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Abstract
Multi-index models — functions which only depend on the covariates through a non-linear trans-
formation of their projection on a subspace — are a useful benchmark for investigating feature
learning with neural networks. This paper examines the theoretical boundaries of learnability in this
hypothesis class, focusing particularly on the minimum sample complexity required for weakly re-
covering their low-dimensional structure with first-order iterative algorithms, in the high-dimensional
regime where the number of samples is n = αd is proportional to the covariate dimension d. Our
findings unfold in three parts: (i) first, we identify under which conditions a trivial subspace can
be learned with a single step of a first-order algorithm for any α>0; (ii) second, in the case where
the trivial subspace is empty, we provide necessary and sufficient conditions for the existence of an
easy subspace consisting of directions that can be learned only above a certain sample complexity
α>αc. The critical threshold αc marks the presence of a computational phase transition, in the
sense that no efficient iterative algorithm can succeed for α<αc. In a limited but interesting set
of really hard directions —akin to the parity problem— αc is found to diverge. Finally, (iii) we
demonstrate that interactions between different directions can result in an intricate hierarchical
learning phenomenon, where some directions can be learned sequentially when coupled to easier
ones. Our analytical approach is built on the optimality of approximate message-passing algorithms
among first-order iterative methods, delineating the fundamental learnability limit across a broad
spectrum of algorithms, including neural networks trained with gradient descent.

1. Introduction
A fundamental property of neural networks is their ability to learn features from data and adapt to
relevant structures in high-dimensional noisy data. However, our mathematical understanding of
this mechanism remains limited. A popular model for studying this question is multi-index models.
Multi-index functions are a class of statistical models encoding the inductive bias that the relevant
directions for prediction depend only on a low-dimensional subspace of the covariates. They define a
rich class of hypotheses [41], containing many widely studied functions in the statistical learning
and theoretical computer science literature. Training a multi-index model typically translates to a
non-convex optimization problem. Several authors have thus used multi-index models as a test-bed
for understanding the behavior of neural nets and gradient-descent in non-convex, high-dimensional
contexts, e.g. [1–4, 8, 14, 15, 21, 24, 47, 50–52]. We refer to Appendix A for an additional discussion.

To serve as a useful benchmark, it is necessary to have an idea of the fundamental limit of
learnability in such models. This translates to the question of how many observations from the model
are required to obtain a better-than-random prediction within a class of algorithms, also known as
weak learnability. This can be studied both statistically (within the class of all, including exponential,
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algorithms) or computationally (restricted to a particular computational class, such as first-order
algorithms). In the single-index case (p = 1), weak learnability has been heavily studied under
probabilistic assumptions for the weights and data distribution (e.g. i.i.d. Gaussian or uniformly
in the sphere). The statistical threshold for learnability has been characterised by [12] when the
covariate dimension d is large. Optimal computational thresholds for the class of first-order iterative
algorithms were derived in [18, 42, 43, 46] in the same regime. Similar results were also proven for
other computational models: [23] provided a lower bound n ≥ dmax(1,ℓ/2) under the Correlational
Statistical Query (CSQ) model, comprising algorithms that take queries of the type E[yφ(x)]. [26]
provided results for the Statistical Query (SQ) model, which allows for more flexible queries of the
type E[φ(x, y)], hence a lower sample complexity n ≥ dmax(1,κ/2) with κ ≤ ℓ defining the generative
exponent. Aside from the particular case of committee machines [5, 20, 29, 35], results for general
multi-index models p > 1 are scarce, as they crucially depend on the way different directions are
coupled by the link function. The goal of the present work is precisely to close this gap for the
class of Gaussian multi-index models in the proportional, high-dimensional regime, and to provide a
classification of how hard it is to learn feature directions from data in multi-index models.

2. Settings and definitions
As motivated in the introduction, our main focus in this work will be to study subspace identifiability
in the class of Gaussian multi-index models.

Definition 1 (Gaussian multi-index models) Given a covariate x ∼ N (0, 1/dId), we define the
class of Gaussian multi-index models as likelihoods of the type E[y|x] = g(W ⋆x) where g : Rp → R
is the link function and W ⋆ ∈ Rp×d is a weight matrix with i.i.d. rows w⋆

k ∼ N (0, Id). Note that
this uniquely defines a joint distribution p(x, y) over Rd+1.

Given n i.i.d. samples (xi, yi)i∈[n] drawn as per Definition 1, we are interested in investigating the
computational bottlenecks of estimating W ⋆ from the samples (xi, yi)i∈[n]. Note that reconstructing
W ⋆ or a permutation of its rows is equivalent from the perspective of the likelihood theorem 1.
Therefore, in this work, we will be interested in weak subspace learnability, which corresponds to
obtaining an estimation of the subspace spanned by W ⋆ better than a random estimator. This can be
defined in an invariant way as follows

Definition 2 (Weak subspace recovery) Let V ⋆ ⊂ Rp denote a subspace spanned by vectors
representing components along W ⋆ such that each v ∈ V ⋆ maps to a vector vd in Rd through the
map vd = (W ⋆)⊤v. Given an estimator Ŵ ∈ Rp×d of W ⋆, we have weak recovery of a V ⋆ if:

inf
v∈V ⋆,∥v∥=1

∥∥∥∥∥Ŵ (W ⋆)⊤v

d

∥∥∥∥∥ = Θd(1). (1)

with high probability as d→ ∞.
Our main tool for characterising the computational bottlenecks in the Gaussian multi-index

problem is an Approximate Message Passing (AMP) Algorithm 1 tailored to our problem, which
we describe in Appendix H. The key property of AMP is that for a well-chosen gout, it is provably
optimal within the class of first-order methods [18]. This means that establishing learnability for the
optimal AMP algorithm 1 implies a computational lower bound in the class of first-order methods,
which includes popular machine learning algorithms such as gradient descent (SG). For the Gaussian
multi-index estimation problem 1, the optimal gout is simply given by the optimal denoiser of an
effective p-dimensional problem Y = g(Z) with Z ∼ N (ω,Vp):
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gout(y,ω,V ) = E[Z|Y = y] =

∫
Rp

dz√
det 2πV

e−
1
2
(z−ω)⊤V −1(z−ω)P (y|z)V −1(z − ω)∫

Rp
dz√

det 2πV
e−

1
2
(z−ω)⊤V −1(z−ω)P (y|z)

, (2)

where the conditional expectation is defined through the output channel Y = g(Z) with Z ∼
N (ω,Vp). Here ω can be interpreted as an estimate of the pre-activations.

Our analysis is based on two remarkable properties that make AMP a particularly useful tool
for studying high-dimensional estimation. The first property is that for any t < O(log d), in the
high-dimensional limit d → ∞ the performance of AMP can be tracked without actually running
the algorithm. This result, known as state evolution, makes AMP mathematically tractable in high-
dimensions [13]. The second property is its optimality with respect to Bayesian estimation. We
discuss this further in Appendix C. For multi-index models, the state evolution equations were
derived by [7] and rigorously proven by [34]: in the large asymptotic limit 1/dŴ

t
W ⋆⊤ converge

in probability to M t, which evolves as M t+1 = F (M t). The specific form of F is detailed
in Appendix B. This maps the problem of characterising the computational bottlenecks of first-
order methods for high-dimensional Gaussian multi-index models to the study of the deterministic,
p-dimensional dynamical system.

3. The trivial subspace (αc = 0)
We denote by S+

p , the cone of positive-semi-definite matrices in Rp and by ≻ the associated partial
ordering. A starting point is identifying its fixed points and their basins of attraction. In the
absence of any prior information on W ⋆ aside from its distribution, one cannot do better than taking
ŵt=0

k ∼ N (0, Id) with k ∈ [p] independently at random from the prior. With high-probability,

at initialisation, the elements of the overlap matrix 1/dŴ
0
W ⋆⊤ are Θd(d

−1/2) numbers. The
asymptotic overlap for an uninformed initial condition is thus identically zero M0 = 0, a null-rank
matrix. If M0 = 0 is not a fixed point, then M1 ≻ 0, implying the weak recovery of a subspace of
dimension k = rank(M1) > 0 with just a single step of AMP.

Lemma 3 (Existence of uninformed fixed point) M = 0 ∈ Rp×p is a fixed point of eq. (7) if and
only if the following condition holds almost surely over Y :

gout(y,ω = 0,V = Ip) = E[Z|Y = y] = 0, (3)

This implies that as long as the conditional expectation above is not zero almost surely, AMP weakly
learns a non-empty subspace immediately in the first iteration for any number of samples n = Θ(d).
For this reason, we refer to this subspace as a “trivial subspace” T ⋆ composed of all directions
v ∈ Rp such that E[v⊤Z|Y = y] ̸= 0. Note that for single-index models (p = 1), the condition in
eq. (3) reduces to the one derived by [12, 44, 46]. Interestingly, this is exactly the same condition
appearing in [26] for weak learnability of single-index models in the SQ model; see eq. (3) therein.
We elaborate on this in Appendix E. To make Lemma 3 concrete, let us look at a few examples. A
detailed derivation of these examples is discussed in the Appendix G.

(a) For single-index models (p = 1), T ∗ is one dimensional if and only if g is non-even, e.g.
g(z) = He3(z). This follows from requiring that gout(y, 0, 1) ̸= 0 for at least one value of y. In
particular, on any open interval where gout is invertible we have gout = g−1.

(b) For a committee g(z)=
∑p

i=1 sign(zi), the trivial subspace T ⋆ is again 1-d, spanned by 1∈Rp.

(c) For monomials g(z) = z1 . . . zp, the trivial subspace T ⋆ is non-empty if and only if p = 1.
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(d) For staircase functions [2] g(z) = z1 + z1z2 + z1z2z3 + · · · + z1 . . . zp, the trivial subspace is
T ⋆ = Rp and is spanned by the canonical basis. In other words, AMP learns all the directions with
a single step for any α > 0.

This implies that when T ⋆ is empty, running one-pass SGD after applying any transformation
T fails to obtain weak recovery with O(d) samples. The situation can be very different when reusing
batches: [27] showed that full batch GD implicitly applies a transformation T to the labels, in a
mechanism similar to the one discussed above. However, this transformation may not be optimal.
For instance, while AMP learns the trivial subspaces of both g(z) = He3(z) and staircase functions
((d)) in a single-step, GD requires 2-steps for the first and p steps for the latter [27].

4. Computational phase transitions (αc > 0)
What happens when the trivial subspace T ⋆ from is empty? In this section, we discuss precisely
this case, showing that for some link functions g there exists a critical sample complexity threshold
αc > 0 above which some directions become learnable by iterating AMP. To contrast with the trivial
subspace, we refer to these as the easy directions. While the trivial subspace is characterised by the
existence of the fixed point M = 0, the easy subspace will be determined by its stability, which
crucially depends on the sample complexity α = n/d. The stability of M = 0 can be obtained by
linearising the state evolution (7) around δM with ∥δM∥ ≈ 0: F (M) ≈ αF(δM) +O(∥δM∥2),
where F(δM) is a linear operator on the cone S+

p of PSD matrices of dimension p.

Lemma 4 (Stability of the uninformed fixed point). If M = 0 ∈ Rp×p is a fixed point, then it is an
unstable fixed point of eq. (7) if and only if n > αcd, where the critical sample complexity αc is:

1

αc
= sup

M∈S+
p

∥F(M)∥F , F(M) := EY

[
∂ωgout(Y, 0, Ip)M∂ωgout(Y, 0, Ip)

⊤
]
, (4)

with ∥ · ∥F the Frobenius norm, and the extremum being achieved at a unique extremizer
M⋆ ∈ S+

p . Moreover, if ∥F(M)∥F = 0, then M = 0 is stable a fixed point for any n = Θ(d).

Lemma 4 implies that for α > αc AMP algorithm 1 initialised from small but non-zero M0 will
learn some directions in the easy subspace E⋆, which can be characterised as the orthogonal to all
the hard directions v ∈ Rp such that v⊤∂ωgout(Y,ω = 0,V = Ip)v = 0.

Surprisingly, we can show that for α > αc AMP algorithm 1 spans the full easy subspace E⋆

starting from an arbitrarily small but extensive initial correlation (see Appendix F.5) As for Lemma
3, the expression for the weak recovery threshold eq. (4) generalises the single-index expression
from [12, 43, 46]. Indeed, for p = 1, we have ∂ωgout(y, 0, 1) = E[He2(Z)|Y = y], and therefore
1/αc = EY

[
E[He2(Z)|Y ]2

]
, which is exactly eq. (11) in [12]. In other words, as long as the link

function g has a non-zero second-order coefficient in the Hermite basis, it is learnable by algorithm 1
with n > αcd samples. Optimality of AMP then implies that no first-order method can achieve
non-vanishing correlation with w⋆ when n < αcd as d→ ∞. We now illustrate Theorem 4 in a few
examples of interest.

(a) The monomial g(z) = z1 . . . zp with p > 1 can always be learned with α > αc(p) large enough
[19]. For instance, we have αc(2) ≈ 0.5937, αc(3) ≈ 3.725 and αc(4) ≈ 4.912. In Appendix G we
derive an analytical formula for αc(p) for arbitrary p.
(b) The embedding of the sparse parity functions: g(z) = sign(z1z2...zp) . As this is invariant under
permutations of the indices, Lemma 4 implies the existence of a computational phase transition.In
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Figure 1: Hierarchical weak learnability for the staircase function g(z1, z2, z3) = z21+sign(z1z2z3).
(Left): Overlaps with the first direction |M11| (blue), and with the second and third
one 1/2(M22 +M33) (red) as a function of the sample complexity α = n/d, with solid
lines denoting state evolution curves eq. (7), and crosses/dots finite-size runs of AMP
algorithm 1 with d = 500 and averaged over 72 seeds. All other overlaps are zero (black).
The two black dots indicate the critical thresholds at α1 ≈ 0.575 and α2 = π2/4. (Right)
Corresponding generalization error as a function of the sample complexity. Details on the
numerical implementation are discussed in Appendix H.

Appendix G.3 we compute analytically the critical value αc(p). For p = 1 this problem is equivalent
to phase retrieval, for which we have αc(1) = 1/2. For p = 2 we show in the appendix that
αc(2) = π2/4, while αc(p) = +∞ for p ≥ 3. Figure 2 illustrates this discussion for the 2-sparse
parity problem, comparing theoretical prediction eq. (7) with finite-size runs of algorithm 1.

5. Hierarchical Iterative Denoising
Suppose that the estimator Ŵ

t
has developed an overlap along a subspace belonging to the span of

W ⋆, resulting in a non-zero overlap M t ≻ 0. How does this affect learning along the orthogonal
complement? The central difference with respect to initialization is that the variable ω in the linear
operator F defined in 4 becomes non-zero (since it is distributed as ω =

√
Mξ). Crucially, this

changes the span of F(M) and hence the stability condition in Lemma 4. In particular, learning some
directions might facilitate learning larger subspaces. We call this Hierarchical Iterative Denoising.
This phenomenon is reminiscent of the specialisation transition in committee machines [7, 50] and of
the staircase phenomenon for one-pass SGD introduced in [1]. We formalise this in Appendix D. A
concrete example of a function which displays the hierarchical iterative denoising staircase is a linear
combination between hard parity function and an easy polynomial: g(z1, z2, z3) = z21+sign(z1z2z3)
The sign part is a sparse parity with p = 3, which cannot be learned with n = Θ(d) samples, but
the quadratic polynomial z21 component in the function allows weak-recovery of the first component
i.e. U = (1, 0, 0) as long as α > 1/2. Hence, conditionally on U the effective multi-index model
becomes sign(z2z3), which as discussed in Section 4 is an easy function. Figure 1 illustrates this:
first, z1 is learned at α1 ≈ 0.575. Then, for larger value when α > α2, all directions are learned (see
App. (G.4)). Knowing z1 makes the hard 3-parity an easy 2-parity problem. It is easy to construct a
multi-index model where AMP will iterate over any number of such plateaus. For instance, consider
the model: g(z) = z21 +sign(z1z2z3)+ sign(z3z4z5)+ sign(z5z6z7) After the first plateau to learn
z1, there will be one for z2, then for z3, for z4 and so on.

5



FUNDAMENTAL LIMITS OF WEAK LEARNABILITY IN HIGH-DIMENSIONAL MULTI-INDEX MODELS

References

[1] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase
property: a necessary and nearly sufficient condition for sgd learning of sparse functions on two-
layer neural networks. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research,
pages 4782–4887. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/
v178/abbe22a.html.
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Appendix / supplemental material

Appendix A. Further related works

Further related work — With its origins on the classical projection pursuit method [32, 33],
there is an extensive literature dedicated to designing and analysing efficient algorithms to train
multi-index models models, such as Isotronic Regression for single-index [17, 37, 38] and Sliced
Inverse Regression in the multi-index case [9, 22, 31, 53].

The case p = 1 has seen a lot of interest recently. In terms of gradient descent, [4] has shown
that if the link function g is known, one-pass SGD achieves weak recovery in n = Θ(dℓ−1) steps,
where ℓ, known as the information exponent, is the first non-zero Hermite coefficient of the link
function g. In the non-parametric setting —where g is unknown— [14] has shown that a large-width
two-layer neural network trained under one-pass SGD can learn an ”easy” single-index target (ℓ = 1)
in n = Θ(d) steps. This is to be contrasted with full-batch GD, which can achieve weak recovery in
Θ(1) steps with sample complexity n = Θ(d) even for particular problems with ℓ > 1 [27] (which
is, indeed, the statistical optimal rate [12, 46]). Similar results have also been proven for abstract
computational models. [23] has proven a lower bound n ≥ dmax(1,ℓ/2) under the Correlational
Statistical Query (CSQ) model, comprising algorithms that take queries of the type E[yφ(x)]. More
recently, [26] has proven a similar result for the Statistical Query (SQ) model, which allows for more
flexible queries of the type E[φ(x, y)] and hence a lower sample complexity n ≥ dmax(1,κ/2) with
κ ≤ ℓ defining the generative exponent. This turns out to be equivalent to the optimal computational
weak recovery threshold of [12, 42, 44, 46].

While the situation is less understood, the multicase has also whitenessed a surge of recent
interest. In particular, it has been used to understand the behavior of gradiend descent algorithm
in neural networks. For instance, [1, 2] showed that a certain class of staircase functions can be
learned by large-width two-layer networks trained under one-pass SGD with sample complexity
n = Θ(d). This is in stark contrast to (embedded) s-sparse parities, which require n ≥ ds−1 samples
[16]. [1, 2] introduced the leap exponent, a direction-wise generalisation of the information exponent
for multi-index models, and studied the class of staircase functions which can be efficiently learned
with one-pass SGD. [15] showed that under a particular gradient flow scheme preserving weight
orthogonality (a.k.a. Stiefel gradient flow), training follow a saddle-to-saddle dynamics, with the
characteristic time required to escape a saddle given by the leap exponent. Interestingly, it was
then shown that the limit discovered in these set of works could be bypassed by slightly different
algorithm, for instance by smoothing the landscapes [25] or reusing batches multi-time [27]. The
latter paper, in particular, showing that gradient descent could learn efficiently a larger class of
multi-index models that previously believed to be possible. These findings highlight the need of a
strict understanding of the limit learnability of these models.

Our approach to establish the limit of computational learnability is based on the study of the
approximate message passing algorithm (AMP). Originating from the cavity method in physics
[36, 45], AMP [30], and its generalized version GAMP [49] are powerful iterative algorithm to
study these high-dimensional setting. These algorithm are widely believed to be optimal between
all polynomial algorithms for such high-dimensional problems [5, 10, 11, 28, 54]. In fact, they are
provably optimal among all iterative first-order algorithms [18, 48], a very large class of methods
that include gradient descent.

While these algorithm were studied in great detail for the single index models, see e.g. [6, 7, 12],
and are at the roots of the spectral method that underline the learnability phase transition in this
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case [44, 46], much less is known in the multi-index case, with the exception of [5], who showed
that particular instances of multi-index models known as committee machines can be learned with
n = Θ(d) samples.

Different from our approach are [20, 29, 35], who focused also on peculiar form of the multi-
index models (using combination of Relu) and derived worst case bound (in terms of the hardest
possible function). Instead, we focus on the typical-case learnability of a given, explicit, multi-index
model.

Appendix B. Formal definition of State evolution [5, 34]

Let (xi, yi)i∈[n] denote n i.i.d. samples from the multi-index model defined in 1. Consider running

Algorithm 1 from initial condition Ŵ
0 ∈ Rp×d, such that the initial overlap 1/dŴ

0
W ⋆⊤ converges

in probability to a limit M0 as d → ∞. Denote by Ŵ
t

the resulting estimator at time 0 ≤ t ≤ T .
Then, in the high-dimensional limit where n, d → ∞ with fixed ratio α = n/d and T < O(log d),
the asymptotic mean-squared error on the label prediction is given by:

lim
n,d→∞

E[(y − g(Ŵ
t
x))2] = E[(Y t − g(Z))2], 0 ≤ t ≤ T (5)

where the expectation is taken over the following effective estimation process:

Y t = g
(
(Ip −M t)

1/2Z +M t1/2ξ
)
, Z ∼ N (0, Ip) (6)

with ξ ∼ N (0, Ip) independently from Z, and M t is given by iterating the following state evolution
equations from initial condition M0:

M t+1=F (M t) := G

(
αE
[
gout

(
Y t,

√
M tξ, Ip −M t

)
gout

(
Y t,

√
M tξ, Ip −M t

)⊤])
. (7)

where G(X) = (Ip + X)−1X and the expectation is taken over the effective process eq. (6).
Furthermore, M t is constrained to lie in S+

p due to Nishimori-identity (section G.3 in [5]). The

limiting overlap 1/dŴ
t
W ⋆⊤ converge in probability to M t.

Appendix C. Optimality of AMP

Recall that AMP algorithm 1 is tailored to estimate the posterior marginals:

p(W |X,y) ∝
n∏

i=1

δ(yi − g(Wxi))

p∏
k=1

N (wk|0, Id). (8)

But how efficient is it? A priori, making this comparison requires sampling from the posterior
distribution, which is computationally prohibitive in the high-dimensional limit of interest here. The
second remarkable property of AMP is that its optimality with respect to the Bayesian posterior
eq. (8) can be exactly characterised in the high-dimensional regime.
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Lemma 5 (Bayes-optimal correlation) Let (xi, yi)i∈[n] denote n i.i.d. samples from the multi-
index model defined in 1. Denote by Ŵ bo = E[W |X, y] ∈ Rp×d the mean of the posterior marginals
eq. (8). Then, in the high-dimensional asymptotic limit where n, d→ ∞ with fixed ratio α = n/d, the
asymptotic correlation between the posterior mean and W ⋆:

M⋆ = lim
d→∞

E

[
1

d
Ŵ boW

⋆⊤
]

(9)

is the solution of the following sup inf problem:

sup
M̂∈S+

p

inf
M∈S+

p

{
−1

2
TrMM̂ − 1

2
log
(
Ip + M̂

)
+

1

2
M̂ + αHY (M)

}
(10)

whereHY (M) = Eξ∼N (0,Ip)[HY (m|ξ)], withHY (M |ξ) the the conditional entropy of the effective
p-dimensional estimation problem eq. (6).

Note that the state evolution eq. (7) is closely related to the sup inf problem in eq. (10). Indeed,
remarking that the update function F in eq. (7) is precisely the gradient of the entropy HY in
eq. (6), one can show that state evolution is equivalent to gradient descent in the objective defined by
eq. (10) [5]. This non-trivial fact implies that whenever eq. (10) has a single minima, AMP optimally
estimates the posterior marginals.

Finally, note that by construction Ŵ bo is the optimal estimator of W ⋆ given the data (X, y)
(in the MMSE sense). Therefore, the rank of M⋆ defines the dimension of the statistically optimal
subspace reconstruction at sample complexity α := n/d. The fact that AMP follows state evolution is
proven for such problems in [34]

Appendix D. Formalisation of Hierarchical Iterative Denoising

Here we formalise what we mean by Hierarchical Iterative Denoising

Definition 6 Let U ∈ Rp be a subspace of dimensions k. We define H⋆
E(U) to be the subspace

spanned by v ∈ U⊥ such that:

v⊤gout(Y,
√
MUξ, I −

√
MU ) = 0, (11)

almost surely over ξ ∼ N (0, Ip) and Y for any MU ∈ S+
p such that span(MU ) = U . We define

the “trivially-denoising-coupled” subspace T ⋆
U for U as the orthogonal complement of H⋆

T (U).
Analogously, let H⋆

E(U) be the subspace spanned by directions v ∈ U⊥ such that:

v⊤∂ωgout(Y,
√
MUξ, I −

√
MU )v = 0, (12)

almost surely over bxi and Y for any MU ∈ S+
p such that span(MU ) = U .

When MU is additionally a fixed point of FM , we can linearise FM along the orthogonal
complement of U . We define the easy-denoising-coupled subspace E⋆

U for U as the orthogonal
complement of H⋆

E(U). Next, suppose that MU ∈ S+
p with span(MU ) = U is further a fixed-point

of FM . Let FMU
denote the linearization of F (M) along the orthogonal complement U⊥ at

M = MU . We define the iterative denoising critical threshold αhid(MU ) at M = MU as:

1

αhid(MU )
= sup

M⊥∈U⊥
∥FMU

(M)∥F , (13)

We denote by M⋆
U the extremiser achieving the above supremum.
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The definitions above generalise the notions of trivial and easy subspaces conditionally on a
subspace U that has been previously learned, and characterise the directions whose recovery is
enabled upon learning the subspace U . Concretely, upon developing an initial overlap along U , the
directions in T ⋆

U , E
⋆
U can be recovered analogous to the recovery of T ⋆, E⋆ starting from random

initialization. We formalise this below:

Theorem 7 Let U ∈ Rp be a fixed subspace. Suppose the AMP algorithm 1 is initialised such
that M0

d = MU + ϵA, where ∥A∥ = 1 and MU is a fixed point of F (M) in eq. (7) with
span(MU ) = U . If α ≥ αhid(MU ), ∃δ > 0 such that for any sufficiently small ϵ ,M (t) ≻ δM∗

U for
some t = O(log 1/ϵ), where M∗

U is defined as in Definition 6. For α < αhid(MU ) however, there
exists an ϵ′ such that for ϵ < ϵ′,

∥∥M t
⊥
∥∥ = 0 as t → ∞, where M t

⊥ denotes the projection of M t

orthogonal to U . Furthermore, suppose that A is full-rank, then there exists an α > 0 and a δ > 0
such that is M t

d ≻ δME⋆
U

, where ME⋆
U
∈ S+

p spans E⋆
U

When E⋆
U is non-empty for some subspace U ⊆ Rp, we say that the target y = g(Wx) allows

learning through Hierarchical Iterative Denoising.

Appendix E. Relation with SQ learning

Lemma 3.1 can be related to computational models based on queries, such as SQ learning [39]:
the denoiser gout can indeed be interpreted as a non-linear transformation on the labels y 7→
gout(y,0, Ip). From this perspective, the statement on the condition for the existence of a non-empty
trivial subspace theorem 3 translates to the following condition:

E
[
gout(y,0, Ip)⟨v⊤W ⋆,x⟩

]
= E

[
E[(⟨v⊤W ⋆,x⟩|Y = y])2

]
̸= 0, (14)

where v ∈ T ⋆. Indeed, this can be interpreted as a statistical query of the type E[φ(y)ψ(x)] with
label pre-processing φ = gout. The fact that this linear correlation in the transformed labels is
non-vanishing implies that one can weakly recover v through a tailored spectral method [46]. In
fact the denoiser gout is the optimal such transformation in the sense that when gout fails to obtain a
linear correlation along v, i.e when v ∈ H⋆, then no transformation can:

Lemma 8 For any u ∈ H⋆ and any measurable transformation T : R → R:

E
[
T (y)⟨u⊤W ⋆,x⟩

]
= 0 (15)

Note that this is a non-asymptotic statement about the denoising function gout, and the expectation is
with respect to the distribution of the labels y (not the effective problem).

Proof The above is a direct consequence of the Tower law of expectation. Specifically, we have:

E
[
T (y)⟨v⊤W ⋆,x⟩

]
= E [y] T (y)E [x] ⟨v⊤W ⋆,x⟩|y.

The statement then follows by noting that gout(y,0, Ip)⊤W ⋆v = E [x] ⟨v⊤W ⋆,x⟩|y.

Similarly, we can invoke optimality of AMP to translate our result on the optimal denoiser y 7→
gout(y,0, Ip) to a statement for queries on general label pre-processing transformations:
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Lemma 9 For any v⋆ ∈ H⋆
E and any measurable transformation T : R → R:

E [T (y)He2(⟨v⋆,x⟩)] = 0 (16)

Note that this is a non-asymptotic statement about the denoising function gout, and the expectation is
with respect to the distribution of the labels y (not the effective problem from eq. (6)).

For an AMP-hard function (that is, when αc = ∞), this implies that, even after applying any
transformation to the output (as allowed in SQ) an algorithm like SGD would require at least O(d2)
data, or O(d3/2) if we allow smoothing as in [25].

Appendix F. Proofs of the main results

F.1. Linear Approximation

Throughout, we assume that gout : Rk2+k+1 → Rk is in C2.
Our analysis relies on the following result:

Lemma 10 Let F (M) be as defined in Lemma B

F (M) ≈ αF(δM) +O(α∥δM∥2F ), (17)

where ∥∥F denotes the Frobenius norm and F(δM) is a linear operator on the cone S+
p of PSD

matrices of dimension p:

F(M) := Ey

[
∂ωgout(y, 0, Ip −M)M∂ωgout(y, 0, Ip −M)⊤

]
, (18)

We proceed through an-entry-wise expansion of each term inside the expection in F (M) around
M = 0. Since MF ≤ p , the first two derivatives of gout are uniformly bounded in gout for any
fixed Y, ξ. Therefore, applying the multivariate Taylor expansion to gout(Y

t,∆1ξ, I +∆2), with
∆1 =

√
M and ∆2 =, Ip −M yields:

gout

(
Y t,

√
M tξ, Ip −M t

)
gout

(
Y t,

√
M tξ, Ip −M t

)⊤
= gout

(
Y t, 0, Ip −M t

)
gout

(
Y t, 0, Ip −M t

)⊤
+ ∂ωgout

(
Y t, 0, Ip

)√
Mξξ⊤

√
M

⊤
∂ωgout

(
Y t, 0, Ip

)⊤
+ ⟨∂V gout

(
Y t, 0, Ip

)
M⟩gout

(
Y t, 0, Ip

)⊤
+ gout

(
Y t, 0, Ip

)
⟨M,∂V gout

(
Y t, 0, Ip

)
⟩+ αC(ξ, y)O(∥M∥2F ),

where C(ξ, Y ) is an integrable function in ξ, Y . Since T ⋆ is empty, gout
(
Y t, 0, Ip

)
vanishes almost

surely over y. Therefore, using dominated-convergence theorem, we obtain:

F (M) = αE

[
gout

(
Y t,

√
M tξ, Ip −M t

)
gout

(
Y t,

√
M tξ, Ip −M t

)⊤]
= αE

[
∂ωgout

(
Y t, 0, Ip

)√
Mξξ⊤

√
M

⊤
∂ωgout

(
Y t, 0, Ip

)⊤]
+ αO(∥M∥2F )

Since at M t = 0, ξ and Y are independent, the above simplifies to:

F (M) = αEy

[
∂ωgout(y, 0, Ip −M)M∂ωgout(y, 0, Ip −M)⊤

]
+ αO(∥M∥2F )

15



FUNDAMENTAL LIMITS OF WEAK LEARNABILITY IN HIGH-DIMENSIONAL MULTI-INDEX MODELS

F.2. Proof of Lemma 4

Suppose that M ∈ S+, we have, for any v ∈ Rp:

v⊤F(M)v = αEy

[
v⊤∂ωgout(y, 0, Ip −M)M∂ωgout(y, 0, Ip −M)v

]
, (19)

since M ∈ S+, each term inside the expectation is non-negative. Therefore:

v⊤F(M)v ≥ 0 (20)

Thus, F(M) is a cone-preserving linear map. The generalised Perron-Frobenius theorem for cone-
preserving maps [40] then implies that the operator F(M) admits a unique eigenvector M∗ ∈ S+

p

corresponding to the largest eigenvalue λF such that for any M ∈ S+
p ⊥M∗:

F(M) < λF∥M∥F . (21)

Furthermore, all other eigenvalues are strictly smaller than λF . Subsequently, Lemma 10 implies
that F (M) is stable at M = 0 if and only if α ≤ 1

λF
= αc.

F.3. Proof of Theorem 11

Lemma B allows us to map the behavior of the variable M t in state-evolution to high-probability
statements for the limiting overlaps Suppose that A ∈ S+

p is a full rank matrix as in Theorem 11.
Applying Lemmas 10 and 8, we obtain that for M0 = ϵA:∥∥M t+1

∥∥
F
≤ αλF

∥∥M t
∥∥
F
+ αC

∥∥M t
∥∥2
F
, (22)

for some constantC. Now, suppose that α < 1
λF

and ϵ < 1
C (1−αλF−κ), for some 0 < κ < 1−αλF

then inductively, we obtain: ∥∥M t+1
∥∥
F
< (1− κ)

∥∥M t
∥∥
F
, (23)

for all t > 0. Implying that
∥∥M t

∥∥
F
→ 0.

Now, suppose that α > αc or equivalently αλF > 1. SinceA is full-rank admits a decomposition:

tr(A,M⋆) = θ (24)

for some θ > 0. From Lemma 4 and 10, we obtain:

tr(M t+1,M⋆) ≥ αλF tr(M t,M⋆)− αC
∥∥M t

∥∥2
F
. (25)

For
∥∥M t

∥∥ ≤ θ
C (αλF − 1− κ) for some κ > 0, we inductively obtain:

tr(M t+1,M⋆) ≥ (1 + κ) tr(M t,M⋆), (26)

implying that tr(M t+1,M⋆) grows as ω(eκt) for sufficiently small ϵ.
Finally, it remains to show that for large enough α, M t spans E⋆.
Notice that for any v ∈ E⋆:

v⊤F(vv⊤)v = Ey

[
(v⊤∂ωgout(y, 0, Ip)v)

2
]
> 0, (27)
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while for any A ∈ S+
p :

v⊤F(A)v ≥ 0, (28)

since F(A) ∈ S+
p . Define:

νF = inf v ∈ E, ∥v∥ = 1v⊤F(vv⊤)v. (29)

Since v lies in a compact set, νF > 0. Let A⋆ denote the projection of A along E⋆ and consider its
eigendecomposition A⋆:

A⋆ =

p∑
i=1

λiviv
⊤
i (30)

We
v⊤
i (M

t+1)vi ≥ ανFv
⊤
i (M

t)vi − αC
∥∥M t

∥∥2
F
. (31)

Therefore, for α ≥ 1
νF

and small enough ϵ, M t expands linearly along each vi

F.4. Proof of Theorem 7

By assumption, MU is a fixed point of F (M). Therefore, Equation 7 implies that gout(y,ω, I −√
MU ) almost surely lies in U and thus T ⋆

U is empty. The proof of Theorem 7 then follows that of 11
by considering the following linearized operator along U⊥

FMU
(M⊥) =:= Ey

[
∂ωgout(y,

√
MUξ, I −

√
MU )M⊥∂ωgout(y,

√
MUξ, I −

√
MU )

⊤
]
,

(32)
where ω =

√
MUξ with ξ ∼ N (0, I). Similar to Lemma 10, the linearization follows by noting

that y is independent of
√
M⊥ξ and

√
MU +M⊥ =

√
MU +

√
M⊥ since M⊥ ⊥ MU .

F.5. Precise statement on initialisation

Here we describe precisely what are the implications for recovery of easy direction when initialising
AMP in the prior at random.

Theorem 11 Suppose that T ⋆ = 0 and the AMP algorithm 1 is initialised at Ŵ
0

such that
M0

d := 1/dŴ
0
W ⋆⊤ = ϵA, with ∥A∥F = 1 and A being full-rank. Then, with high probability as

d → ∞, for α ≥ αc, ∃δ > 0 such that for any sufficiently small ϵ ,M t
d ≻ δM⋆ for t = O(log 1/ϵ),

where M⋆ is as defined in Lemma 4. For α < αc however, M t
d = 0 is asympotically stable i.e. there

exists an ϵ′ such that for ϵ < ϵ′,
∥∥M t

∥∥→ 0 as t→ ∞. Furthermore, there exists an α > 0 and a
δ > 0 such that is M t

d ≻ δME∗ in t = O(log 1/ϵ) iterations, where ME⋆ ∈ S+
p spans E⋆.

Heuristically, random initialization is equivalent to setting ϵ = O(1/
√
d) in the above theorem.

Therefore, we expect that weak-recovery along E⋆ can be achieved in O(log d) iterations.

Appendix G. A list of examples of the gout function

In this section, we list several problems, their corresponding gout, and analysis of their weak
recoverability.
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G.1. g(z1, z2, ...., zp) =
∏p

j=1 zj

For all p, gout(y,ω, Ip) = 0. Otherwise we have two cases We have two cases. If p = 2:

Zout(y,ω, Ip) =
K0(|y|)
π

(33)

and

∂ωgout(y,ω, Ip) =

[
|y|K1(|y|)

K0(|y|) − 1 y

y |y|K1(|y|)
K0(|y|) − 1

]
(34)

where Kn(y) are the modified Bessel functions of the second kind. If p > 3 then

Zout(y,ω, Ip) =
1

(2π)p/2
Gp,0

0,p

(
y2

2p

∣∣∣∣ 0
0, 0, . . . , 0

)
(35)

The matrix ∂ωgout(y,ω, Ip) is diagonal, with identical diagonal elements equal to f(y):

f(y) = 2Gp,0
0,p

(
y2

2p

∣∣∣∣ 0
0, 0, . . . , 0

)
/Gp,0

0,p

(
y2

2p

∣∣∣∣ 0
0, 0, . . . , 0, 1

)
− 1 (36)

The alpha critical αc will thus be

αc =

[∫ ∞

−∞
dyf(y)2Zout(y)

]−1

(37)

G.2. 1
p

∑p
i=1 z

2
i

The function is even, so gout(y,ω, Ip) = 0. The trick for the computation is to move to generalised
spherical coordinates by choosing r2 = z22 + ...z2p . Recall that the area of the unit sphere in p− 1
dimensions is

2π
p−1
2

Γ
(
p−1
2

) (38)

The matrix ∂ωgout(y,ω, Ip) is diagonal because of parity. All the elements on the diagonal are

(y − 1)2
2−

p
2 e−

py
2 (py)

p
2

Γ
(p
2

) (39)

The critical alpha will be

αc =

[∫
dy(y − 1)2

2−
p
2 e−

py
2 (py)

p
2

Γ
(p
2

) ]−1

=
p

2
(40)

Of course this procedure fail at the first step if p = 1. On the other hand, one can check that the final
result is still correct for all positive integer p.
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Figure 2: Numerical illustration of the weak learnability phase transition for the 2-sparse parity
g(z1, z2)= sign(z1z2) that has a phase transition at αc(2) = π2/4. The overlap shows
how well the directions z1 and z2 are recovered. Given the permutation symmetry in ((b)),
we show here and in all the subsequent figures the optimal permutation of the overlap
matrix elements reached by AMP. The solid black line is the prediction from the theory.
Crosses are averages over 72 runs of AMP algorithm 1 with d=500.

G.3. g(z1, . . . , zp) = sign(
∏p

j=1 zj)

We define ω = (ω1, . . . , ωp)
⊤ and vij := (V −1)i,j . We also introduce the matrix d(V ) ∈

R(p−1)×(p−1) such that

dij(V ) := det

(
vi,j vi,p
vj,p vp,p

)
, i, j ∈ 1, . . . , p, (41)

the function

Es(z ∈ Rp−1, y,ω,V ) = 1− s erf

(
v1,p(

∑p−1
j=1 vj,p(zj − ωj)− vppωp√

2vpp

)
,

the Gaussian probability density

ρ(z ∈ Rp,V ) :=
1

(2π)p/2
√

det(V )
e−

1
2
z⊤V −1z, (42)

and finally

Is(z ∈ Rp−1, y,ω,V ) := Es(z, y,ω,V )ρ


 z1 − ω2

. . .
zp−1 − ωp−1

⊤

, vppd(V )−1

 .

Then, defining R+1 = [0,+∞) and R−1 = (−∞, 0], we have that

Zout(y,ωV ) =
∑

s1,...,sp=±1

δy,(
∏

j sj)

2

∫
Rs1

dz1 . . .

∫
Rsp−1

dzp−1Isp(z, y,ω,V ). (43)
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The components of gout(y,ω,V ) are given by

(gout(y,ω,V ))k =
∑

s1,...,sp=±1

skδy,(
∏

j sj)

2

∫
Rs1

dz1 . . .

∫
Rsp−1

dzp−1Isp(z, y,ω,V )δ(zk − 0)

Stability of the fixed point We can now focus on studying the stability

Zout(y,0, I) =
1

(2π)p/2

∫
dze−

z⊤z/2δy,sign(z1...zp) =
1

2
(44)

In order to compute ∇ωgout(y,0, I), we note at first that

1

(2π)p/2

∫
dz(z2k − 1)e−

z⊤z/2δy,sign(z1...zp) = 0, ∀k ∈ {1, . . . , p}. (45)

For p = 2, consider the integral

1

2π

∫
dz1dz2 z1z2e

− z21
2
− z22

2 δy,sign(z1...zp) (46)

=
2

2π

(
δy,1

∫ ∞

0
dz1

∫ ∞

0
dz2 z1z2e

− z21
2
− z22

2 + δy,−1

∫ ∞

0
dz1

∫ 0

−∞
dz2 z1z2e

− z21
2
− z22

2

)
(47)

=
sign(y)

π
(48)

Using (4) we obtain that αc is the inverse of the largest eigenvalues of

4

π2

[
0 1
1 0

]
(49)

So αc = π2/4. We can see that this is consistent with Figure 2. For p ≥ 3, defining Rp
(±) = {z ∈

Rp| sign(z1 . . . zp) = ±1}, we need to compute integrals of the type

1

(2π)p/2

∫
Rp
(+)

dz1 . . . dzpz1z2e
− z21

2 . . . e−
z2p
2

=
2

2p−2(2π)p/2

⌊ p−2
2

⌋∑
j=0

(
p− 2
2j

)∫
R2
(+)

dz1dz2 z1z2e
− z21

2
− z22

2 +

⌊ p−1
2

⌋∑
j=1

(
p− 2
2j − 1

)∫
R2
(−)

dz1dz2 z1z2e
− z21

2
− z22

2


=

23−p

(2π)(p+2)/2

p−2∑
j=0

(
p− 2
j

)
(−1)j = 0

In the same way it is possible to prove that the integral over Rp
(−) is also vanishing. This implies that

∂ωgout = 0, so using (4), we obtain that αc = +∞. This model cannot be learned with n = O(d)
samples for p ≥ 3.
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G.4. g(z1, . . . , zp) = z21 + sign
(∏p

j=1 zj

)
We define ω = (ω1, . . . , ωp)

⊤ and vij := (V −1)i,j . We also introduce the matrix d(V ) ∈
R(p−1)×(p−1) such that

dij(V ) := det

(
vi,j vi,p
vj,p vp,p

)
, i, j ∈ 1, . . . , p, (50)

the function

Es,s1,sp(z ∈ Rp−1, y,ω,V ) = 1−sp erf

(
v1,p(s1

√
y − s− ω1) +

∑p−1
j=2 vj,p(zj − ωj)− vppωp√

2vpp

)
,

the Gaussian probability density

ρ(z ∈ Rp,V ) :=
1

(2π)p/2
√

det(V )
e−

1
2
z⊤V −1z, (51)

and finally

Is,s1,sp−1(z ∈ Rp−1, y,ω,V ) :=
Es,s1,sp(z, y,ω,V )

4
√
y − s

ρ

 s1
√
y − s− ω1

z2 − ω2 . . .
zp−1 − ωp−1

 , vppd(V )−1

 .

Then, defining R+1 = [0,+∞) and R−1 = (−∞, 0], we have that

Zout(y,ωV ) =
∑

s,s1,...,sp=±1

δs,(
∏

j sj)
1y>s

∫
Rs2

dz2 . . .

∫
Rsp−1

dzp−1Is,s1,sp(z, y,ω,V ), (52)

where 1x>0 is the Heaviside step function. The components of gout(y,ω,V ) are given by

(gout(y,ω,V ))1 =
∑

s,s1,...,sp=±1

δs,(
∏

j sj)
1y>s

Zout

∫
Rs2

dz2 . . .

∫
Rsp−1

dzp−1
∂

∂ω1
Is,s1,sp(z, y,ω,V )

(gout(y,ω,V ))k ̸=1 =
∑

s,s1,...,sp=±1

skδs,(
∏

j sj)
1y>s

Zout

∫
Rs2

dz2 . . .

∫
Rsp−1

dzp−1Is,s1,sp(z, y,ω,V )δ(zk − 0)

Stability of the fixed point The result is dependent on a number of integrals which we can compute
analytically. First we have

Zout(y,0, I) =
1

(2π)p/2

∫
dz1 . . . dzpδ(y − z21 − sign(z1 . . . zp))e

− z21
2
−...−

z2p
2 (53)

=
1

2(2π)p/2

∑
s1,...,sp=±1

1y>s√
y −

∏
j sj

∫
Rs2

dz2 . . .

∫
Rsp−1

dzp−1e
− y−s1...sp

2
− z22

2
−...−

z2p
2

(54)

=
1

2
√
2π

∑
s=±1

1y>s
e−

y−s
2

√
y − s

(55)

=
e−y/2

2
√
2πe

(
1√
y + 1

+ 1y>1
e√
y − 1

)
(56)
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From this it is straightforward to see that g0
out(y) = 0. In order to compute ∇ωgout(y, 0, 1) we need

to consider the additional integrals

1)
1

(2π)p/2

∫
dz1 . . . dzp(z

2
1 − 1)e−

z21
2
−...−

z2p
2 δ(y − z21 − sign(z1 . . . zp)) (57)

=
1

2
√
2π

∑
s=±1

1y>s
e−

y−s
2 (y − s− 1)√

y − s
(58)

=
e−y

2
√
2πe

(
y√
y + 1

+ 1y>1
e(y − 2)√
y − 1

)
(59)

2)
1

(2π)p/2

∫
dz1 . . . dzp(z

2
k ̸=1 − 1)e−

z21
2
−...−

z2p
2 δ(y − z21 − sign(z1 . . . zp)) = 0 (60)

3)
1

(2π)p/2

∫
dz1 . . . dzpzjzke

− z21
2
−...−

z2p
2 δ(y − z21 − sign(z1 . . . zp)) (61)

∝
∑

s,sj ,sk=±1

1y>ssjske
− y−s

2 = 0 (62)

(63)

This shows that

∂ωgout(y) =

C(y) 0 0
0 0 0
0 0 0

 (64)

Where C(y) is

C(y) =

{
y −1 < y < 1

y − 2e
√
y+1

e
√
y+1+

√
y−1

− 1 y > 1
(65)

The critical alpha is simply found by one last integral

αc =

[∫
dyC(y)2Zout(y)

]−1

≈ 0.575166 (66)

G.5. g(z1, . . . , zp) =
∑p

j=1 sign(zp)

We define ω = (ω1, . . . , ωp)
⊤ and vij := (V −1)i,j . We also introduce the matrix d(V ) ∈

R(p−1)×(p−1) such that

dij(V ) := det

(
vi,j vi,p
vj,p vp,p

)
, i, j ∈ 1, . . . , p, (67)

the function

Es(z ∈ Rp−1, y,ω,V ) = 1− s erf

(∑p−1
j=1 vj,p(zj − ωj)− vppωp√

2vpp

)
, (68)

the Gaussian probability density

ρ(z ∈ Rp,V ) :=
1

(2π)p/2
√

det(V )
e−

1
2
z⊤V −1z, (69)
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Figure 3: Dynamics for a single finite-size run of AMP with d = 500 at α = 4 for g(z1, z2, z3) =
z21 + sign(z1z2z3). (Left) Evolution of the overlaps. We display M11 in blue, 1/2(M22 +
M33) in red, and the off-diagonal overlaps in black. (Right) Evolution of the generalisation
error.

and finally

Is(z ∈ Rp−1, y,ω,V ) := Es(z, y,ω,V )ρ


 z1 − ω2

. . .
zp−1 − ωp−1

⊤

, vppd(V )−1

 .

Then, defining R+1 = [0,+∞), R−1 = (−∞, 0] and Sa = {s = (s1, ..., sp)|∃j = {j1, ..., ja} ⊆
{1, ..., n} s.t sj = 1 for j ∈ j and sj = −1 otherwise}, we have that

Zout =

p∑
a=1

δy,2a−p

2

∑
s∈Sa

∫
Rs1

dz1 . . .

∫
Rsp−1

dzp−1Isp(z, y,ω,V ), (70)

and the kth component of gout(y,ω,V ) is

(gout(y,ω,V ))k =
1

Zout

p∑
a=1

δy,2a−p

2

∑
s∈Sa

sk

∫
Rs1

dz1 . . .

∫
Rsp−1

dzp−1Isp(z, y,ω,V )δ(zk − 0)

Appendix H. Further numerical observations and details

Here we give more details about the numerical implementation of State Evolution and AMP. Both
approaches require to compute gout. All the examples we implemented are detailed in Appendix G.

The integrals in gout are performed with the quadrature package in Scipy. In order to avoid
instabilities we regularize the interval of integration by replacing ∞ with Λ. We typically choose
Λ ≈ 10. Similarly, we add ϵ ≈ 10−4 to the diagonal of V . In State Evolution we need to integrate
over functions of gout. We do these integrals using a simple Monte Carlo approach. For Figures 2 and
1 we used a total 72000 samples. Computing such integrals is the numerical bottleneck. In order to
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Algorithm 1 Multi-index AMP
Input: Data X ∈ Rn×d, y ∈ Rn

Initialize Ŵ
t=0 ∈ Rp×d, Ĉt=0

k ∈ S+
p for k ∈ [d], gt=0 ∈ Rn×p.

for t ≤ T do
/* Update likelihood mean and variance
V t
i =

∑d
k=1X

2
ikĈk ∈ Rp×p; ωt

i =
∑d

k=1XikŴ
t
k − V t

i g
t−1
i ∈ Rp, i ∈ [n];

gt
i = gout(yi,ω

t
i ,V

t
i ) ∈ Rp ; ∂gt

i = ∂ωgout(yi,ω
t
i ,V

t
i ) ∈ Rp×p ; i ∈ [n]

/* Update prior first and second moments
At

k = −
∑n

i=1X
2
ik∂g

t
i ∈ Rp×p ; btk =

∑
i∈[n]Xikg

t
i +At

kŴ
t
k; k ∈ [d]

Ŵ
t+1
k = (Ip +At

k)
−1btk ∈ Rp ; Ĉt+1

k = (Ip +At
k)

−1 ∈ Rp×p, k ∈ [d]
end for
Return: Estimators Ŵ amp ∈ Rp×d, Ĉamp ∈ Rd×p×p

make this part faster we parallelised the MCMC: for each iteration of State Evolution we make every
worker in our pool estimate the integral, and then average the estimation and then average among
workers. In the cases in which M = 0 is a fixed point, we initialize M with the empirical overlap
of AMP at the beginning of the iteration. We describe in detail the AMP iteration in 1. In both the
AMP and State Evolution implementation we used some damping: the overlap M or the Ŵ at the
new iterations are averaged with the current value, with a weight δ for the new one, where typically
0.6 < δ < 0.9. We display the evolution of the overlaps in a typical run of AMP for the model
z21 + sign(z1z2z3) in Figure 3. We already displayed the values of the overlap and generalisation
error at convergence in Figure 1. We can see how AMP has a saddle-to-saddle dynamic, where the
algorithm alternates plateaus for O(log d) iterations to fast drops in generalisation error, which are
associated with new directions being learned.

As stated in the main text, models non-trivial subspaces are associated with symmetries. This
also implies that the associated overlaps are have the same invariances. In order to make the plots
readable we remove all such symmetries by hand. For this reason we take the absolute value of the
overlap if the model is even, and we impose a specific inequality in the overlap if there is invariance
under permutation. As a general idea we want to always have the ”best” possible overlap. Meaning
we want M to be as diagonal as possible. We list what this mean for the examples in the figures:

• sign(z1z2): Because of invariance under exchange of z1 and z2 we always have M11 = M22.
Here AMP can reach 2 equivalent configurations: either the diagonal or the anti-diagonal is
zero. We choose the configuration where the anti-diagonal is zero.

• z21 + sign(z1z2z3): This model will first learn just z1. We fix M11 > 0. For the rest of the
components we are reduced to the case above.

• sign(z1) + sign(z2) + sign(z3): Because of the invariance under permutation each row of
M will have either the same element in all the entries (in which case we don’t need to do
anything) or two are the same and one is bigger. We permute the matrix such that the largest
entry is on the diagonal.
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