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Abstract

Temporally consistent depth estimation from stereo video is critical for real-world
applications such as augmented reality, where inconsistent depth estimation dis-
rupts the immersion of users. Despite its importance, this task remains challenging
due to the difficulty in modeling long-term temporal consistency in a computation-
ally efficient manner. Previous methods attempt to address this by aggregating
spatio-temporal information but face a fundamental trade-off: limited temporal
modeling provides only modest gains, whereas capturing long-range dependen-
cies significantly increases computational cost. To address this limitation, we
introduce a memory buffer for modeling long-range spatio-temporal consistency
while achieving efficient dynamic stereo matching. Inspired by the two-stage
decision-making process in humans, we propose a Pick-and-Play Memory (PPM)
construction module for dynamic Stereo matching, dubbed as PPMStereo. PPM
consists of a ‘pick’ process that identifies the most relevant frames and a ‘play’
process that weights the selected frames adaptively for spatio-temporal aggregation.
This two-stage collaborative process maintains a compact yet highly informative
memory buffer while achieving temporally consistent information aggregation.
Extensive experiments validate the effectiveness of PPMStereo, demonstrating
state-of-the-art performance in both accuracy and temporal consistency. Codes are
available at https://github.com/cocowy1/PPMStereo.

1 Introduction

Stereo matching refers to binocular disparity estimation, which is a fundamental computer vision
task focused on estimating the disparity between a pair of rectified stereo images [59, 21, 39]. Deep
learning-based stereo matching methods have achieved remarkable progress in terms of accuracy [59,

, 56, 11], efficiency [51, 65, 58, 2], and robustness [47, 70, 69, 61]. Despite impressive performance
for static scenes, these methods exhibit severe temporal inconsistencies when applied to dynamic
scenes [29]. This manifests itself as flickering artifacts and blurred disparity maps due to the absence
of effective inter-frame temporal information integration. Therefore, the algorithm deployment in
dynamic scenarios such as autonomous driving, robotics, and augmented reality platforms is limited,
which requires temporally consistent disparity maps.

To address the task of dynamic stereo matching, recent approaches start to incorporate temporal cues
from two main perspectives to achieve temporally consistent estimation. Some methods [35, 67, 12]
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(a) Existing methods (b) The proposed method
Figure 1: Comparison between prior methods (a) and our method (b). For the ¢-th frame, prior
works process video sequences using small temporal sliding windows with attention or optical
flow, restricting cost information propagation. Our method captures long-range spatio-temporal
relationships across the input sequence by constructing and updating a compact memory buffer.

refine the current disparity with disparity or motion of previous neighbor frame, while achieving
limited improvements in temporal consistency due to the narrow temporal context. Secondly, other
approaches [29, 27] (Fig. | (a)) expand the temporal receptive field by using attention mechanisms to
model spatio-temporal relationships [29] within a sliding window while treating all frames equally,
which overlooks variations in frame reliability. BiDAStereo [27] further depends on optical flow
priors for alignment, may incurring errors from flow inaccuracies and high computational cost.
Overall, video-based methods face a core trade-off: narrow context yields marginal improvements,
whereas naively using all frames drives up computation without reliability awareness.

Naturally, these considerations lead to a key question: How can we design a model that effectively
models long-range temporal relationships while maintaining computational efficiency? To answer
this question, we draw inspiration from recent advances in sequence processing and bring a memory
buffer into the dynamic stereo matching task. We present Pick-and-Play Memory for dynamic Stereo
matching named PPMStereo which enables effective and efficient utilization of reference frames for
long-range spatio-temporal modeling by dynamically reducing redundant frames while selectively
retaining and leveraging the most valuable frames throughout the video sequence to ensure accuracy
and efficiency, as illustrated in Fig. | (b).

Specifically, our method draws inspiration from human decision-making in complex scenarios, which
typically involves the ‘pick’ process that identifies the most essential elements from a set of candidates
and the ‘play’ process that meticulously balances and leverages the identified elements [5, 18, 43]. In
this paper, we propose a novel Pick-and-Play Memory construction method for video stereo matching.
Specifically, the ‘pick’ process identifies the most relevant K frames from 7' reference frames for the
current frame. To facilitate this process, we introduce a novel Quality Assessment Module (QAM),
which evaluates each frame’s contribution by jointly evaluating confidence, redundancy, and similarity
of reference frames. Upon identifying the most relevant K frames, the ‘play’ process adaptively
weights the importance of the features extracted from those K selected frames via a dynamic memory
modulation mechanism. Subsequently, we utilize an attention-based memory read-out mechanism
that queries the high-quality memory buffer using the current frame’s contextual feature, yielding
temporally and spatially aggregated cost features. By combining this aggregated cost feature with the
current cost and context features, we can use GRU modules to regress the residual disparities.

Extensive experiments show that our method achieves state-of-the-art temporal consistency and
accuracy. Specifically, on both the clean and final pass of the Sintel [6] dataset, our model achieves a
temporal end-of-point error (TEPE) of 0.62 and 1.11 pixels, with 3-pixel error rates of 5.19% and
7.64%, respectively. Compared to the previous SoTA method, BiDAStereo [27], this represents a
17.3% and 9.02% reduction in TEPE and a 9.74% and 10.32% improvement in 3-pixel error rate, while
enjoying lower computational costs. Overall, the contributions of our work can be summarized as
follows: (1) We introduce PPMStereo, the first work that successfully builds a memory buffer to tackle
dynamic stereo matching, allowing for long-range spatio-temporal modeling in a computationally
efficient way. (2) We propose a novel ‘Pick-and-Play’ memory buffer construction method that first
identifies the key subset of reference frames with the pick process and then effectively aggregates
them with a play process, enabling highly accurate and temporally consistent disparity estimation.
(3) Extensive experiments demonstrate that PPMStereo achieves state-of-the-art performance across
multiple dynamic stereo matching benchmarks.

2 Related Work

Deep Stereo Matching. Existing deep stereo matching methods [52] primarily focus on cost volume
aggregation for network and representation design. These approaches are generally categorized into



regression-based [39, 30, 65, 68, 47, 62, 59] and iterative-based methods [37, 32, 60, 64, 56, 70].
Regression-based methods typically regress a probability volume to estimate disparity maps, which
can be further divided into 2D [39, 36, 65, 60] and 3D cost aggregation approaches [19, 68, 47, 38, 48,
59, 58]. These methods either directly regress disparity across a predefined global range [30, 68, 59]
or employ a coarse-to-fine refinement strategy to improve accuracy [47, 48, 38]. Recently, iterative-
based methods [63, 37, 4, 60, 33, 56, 61, 57, 31] have emerged as the dominant paradigm in stereo
matching. These methods leverage multi-level GRU or LSTM modules to iteratively refine disparity
maps through recurrent cost volume retrieval, achieving state-of-the-art performance. However,
despite their remarkable results, these approaches infer disparities independently for each frame,
ignoring temporal correlations across video sequences. As a result, they often suffer from poor
temporal consistency, which manifests as flickering artifacts in the disparity outputs.

Dynamic Stereo Matching. A few methods in stereo matching have focused on leveraging tem-
poral cues from dynamic scenes to enhance disparity consistency. These methods can be mainly
categorized into two paradigms: (i) Adjacent-frame Integration, which propagates disparity or
motion fields from the immediately preceding frame to maintain local temporal smoothness. These
works [35, 71, 12, 67] typically employ warped disparity or motion estimates for robust initialization,
thereby enhancing the temporal consistency. However, these methods are limited by their reliance
on only the most recent frame, resulting in a narrow temporal receptive field. (ii) Multi-frame
Integration, which employs sliding-window aggregation across extended temporal contexts to en-
force temporal consistency through attention mechanisms (DynamicStereo) [29] or optical flow
priors (BiDAStereo) [27]. Despite their strengths, attention-based methods treat all frames equally
without assessing the reliability of reference frames and suffer from high computational costs with a
large window. Additionally, flow-based methods are sensitive to optical flow estimation errors and
introduce extra computational overheads. In contrast, our method effectively aggregates long-range
spatio-temporal information from a compact yet high-quality memory buffer. Thanks to our ‘pick’
process, PPMStereo remains computationally efficient, even with the enlarged temporal window.

Memory Cues for Video Tasks. Prior works have explored memory model [50] across various
video tasks, including optical flow [15], segmentation [42, 72, 9, 10], tracking [66, 17], and video
understanding [49, 20], demonstrating its significant effectiveness for video-related tasks. Among
them, XMem [9] consolidates memory by selecting prototypes and evicting obsolete features via
a least-frequently-used policy, while RMem [72] improves the segmentation accuracy by using
a fixed frame memory bank [1]. Prior works have explored memory model [50] across various
video tasks, including optical flow [15], segmentation [42, 72, 9, 10], and video understanding [49,
20], demonstrating its significant effectiveness for video-related tasks. Among them, XMem [9]
consolidates memory by selecting prototypes and evicting obsolete features via a least-frequently-used
policy, while RMem [72] improves the segmentation accuracy by using a fixed frame memory bank [1].
The closest related work is MemFlow [15], which develops an adjacent-frame memory buffer
framework to aggregate spatio-temporal motion for optical flow estimation. While effective for optical
flow, MemFlow yields limited gains when directly applied to dynamic stereo matching, as it only
retains the immediate adjacent frame. Expanding its temporal scope without reliability assessment
introduces redundant and noisy cues. In contrast, our method adaptively updates and modulates the
most valuable memory cues across the entire sequence, enabling robust long-range spatio-temporal
modeling while filtering out inferior ones, leading to significant performance improvements.

3 Methodology

3.1 Overview

Dynamic stereo matching seeks to recover a sequence of temporally consistent disparity maps
{d'}cqry € RTXW from stereo video frames (I Isbcar € REXWX3 where T is the
number of frames, H and W are the height and width dimensions. However, prior approaches
struggle to capture long-range temporal dependencies without incurring prohibitive cost. To address
this, we introduce PPMStereo, which augments the DynamicStereo backbone [29] with a Pick-
and-Play Memory (PPM) module that selectively aggregates high-quality references into a compact,
query-adaptive buffer, thereby strengthening spatio-temporal modeling while remaining efficient. As
illustrated in Fig. 2, the overall pipeline proceeds as follows: (1) Feature Extraction: a shared encoder
extracts multi-scale features {F}, F}%}(S) € RHXsWXC at scales s € {1/16,1/8,1/4}, with C
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Figure 2: An overview of PPMStereo. The gray part is the memory ‘pick’ process, and the blue
part is the memory play process. Our PPMStereo employs a dynamic memory buffer for modeling
long-range spatio-temporal relationships while maintaining computational efficiency.

channels. These pyramidal representations provide both receptive-field diversity and a convenient
substrate for multi-scale matching. (2) Cost Volume Construction: at each time step ¢, we construct a
3D correlation volume from {F}, Flg}(s) and pass it through a lightweight cost encoder to obtain

matching costs F),_,, subsequently projected to a value embedding v;. (3) Context Encoding: A
context encoder operating on the left view produces F, which are linearly projected to a query ¢;
and k. (4) Memory Buffer Initialization and Update: To expose the model to long-range spatio-
temporal correlations, we initialize a vanilla memory M = {k,, € REXC v, € REXC} that
stores k,, = {ki1,...,kr} and v, = {v1,...,vp} with L =T x sH x sW. This naive memory
buffer stores all reference-frame features, making per-iteration queries prohibitively expensive. To
retain accuracy without sacrificing efficiency, we introduce the Pick-and-Play Memory (PPM): driven
by a Quality Assessment module (omitting the iteration index n for brevity), PPM first picks the

most informative references to construct a compact, dynamic buffer M¢ = {k/ € RL'*C v €

RV with L' = K x sH x sW and K < T, and then plays by adaptively weighting these
entries to produce aggregated cost features that balance contributions across the selected frames. (6)
Iterative Refinement: following a RAFT-style iterative scheme [37], we alternate GRU-based updates
of disparity estimates with PPM-based memory updates, progressively refining {d; } while preserving
temporal consistency and computational efficiency .

3.2 Memory Pick Process

Naive heuristic strategies, such as random selection or solely keeping the latest frame, are unreliable.
Since the former neglects frame reliability and relevance, while the latter suffers from limited temporal
context and knowledge drift [41]. To this end, we introduce a Quality Assessment Module (QAM)
that explicitly evaluates the quality of memory elements {k,,, v,, } in the vanilla buffer for dynamic
stereo matching. To activate QAM, we define two complementary scores that quantify each reference
frame’s contribution to the final accuracy: a confidence score S§ computed over the value embeddings
Uy, to prioritize reliable evidence, and a redundancy-aware relevance score S; computed over the key
embeddings k., to suppress repetitive or low-information entries. The full procedure is summarized
in Algorithm 1. S and S} are used together to enable the construction of a compact, high-quality
memory M¢ that preserves the most informative cross-frame cues.

Confidence Score. Memory values v,, encode pixel-wise horizontal displacements, which are critical
for disparity estimation. These features naturally indicate the reliability of its disparity estimation.
To this end, we employ a lightweight confidence network” that transforms v,,, € RTXsHxsWxC
into confidence maps u; € RT*H>sW quantifying whether memory values v,,, corresponding to
accurate disparity outputs. These confidence maps can provide a frame-level reliability measure
by estimating the uncertainty of predicted disparity [47, 54]. During training for N iterations,
the confidence maps are supervised using an L; loss function to enforce consistency with their

The confidence network consists of two convolutional layers followed by a sigmoid activation, which
ensures efficient and effective confidence estimation.



Algorithm 1 Pseudo code of Pick-and-Play Memory

Input: Video frames sequence {I}, It} of video length 7', GRU n-th iterations, K < T

Intermediates: Vanilla Memory: M = {k,,, € REXC v, e REXOY L =T x sH x sW
The query: q; € RYSHXsW s ¢ 11/16,1/8,1/4} is the downsampled scale

Dynamic Memory: M¢ = {k:;n e RE'XC ! e RL/XC)}, L' =K x sH x sW
Output: The residual disparity map at n-th GRU iteration: Ad}

1: while t < T do
Memory Pick Process:

2: S: =S;+S] #QAM, evaluate the quality of memory elements k,, and v,
3: I, = {i| rank (S;[i]) < K} # Select top-K reference frames

40 M¢={k, =Cat[{k |icT}| v, = Cat[{v; | i € T,}]}

r m

Memory Play Process:

5: Sl = Efts[ij[i} ,1 € Z;  # Balance the contribution of selected memory entries

6: q=q+p, ki, =S, ki, +Pr, #Dynamic memory modulation

7. F! 49 = Read-out(g;, M%) # Aggregate high-quality spatio-temporal cost information

8: Ad} =GRU(F!, ,F! ., F!) #Produce the disparity map at the n-th iteration

agg’* costr* c

ground-truth counterparts. The ground-truth confidence score ; is computed as follows:

Uy = exp <— >, ey

where d; and d, represent the predicted and ground-truth disparities for the ¢-th frame, respectively,
and o is a hyper-parameter empirically set to 5. Over N iterations, we compute the confidence loss
Lcony across all timesteps use (1,7 as follows:

d; — dy

g

T N
Econf :ZZVN_HHU?_Q?HIa (2)
t=1n=1

where n denotes the number of iterations and v is a decay factor set as 0.9. To obtain a frame-
level confidence score S¢ € RY*7, we apply average pooling across the spatial dimensions of the
confidence maps u;.

Redundancy-aware Relevance Score. Relying solely on the confidence score is insufficient,
as adjacent frames often exhibit strong spatio-temporal correlations, which can result in higher
confidence scores. This, in turn, introduces feature redundancy and suppresses contributions from
more diverse frames, ultimately limiting the diversity and effectiveness of the memory buffer. To
mitigate this issue, we propose a redundancy-aware relevance score to evaluate memory keys &,
balancing semantic consistency and memory diversity. First, we compute an inter-frame similarity
score Sim; € R'*7T between the current query ¢; and the memory keys k,,, measuring semantic
alignment while preserving temporal coherence. For computational efficiency, we employ an attention
mechanism combined with spatial downsampling. Specifically, average pooling reduces the spatial
resolution of the query and memory keys from s H x sW to sH' x sW’, followed by L2-normalization
along the combined feature dimension f = sH' x sW’ x C. The similarity score is computed as:

AvgPool(z)

sim, = ¢(a1) (k) ", where §(z) = R S

3
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Figure 3: The details of our Pick-and-play Memory Construction Process (PPM).

where ¢(k,,) € RT*f and AvgPool(-) denotes the average pooling operation. However, focusing
solely on the most similar regions may overlook occluded areas. Since occluded regions in adjacent
frames tend to be highly similar, they can be challenging to reference effectively. To mitigate

this, we then introduce a redundancy-aware regularizer R;[k] = e_tTk, where ¢;, denotes the the
cumulative number of times the k-th frame has been selected for the dynamic memory buffer across
previous GRU iterations. This term dynamically downweights overused frames while promoting
underutilized yet informative references, ensuring a compact yet diverse memory buffer. The final
redundancy-aware relevance score S, € R'*7 combines redundancy and similarity:

S;‘ = Rt . simt (4)

By jointly considering relevance and diversity, our approach enhances feature aggregation while
minimizing redundancy, leading to more robust and efficient memory-based processing.

Memory Updating via QAM. We compute the total quality metric for each memory frame as
S; = S¢ + S; by integrating confidence and redundancy-aware relevance scores. This integrated
scoring enables dynamic memory update by retaining the most informative entries via a top-K
selection mechanism, ensuring robust adaptation to varying video scenarios while preventing memory
overload. Specifically, for the vanilla memory buffer M = {k,,, v,, } with the corresponding quality
scores S; € R T we sort the quality scores in descending order and only retain the top-K memory
features in the vanilla memory buffer as:

T, = {i| rank (S;[i]) < K} )
M = {Cat [{k; | i € T.}], Cat [{v; | i € T:}]}, ©)

{where rank(-) denotes the ranking position in descending order, with rank = 1 corresponding to
the highest score, Z; is the set of selected frames’ indices, and Cat denotes the concatenation. The
resulting dynamic memory buffer M comprises keys k,, = {k;}(;ez,). and values v}, = {v;}iez,)-
By enforcing K < T, this strategy efficiently handles arbitrary video sequences while providing
high-quality spatio-temporal cues for dynamic memory aggregation.

3.3 Memory Play Process

After the pick process selects the top-K most relevant memory entries for our dynamic memory
buffer M¢, we argue that not all selected frames contribute equally to disparity estimation. To further
weigh their importance, we introduce a memory play process that dynamically weights the selected
memory entries based on learned quality scores. Since dynamic memory construction inherently
disrupts temporal ordering, we incorporate temporal position encoding into the framework, ensuring
temporal awareness.

Dynamic Memory Modulation. Building on this foundation, we propose a unified dynamic memory
modulation strategy that jointly optimizes feature reliability and temporal consistency. Specifically,
given the estimated quality score S;, we first obtain the relative significance of the frames:
— . S:[i] .
St[Z] = =———,1€1; @)
22 Suli]



Following [16], we initialize positional encodings (PE) to align with the original memory buffer
length T', formalized as P;.7. This initialization ensures temporal coherence in feature representation.
Therefore, the ‘play’ process subsequently operates as follows:

q = q + P, kinzgt'k;nﬂLPL (8)

where P; denotes the positional encoding at timestep ¢, and S; represents the aggregated importance
weights over the index set Z;. Leveraging the estimated quality scores as reliability indicators, we
prioritize more reliable memory entries while maintaining computational efficiency.

Memory Read-out. We aggregate cost features through an attention-based memory read-out mecha-
nism from the dynamic memory buffer M¢. Specifically, we first compute soft attention weights by
measuring the similarity between the query ¢; and modulated memory keys k... The aggregated cost
features F! g are then obtained by weighting the memory values v}, through these attention weights:

FUIEQQ = Fctost + a - Softmax <1/\/D7k X qr X k/’;nT) X U:rw (9)

where « is a learnable scalar initialized from 0. In this way, we employ the attention to gather addi-
tional temporal information. With the context, cost, and aggregated cost features, we can now output
a residual disparity map through a GRU unit at the n-th iteration: Ad,, = GRU(F},;, F},,, F!).
After N iterations of PPM and GRU, we can get the final disparity map.

Loss Functions. Our disparity loss functions are inherited from the previous works [29, 27]. Gener-
ally, for [V iterations, we supervise our network with L; distance between our a series of residual

flows {dy,...,dr} and the ground-truth d; with exponentially increasing weights:

T N
f= 33
t=1n=1

where v and NV are set as 0.9 and 10, respectively. Therefore, the total loss function is as follows:

‘Ctotal = Ed + ‘Cconf~ (1D

) (10)
1

df—c?t‘

4 Experiments

4.1 Datasets

Our work focuses on videos captured with moving cameras, rendering standard image benchmarks like
Middlebury [44], ETH3D [45] unsuitable. For training and evaluation, we employ three synthetic and
one real-world stereo video dataset, all featuring dynamic scenes: SceneFlow (SF) [39] comprising
FlyingThings3D, Driving, and Monkaa, with FlyingThings3D featuring moving 3D objects against
varied backgrounds. Dynamic Replica (DR) [29], a synthetic indoor dataset with non-rigid objects
such as people and animals. Sintel [6], a synthetic movie dataset available in clean and final passes.
South Kensington (SV) [28], a real-world stereo dataset without ground truth data, capturing daily
scenarios. We use them for generalization evaluation. Following prior work [29, 27], we train on
synthetic datasets (SF and DR + SF) and evaluate the performance on Sintel, DR, and SV.

4.2 TImplementation Details

We implement PPMStereo in PyTorch, training on 8x A100 GPUs (batch size = 2) using 320x512
crops from 5-frame sequences, evaluated at full resolution with 20-frame sequences. We use AdamW
(Ir = 0.0003) with one-cycle scheduling, training for 180k iterations (= 4.5 days). Data augmentation
follows DynamicStereo [29], including random crops and saturation shifts. For efficient memory read-
out, we employ FlashAttention [13]. Following prior works [27, 29], we set the number of evaluation
iterations N to 20, while setting N = 10 during training. Besides, we adopt n-pixel error rate
(0npe) for accuracy analysis. Additionally, we use the temporal end-point-error (TEPE) to quantify
error variation over time, and 6£pr denotes the percentage of pixels with TEPE exceeding n pixels.
Lower values on metrics indicate greater temporal consistency and disparity estimation accuracy.
Besides, we replace our original feature extractor with Video Depth Anything (ViT-Small) [8]. This
PPMStereo_VDA variant leverages pre-trained representations to further boost performance.



Table 1: Quantitative comparison with SOTA methods. Abbreviations: K - KITTI [40], M - Mid-
dlebury [44], ISV-Infinigen SV [28], VK — Virtual KITTI2 [7]. CREStereo utilize 7 datasets for
training, including SF [39], Sintel [6], FallingThings [53], InStereo2K [3], Carla [14], AirSim [46],
and CREStereo dataset [32]. The best results are in bold, and the second-best are underlined.

Sintel Stereo Dynamic Replica

Training data Method Clean Final First 150 frames
b3pa |TEPE 8}, 65,  Osps |TEPE &Y, 65,  81pe |[TEPES] . 05 .
CODD [35] 8.68 | 1.44 10.8 5.65 17.46 | 2.32 18.56 9.79 6.59 [0.105 1.04 0.42
RAFT-Stereo [37] 6.12 1092 9.33 451 10.40 | 2.10 13.69 7.08 5.51 |0.145 2.03 0.65
DynamicStereo [29] 6.10 | 0.77 8.41 3.93 8.97 | 1.45 11.95 5.98 3.44 10.087 0.75 0.24
SF BiDAStereo [27] 594 1073 829 3.79 8.78 | 1.26 11.65 5.53 5.17 |0.103 1.11 0.40
PPMStereo (Ours) 5.34 | 0.64 7.38 3.40 7.87 | 1.14 10.12 4.99 2.95 |0.066 0.67 0.23
PPMStereo_VDA (Ours) 4.62 | 0.58 6.89 3.08 7.21 | 1.04 9.84 4.65 2.37 |0.059 0.61 0.22
SF+M+K CODD [35] 9.11 | 1.33 12.16 6.23 11.90 | 2.01 16.16 8.64 10.03 [0.152 2.16 0.77
SF+M RAFT-Stereo [37] 5.86 | 0.85 8.79 4.13 847 | 1.63 12.40 6.23 346 (0.114 1.34 0.41
7 datasets (incl. Sintel) CREStereo [34] 4.58 | 0.67 6.36 3.26 8.17 | 1.90 12.29 6.87 1.75 |0.088 0.88 0.29
DR + SF RAFT-Stereo [37] 571 | 0.84 9.15 4.40 9.16 | 2.27 13.45 7.17 1.89 10.075 0.77 0.25
DR + SF DynamicStereo [29] 5.77 | 0.76 8.46 3.93 8.68 | 1.42 11.93 5.92 3.32 |0.075 0.68 0.23
DR + SF BiDAStereo [27] 5.75 | 0.75 8.03 3.76 8.52 | 1.22 11.04 5.30 2.81 |0.062 0.62 0.22
DR + SF PPMStereo (Ours) 5.19 | 0.62 7.21 3.29 7.64 | 1.11 9.98 4.87 2.52 |0.057 0.60 0.20
DR + SF PPMStereo_VDA (Ours) 4.47 | 0.56 6.69 2.97 7.03 | 1.02 9.65 4.51 1.81 |0.052 0.51 0.17

DynamicStereo BidaStereo PPMStereo (Ours) PPMStereo_VDA (Ours)

Figure 4: Qualitative comparisons on the Sintel final dataset.

4.3 Comparison with State-of-the-Art Methods

Quantitative Results. As shown in Tab. 1, For the SF version, our PPMStereo achieves state-of-the-
art performance, outperforming BiDAStereo [29] by 12.3% & 9.52% and DynamicStereo by 16.8%
& 21.3% in TEPE on Sintel clean/final pass. The method also demonstrates strong generalization
on Dynamic Replica, surpassing all previous approaches across all metrics. Remarkably, our PPM-
Stereo trained only on synthetic data even largely exceeds the temporal consistency and accuracy of
CREStereo [32] on Sintel final pass, despite CREStereo using Sintel data for training. For the SF &
DR version, our method achieves superior temporal consistency with a TEPE of 0.057 on Dynamic
Replica, significantly outperforming all previous works. Notably, this is achieved with training on
only two synthetic datasets, while CREStereo [32] requires seven diverse datasets, demonstrating
the efficacy of our long-range temporal modeling. Overall, the results highlight our method’s robust
performance and generalization ability in both seen and unseen domains. Besides, compared to
the previous SoTA method BiDAStereo [27], our method achieves better performance with lower
computational costs and memory usage (Please see the appendix for details).

Qualitative Results. Our visual comparisons Table 2: Ablations of memory buffer module vari-
(Fig. 4) using the DR+SF checkpoint show PPM-  ants trained on DR+SF. ‘OOM’ denotes CUDA
Stereo produces sharper disparity predictions out of memory. ‘Baseline’ refers to our backbone
than DynamicStereo [29] and BiDAStereo [27], model without any memory-related modules.

especially in textureless regions (e.g., glass Sintel Final | Dynamic Replica
surfaces) where competing methods exhibit  Experiments Method
blurring artifacts. Besides, following prior
work [27, 29], we validate temporal consistency

3pc TEPE |61, TEPE
Baseline 865 137 | 3.10 0074

on static scenes by rendering depth point clouds " ;ull 0o s 4?01‘/11 2 | 311 00?(\)/1070
: . : : emFlow [15 E . . .
at 15-degree viewpoint increments (Fig. 5). Latest 611 119 | 280 0062

Our method shows significantly smaller high-  Memory Buffer =~ Random 842 126 | 299  0.064

variance regions (> 40 px?, marked red), con- XMem[9] 804 118 284  0.061
. X i RMem|[72] 7.93 116 | 277  0.061
firming superior stability. Furthermore, on the Ours 764 111|232 0057

real-world outdoor scenes from the South Kens-
ington dataset [28] (Fig. 6), PPMStereo accu-
rately recovers thin structures such as the fences
while maintaining temporal consistency, demon-
strating robust generalization to unseen domains. More visualizations are provided in the appendix.

795 1.8 | 270  0.062
7.80 1.13 | 2.58  0.057
7.64 L1l | 252 0057
7.62 110 | 250  0.057

Memory Length

~N W W =
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Figure 5: Temporal consistency comparison on 50-frame reconstructed stereo video (all trained on
DR + SF). Our method achieves lower variance, demonstrating superior consistency.

Left Frames DynamicStereo BidaStereo PPMStereo (Ours)

Figure 6: Qualitative generalization comparison on a dynamic outdoor scenario from the SV dataset.

4.4 Ablation Studies

Due to the huge training cost of PPMStereo_VPA, we conduct ablation studies exclusively on
PPMStereo below. Besides, all ablated models below are trained on DR + SF.

Memory buffer construction. We train and evaluate 5 different memory buffer variants, namely,
keeping frames from (1) full frames (20 frames), (2) MemFlow (1 frame) [15], (3) the latest frames (5
frames), (4) random (5 frames), (5) XMem [9] (distilling all outdated memory features into long-term
memory based on attention scores), (6) RMem [72] (5 frames), and (7) ours (5 frames).

Specifically, we replace the memory buffer variants and keep the remaining modules unchanged
during training and inference. Table 2 shows three key insights: First, while reference frames improve
performance, naive accumulation shows diminishing returns, indicating memory capacity alone is
insufficient. Second, frame selection quality critically affects results. The random selection policy
underperforms even single-neighbor memory (MemFlow) [15] on Sintel final pass, highlighting
selection importance. However, on the DR dataset with minimal inter-frame changes, the random
policy performs comparably to advanced variants. Lastly, direct long-term memory integration
(XMem) shows limited impact, suggesting that simply using all frames may be less effective than
the RMem variant. In contrast, our PPM mechanism overcomes these limitations by dynamically
identifying and modulating valuable reference frames, achieving significant TEPE improvements on
these two datasets (+19.0% TEPE on Sintel and +22.9% TEPE on DR) over the baseline.

Memory length. Table 2 shows the impact of memory length on PPMStereo. Performance improves

initially (e.g., +14.8% éﬁpx on Sintel for K < 5) when trained and evaluated at this memory length,



Table 3: Ablation Study of PPM on Sintel and Dynamic Replica. All models are trained on DR+SF.
Note that we directly perform the read-out operation for the ablated model without the ‘play’ process.

D | Pick-and-Play Memory | Sintel Final | Dynamic Replica

| Pick Play | J3p TEPE 8t e 8hpe | O1pe TEPE 8 e 6t e
1 ‘ Baseline ‘ 8.65 1.37 11.72 591 ‘ 3.10 0.074 0.72 0.23
2 v 7.81 1.14 10.24 5.07 2.65 0.060 0.64 0.21
3 v 7.97 1.17 10.36 5.20 2.80 0.062 0.68 0.21
4 v v 7.64 1.11 9.98 4.87 2.52 0.057 0.60 0.20

Table 4: Ablation study on the ‘pick’ process. C,
Sim, and R denote confidence score, similarity
score, and redundancy factor, respectively.

Table 5: Ablation study on the ‘play’ process.
Weights and PE denote the weighting operation
and the temporal position encoding, respectively.

D | QAM | Sintel Final | Dynamic Replica D | Play Process | Sintel Final | Dynamic Replica

| C Sim R |dspe TEPE &5, |81, TEPE &}, | Weights PE | 63ps TEPE 65, | 61px TEPE 67,
1 ‘ Baseline ‘ 797 117 520 ‘ 2.80 0.062 0.68 1 ‘ Baseline ‘ 781 1.14 5.07 ‘ 2.65 0.060 0.64
2 |V 781 1.14 5.06 | 2.63 0.058 0.65 2 v 7.67 1.12 5.00 | 2.54 0.060 0.62
3 |\v Vv 774 112 495 | 257 0.057 0.62 3 v | 777 111 493 | 263 0.058 0.61
4 |v v Vv |[764 111 487 | 252 0.057 0.60 4 v v | 764 111 4.87 | 252 0.057 0.60

but performance saturates beyond K = 5 due to feature redundancy. To balance computational
efficiency and model accuracy, we select K =5 as the optimal memory length for our final model.

Contribution of each component. Table 3 shows the proposed PPM module outperforms window-
based aggregation through two key processes: (1) The pick process dynamically selects high-quality
memory elements from non-adjacent frames, overcoming fixed-window limitations and improving
occlusion handling; (2) The play process adaptively weights features by semantic relevance, reducing
noise propagation (ID = 3 shows +0.2 on Sintel and +0.017 TEPE improvements on DR compared to
the baseline). By combining them, they provide complementary benefits. The pick ensures feature
diversity while play suppresses outliers, yielding superior performance in dynamic stereo matching.

QAM. Our QAM module dynamically assesses frame reliability in the memory buffer using a scoring
mechanism. We refresh the memory buffer by balancing: (1) cost feature quality (v,,) and (2)
redundancy-aware semantic relevance (k) (Sec. 3.2). Table 4 shows that our quality score improves
both depth accuracy and temporal consistency. Fig. 7 further confirms the confidence map’s strong
correlation with the error map, validating it as a reliable quality indicator for v,,,.

= .

(a) Left Frame (b) Predicted Disparity Map (c) Error Map (d) Confidence Map

Figure 7: Visualization of error map and confidence map. Brighter regions denote higher uncertainty.

Memory modulation. Our proposed memory modulation mechanism (Sec. 3.3) further enhances
spatio-temporal modeling, achieving a performance gain with +0.17 d3,, and +0.13 §;,, improve-
ments on the Sintel Final and DR, respectively, as seen in Table 5. The adaptive weighting mechanism
dynamically prioritizes the most important spatio-temporal features, highlighting accuracy improve-
ments. Meanwhile, learned positional embeddings endow the model with temporal awareness,
improving the overall temporal consistency. Experiments show that these components work to-
gether to strengthen the model’s ability to capture long-range dependencies and distinguish key
spatio-temporal patterns.

5 Conclusion

In this paper, we introduce PPMStereo, the first framework, to our knowledge, to leverage high-quality
memory for dynamic stereo matching. By selectively updating and modulating the most valuable
memory entries, our proposed pick-and-play memory construction mechanism enables the integration
of cost information across long-range spatio-temporal connections, ensuring temporally consistent
stereo matching. Extensive experiments demonstrate the effectiveness of our approach across diverse
datasets, highlighting its generic applicability.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims around performance, runtime, and comparison to existing methods
are described in the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A common limitation among our work and existing works is the inability
to proactively distinguish between dynamic and static areas, which is the key to ensuring
consistency. Moving forward, our focus lies in exploring how to integrate our method with
high-quality memory cues to enhance the performance and in developing a lightweight
version of the model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the full details necessary to reproduce these results, including
architecture details and implementation details of the training datasets and procedures,
evaluation protocols for dynamic stereo matching. Details can be seen in the Experiment
section.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the codes if the paper is accepted.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on our architecture in the experiment section. The dataset
splits were used and shared in previous work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For dynamic stereo matching metrics, we follow prior work and provide TEPE
and 5§nm to evaluate the temporal consistency.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a comparison of computational resources used in our experiments
alongside previous works, with detailed results in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work provides a generic algorithm to learn a high-quality memory buffer
for dynamic stereo matching. In the guidelines, it is reported that algorithms to optimize
neural networks do not need any societal impact justification.

Guidelines:
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11.
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: Our method introduces a novel dynamic stereo matching approach without
requiring a new dataset.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor resarch with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLMs for improving writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix for PPMStereo

Our supplementary material provides extensive additional analysis, implementation details, and
discussions, organized as follows: (A) Demonstration Video and More Visualization (Sec. A).
We include a comprehensive demo video (included in demo_outputs.zip) showcasing: (1) Real-
world dynamic scene reconstructions, (2) Corresponding disparity maps, (3) Comparative results
under varying conditions. (B) Implementation Details (Sec. B). We present complete technical
specifications for our PPMStereo_VDA framework, including: (1) Model architecture: Detailed
network configuration. (2) Datasets: Descriptions of all benchmark datasets used for evaluation. (3)
Algorithmic details: Detailed pseudo-codes. (4) Computational analysis: Runtime and GPU memory
comparisons. (5) Memory buffer visualization: Evidence of long-range relationship modeling. (C)
Additional discussions on limitations and future work. We offer a more detailed discussion of the
limitations and potential future directions (Sec. C).

Left Frame DynamicStereo BidaStereo PPMStereo (Ours) PPMStereo_VDA (Ours)

Figure 8: Qualitative comparisons on the Dynamic Replica test set. They are rendered with a camera
displaced by 15 degree angles. Our method exhibits smoother reconstruction results.

A More Visualizations on Real-world Scenes

Figure 8 demonstrates the reconstruction performance of our method on the Dynamic Replica (DR)
test set. The results illustrate our approach’s ability to accurately recover fine-grained details while
preserving the global structural integrity of the scene, even under challenging dynamic conditions.
Figure 9 and Figure 10 showcase the performance of our method in outdoor real-world scenarios,
highlighting its robustness under varying lighting conditions and complex backgrounds. For indoor
environments, Figure | | and Figure 12 provide a comprehensive comparison, demonstrating consis-
tent accuracy even in confined spaces with occlusions and dynamic objects. Additional qualitative
results (e.g., thin structures and reconstructed results) are available in the supplementary materials
(demo_outputs.zip).

B Implementation Details

B.1 PPMStereo_VDA

For PPMStereo_VDA model, we use VideoDepthAnything [8] to replace our feature extractor.
Specifically, in the feature extraction stage, when processing a video sequence with the monocular
video depth model, we first resize it to ensure its dimensions are divisible by 14, maintaining
consistency with the model’s pretrained patch size. After obtaining the feature maps, we resize the
image back to its original dimensions. The monocular depth model produces feature maps with 64
channels, while the CNN encoders extract both image and context features with 128 channels each.
These feature maps are concatenated to form a 192-channel representation, a decoder is used then to
obtain a 128-channel representation, which serves as input to the subsequent correlation module.

B.2 Datasets.

SceneFlow (SF) SceneFlow [39] consists of three subsets: FlyingThings3D, Driving, and Monkaa.
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Figure 9: Qualitative comparison on a dynamic outdoor scenario from the South Kensington SV
dataset [28].

Left Frames

DynamicStereo

BiDAStereo

PPMStereo(Ours)

Figure 10: Qualitative comparison on a dynamic outdoor scenario from the South Kensington SV
dataset [28].

* FlyingThings3D is an abstract dataset featuring moving shapes against colorful backgrounds.
It contains 2,250 sequences, each spanning 10 frames.

* Driving includes 16 sequences depicting driving scenarios, with each sequence containing
between 300 and 800 frames.

* Monkaa comprises 48 sequences set in cartoon-like environments, with frame counts ranging
from 91 to 501.



BiDAStereo DynamicStereo Left Frames
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Figure 11: Qualitative comparison on a dynamic indoor scenario from the South Kensington SV
dataset [28].

Left Frames
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Figure 12: Qualitative comparison on a dynamic indoor scenario from the South Kensington SV
dataset [28].

Sintel Sintel [6] is generated from computer-animated films. It consists of 23 sequences available
in both clean and final rendering passes. Each sequence contains 20 to 50 frames. We use the full
sequences of Sintel for evaluation.

Dynamic Replica Dynamic Replica [29] is designed for longer sequences and the presence of
non-rigid objects such as animals and humans. The dataset includes:

* 484 training sequences, each with 300 frames.

* 20 validation sequences, each with 300 frames.

* 20 test sequences, each with 900 frames.
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14th Reference Frame 15th Reference Frame 17th Reference Frame

Figure 13: For the target frame (11th frame), the occlusion point is highlighted by a yellow circle.
Unlike conventional approaches that rely on adjacent frames, our PPMStereo method dynamically se-
lects and aggregates features from the most informative and diverse frames across the entire sequence
(T=20). By adaptively bypassing occluded or unreliable neighboring frames, PPMStereo ensures
robust and occlusion-aware feature representation, enhancing both accuracy and generalization.
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Figure 14: (a) cﬁpm on DR vs. parameters. (b) Training GPU memory at 320 x 512 vs. Training hours

per epoch. (c) 5§p$ on Sintel vs. MACs (20 frames x 768 x 1024).

Following prior methods [29, 27], we use the entire training set for model training and evaluate on
the first 150 frames of the test set.

South Kensington SV South Kensington SV [27] is a real-world stereo dataset capturing daily life
scenarios for qualitative evaluation. It consists of 264 stereo videos, each lasting between 10 and
70 seconds, recorded at 1280x720 resolution and 30 fps. We conduct qualitative evaluations on this
dataset.

B.3 Computational Costs

As illustrated in Fig. 14, we conduct a comprehensive comparison of the competing methods across
three critical metrics: model size (parameters), training GPU memory consumption, and compu-
tational complexity (multiply—accumulate operations, MACs). Our proposed method achieves an
optimal trade-off among these efficiency criteria while simultaneously delivering the lowest error
rate. Notably, compared to the previous state-of-the-art approach, BiDAStereo [27], our method
demonstrates a significant performance improvement while maintaining comparable computational
costs. The advantage of enhanced accuracy and superior efficiency makes our approach particularly
suitable for real-world applications.
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B.4 Memory Reference

Here, we visualize the memory aggregation process (Section 3) by showing the candidate frames,
some of the selected reference frames, and the corresponding aggregation weights. As illustrated in
Figure 13 we observe semantically meaningful regions to be focused.

C Limitations and Future

While our method advances the state of dynamic scene modeling, it shares a common limitation
with existing approaches: the inability to proactively distinguish between dynamic and static regions,
which is crucial for maintaining temporal consistency. Also, our method occasionally in textureless
areas (e.g., blank walls) or transparent surfaces (e.g., glass), where current techniques, including ours,
may produce inconsistencies. To address these limitations, we plan to pursue two key directions:
(1) integrating high-quality memory cues to improve scene understanding and consistency, and (2)
developing a lightweight variant of our model for resource-constrained applications [25, 26, 24, 22,
23, 55]. Looking forward, we aim to create a comprehensive model zoo featuring both full-capacity
and efficient versions of our approach, facilitating adoption across different hardware scenarios.
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