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Abstract

Exact inference of marginals in probabilistic graphical models (PGM) is known to
be intractable, necessitating the use of approximate methods. Most of the existing
variational techniques perform iterative message passing in loopy graphs which is
slow to converge for many benchmarks. In this paper, we propose a new algorithm
for marginal inference that is based on the incremental build-infer-approximate
(IBIA) paradigm. Our algorithm converts the PGM into a sequence of linked clique
tree forests (SLCTF) with bounded clique sizes, and then uses a heuristic belief
update algorithm to infer the marginals. For the special case of Bayesian networks,
we show that if the incremental build step in IBIA uses the topological order of
variables then (a) the prior marginals are consistent in all CTFs in the SLCTF and
(b) the posterior marginals are consistent once all evidence variables are added to
the SLCTF. In our approach, the belief propagation step is non-iterative and the
accuracy-complexity trade-off is controlled using user-defined clique size bounds.
Results for several benchmark sets from recent UAI competitions show that our
method gives either better or comparable accuracy than existing variational and
sampling based methods, with smaller runtimes.

1 Introduction

Discrete probabilistic graphical models (PGM) including Bayesian networks (BN) and Markov
networks (MN) are used for probabilistic inference in a wide variety of applications. An important
task in probabilistic reasoning is the computation of posterior marginals of all the variables in the
network. Exact inference is known to be #P-complete [Roth, 1996], thus necessitating approximations.
Approximate techniques can be broadly classified as sampling based and variational methods.

Sampling based methods include Markov chain Monte Carlo based techniques like Gibbs sam-
pling [Gelfand, 2000, Kelly et al., 2019] and importance sampling based methods [Gogate and
Dechter, 2011, Friedman and Van den Broeck, 2018, Kask et al., 2020, Broka, 2018, Lou et al.,
2019, 2017a,b, Marinescu et al., 2019, 2018]. An advantage of these methods is that accuracy can
be improved with time without increasing the required memory. However, in many benchmarks
the improvement becomes slow with time. Moreover, many of the recent sampling/search based
techniques Kask et al. [2020], Broka [2018], Lou et al. [2019, 2017a,b], Marinescu et al. [2019,
2018] have been evaluated either for approximate inference of partition function (PR) or for finding
the marginal maximum a posteriori assignment (MMAP). Currently, there are no published results
for posterior marginals (MAR) using these methods, and the publicly available implementations do
not support the MAR task. Alternatively, variational techniques can be used. These include loopy
belief propagation (LBP) [Frey and MacKay, 1998] region-graph based techniques like generalized
belief propagation (GBP) [Yedidia et al., 2000] and its variants [Heskes et al., 2003, Mooij and
Kappen, 2007, Lin et al., 2020], mini-bucket based schemes like iterative join graph propagation

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



(IJGP) [Mateescu et al., 2010] and weighted mini-bucket elimination (WMB) [Liu and Ihler, 2011]
and methods that simplify the graph structure like edge deletion belief propagation (EDBP) and the
related relax-compensate-recover (RCR) techniques [Choi et al., 2005, Choi and Darwiche, 2006,
2010]. While the accuracy-complexity trade-off can be achieved using a single user-defined clique
size bound in mini-bucket based methods, it is non-trivial in many of the other region graph based
methods. Most of these techniques use iterative message passing to solve an optimization problem,
for which convergence is not guaranteed and even if possible, can be slow to achieve. Non-iterative
methods like Deep Bucket Elimination (DBE) [Razeghi et al., 2021] and NeuroBE [Agarwal et al.,
2022] are extensions of bucket elimination that approximate messages using neural networks. How-
ever, training these networks takes several hours. Moreover, the publicly available implementations
of these methods do not support the MAR task.

The recently proposed incremental build-infer-approximate (IBIA) framework [Bathla and Vasudevan,
2023] uses a different approach. It converts the PGM into a sequence of calibrated clique tree forests
(SCTF) with clique sizes bounded to a user-defined value. Bathla and Vasudevan [2023] show that the
normalization constant (NC) of clique beliefs in the last CTF in the sequence is a good approximation
of the partition function of the overall distribution. This framework has two main advantages. Firstly,
since it is based on clique trees and not loopy graphs, the belief propagation step is non-iterative.
Therefore, it is fast and has no issues related to convergence. Secondly, it provides an easy control
of the accuracy complexity trade-off using two user-defined parameters and hence can be used in
anytime manner. However, the framework in Bathla and Vasudevan [2023] cannot be used to infer
marginals. This is because only the clique beliefs in the last CTF account for all factors in the PGM.
Beliefs in all other CTFs account for a subset of factors and thus, cannot be used for inference of
marginals.

Contributions of this work: In this paper, we propose a method for marginal inference that uses
the IBIA framework. We show that the approximation algorithm used in this framework preserves
the within-clique beliefs. Based on this property, we modify the data structure generated by IBIA to
add links between adjacent CTFs. We refer to the modified data structure as a sequence of linked
clique tree forests (SLCTF). We propose a heuristic belief update algorithm that back-propagates
beliefs from the last CTF to the previous CTFs via the links and re-calibrates each CTF so that the
updated beliefs account for all factors in the PGM. We also propose a greedy heuristic for the choice
of links used for belief update. Results for several UAI benchmark sets show that our method gives
an accuracy that is better than or comparable to the existing variational and sampling based methods,
with competitive runtimes.

For the special case of BNs, we show that if the incremental build step in IBIA is performed in the
topological order of variables then (a) the estimated partition function is guaranteed to be one if
no evidence variables are present (b) the prior marginals of all variables are consistent across all
CTFs in the sequence and (c) once all the evidence variables have been added to the SLCTF, the
posterior marginals of variables in subsequent CTFs are consistent. Our results show that using
the topological ordering for BNs leads to better estimates of partition function, prior marginals and
posterior marginals in most benchmarks.

2 Background

2.1 Discrete Probabilistic Graphical Models

Let X = {X1, X2, · · ·Xn} be a set of random variables with associated domains D =
{DX1 , DX2 , · · ·DXn}. The probabilistic graphical model (PGM) over X consists of a set of factors,
Φ, where each factor ϕα(Xα) ∈ Φ is defined over a subset of variables, Scope(ϕα) = Xα. If Dα

denotes the Cartesian product of the domains of variables in Xα, then ϕα : Dα → R ≥ 0. The
joint probability distribution captured by the PGM is P (X ) = 1

Z

∏
α ϕα, where Z =

∑
X
∏

α ϕα

is the partition function. PGMs can be broadly classified as Markov networks (MN) which are the
undirected models and Bayesian networks (BN) which are the directed models.

One method to perform exact inference involves converting the PGM into a clique tree (CT), which
is a hypertree where each node Ci is a clique that contains a subset of variables. We use the term
Ci as a label for the clique as well as to denote the set of variables in the clique. An edge between
Ci and Cj is associated with a set of sepset variables denoted Si,j = Ci ∩ Cj . Exact inference in a
CT is done using the belief propagation (BP) algorithm [Lauritzen and Spiegelhalter, 1988] that is
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Figure 1: Conversion of the PGM, Φ, into a sequence of calibrated CTFs (SCTF) using the IBIA frame-
work. (a) Overall methodology. (b) Construction of SCTF = {CTF1, CTF2} for a PGM, Φ =
{ϕ(d,m, o), ϕ(j, h), ϕ(i, l), ϕ(f,m, n), ϕ(h, i), ϕ(d, h, k), ϕ(f, d, h), ϕ(j,m), ϕ(k, l, o), ϕ(f, o)},
with mcsp and mcsim set to 4 and 3 respectively. CTF0 is formed using cliques corresponding to
factors ϕ(d,m, o), ϕ(j, h), ϕ(i, l). CTF1 contains all factors except ϕ(k, l, o), ϕ(f, o). These factors
are added to CTF2.

equivalent to two rounds of message passing along the edges of the CT. The algorithm returns a CT
with calibrated clique beliefs β(Ci) and sepset beliefs µ(Si,j). In a calibrated CT, all clique beliefs
have the same normalization constant (Z) and beliefs of all adjacent cliques agree over the marginals
of the sepset variables. The joint probability distribution, P (X ), can be rewritten as follows.

P (X ) =
1

Z

∏
i∈VT

β(Ci)∏
(i,j)∈ET

µ(Si,j)
(1)

where VT and ET are the set of nodes and edges in the CT. The marginal probability distribution of a
variable Xi can be obtained by marginalizing the belief of any clique C that contains Xi as follows.

P (Xi) =
1

Z

∑
C\Xi

β(C) (2)

We use the following definitions in this paper.
Definition 1. Clique Tree Forest (CTF): Set of disjoint clique trees.
Definition 2. Clique size: The clique size cs of a clique C is the effective number of binary variables
contained in C. It is computed as follows.

cs = log2 (
∏

Xi ∈ C

|DXi
| ) (3)

where |DXi | is the cardinality or the number of states in the domain of the variable Xi.
Definition 3. Prior marginals (P (Xi)): It is the marginal probability of a variable Xi when the PGM
has no evidence variables.
Definition 4. Posterior marginals (P (Xi|E = e)): It is the conditional probability distribution of a
variable Xi, given a fixed evidence state e.

2.2 Overview of IBIA framework

Methodology: The IBIA framework proposed in Bathla and Vasudevan [2023] converts the PGM
into a sequence of calibrated CTFs (SCTF) with bounded clique sizes. IBIA starts with an initial
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CTF, CTF0, that contains cliques corresponding to factors with disjoint scope. Figure 1a illustrates
the overall methodology used in the framework. It uses three main steps as described below.

Incremental Build: In this step, a CTF, CTFk, is constructed by incrementally adding factors in the
PGM to an initial CTF (CTF0 or CTFk−1,a) until the maximum clique size reaches a user-specified
bound mcsp. Methods for incremental construction of CTs have been proposed in Bathla and
Vasudevan [2023] and Flores et al. [2002]. Either of the two methods can be used to incrementally
add new factors.

Infer: In this step, all CTs in CTFk are calibrated using the standard belief propagation algorithm.

Approximate: In this step, CTFk is approximated to give an approximate CTF, CTFk,a, that has
clique sizes reduced to another user-specified bound mcsim.

As shown in Figure 1a, IBIA constructs the SCTF = {CTF1, . . . , CTFn} by repeatedly using the
incremental build, infer and approximate steps. This process continues until all factors in the PGM
are added to some CTF in the SCTF. Figure 1b shows the SCTF generated by IBIA for an example
PGM, Φ (specified in the caption to the figure), with clique size bounds mcsp and mcsim set to 4
and 3 respectively. For the purpose of illustrating all steps, the disjoint cliques corresponding to
factors ϕ(d,m, o), ϕ(i, l) and ϕ(j, h) are chosen as the initial CTF, CTF0. CTF1 is constructed by
incrementally adding factors to CTF0. All factors except ϕ(k, l, o) and ϕ(f, o) are added to CTF1.
These two factors are deferred since their addition results in clique sizes greater than mcsp = 4.
CTF1 is calibrated using BP and then approximated to give CTF1,a with clique sizes bounded to
mcsim = 3. CTF2 is constructed by adding the remaining factors to CTF1,a. We will use this
example to explain the steps in our method for inference of marginals.

Approximate step: Since our inference algorithm is based on the properties of the approximate CTF,
we explain this step in more detail using the running example shown in Figure 1b. Variables f, k, l
and o in CTF1 are also present in the deferred factors ϕ(k, l, o) and ϕ(f, o). These variables are
needed for the construction of subsequent CTFs and are called interface variables (IV). All other
variables in CTF1 are called non-interface variables (NIV). CTF1,a is initialized as the minimal
subgraph that connects the IVs. This subgraph contains all cliques in CTF1 except clique fmn.
Approximation involves two main steps to reduce the number of cliques and clique sizes.
1. Exact marginalization: The goal of this step is to remove as many NIVs as possible while
ensuring that the overall joint distribution is preserved. NIV j is present in a single clique hmj and is
marginalized out from it by summing over the states of j. The resulting clique hm is a non-maximal
clique that is contained in clique fdhm, and is thus removed. NIV i is removed after collapsing the
two containing cliques hi and il. Exact marginalization of the other NIVs results in collapsed cliques
with size greater than mcsim = 3, and is not performed.
2. Local marginalization: In this step, clique sizes are reduced by marginalizing variables from
individual cliques with size greater than mcsim while ensuring that (a) CTF1,a is a valid CTF that
satisfies the running intersection property (RIP) (b) a connected CT in CTF1 remains connected in
CTF1,a and (c) CTF1,a contains all IVs. To reduce the size of the large-sized clique fdhm, NIV
d is locally marginalized from this clique. In order to satisfy RIP, it needs to be marginalized from
either clique dmo or dhk as well as the corresponding sepsets. Here, d is locally marginalized from
clique dmo and the corresponding sepsets to give CTF1,a as shown in the figure. Since all cliques
containing d are not collapsed before marginalization, this results in an approximate joint distribution.
Propositions 5 and 6 in Bathla and Vasudevan [2023] show that all CTs in the approximate CTF
obtained after exact and local marginalization are valid and calibrated.

3 Inference of marginals

In this section, we first discuss some of the properties satisfied by the SCTF generated by IBIA.
Based on these properties, we then describe the proposed methodology for inference of marginals.

3.1 Properties of SCTF

We show that each CTFk in SCTF and the corresponding approximate CTF, CTFk,a, satisfy the
following properties. The detailed proofs for these properties are included in the supplementary
material and the main ideas used in the proofs are discussed here.
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Proposition 1. The joint belief of variables contained within any clique in the approximate CTF,
CTFk,a, is the same as that in CTFk.

Proof Sketch. Both exact and local marginalization involve summing clique beliefs over the states of
a variable, which does not alter the joint belief of the remaining variables in the clique.

Proposition 2. The clique beliefs in CTFk account for all factors added to {CTF1, . . . , CTFk}.

Proof Sketch. CTF1 is exact, with clique beliefs corresponding to the partial set of factors used to
form CTF1. CTF1,a is a calibrated CTF that is obtained after approximating CTF1. Thus, the joint
belief of variables in CTF1,a is an approximation of the beliefs encoded by factors added to CTF1.
CTF2 is obtained after adding new factors to CTF1,a. Therefore, after calibration, clique beliefs
in CTF2 account for factors added to CTF1 and CTF2. The proposition follows, since the same
argument holds true for all CTFs in the sequence.

BNs can be handled in a similar manner as MNs by using the undirected moralized graph correspond-
ing to the BN. Another possibility is to use the directed acyclic graph (DAG) corresponding to the
BN to guide the incremental build step. In contrast to MNs where all factors are un-normalized, each
factor in a BN is the conditional probability distribution (CPD) of a variable y given the state of its
parents in the DAG (Pay). Factors corresponding to the evidence variables are simplified based on
the given state and hence become un-normalized.

For BNs, the following properties hold true if each CTF in the SCTF is built by adding factors in
the topological order. By this, we mean that the factor corresponding to the variable y is added only
after the factors corresponding to all its parent variables, Pay, have been added to some CTF in the
sequence. Let Yk denote the set of variables whose CPDs are added during construction of CTFk,
ek denote the evidence states of all evidence variables in Yk and PaYk

denote the parents of variables
in the set Yk.
Proposition 3. The product of factors added in CTFs, {CTF1, . . . , CTFk} is a valid joint probability
distribution whose normalization constant is the probability of evidence states e1, . . . , ek.

Proof. For each variable y ∈ {Y1, . . . , Yk}, the corresponding CPD, P (y|Pay), is added to some
CTF in {CTF1, . . . , CTFk}. The proposition follows since the CPDs corresponding to parents of y
are always added to a CTF before the CPD of y is added.

Proposition 4. The normalization constant of the distribution encoded by the calibrated beliefs in
CTFk is the estimate of probability of evidence states e1, . . . , ek.

Proof Sketch. Using Proposition 3, the normalization constant (NC) of the distribution encoded
by CTF1 is P (e1). Using Proposition 1, the approximation algorithm preserves the within-clique
beliefs and hence the NC. Thus, the NC of CTF1,a is also P (e1). Although the NC is the same, the
overall distribution corresponding to CTF1,a is approximate due to local marginalization. CTF2

is constructed by adding CPDs of variables in Y2 to CTF1,a. CPDs of parent variables in PaY2 are
added either in CTF1 or CTF2. Hence, after calibration, we get a valid probability distribution with
NC as the estimate of probability of evidence states e1, e2. A similar procedure can be used to show
that the property holds for all CTFs.

Corollary 1. For a BN with no evidence variables, the normalization constant of any CT in CTFk is
guaranteed to be one.
Theorem 1. Let IE denote the index of the last CTF in the sequence where the factor corresponding
to an evidence variable is added. The posterior marginals of variables present in CTFs {CTFk, k ≥
IE} are preserved and can be computed from any of these CTFs.

Proof Sketch. Once all evidence variables are added, additional CPDs added in each new CTF in
{CTFk, k > IE} correspond to the successors in the BN. Since none of the successors are evidence
variables, the corresponding CPDs are normalized and hence cannot change the beliefs of the previous
variables.

Corollary 2. For a BN with no evidence variables, the estimate of prior marginals obtained from
any CTF in the sequence is the same.
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3.2 Proposed algorithm for inference of marginals

We first explain our approach for estimation of marginals with the help of the example shown in
Figure 1b. Following this, we formally describe the main steps in our algorithm.

The SCTF generated by IBIA for the example in Figure 1b contains two CTFs, CTF1 and CTF2.
Using Proposition 2, we know that calibrated clique beliefs in CTF2 account for all factors in the
PGM, Φ. Therefore, the marginals of all variables present in it can be inferred using Equation 2.
However, clique beliefs in CTF1 do not account for factors ϕ(k, l, o) and ϕ(f, o) which were added
during the construction of CTF2. Therefore, in order to infer the marginals of variables n, j, i that
are present only in CTF1, we need to update the beliefs to account for these two factors.

Figure 2 shows CTF1, CTF1,a and CTF2 for the example. Using Proposition 1, we know that the
joint belief of variables present within any clique in CTF1,a is the same as that in CTF1. However,
this belief changes when new factors are added during the construction of CTF2. For instance,
β(C2

′) =
∑

d β(C2) ̸=
∑

o β(C̃2). To reflect the effect of new factors added in CTF2, the joint
belief of variables in clique C2 can be updated as follows.

βupdated(C2) =
β(C2)∑
d

β(C2)

∑
o

β(C̃2)

To make sure that CTF1 remains calibrated, this must be followed by a single round
of message passing in CTF1 with C2 as the root node. It is clear that a sim-
ilar belief update is needed for all the variables in CTF1,a. However, every up-
date and subsequent round of message passing will override the previous updates.

CTF1 :

C̃3 : dhk

C3
′ : dhk

C3 : dhk

C2 : fdhm C4 : hi C5 : il

C1 : dmo

C0 : fmn C6 : hmj

CTF1,a : C1
′ : mo C2

′ : fhm C4
′ : hl

CTF2 : C̃2 : fmoh C̃4 : ohkl

fhm h

dhkmo

l

Figure 2: Links between corresponding cliques in CTF1,
CTF1,a and CTF2 for the example shown in Figure 1b.
All links (C,C ′, C̃) are marked with dashed magenta
lines and the link variables corresponding to each link
are marked in magenta color.

Hence, the beliefs in CTF1 will only
approximately reflect the effect of ad-
ditional factors in CTF2. To improve
accuracy, we propose a heuristic proce-
dure for belief update sequence.

Formally, the steps in our algorithm are
as follows. Variables present in CTFk,a

are present in both CTFk and CTFk+1.
We refer to these variables as the link
variables. We first find links between
corresponding cliques C ∈ CTFk,
C ′ ∈ CTFk,a and C̃ ∈ CTFk+1. Each
link (C,C ′, C̃) is associated with a set
of link variables Vl = C ∩ C ′. For the
example, links between CTF1, CTF1,a

and CTF2, and the corresponding link
variables are shown in magenta in Fig-
ure 2. The first part of a link contains
cliques C ′ and C. It is obtained as fol-
lows.

(a) If C ′ is obtained after collapsing a
set of cliques {C1, · · ·Cm} in CTFk,
C ′ is linked to each of {C1, · · ·Cm}. For example, C4

′ is linked to C4 and C5, which were collapsed
during exact marginalization of variable i.

(b) If C ′ is obtained from C in CTFk after local marginalization, C ′ is linked to C. In the example,
cliques C1

′ and C2
′ are obtained after local marginalization of variable d from cliques C1 and C2

respectively. Hence, the corresponding tuples are (C1, C1
′) and (C2, C2

′).

(c) If C ′ is same as clique C in CTFk, C ′ is linked to C. For example, C3 is linked to C3
′.

The second part links C ′ to C̃ in CTFk+1 such that C ′ ⊆ C̃ . This is always possible since CTFk+1

is obtained after incrementally modifying CTFk,a to add new factors. Thus, each clique in CTFk,a

is contained in some clique in CTFk+1. For example, C1
′ ⊂ C̃2 and the link is (C1, C1

′, C̃2).
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Let Lk denote the set of links between CTFk and CTFk+1. We refer to the modified data structure
consisting of the sequence of calibrated CTFs, SCTF = {CTFk} and a list of links between all
adjacent CTFs, SL = {Lk}, as the sequence of linked CTFs (SLCTF). Once the SLCTF is created,
starting from the final CTF in the SLCTF, we successively back-propagate beliefs to the preceding
CTFs via links between adjacent CTFs. To back-propagate beliefs from CTFk+1 to CTFk, we
choose a subset of links in Lk based on heuristics, which will be discussed later. Then, for each
selected link (C,C ′, C̃), we update the belief associated with clique C as follows.

βupdated(C) =

 β(C)∑
C\Vl

β(C)

 ∑
C̃\Vl

β(C̃) (4)

where, Vl = C ∩C ′. This is followed by one round of message passing from C to all other cliques in
the CT containing C. Once all CTFs are re-calibrated, we infer the marginal distribution of a variable
using Equation 2 from the last CTF in which it is present.

For BNs, if incremental build is performed by adding variables in the topological order, then as shown
in Theorem 1, the singleton marginals are consistent in CTFs {CTFk≥IE}, where IE is the index of
the last CTF to which the factor corresponding to an evidence variable is added. Therefore, in this
case, back-propagation of beliefs can be performed starting from CTFIE instead of starting from the
last CTF. This reduces the effort required for belief update.

Heuristics for choice of links: To ensure that beliefs of all CTs in CTFk are updated, at least one
link must be chosen for each CT. It is also clear that for any CT in CTFk more than one link may be
required since variables that have low correlations in CTFk could become tightly correlated when
new factors are added in CTFk+1. However, belief update via all links is expensive since a round of
message passing is required for each link. Based on results over many benchmarks, we propose the
following greedy heuristic to choose and schedule links for backward belief update.

(a) To minimize the number of selected links, we first choose a subset of link variables for which the
difference in posterior marginals in adjacent CTFs, CTFk and CTFk+1, is greater than a threshold.
Next, for belief update, we select a minimal set of links that cover these variables.

(b) The updated beliefs depend on the order in which the links are used for update. Based on the
difference in marginals, we form a priority queue with the cliques containing link variables that have
the lowest change in marginals having the highest priority. This is to make sure that large belief
updates do not get over-written by smaller ones. This could happen for example, if two variables,
v1 and v2, that are highly correlated in CTFk become relatively uncorrelated in CTFk+1 due to the
approximation. Assume that new factors added to CTFk+1 affect v1 but not v2. A belief update via
the link containing v1 will make sure that its belief is consistent in CTFk and CTFk+1. Later, if
we perform a belief update using a link containing v2, the previous larger belief update of v1 will be
overwritten by something smaller since the belief of v2 is not very different in the two CTFs.

Complexity: Let NCTF be the number of CTFs in the sequence, and Nl be the maximum number of
selected links between any two adjacent CTFs. IBIA requires 2NCTF rounds of message passing for
calibrating CTFs and (NCTF − 1)Nl rounds for belief update. Therefore, the runtime complexity of
IBIA is O(NCTFNl2

mcsp). To perform backpropagation of beliefs, all CTFs need to be stored and
the memory complexity is O(NCTF 2

mcsp).

4 Results

All experiments were carried out on an Intel i9-12900 Linux system running Ubuntu 22.04.

Error metrics: For each non-evidence variable Xi, we measure error in terms of Hellinger distance
between the exact marginal distribution P (Xi) and the approximate marginal distribution Q(Xi). It
is computed as follows.

HD =
1√
2

√ ∑
s∈Domain(Xi)

{
√

P (Xi = s)−
√
Q(Xi = s) }2 (5)

We use two metrics namely, the average Hellinger distance (denoted as HDavg) and the maximum
Hellinger distance (denoted as HDmax) over all non-evidence variables in the network.
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Table 1: Comparison of average HDavg and average HDmax (shown in gray background) obtained
using various inference methods with two runtime constraints, 2 min and 20 min. The minimum error
obtained for each time limit is highlighted in bold. Entries are marked as ‘-’ where all instances could
not be solved within the set time limit. The total number of instances solved by each method is shown
in the last row. eva: average number of evidence variables, va: average number of variables, fa:
average number of factors, wa: average induced width and dma: average of the maximum variable
domain size.

Total Average stats 2 min 20 min
#Inst (eva, va, fa, wa, dma) LBP WMB IJGP ISSwc IBIA20 LBP WMB IJGP ISSwc IBIA23

BN 97 (76,637,637,28,10) - 0.037 - - 2E-4 0.023 0.025 - - 6E-5
- 0.228 - - 9E-3 0.230 0.170 - - 2E-3

GridBN 29 (0,595,595,37,2) 0.075 0.066 0.011 0.003 5E-6 0.075 0.048 0.010 0.001 2E-7
0.478 0.416 0.111 0.051 7E-4 0.478 0.381 0.094 0.015 1E-4

Bnlearn 26 (0,256,256,7,16) 0.010 0.005 0.011 0.012 7E-5 0.010 5E-6 0.008 0.006 7E-6
0.089 0.021 0.050 0.064 0.002 0.089 1E-4 0.025 0.028 2E-4

Pedigree 24 (154,853,853,24,5) 0.075 0.018 0.035 0.033 0.009 0.075 0.015 0.033 0.021 0.008
0.555 0.253 0.470 0.292 0.204 0.555 0.194 0.446 0.234 0.198

Promedas 64 (7,618,618,21,2) 0.032 0.055 0.124 0.030 0.013 0.032 0.043 0.120 0.021 0.010
0.168 0.295 0.504 0.139 0.086 0.168 0.245 0.487 0.096 0.072

DBN 36 (653,719,14205,29,2) - 0.069 0.081 0.016 0.020 - 0.018 0.060 2E-6 0.003
- 0.883 0.919 0.766 0.261 - 0.544 0.879 2E-4 0.098

ObjDetect 79 (0,60,210,6,16) 0.022 0.001 0.004 0.018 0.002 0.022 2E-4 3E-5 0.009 4E-4
0.130 0.010 0.037 0.189 0.020 0.130 0.003 3E-4 0.061 0.006

Grids 8 (0,250,728,22,2) 0.433 0.146 0.247 - 0.088 0.433 0.089 0.123 0.056 0.002
0.905 0.343 0.713 - 0.300 0.905 0.221 0.423 0.209 0.099

CSP 12 (0,73,369,12,4) 0.019 0.033 0.026 - 0.002 0.019 0.022 0.017 0.054 2E-4
0.066 0.101 0.134 - 0.011 0.066 0.057 0.073 0.093 0.003

Segment 50 (0,229,851,17,2) 0.035 1E-4 5E-6 5E-6 6E-5 0.035 5E-6 5E-6 5E-6 1E-7
0.258 0.002 7E-5 7E-5 0.001 0.258 7E-5 7E-5 7E-5 4E-7

Protein 68 (0,59,176,6,77) 5E-4 0.005 0.003 0.003 6E-4 5E-4 0.003 0.007 0.001 3E-5
0.007 0.102 0.094 0.049 0.039 0.007 0.066 0.230 0.015 0.002

#Inst 493 481 493 487 485 493 485 493 491 487 493

Benchmarks: We used the benchmark sets included in UAI repository [Ihler, 2006] and the Bayesian
network repository [Scutari, 2007]. We classify instances for which exact solutions are present in the
repository as ‘small’ and others as ‘large’.

Methods used for comparison: In the UAI 2022 inference competition [UAI, 2022], the uai14_mar
solver had the highest score for the MAR task. It is an amalgam of solvers that dumps solutions
with different methods based on the given time and memory constraints. It uses loopy BP (LBP),
generalized BP on loopy graphs where outer regions are selected using mini-bucket heuristics, and
cutset conditioning of GBP approximations. The implementation of this solver is not publicly
available. Therefore, we have compared our results individually with methods that belong to
categories of methods used in uai14_mar. This includes LBP [Murphy et al., 1999], IJGP [Mateescu
et al., 2010] and sample search [Gogate and Dechter, 2011] which is an importance sampling based
technique that uses an IJGP based proposal and cutset sampling (referred to as ‘ISSwc’ in this paper).
We also compare our results with weighted mini-bucket elimination (WMB) [Liu and Ihler, 2011].
Additional results showing a comparison with results published in Kelly et al. [2019] are included in
the supplementary material.

Evaluation setup: The implementation of LBP and WMB were taken from LibDAI [Mooij, 2010,
2012] and Merlin [Marinescu, 2016] respectively. For IJGP and ISSwc, we used implementa-
tions [Gogate, 2010, 2020] provided by the authors of these methods. LBP, IJGP, ISSwc and WMB
are implemented in C++. IBIA on the other hand has been implemented in Python3 and is thus, at a
disadvantage in terms of runtime. We report results with runtime limits of 2 min and 20 min for small
instances. In all cases, the memory limit was set to 8GB, which is the same as that used in UAI 2022
competition [UAI, 2022]. For IBIA, we set the maximum clique size bound mcsp to 20 (referred
to as ‘IBIA20’) when the time limit is 2 min and we set it to 23 (referred to as ‘IBIA23’) when the
time limit is 20 min. mcsim is empirically chosen as 5 less than mcsp. The evaluation setup used for
other methods is included in the supplementary material.
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Results: Table 1 has the results for the small benchmark sets. It reports the average of HDavg and
HDmax over all instances in each set. We compare results obtained using LBP, WMB, IJGP, IBIA20,
IBIA23 and ISSwc for both time constraints. The minimum error obtained for each time limit is
marked in bold. IBIA20 and IBIA23 solve all small instances within 2 min and 20 min respectively.
In 2 min, the accuracy obtained with IBIA20 is better than all other solvers for most benchmarks.
For ObjDetect, Segment and Protein, it is comparable to WMB, IJGP/ISSwc and LBP respectively,
which give the least errors for these testcases. In 20 min, IBIA23 gives lower or comparable errors
in all testcases except DBN and ObjDetect. For DBNs, ISSwc reduces to exact inference in most
instances and hence error obtained is close to zero. For ObjDetect, IJGP gives the least error closely
followed by IBIA23. Note that for many benchmarks the accuracy obtained with IBIA20 in 2 min is
either better than or comparable to the accuracy obtained with other solvers in 20 min.

A comparison of IBIA with results published in Kelly et al. [2019] for Gibbs sampling with Rao-
blackwellisation (ARB) and IJGP is included in the supplementary material. It is seen that error
obtained with IBIA is lower than both methods in majority of the testcases.

For BN instances, Table 2 compares the results obtained using IBIA20 when CTFs are con-
structed by adding factors in the topological order (columns marked as ‘TP’) with that obtained
using a non-topological order (columns marked as ‘NTP’). We compare the maximum error
in partition function (PR) and the average HDmax over all instances in each benchmark set.

Table 2: Comparison of maximum error in PR and aver-
age HDmax obtained using IBIA20 with CTFs constructed
by adding factors in topological order (shown in columns
marked ‘TP’) and that obtained using a non-topological order
(shown in columns marked ‘NTP’). eva: Average number
of evidence variables, ∆PR = | log10 PR − log10 PR∗ |
where PR and PR∗ are estimated and exact values.

Max ∆PR Avg HDmax

#Inst eva NTP TP NTP TP
Bnlearn 26 0 0.02 0 0.023 0.002
GridBN 29 0 0.09 0 0.231 0.001
Promedas 64 7 1.5 0.4 0.322 0.086
BN 97 76 0.07 0.02 0.116 0.009
Pedigree 24 159 0.4 0.7 0.098 0.204

We observe that the topological or-
dering gives better accuracy for both
PR and marginals in all testcases ex-
cept Pedigree. The advantage of this
ordering is that once all the evidence
variables are added, no belief-update
is needed is needed for the subsequent
CTFs (using Theorem 1). So, the num-
ber of belief update steps is lower,
resulting in lower errors. However,
a drawback of this ordering is that
it is rigid and it sometimes results
in a larger number of CTFs in the
sequence which could lead to larger
errors if all the evidence variables
are added in later CTFs. When no
evidence variables are present (e.g.
GridBN, Bnlearn), both runtime and memory complexity is lower with topological ordering since
marginals are consistent in all CTFs (using Corollary 2) and belief update is not needed. The average
runtime with and without topological ordering was 1s and 146s respectively for GridBN instances
and 0.3s and 1.3s for Bnlearn testcases.

Table 3: Percentage of large instances in each benchmark set
solved by IBIA within 2, 20 and 60 minutes. eva: average num-
ber of evidence variables, va: average number of variables, fa:
average number of factors, wa: average induced width and dma:
average of the maximum domain-size.

Total Average stats Instances solved (%)
#Inst (eva, va, fa, wa, dma) 2 min 20 min 60 min

BN 22 (188,1272,1272,51,17) 64 100 100
Promedas 171 (15,1207,1207,71,2) 77 100 100
ObjDetect 37 (0,60,1830,59,17) 27 100 100
Segment 50 (0,229,851,19,21) 100 100 100
Protein 395 (0,306,1192,21,81) 75 97 98
DBN 78 (784,944,47206,60,2) 38 77 77
Grids 19 (0,3432,10244,117,2) 16 37 58
CSP 54 (0,294,11725,175,41) 31 54 59
Type4b 82 (4272,10822,10822,24,5) 0 9 29

To evaluate the scalability of the
proposed algorithm, we ran it
for large networks where the ex-
act solutions are not known. Ta-
ble 3 tabulates the percentage of
large instances in each bench-
mark set that could be solved us-
ing IBIA within 2 min, 20 min
and 60 min. For this experiment,
we start with mcsp=20 and al-
low it to increase if incremental
build results in a CTF with larger
clique sizes. IBIA could solve
all large instances in benchmark
sets BN, Promedas, ObjDetect
and Segmentation and most in-
stances in Protein within 20 min.
For other benchmarks, additional
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instances could be solved when the runtime was increased to 60 min. The memory required for
the remaining Grids, DBN, CSP and Protein instances is more than 8 GB. The increased memory
usage is due to the following reasons. Firstly, all calibrated CTFs in the SLCTF need to be stored in
order to allow for back-propagation of beliefs and the memory required increases with the number
of CTFs. The average number of CTFs in the remaining Grid, DBN and CSP benchmarks is 22,
58 and 80 respectively. Secondly, for benchmarks with large variable domain sizes, the number of
variables present in each clique in a CTF is small. Therefore, approximation using exact and local
marginalization becomes infeasible and the subsequent CTFs have clique sizes greater than mcsp,
which results in increased memory usage. This is seen in 9 out of 395 Protein instances and 12 out of
54 CSP instances. In addition to memory, the remaining Type4b instances also require additional
runtime. This is because during belief update of each CTF, we perform one round of message passing
for each selected link and the number of links is large in these instances.

5 Discussion

Limitations: While the belief update algorithm performs well for most benchmarks, it has some
limitations. It is sequential and is performed link by link for each CTF that needs to be updated.
The time and space complexity depends on the number of CTFs in the sequence and the number of
selected links, which is large in some testcases. Also, after belief-update of all CTFs is completed,
beliefs of variables present in multiple CTFs need not be consistent. However, good accuracies are
obtained when beliefs are inferred from the last CTF containing the variable. For BNs, we found
that building CTFs in the topological order gives larger errors in some cases. A possible extension
would be to have an efficient build strategy where the ordering is decided dynamically based on the
properties of the graph structure.

Comparison with related work: IBIA is similar to mini-bucket schemes in the sense that the
accuracy-complexity tradeoff is controlled using a user-defined maximum clique size bound. While
mini-bucket based schemes like IJGP [Dechter et al., 2002] and join graph linear programming [Ihler
et al., 2012] use iterative message passing in loopy graphs, others like mini-bucket elimination (MBE),
WMB [Liu and Ihler, 2011] and mini-clustering [Mateescu et al., 2010] are non-iterative approaches
that approximate the messages by migrating the sum operator inside the product term. In contrast,
IBIA constructs a sequence of clique trees. It performs belief propagation on approximate clique
trees so that messages are exact and there are no issues of convergence.

Unlike sampling based techniques, there is no inherent randomness in IBIA that is each run gives the
same results. There could be a variation if the order in which factors are added is changed. However,
this variation is minimal since subsets of factors are added together in the incremental build step. In
that sense, it is like mini-bucket based methods where results are the same if the variable elimination
order and the partitioning technique used to generate the initial choice of mini-buckets are the same.

In order to construct the sequence, IBIA requires a fast and accurate method to approximate clique
trees by reducing clique sizes. The aim is to preserve as much as possible, the joint distribution of the
interface variables. This is achieved by marginalizing out variables from large-sized cliques and a
minimal set of neighbors without disconnecting clique trees. IBIA gives good accuracy since variables
that are removed are chosen based on a mutual information (MI) based metric and a sufficient number
of non-interface variables are retained so that a CT is never disconnected. In contrast, the Boyen
Koller (BK) [Boyen and Koller, 1998, Murphy, 2002] and factored frontier (FF) approximations,
although fast, retain only the interface variables which can disconnect the CT resulting in larger errors
due to the underlying independence approximation. The thin junction tree approximations proposed
in Kjærulff [1994] and Hutter et al. [2004] split cliques that contain a pair of variables that is not
present in any of its sepsets. However, if there are large cliques that have only sepset variables (which
is typical in most benchmarks), then the split has to be done iteratively starting from leaf nodes of
multiple branches, until the large-sized clique can be split. When such cliques are centrally located in
the CT, this process is both time-consuming and would result in approximation of a much larger set
of cliques. Similar to BK and FF, this method can also disconnect the CT.

The other thin junction tree methods [Bach and Jordan, 2001, Elidan and Gould, 2008, Dafna and
Guestrin, 2009] choose an optimum set of features based on either KL distance or a MI based metric.
They cannot be directly used since IBIA requires a good approximation of the joint distribution of
only the interface variables. Also, these methods are typically iterative and not very fast.
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