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1) A adj. girl
2) A adj. lamp
3) A adj. cat
4) A adj. painting
5) adj. wall

1) A beautiful African girl with braided 
hair and deep brown eyes, wearing tradi-
tional attire. 2) An elegant crystal lamp. 
3) A ginger cat with thick fur and pierce-
ng green eyes. 4) An oil painting of atm-
ospheric seascapes, with dramatic clouds, 
vibrant glowing horizon, and sailing ship 
battling the wave. 5) Smooth marble wall.

1) A beautiful European girl with blonde 
hair and light blue eyes. 2) A traditional
lantern-like lamp. 3) A fluffy English s-
hort cat with gray fur, round yellow eyes. 
4) An oil painting inspired by Monet’s 
Impression, Sunrise, with soft, diffused 
strokes capturing the early morning light. 
5) Brick wall.

1) A beautiful Asian girl with black hair
and black eyes. 2) A paper material lamp. 
3) A fluffy Persian cat with white fur and 
blue eyes. 4) An oil painting inspired by 
Van Gogh's Starry Night, with swirling, 
vibrant blue and yellow strokes filling the 
sky. 5) Purely colored wall.
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Figure 1: Images generated using our 3DIS. Based on the user-provided layout, 3DIS generates
a scene depth map that precisely positions each instance and renders their fine-grained attributes
without the need for additional training, using a variety of foundational models.

ABSTRACT
The increasing demand for controllable outputs in text-to-image generation has
spurred advancements in multi-instance generation (MIG), allowing users to de-
fine both instance layouts and attributes. However, unlike image-conditional
generation methods such as ControlNet, MIG techniques have not been widely
adopted in state-of-the-art models like SD2 and SDXL, primarily due to the chal-
lenge of building robust renderers that simultaneously handle instance position-
ing and attribute rendering. In this paper, we introduce Depth-Driven Decoupled
Image Synthesis (3DIS), a novel framework that decouples the MIG process into
two stages: (i) generating a coarse scene depth map for accurate instance po-
sitioning and scene composition, and (ii) rendering fine-grained attributes using
pre-trained ControlNet on any foundational model, without additional training.
Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-
based layouts and employs a finetuning-free method for enhanced instance-level
attribute rendering. Extensive experiments on COCO-Position and COCO-MIG
benchmarks demonstrate that 3DIS significantly outperforms existing methods
in both layout precision and attribute rendering. Notably, 3DIS offers seam-
less compatibility with diverse foundational models, providing a robust, adapt-
able solution for advanced multi-instance generation. The code is available at:
https://github.com/limuloo/3DIS.
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1 INTRODUCTION

With the rapid advancement of text-to-image generation technologies, there is a growing interest in
achieving more controllable outputs, which are now widely utilized in artistic creation (Zhou et al.,
2024c; Zhuo et al., 2024): (i) Image-conditional generation techniques, e.g., ControlNet (Zhang
et al., 2023), allow users to generate images based on inputs like depth maps or sketches. (ii) Multi-

instance generation (MIG) methods, e.g., GLIGEN (Li et al., 2023c) and MIGC (Zhou et al., 2024a),
enable users to define layouts and detailed attributes for each instance within the generated images.

However, despite the importance of MIG in controllable generation, these methods have not
been widely adopted across popular foundational models like SD2 (Rombach et al., 2023) and
SDXL (Podell et al., 2023), unlike the more widely integrated ControlNet. Current state-of-the-
art MIG methods mainly rely on the less capable SD1.5 (Rombach et al., 2022) model.

We argue that the limited adoption of MIG methods is not merely due to resource constraints
but also stems from a more fundamental challenge, i.e., unified adapter challenge. Current MIG
approaches train a single adapter to handle both instance positioning and attribute rendering. This
unified structure complicates the development of robust renderers for fine-grained attribute details, as
it requires large amounts of high-quality instance-level annotations. These detailed annotations are
more challenging to collect compared to the types of controls used in image-conditional generation,
such as depth maps or sketches.

To address the unified adapter challenge and enable the use of a broader range of foundational
models for MIG, we propose a novel framework called Depth-Driven Decoupled Image Synthesis
(3DIS). 3DIS tackles this challenge by decoupling the image generation process into two distinct
stages, as shown in Fig. 2. (i) Generating a coarse scene depth map: During this stage, the MIG
adapter ensures accurate instance positioning, coarse attribute alignment, and overall scene harmony
without the complexity of fine attribute rendering. (ii) Rendering a fine-grained RGB image: Based
on the generated scene depth map, we design a finetuning-free method that leverages any popular
foundational model with pretrained ControlNet to guide the overall image generation, focusing on
detailed instance rendering. This approach requires only a single training process for the adapter
at stage (i), enabling seamless integration with different foundational models without needing
retraining for each new model.

The 3DIS architecture comprises three key components: (i) Scene Depth Map Generation: We de-
veloped the first layout-controllable text-to-depth generation model by integrating a well-designed
adapter into LDM3D (Stan et al., 2023). This integration facilitates the generation of precise, depth-
informed layouts based on instance conditions. (ii) Layout Control: We introduce a method to
leverage pretrained ControlNet for seamless integration of the generated scene depth map into the
generative process. By filtering out high-frequency information from ControlNet’s feature maps,
we enhance the integration of low-frequency global scene semantics, thereby improving the co-
herence and visual appeal of the generated images. (iii) Detail Rendering: Our method performs
Cross-Attention operations separately for each instance to achieve precise rendering of specific at-
tributes (e.g., category, color, texture) while avoiding attribute leakage. Additionally, we use SAM
for semantic segmentation on the scene depth map, optimizing instance localization and resolving
conflicts from overlapping bounding boxes. This advanced approach significantly improves the ren-
dering of detailed and accurate multi-instance images.

We conducted extensive experiments on two benchmarks to evaluate the performance of 3DIS: (i)

COCO-Position (Lin et al., 2015; Zhou et al., 2024a): Evaluated the layout accuracy and coarse-
grained category attributes of the scene depth maps. (ii) COCO-MIG (Zhou et al., 2024a): Assessed
the fine-grained rendering capabilities. The results indicate that 3DIS excels in creating superior
scenes while preserving the accuracy of fine-grained attributes during detailed rendering. On the
COCO-Position benchmark, 3DIS achieved a 16.3% improvement in AP75 compared to the previ-
ous state-of-the-art method, MIGC. On the COCO-MIG benchmark, our training-free detail render-
ing approach improved the Instance Attribute Success Ratio by 35% over the training-free method
Multi-Diffusion (Bar-Tal et al., 2023) and by 5.5% over the adapter-based method InstanceDif-
fusion (Wang et al., 2024). Furthermore, the 3DIS framework can be seamlessly integrated with
off-the-shelf adapters like GLIGEN and MIGC, thereby enhancing their rendering capabilities.

In summary, the key contributions of this paper are as follows:
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Figure 2: The overview of 3DIS. 3DIS decouples image generation into two stages: creating a scene
depth map and rendering high-quality RGB images with various generative models. It first trains
a Layout-to-Depth model to generate a scene depth map. Then, it uses a pre-trained ControlNet to
inject depth information into various generative models, controlling scene representation. Finally, a
training-free detail renderer renders the fine-grained attributes of each instance.

• We propose a novel 3DIS framework that decouples multi-instance generation into two stages:
adapter-controlled scene depth map generation and training-free fine-grained attribute rendering,
enabling integration with various foundational models.

• We introduce the first layout-to-depth model for multi-instance generation, which improves scene
composition and instance positioning compared to traditional layout-to-RGB methods.

• Our training-free detail renderer enhances fine-grained instance rendering without additional
training, significantly outperforming state-of-the-art methods while maintaining compatibility
with pretrained models and adapters.

2 RELATED WORK

Controllable Text-to-Image Generation. With the rapid advancements in diffusion models (Zhou
et al., 2023; 2025; Lu et al., 2023; 2024a;b; Zhao et al., 2024a;b; Gao et al., 2024; Xie et al., 2024)
and multimodal learning (Wang et al., 2025; Yang et al., 2021; Li et al., 2023b; Yang et al., 2024b),
text-to-image technologies (Rombach et al., 2022; Podell et al., 2023) have reached a level where
they can produce high-quality images. Researchers are now increasingly focused on enhancing their
control over the generated content. Numerous approaches have been developed to improve this con-
trol. ControlNet (Zhang et al., 2023) incorporates user inputs such as depth maps and edge maps
by training an additional side network, allowing for precise layout control in image generation.
Methods like IPAdapter (Ye et al., 2023) and PhotoMaker (Li et al., 2024) generate corresponding
images based on user-provided portraits. Techniques such as ELITE (Wei et al., 2023) and SSR-
Encoder (Zhang et al., 2024) enable networks to accept specific conceptual image inputs for better
customization. Additionally, MIGC (Zhou et al., 2024b) and InstanceDiffusion (Wang et al., 2024)
allow networks to generate images based on user-specified layouts and instance attribute descrip-
tions, defining this task as Multi-Instance Generation (MIG), which is the focal point of this paper.

Multi-Instance Generation (MIG). MIG involves generating each instance based on a given layout
and detailed attribute descriptions, while maintaining overall image harmony. Current MIG methods
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primarily use Stable Diffusion (SD) architectures, classified into three categories: 1) Training-free
methods: Techniques like BoxDiffusion (Xie et al., 2023) and RB (Xiao et al., 2023) apply energy
functions to attention maps, enabling zero-shot layout control by converting spatial guidance into
gradient inputs. Similarly, Multi-Diffusion (Bar-Tal et al., 2023) generates instances separately and
then combines them according to user-defined spatial cues, enhancing control over orientation and
arrangement. 2) Adapter methods: Approaches like GLIGEN (Li et al., 2023c) and InstanceD-
iffusion (Wang et al., 2024) integrate trainable gated self-attention layers (Vaswani et al., 2017;
Yang et al., 2024c; 2025) into the U-Net (Ronneberger et al., 2015), improving layout assimilation
and instance fidelity. MIGC (Zhou et al., 2024a;b) further divides the task, using an enhanced at-
tention mechanism to generate each instance precisely before integration. 3) SD-tuning methods:
Reco (Yang et al., 2023) and Ranni (Feng et al., 2024) add instance position data to text inputs
and fine-tune both CLIP and U-Net, allowing the network to utilize positional cues for more pre-
cise image synthesis. Previous methods entangled instance positioning with attribute rendering,
complicating the training of a robust instance renderer. Our approach decouples this process into
adapter-controlled scene depth map generation and training-free detail rendering. This separation
allows the adapter to only handle instance positioning and coarse attributes, while leveraging the
generative priors of pre-trained models, enhancing both flexibility and performance.

3 METHOD

3.1 PRELIMINARIES

Latent Diffusion Models (LDMs) are among the most widely used text-to-image models today. They
significantly enhance generation speed by placing the diffusion process for image synthesis within a
compressed variational autoencoder (VAE) latent space. To ensure that the generated images align
with user-provided text descriptions, LDMs typically employ a Cross Attention mechanism, which
integrates textual information into the image features of the network. In mathematical terms, the
Cross Attention operation can be expressed as follows:

Attention(Q,K,V) = Softmax

✓
QK>
p
dk

◆
V, (1)

where Q, K, and V represent the query, key, and value matrices derived from the image and text
features, respectively, while dk denotes the dimension of the key vectors.

3.2 OVERVIEW

Fig. 2 illustrates the overview framework of the proposed 3DIS, which decouples image generation
into coarse-grained scene construction and fine-grained detail rendering. The specific implementa-
tion of 3DIS consists of three steps: 1) Scene Depth Map Generation (§ 3.3), which produces a
corresponding scene depth map based on the user-provided layout; 2) Global Scene Control (§ 3.4),
which ensures that the generated images align with the scene maps, guaranteeing that each instance
is represented; 3) Detail Rendering (§3.5), which ensures that each generated instance adheres to
the fine-grained attributes described by the user.

3.3 SCENE DEPTH MAP GENERATION

In this section, we discuss how to generate a corresponding depth map based on the user-provided
layout, creating a coherent and well-structured scene while accurately placing each instance.

Choosing the text-to-depth model. Upon investigation, we identified RichDreamer (Qiu et al.,
2024) and LDM3D (Stan et al., 2023) as the primary models for text-to-depth generation. Rich-
Dreamer fine-tunes the pretrained RGB Stable Diffusion (SD) model to generate 3D information,
specifically depth and normal maps, while LDM3D enables SD to produce both RGB images and
depth maps simultaneously. Experimental comparisons show LDM3D outperforms RichDreamer in
complex scenes, likely due to its concurrent RGB and depth map generation. This dual capability
preserves RGB image quality while enhancing depth map generation, making LDM3D our preferred
model for text-to-depth generation.

Fine-tuning the text-to-depth model. In contrast to RGB images, depth maps typically priori-
tize the restoration of low-frequency components over high-frequency details. For instance, while
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a texture-rich skirt requires intricate details for RGB image generation, its corresponding depth
map remains relatively smooth. Therefore, we aim to enhance the model’s ability to recover low-
frequency content. Low-frequency components often indicate significant redundancy among ad-
jacent pixels. To simulate this characteristic, we implemented an augmented pyramid noise strat-
egy (Kasiopy, 2023), which involves downsampling and then upsampling randomly sampled noise
✏ to create patterns with high redundancy between adjacent pixels. We used the original SD training
loss (Rombach et al., 2022) to fine-tune our text-to-depth model ✓, but adjusted the model to predict
this patterned noise ✏pyramid with the text prompt c:

min
✓

Ltext = Ez,✏⇠N (0,I),t

h��✏pyramid � f✓(zt, t, c)
��2

2

i
. (2)

Training the Layout-to-depth adapter. Similar to previous methodologies (Zhou et al., 2024a; Li
et al., 2023c; Wang et al., 2024), we incorporated an adapter into our fine-tuned text-to-depth model,
enabling layout-to-depth generation, specifically leveraging the state-of-the-art MIGC (Zhou et al.,
2024a) model. Unlike earlier approaches, our method for generating depth maps does not rely on
detailed descriptions of specific instance attributes, such as material or color. Consequently, we
have augmented the dataset used for MIGC by eliminating fine-grained attribute descriptions from
the instance data, thus focusing more on the structural properties of individual instances and the
overall scene composition. The training process for the adapter ✓0 can be expressed as:

min
✓0

Llayout = Ez,✏⇠N (0,I),t

h��✏pyramid � f✓,✓0(zt, t, c, l)
��2

2

i
, (3)

where the base text-to-depth model ✓ is frozen, and the l is the input layout.

3.4 GLOBAL SCENE CONTROL

In this section, we will describe how to control the generated images to align with the layout of the
generated scene depth map, ensuring that each instance appears in its designated position.

Injecting depth maps with ControlNet. After generating scene depth maps with our layout-to-
depth models, we employed the widely adopted ControlNet (Zhang et al., 2023) model to incorporate
global scene information. Scene depth maps focus on overall scene structure, without requiring
fine-grained detail. Thus, although the base model produces 512x512 resolution maps, they can be
upsampled to 768x768, 1024x1024, or higher (see Fig. 3 and Fig. 4, e.g., SD2 and SDXL). Since
most generative models have depth ControlNet versions, these maps can be applied across various
models, ensuring accurate instance placement and mitigating omission issues.

Removing high-frequency noise in depth maps. In our framework, the injected depth maps are
designed to manage the low-frequency components of the constructed scene, while the generation
of high-frequency details is handled by advanced grounded text-to-image models. To enhance the
integration of these components, we implement a filtering process to remove high-frequency noise
from the feature maps generated by ControlNet before injecting them into the image generation
network. Specifically, the scene condition feature output from ControlNet, denoted as F , is added
to the generation network. Prior to this addition, we transform F into the frequency domain via the
Fast Fourier Transform (FFT) and apply a filter to attenuate the high-frequency components:

Ffiltered = F�1 (Hlow · F(F )) , (4)

where F and F�1 denote the FFT and inverse FFT, respectively, and Hlow represents a low-pass
filter applied in the frequency domain. This approach has been shown to reduce the occurrence of
artifacts and improve the overall quality of the generated images without reducing performance.

3.5 DETAILS RENDERING

Through the control provided by ControlNet, we can ensure that the output images align with our
generated scene depth maps, thus guaranteeing that each instance appears at its designated location.
However, we still lack assurance regarding the accuracy of attributes such as category, color, and
material for each instance. To render each instance with correct attributes, we propose a training-
free detail renderer to replace the original Cross-Attention Layers for this purpose. The process of
rendering an entire scene using a detail renderer can be broken down into the following three steps.
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Table 1: Quantitative results on COCO-Position (§4.3). We only utilize complex layouts that
contain at least five instances, resulting in significant overlap.

Layout Accuracy Instance Accuracy Image Quality

Method AP " AP75 " AP50 " SRinst " MIoU CLIP " SRimg " FID #
BoxDiff [ICCV23] 3.15 2.12 10.92 22.74 27.28 18.82 0.53 25.15

MultiDiff [ICML23] 6.37 4.24 13.22 28.75 34.17 20.12 0.80 33.20
GLIGEN [CVPR23] 38.49 40.75 63.79 83.31 70.14 19.61 40.13 26.80

MIGC [CVPR24] 45.03 46.15 80.09 83.37 71.92 20.07 43.25 24.52

3DIS (SD1.5) 56.83 62.40 82.29 84.71 73.32 20.84 46.50 23.24
vs. prev. SoTA +11.8 +16.3 +2.2 +1.3 +1.4 +0.8 +3.3 +1.3

Rendering each instance separately. For an instance i, ControlNet ensures that a shape satisfying
its descriptive criteria is positioned within the designated bounding box bi. By applying Cross
Attention using the text description of the instance i, we can ensure that the attention maps generate
significant response values within the bi region, accurately rendering the attributes aligned with
the instance’s textual description. For each Cross-Attention layer in the foundation models, we
independently render each instance i with their text descriptions to obtain the rendered result ri,
while similarly applying the global image description to yield rendering background rc. Our next
step is to merge the obtained feature maps {r1, · · · , rn, rc} into a single feature map, aligning with
the forward pass of the original Cross-Attention layers.

SAM-Enhancing Instance Location. While mering rendering results, acquiring precise instance
locations helps prevent attribute leakage between overlapping bounding boxes and maintains struc-
tural consistency with the instances in the scene depth maps. Consequently, we employ the
SAM (Kirillov et al., 2023) model to ascertain the exact position of each instance. For an instance i,
by utilizing our generated scene depth map mscene alongside its corresponding bounding box bi, we
can segment the specific shape mask mi of this instance, thereby facilitating subsequent merging:

mi = SAM(mscene,bi) (5)

Merging rendering results. We employ the precise mask mi obtained from SAM to constrain the
rendering results of instance i to its own region, ensuring no influence on other instances. Specifi-
cally, we construct a new mask m0

i by assigning a value of ↵ to the areas where mi equals 1, while
setting all other regions to �1. Simultaneously, we assign a background value of � to the global ren-
dering rc through a mask m0

c. By applying the softmax function to the set {m0
1,m

0
2, . . . ,m

0
n,m

0
c},

we derive the spatial weights {m00
1 ,m

00
2 , . . . ,m

00
n,m

00
c } for each rendering instance. At each Cross

Attention layer, the output can be expressed as follows to render the whole scene:

r = m00
1 · r1 +m00

2 · r2 + . . .+m00
n · rn +m00

c · rc (6)

4 EXPERIMENT

4.1 IMPLEMENT DETAILS

Tuning of text-to-depth models. We utilized a training set comprising 5,878 images from the
LAION-art dataset (Schuhmann et al., 2021), selecting only those with a resolution exceeding
512x512 pixels and an aesthetic score of � 8.0. Depth maps for each image were generated using
Depth Anything V2 (Yang et al., 2024a). Given the substantial noise present in the text descriptions
associated with the images in LAION-art, we chose to produce corresponding image captions using
BLIP2 (Li et al., 2023a). We employed pyramid noise (Kasiopy, 2023) to fine-tune the LDM3D
model for 2,000 steps, utilizing the AdamW (Kingma & Ba, 2017) optimizer with a constant learn-
ing rate of 1e�4, a weight decay of 1e�2, and a batch size of 320.

Training of the layout-to-depth adapter. We adopted the MIGC (Zhou et al., 2024a) architecture
as the adapter for layout control. In alignment with this approach, we utilized the COCO dataset (Lin
et al., 2015) for training. We employed Stanza (Qi et al., 2020) to extract each instance description
from the corresponding text for every image and used Grounding-DINO (Liu et al., 2023) to obtain
the image layout. Furthermore, we augmented each instance’s description by incorporating modified
versions that omitted adjectives, allowing our layout-to-depth adapter to focus more on global scene
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Figure 3: Qualitative results on the COCO-Position (§4.3).

construction and the coarse-grained categories and structural properties of instances. We maintain
the same batch size, learning rate, and other parameters as the previous work.

4.2 EXPERIMENT SETUP

Baselines. We compared our proposed 3DIS method with state-of-the-art Multi-Instance Genera-
tion approaches. The methods involved in the comparison include training-free methods: BoxD-
iffusion (Xie et al., 2023) and MultiDiffusion (Bar-Tal et al., 2023); and adapter-based methods:
GLIGEN (Li et al., 2023c), InstanceDiffusion (Wang et al., 2024), and MIGC (Zhou et al., 2024a).

Evaluation Benchmarks. We conducted experiments using two widely adopted benchmarks,
COCO-position (Lin et al., 2015) and COCO-MIG (Zhou et al., 2024a), to assess the performance of
models in different aspects of instance generation. The COCO-position benchmark emphasizes the
evaluation of a model’s capacity to control the spatial arrangement of instances, as well as their high-
level categorical attributes. In contrast, the COCO-MIG benchmark is designed to test a model’s
ability to precisely render fine-grained attributes for each generated instance. To rigorously compare
the models’ performance in handling complex scene layouts, we concentrated our analysis on the
COCO-position benchmark, specifically focusing on layouts containing five or more instances. For
a comprehensive evaluation, each model generated 750 images across both benchmarks.

Evaluation Metrics. We used the following metrics to evaluate the model: 1) Mean Intersection

over Union (MIoU), measuring the overlap between the generated instance positions and the target
positions; 2) Local CLIP score, assessing the visual consistency of the generated instances with their
corresponding textual descriptions; 3) Average Precision (AP), evaluating the overlap between the
generated image layout and the target layout; 4) Instance Attribute Success Ratio (IASR), calculating
the proportion of correctly generated instance attributes; 5) Image Success Ratio (ISR), measuring
the proportion of images in which all instances are correctly generated.

4.3 COMPARISON

Scene Construction. The results in Tab. 1 demonstrate the superior scene construction capabili-
ties of the proposed 3DIS method compared to previous state-of-the-art approaches. Notably, 3DIS
surpasses MIGC with an 11.8% improvement in AP and a 16.3% increase in AP75, highlighting a
closer alignment between the generated layouts and the user input. As shown by the visualizations
in Fig. 3, 3DIS achieves marked improvements in scenarios with significant overlap, effectively
addressing challenges such as object merging and loss in complex layouts. This results in the gener-
ation of a more accurate scene depth map, capturing the global scene structure with greater fidelity.

Detail Rendering. The results presented in Tab. 2 demonstrate that the proposed 3DIS method
exhibits robust detail-rendering capabilities. Notably, the entire process of rendering instance at-
tributes is training-free for 3DIS. Compared to the previous state-of-the-art (SOTA) training-free
method, MultiDiffusion, 3DIS achieves a 30% improvement in the Instance Attribute Success Ratio
(IASR). Additionally, when compared with the SOTA adapter-based method, Instance Diffusion,
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Table 2: Quantitative results on proposed COCO-MIG-BOX (§4.3). Li means that the count of
instances needed to generate in the image is i.

Instance Attribute Success Ratio" Mean Intersection over Union"

Method L2 L3 L4 L5 L6 AVG L2 L3 L4 L5 L6 AVG
Adapter rendering methods

GLIGEN [CVPR23] 41.3 33.8 31.8 27.0 29.5 31.3 33.7 27.6 25.5 21.9 23.6 25.2
InstanceDiff [CVPR24] 61.0 52.8 52.4 45.2 48.7 50.5 53.8 45.8 44.9 37.7 40.6 43.0

MIGC [CVPR24] 74.8 66.2 67.4 65.3 66.1 67.1 63.0 54.7 55.3 52.4 53.2 54.7

training-free rendering

TFLCG [WACV24] 17.2 13.5 7.9 6.1 4.5 8.3 10.9 8.7 5.1 3.9 2.8 5.3
BoxDiff [ICCV23] 28.4 21.4 14.0 11.9 12.8 15.7 19.1 14.6 9.4 7.9 8.5 10.6

MultiDiff [ICML23] 30.6 25.3 24.5 18.3 19.8 22.3 21.9 18.1 17.3 12.9 13.9 15.8
3DIS (SD1.5) 65.9 56.1 55.3 45.3 47.6 53.0 56.8 48.4 49.4 40.2 41.7 44.7
3DIS (SD2.1) 66.1 57.5 55.1 51.7 52.9 54.7 57.1 48.6 46.8 42.9 43.4 45.7
3DIS (SDXL) 66.1 59.3 56.2 51.7 54.1 56.0 57.0 50.0 47.8 43.1 44.6 47.0

vs. MultiDiff +35 +34 +31 +33 +34 +33 +35 +31 +30 +30 +30 +31
rendering w/ off-the-shelf adapters

3DIS+GLIGEN 49.4 39.7 34.5 29.6 29.9 34.1 43.0 33.8 29.2 24.6 24.5 28.8
vs. GLIGEN +8.1 +5.9 +2.7 +2.6 +0.4 +2.8 +9.3 +6.2 +3.7 +2.7 +0.9 +3.6
3DIS+MIGC 76.8 70.2 72.3 66.4 68.0 69.7 68.0 60.7 62.0 55.8 57.3 59.5

vs. MIGC +2.0 +4.0 +4.9 +1.1 +1.9 +2.6 +5.0 +6.0 +6.7 +3.4 +4.1 +4.8

Layout MIGC Ours (Depth, SD1.5) Ours (RGB, SD2) Ours (RGB, SDXL)
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Figure 4: Qualitative results on the COCO-MIG (§4.3).

which requires training for rendering, 3DIS shows a 5% increase in IASR, while also allowing the
use of higher-quality models, such as SD2 and SDXL, to generate more visually appealing results.
Importantly, the proposed 3DIS approach is not mutually exclusive with existing adapter methods.
For instance, combinations like 3DIS+GLIGEN and 3DIS+MIGC outperform the use of adapter
methods alone, delivering superior performance. Fig. 4 offers a visual comparison between 3DIS
and other SOTA methods, where it is evident that 3DIS not only excels in scene construction but
also demonstrates strong capabilities in instance detail rendering. Furthermore, 3DIS is compatible
with a variety of base models, offering broader applicability compared to previous methods.

4.4 ABLATION STUDY

Constructing scenes with depth maps. Tab. 3 demonstrates that generating scenes in the form of
depth maps, rather than directly producing RGB images, enables the model to focus more effectively
on coarse-grained categories, structural attributes, and the overall scene composition. This approach
leads to a 3.3% improvement in AP and a 4.1% increase in AP75.

Tuning of the Text-to-depth model. Tab. 3 demonstrates that, compared to using LDM3D di-
rectly, fine-tuning LDM3D with pyramid diffusion as our base text-to-depth generation model
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Scene Depth w/ Filter w/o Filter Scene Depth w/ Filter w/o Filter

Figure 5: Visualization of the Impact of Low-Pass Filtering on ControlNet (§4.4).
Layout w/ SAM w/o SAM Layout w/ SAM w/o SAM

blue fork

yellow orange

white table
green teddy bear

black bed

Figure 6: Visualization of the Impact of SAM-Enhancing Instance Location (§4.4).

results in a 1.3% improvement in AP and a 2.2% increase in AP75. These improve-
ments stem from the fine-tuning process, which encourages the depth generation model to fo-
cus more on recovering low-frequency components, benefiting the global scene construction.

Table 3: Ablation study on scene generation (§4.4).
method AP/AP50/AP75 " MIoU " FID #
w/o using depth 53.5 / 81.8 / 58.3 72.2 24.1
w/o aug data 54.0 / 78.4 / 59.4 73.3 23.5
w/o tuning LDM3D 55.5 / 81.9 / 60.2 72.8 25.2
w/ all 56.8 / 82.3 /62.4 73.3 23.2

Augmenting instance descriptions by
removing adjectives. The data presented
in Tab. 3 indicate that during the training
of layout-to-depth adapters, augmenting
instance descriptions by removing fine-
grained attribute descriptions allows the
model to focus more on the structural of the instances and the overall scene construction. This
approach ultimately results in a 2.8% improvement in AP and a 3.0% increase in AP75.

Table 4: Ablation study on rendering (§4.4).
method IASR " MIOU " FID #
w/o Low-Pass Filter 55.87 46.93 24.50
w/o SAM-Enhancing 52.42 45.17 23.67
w/ all 56.01 47.01 23.24

Low-Pass Filtering on the ControlNet. Fig. 5
shows that filtering out high-frequency noise
from ControlNet’s feature maps improves the
overall quality of the generated images, re-
sulting in more accurate scene representation.
Moreover, as indicated in Tab. 4, this process
does not affect the Instance Attribute Success Ratio (IASR) and MIoU when rendering fine details.

SAM-Enhancing Instance Location. Fig. 6 illustrates that utilizing SAM for more precise instance
location effectively prevents rendering conflicts caused by layout overlaps, ensuring accurate ren-
dering of each instance’s fine-grained attributes. As shown in Tab. 4, enhancing instance localization
with SAM improves the Instance Attribute Success Ratio (IASR) by 3.19% during rendering.

4.5 UNIVERSAL RENDERING CAPABILITIES OF 3DIS

Rendering based on different-architecture models. Fig. 1, 3, and 4 present the results of 3DIS
rendering details using SD2 and SDXL without additional training. The results demonstrate that
3DIS not only leverages the enhanced rendering capabilities of these more advanced base models,
compared to SD1.5, but also preserves the accuracy of fine-grained instance attributes.

Rendering based on different-style models. Fig. 7 presents the results of 3DIS rendering using
various stylistic model variants (based on the SDXL architecture). As shown, 3DIS can incorporate
scene depth maps to render images in diverse styles while preserving the overall structure and key
instance integrity. Furthermore, across different styles, 3DIS consistently enables precise control
over complex, fine-grained attributes, as illustrated by the third example in Fig. 7, where “Dotted
colorful wildflowers, some are red, some are purple” are accurately represented.

Rendering Specific Concepts. 3DIS renders details leveraging pre-trained large models, such as
SD2 and SDXL, which have been trained on extensive corpora. This capability allows users to render
specific concepts. As demonstrated in Fig. 8, 3DIS precisely renders human details associated with
specific concepts while preserving control over the overall scene.
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Layout             Scene Depth map             SDXL                   AutismMix         Watercolor (LoRA)   Pixel Art (LoRA)
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3
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1

1) A luxurious chair armrest crafted from polished gold, with a smooth and reflective surface. 2) Chair legs, carved from solid, 
high-quality wood, with a natural, rich grain. 3) A chair seat, crafted from luxurious white velvet, soft to the touch and with a 
smooth, velvety finish that exudes elegance. 4) A chair backrest features an exquisite, tiger-like pattern of orange-yellow stripes.

5

1

2

4

3

1) A cute girl, black hair, brown eyes, smiling sweetly, looking at viewer, soft expression. 2) Glossy black hair, smooth and 
slightly wavy. 3) A shiny jewel earring, embedded with emerald stones. 4) A Santa-style hat, with a red body and white fluffy 
trim. 5) A Gold star-shaped sticker on cheek, metallic shine.

1) A towering snow-capped mountain with sprawling glacier. 2) A crystal-clear blue river, gently flowing with soft ripples. 3) A 
dense forest of dark green tall trees with lush foliage. 4) Soft, warm-toned clouds illuminated by the colors of the sunset, blending 
hues of orange, pink, and purple. 5) Dotted colorful wildflowers, some are red, some are purple.

4

2

1

5

3

Figure 7: Rendering results based on different-style models (§4.5).

Layout                    Scene Depth map                    SDXL                             SDXL                           SDXL

1) Superman. 2) Green
Lantern. 3) Hulk.                                                        

1) Albert Einstein. 2) John 
Biden, 3) Donald Trump.

1) Messi. 2) Cristiano 
Ronaldo. 3) Kobe Bryant.

.                                                        

Three man.

Figure 8: Rendering results on specific concepts (§4.5).

5 CONCLUSION

We propose a novel 3DIS method that decouples image generation into two distinct phases: coarse-
grained scene depth map generation and fine-grained detail rendering. In the scene depth map phase,
3DIS trains a Layout-to-Depth network that focuses solely on global scene construction and the
coarse-grained attributes of instances, thus simplifying the training process. In the detail rendering
phase, 3DIS leverages widely pre-trained ControlNet models to generate images based on the scene
depth map, controlling the scene and ensuring that each instance is positioned accurately. Finally,
our proposed detail renderer guarantees the correct rendering of each instance’s details. Due to the
training-free nature of the detail rendering phase, our 3DIS framework utilizes the generative priors
of various foundational models for precise rendering. Experiments on the COCO-Position bench-
mark demonstrate that the scene depth maps generated by 3DIS create superior scenes, accurately
placing each instance in its designated location. Additionally, results from the COCO-MIG bench-
mark show that 3DIS significantly outperforms previous training-free rendering methods and rivals
state-of-the-art adapter-based approaches. We envision that 3DIS will enable users to apply a wider
range of foundational models for multi-instance generation and be extended to more applications. In
the future, we will continue to explore the integration of 3DIS with DIT-based foundational models.

Acknowledgements. This work was supported in part by the Natural Science Foundation of Zhe-
jiang Province (LDT23F02023F02) and Fundamental Research Funds for the Zhejiang Provincial
Universities (226-2024-00208).
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