x; Θ(0)) = 0 and
thus each expert gets routed with the same probability pm = 1/M by symmetric property. Therefore,
at the early of the training when ‖h(x; Θ(t))− h(x; Θ(0))‖∞ is small, router will almost uniformly
pick one expert from [M ], which helps exploration across experts.

Main Difficulty 2: No “Real” Expert. At the beginning of the training, the gating network is zero,
and the experts are randomly initialized. Thus it is hard for the router to learn the right features
because all the experts look the same: they share the same network architecture and are trained by the
same algorithm. The only difference is the initialization. Moreover, if the router makes a mistake at
the beginning of the training, the experts may amplify the mistake because the experts will be trained
based on mistakenly dispatched data.

Key Technique 2: Experts from Exploration. Motivated by the key technique 1, we introduce an
exploration stage to the analysis of MoE layer during which the router almost uniformly picks one ex-
pert from [M ]. This stage starts at t = 0 and ends at T1 = bη−1σ0.5

0 c � T = Õ(η−1) and the gating
network remains nearly unchanged ‖h(x; Θ(t))−h(x; Θ(0))‖∞ = O(σ1.5

0 ). Because the experts are
treated almost equally during exploration stage, we can show that the experts become specialized to
some specific task only based on the initialization. In particular, the experts set [M ] can be divided into
K nonempty disjoint sets [M ] = tkMk, whereMk := {m| argmaxk′∈[K],j∈[J]〈vk′ ,w

(0)
m,j〉 = k}.

For nonlinear MoE with cubic activation function, the following lemma further shows that experts in
different setMk will diverge at the end of the exploration stage.
Lemma 5.2. Under the same condition as in Theorem 4.2, with probability at least 1 − o(1), the
following equations hold for all expert m ∈Mk,

P(x,y)∼D
(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ωk

)
= o(1),

P(x,y)∼D
(
yfm(x; W(T1)) ≤ 0

∣∣(x, y) ∈ Ωk′
)

= Ω
(
1/K

)
,∀k′ 6= k.

Lemma 5.2 implies that, at the end of the exploration stage, the expert m ∈Mk can achieve nearly
zero test error on the cluster Ωk but high test error on the other clusters Ωk′ , k

′ 6= k.

Main Difficulty 3: Expert Load Imbalance. Given the training data set S = {(xi, yi)}ni=1, the
load of expert m at iterate t is defined as

Load(t)
m =

∑
i∈[n]P(mi,t = m), (5.1)

where P(mi,t = m) is probability that the input xi being routed to expert m at iteration t. Eigen
et al. (2013) first described the load imbalance issues in the training of the MoE layer. The gating
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network may converge to a state where it always produces large Load(t)
m for the same few experts.

This imbalance in expert load is self-reinforcing, as the favored experts are trained more rapidly
and thus are selected even more frequently by the router (Shazeer et al., 2017; Fedus et al., 2021).
Expert load imbalance issue not only causes memory and performance problems in practice, but also
impedes the theoretical analysis of the expert training.

Key Technique 3: Normalized Gradient Descent. Lemma 5.2 shows that the experts will diverge
into tk∈[K]Mk. Normalized gradient descent can help different experts in the same Mk being
trained at the same speed regardless of the imbalance load caused by the router. Because the self-
reinforcing circle no longer exists, the load imbalance issue will get mitigated. In particular, the router
will treat different experts in the sameMk almost equally and dispatch almost the same amount of
data to them during the early stage of training (See Section E.2 in Appendix for detail), which is
enough for the router to learn the cluster-center features. However, we can’t guarantee load balance
for an arbitrary long training period if we only use normalized gradient descent. That’s the reason
Theorem 4.2 requires early stopping. This load imbalance issue can be further avoided by adding
load balancing loss (Eigen et al., 2013; Shazeer et al., 2017; Fedus et al., 2021), or using advanced
MoE layer structure such as BASE Layers (Lewis et al., 2021; Dua et al., 2021) and Hash Layers
(Roller et al., 2021).

Road Map: Here we provide the road map of the proof of Theorem 4.2 and the full proof is presented
in Appendix E. The training process can be decomposed into several stages. The first stage is
called Exploration stage. During this stage, the experts will diverge into K professional groups
tKk=1Mk = [M ]. In particular, we will show thatMk is not empty for all k ∈ [K]. Besides, for all
m ∈Mk, fm is a good classifier over Ωk. The second stage is called router learning stage. During
this stage, the router will learn to dispatch x ∈ Ωk to one of the experts inMk. Finally, we will give
the generalization analysis for the MoEs from the previous two stages.

6 Experiments

In this section, we conduct experiments to validate our theory. The code and data for our experiments
can be found on Github 1.

Setting 1:α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 1

Test accuracy (%) Dispatch Entropy

Single (linear) 68.71 NA
Single (nonlinear) 79.48 NA

MoE (linear) 92.99± 2.11 1.300± 0.044
MoE (nonlinear) 99.46± 0.55 0.098± 0.087

Setting 2: α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 2

Test accuracy (%) Dispatch Entropy

Single (linear) 60.59 NA
Single (nonlinear) 72.29 NA

MoE (linear) 88.48± 1.96 1.294± 0.036
MoE (nonlinear) 98.09± 1.27 0.171± 0.103

Table 1: Comparison between MoE (linear) and MoE (nonlinear)
in our setting. We report results of top-1 gating with noise for both
linear and nonlinear models. Over ten random experiments, we report
the average value ± standard deviation for both test accuracy and
dispatch entropy.
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Figure 3: Illustration of router dis-
patch entropy. We demonstrate the
change of entropy of MoE during train-
ing on the synthetic data. MoE (linear)-
1 and MoE (nonlinear)-1 refer to Set-
ting 1 in Table 1. MoE (linear)-2 and
MoE (nonlinear)-2 refer to Setting 2 in
Table 1.

6.1 Synthetic-data Experiments

Datasets. We generate 16, 000 training examples and 16, 000 test examples from the data distribution
defined in Definition 3.1 with cluster number K = 4 , patch number P = 4 and dimension d = 50.
We randomly shuffle the order of the patches of x after we generate data (x, y). We consider two

1https://github.com/uclaml/MoE
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Table 2: Comparison between MoE and single model on CIFAR-10 and CIFAR-10-Rotate datasets. We report
the average test accuracy over 10 random experiments ± the standard deviation.

CIFAR-10 (%) CIFAR-10-Rotate (%)

CNN Single 80.68± 0.45 76.78± 1.79
MoE 80.31± 0.62 79.60± 1.25

MobileNetV2 Single 92.45± 0.25 85.76± 2.91
MoE 92.23± 0.72 89.85± 2.54

ResNet18 Single 95.51± 0.31 88.23± 0.96
MoE 95.32± 0.68 92.60± 2.01

parameter settings: 1. α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 1; 2.
α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 2. Note that Theorem 4.1
shows that when α and γ follow the same distribution, neither single linear expert or single nonlinear
expert can give good performance. Here we consider a more general and difficult setting when α and
γ are from different distributions.

Models. We consider the performances of single linear CNN, single nonlinear CNN, linear MoE, and
nonlinear MoE. The single nonlinear CNN architecture follows (3.1) with cubic activation function,
while single linear CNN follows (3.1) with identity activation function. For both linear and nonlinear
MoEs, we consider a mixture of 8 experts with each expert being a single linear CNN or a single
nonlinear CNN. Finally, we train single models with gradient descent and train the MoEs with
Algorithm 1. We run 10 random experiments and report the average accuracy with standard deviation.

Evaluation. To evaluate how well the router learned the underlying cluster structure of the data, we
define the entropy of the router’s dispatch as follows. Denote by nk,m the number of data in cluster K
that are dispatched to expertm. The total number of data dispatched to expertm is nm =

∑K
k=1 nk,m

and the total number of data is n =
∑K
k=1

∑M
m=1 nk,m. The dispatch entropy is then defined as

entropy = −
∑M
m=1,nm 6=0

nm

n

∑K
k=1

nk,m

nm
· log

(nk,m

nm

)
. (6.1)

When each expert receives the data from at most one cluster, the dispatch entropy will be zero. And a
uniform dispatch will result in the maximum dispatch entropy.

As shown in Table 1, the linear MoE does not perform as well as the nonlinear MoE in Setting 1,
with around 6% less test accuracy and much higher variance. With stronger random noise (Setting 2),
the difference between the nonlinear MoE and linear MoE becomes even more significant. We also
observe that the final dispatch entropy of nonlinear MoE is nearly zero while that of the linear MoE is
large. In Figure 3, we further demonstrate the change of dispatch entropy during the training process.
The dispatch entropy of nonlinear MoE significantly decreases, while that of linear MoE remains
large. Such a phenomenon indicates that the nonlinear MoE can successfully learn the underlying
cluster structure of the data while the linear MoE fails to do so.

6.2 Real-data Experiments

We further conduct experiments on real image datasets and demonstrate the importance of the
clustering data structure to the MoE layer in deep neural networks.

Datasets. We consider the CIFAR-10 dataset (Krizhevsky, 2009) and the 10-class classification task.
Furthermore, we create a CIFAR-10-Rotate dataset that has a strong underlying cluster structure
that is independent of its labeling function. Specifically, we rotate the images by 30 degrees and
merge the rotated dataset with the original one. The task is to predict if the image is rotated, which
is a binary classification problem. We deem that some of the classes in CIFAR-10 form underlying
clusters in CIFAR-10-Rotate. In Appendix A, we explain in detail how we generate CIFAR-10-Rotate
and present some specific examples.

Models. For the MoE, we consider a mixture of 4 experts with a linear gating network. For the
expert/single model architectures, we consider a CNN with 2 convolutional layers (architecture details
are illustrated in Appendix A.) For a more thorough evaluation, we also consider expert/single models
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with architecture including MobileNetV2 (Sandler et al., 2018) and ResNet18 (He et al., 2016). The
training process of MoE also follows Algorithm 1.

The experiment results are shown in Table 2, where we compare single and mixture models of different
architectures over CIFAR-10 and CIFAR-10-Rotate datasets. We observe that the improvement of
MoEs over single models differs largely on the different datasets. On CIFAR-10, the performance
of MoEs is very close to the single models. However, on the CIFAR-10-Rotate dataset, we can
observe a significant performance improvement from single models to MoEs. Such results indicate
the advantage of MoE over single models depends on the task and the cluster structure of the data.

Visualization. In Figure 4, we visualize the latent embedding learned by MoEs (ResNet18) for the
10-class classification task in CIFAR-10 as well as the binary classification task in CIFAR-10-Rotate.
We visualize the data with the same label y to see if cluster structures exist within each class. For
CIFAR-10, we choose y = 1 ("car"), and plot the latent embedding of the data using t-SNE on the
left sub-figure, which does not show an salient cluster structure. For CIFAR-10-Rotate, we choose
y = 1 ("rotated") and visualize the data using t-SNE in the middle sub-figure. Here, we can observe
a clear clustering structure even though the class signal is not provided during training. We take a
step further to investigate what is in each cluster in the right sub-figure. We can observe that most of
the examples in the “frog” class fall into one cluster, while examples of “ship” class mostly fall into
the other cluster.

y=1 (car) y=1 (rotated) (frog, ship)

Figure 4: Visualization of the latent embedding on CIFAR-10 and CIFAR-10-Rotate with chosen label y. The
left sub-figure denotes the visualization of CIFAR-10 when label y is chosen to be 1 (car). The central sub-figure
represents the visualization of CIFAR-10-Rotate when label y is chosen to be 1 (rotated). On the right sub-figure,
red denotes that the data is from the ship class, and blue denotes that the data is from the frog class.

7 Conclusion and Future Work

In this work, we formally study the mechanism of the Mixture of Experts (MoE) layer for deep
learning. To our knowledge, we provide the first theoretical result toward understanding how the MoE
layer works in deep learning. Our empirical evidence reveals that the cluster structure of the data plays
an important role in the success of the MoE layer. Motivated by these empirical observations, we
study a data distribution with cluster structure and show that Mixture-of-Experts provably improves
the test accuracy of a single expert of two-layer CNNs.

There are several important future directions. First, our current results are for CNNs. It is interesting
to extend our results to other neural network architectures, such as transformers. Second, our data
distribution is motivated by the classification problem of image data. We plan to extend our analysis
to other types of data (e.g., natural language data).
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] This paper gives the first theoretical result toward
formally understanding the mechanism of the MoE layer for deep learning.

(b) Did you describe the limitations of your work? [Yes] We note in Section 5 that our
analysis of the MoE layer need early stopping which we believe can be waived by
adding some well-signed regularization. We will explore this in future work.

(c) Did you discuss any potential negative societal impacts of your work? [No] We seek
to mathematically understand the MoE layer in Deep Learning, it is not clear what
potential negative impacts a deeper theoretical understanding of this algorithm would
bring.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See our Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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