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ABSTRACT

Associative memory models encode a set of candidate patterns as “memories”
and, upon receiving a partial or noisy query, retrieve the patterns most relevant to
the query via similarity interactions/energy minimization, thereby recovering or
recalling target patterns from incomplete inputs; they have achieved widespread
success across many perception and representation learning tasks. However, when
the retrieval process is constrained to Euclidean geometry, hierarchical structure
in the data is difficult to capture accurately: in many tasks that require handling hi-
erarchical data, Hopfield networks based on Euclidean representations tend to in-
troduce bias and distortion into semantic relations. To this end, we extend modern
Hopfield retrieval to hyperbolic space. Specifically, we map query and memory
vectors from Euclidean space to hyperbolic space via exponential maps, and de-
fine an energy function with clear theoretical grounding based on the Minkowski
inner product; the retrieval procedure adopts Riemannian manifold optimization,
combining curvature-aware gradients with exponential maps to ensure that the
optimization trajectory remains on the manifold and yields stable updates. Our
central view can be stated as a hierarchy-sensitivity hypothesis: when the data
exhibit clear and deeper hierarchical structure, hyperbolic geometry brings sta-
tistically significant improvements; when the hierarchy is weak or only shallow,
performance shows no significant difference from Euclidean modern Hopfield net-
works. We validate this through depth-controlled comparisons and cross-level
consistency metrics, and the empirical results are consistent with the hypothesis.
Accordingly, the proposed hyperbolic associative memory can serve as a plug-
and-play general memory module embedded into task architectures that require
hierarchical understanding, for storing and retrieving raw inputs, intermediate
representations, or learned prototypes, and explicitly exploiting hierarchical in-
formation. Moreover, our method is formulated in a model-agnostic manner and
applies to any hyperbolic model with constant negative curvature. In this paper,
we instantiate it with the Poincaré ball for experiments.

1 INTRODUCTION

Associative memory models, such as Hopfield networks, have played a crucial role in enabling
neural systems to retrieve stored patterns from partial or noisy inputs. In this domain, classical Hop-
field network models |[Hopfield| (1982); |/Amari| (1972) store memories as fixed-point attractor states
in an energy landscape, leveraging Hebbian learning to recall full patterns from partial input cues
through a recurrent architecture. More recently, Modern Hopfield Networks (MHNs)|Vaswani et al.
(2017); |Widrich et al.| (2020) have introduced continuous relaxations of the original formulation,
theoretically achieving exponential storage capacity with respect to the number of neurons |Krotov
& Hopfield (2016)); Demircigil et al. (2017); Ramsauer et al.| (2020) and reigniting interest in as-
sociative memory mechanisms. MHNs have been successfully applied to tasks such as immune
repertoire classification and graph anomaly detection Hoover et al.| (2023)).

While representing data in Euclidean space R™ has long been the standard choice due to its computa-
tional convenience—providing closed-form expressions for distances, inner products, and straight-
forward input into neural networks, recent studies have revealed fundamental limitations of this ap-
proach for complex data types|Ganea et al.|(2018a). Many real-world datasets, particularly those in-
volving graphs, taxonomies, or hierarchical relationships, exhibit an inherently non-Euclidean latent
structure Bronstein et al.| (2017). In such cases, Euclidean embeddings often struggle to faithfully
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preserve semantic proximity and hierarchical organization Gromov|(1987). For example, arbitrary
tree structures cannot be embedded with arbitrarily low distortion even in high-dimensional Eu-
clidean spaces |Linial et al.|(1995)), whereas hyperbolic spaces, owing to their exponential growth of
volume, can naturally accommodate such structures even in low dimensions Krioukov et al.|(2010);
Nickel & Kielal (2017). Thus, in tasks of this kind (e.g. hierarchical classification, hierarchical
clustering, knowledge graph completion, and graph/image/text classification or retrieval with hier-
archical labels), applying associative memory mechanisms purely within Euclidean geometry may
distort the underlying structural information during memory retrieval. These observations motivate
us to embed the associative memory process into hyperbolic space—which is naturally suited to
representing hierarchical and structured information.

To address these limitations, we introduce Hyperbolic Associative Memory Networks (HAMN:S),
the first framework that embeds modern associative memory into hyperbolic space. Specifically, we
first apply exponential maps to transform query and memory vectors from Euclidean space to hy-
perbolic space (a constant—negative—curvature manifold), thereby leveraging the natural capacity of
hyperbolic geometry to model hierarchical structures. On top of these mapped representations, we
define a principled energy function using the Minkowski inner product to capture similarity relations
in hyperbolic geometry. During memory retrieval, we incorporate curvature-aware Riemannian op-
timization Bonnabel (2013)) with exponential-map updates to ensure that each update step follows
the tangent direction of the hyperbolic manifold and remains strictly within hyperbolic space. In our
experiments, we instantiate the method with the Poincaré ball |[Nickel & Kielal (2017) due to imple-
mentation maturity, while the derivations apply equally to other hyperbolic models (e.g. Lorentz,
Klein).

With this design, we propose a hierarchy-sensitivity hypothesis that does not presuppose pronounced
hierarchical structure in all tasks or datasets; when hierarchical/tree structure does exist and is suffi-
ciently deep, HAMNSs demonstrate a stronger ability to understand, preserve, and retrieve hierarchi-
cal relations, whereas when the hierarchy is weak or essentially absent, their performance is largely
on par with Euclidean MHNSs. To validate this hypothesis, we conduct a systematic evaluation by
controlling hierarchy depth and reporting metrics such as cross-level consistency, and the empirical
results are consistent with the hypothesis.

Our main contributions are summarized as follows:

* We design Hyperbolic Associative Memory Networks (HAMN:S), a plug-and-play, model-
agnostic associative memory module operating in hyperbolic space that can be dropped into
architectures requiring hierarchical understanding to store and retrieve raw inputs, interme-
diate representations, or learned prototypes, explicitly leveraging hierarchical structure.

* We design a principled energy function and optimization mechanism based on hyperbolic
geometry, ensuring a stable and efficient memory update process.

» With hierarchy depth controlled and cross-level consistency measured, our method achieves
clear benefits on hierarchical data and competitive flat/shallow results, outperforming Eu-
clidean Hopfield networks at representing complex structures.

2 PRELIMINARIES

2.1 MODERN HOPFIELD NETWORKS

Modern Hopfield Networks (MHNs) Krotov & Hopfield (2016); |Demircigil et al.[(2017)); Ramsauer,
et al.[(2020) extend classical associative memory models by introducing continuous state represen-
tations and modifying the energy function landscape. This modification significantly enhances the
storage capacity and enables the network to retrieve stored patterns through continuous optimization
dynamics.

Given a set of N memory patterns {&,, € RE },1:[:1, organized as a memory matrix = € RV*¥ and
a query state vector s € R, the energy function of MHNSs is formulated as:

B(s.%:8) = Fy (fan({6:),9)) + 5578 m
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where the similarity is defined as fim({£,},5) = {{&n,s)}2_; (dot product between s and each
memory), and Fj(-) is the log-sum-exponential (LSE) function:

N
Fs(z) = —% log (Z exp(ﬁzn)> (2)

n=1

with 8 > 0 controlling the sharpness. For consistency with the rest of the paper, we will use ¢ as
the temperature (i.e., 0 = ).

The associative retrieval process minimizes the energy iteratively as:

T (1) )
s+ — = goftmax (BET s [— (90 s 3)
( ) E n’ 1 exp (65 )

Under mild conditions, the update rule monotonically decreases the system energy and converges
to a (meta-)stable fixed point [Ramsauer et al.| (2020); [Widrich et al.| (2020)). This framework thus
enables efficient pattern retrieval even from noisy or partial cues. Eq. (3)) is equivalent to the readout
of single-head attention, with keys=values = X and query s(*), hence an MHN can be viewed as an
energy-based realization of attention.

2.2 HYPERBOLIC MANIFOLDS: CONCEPTS AND INTUITION

A hyperbolic manifold is a Riemannian manifold (M, ¢)|Cannon et al.|(1997) of constant negative
curvature —c < 0. Geometrically it exhibits:

* Triangle angle sum < 7; geodesics diverge; ball volume grows exponentially with radius
(matching the exponential branching of trees/hierarchies).

* Any two points are typically joined by a unique geodesic; distances near the boundary are
“magnified”.

* Multiple isometric coordinate models (Poincaré ball/upper-half plane, Klein, Lorentz hy-
perboloid) that are mutually isometric and differ only by parametrization.

Our theory and algorithm rely only on model-agnostic primitives; a concrete instantiation (e.g.
Poincaré ball) is deferred to implementation details.

2.2.1 PRIMITIVE 1: EXPONENTIAL/LOGARITHMIC MAPS

Definition. For any p € M, the exponential map
exp, : TpM — M, expy,(v) = 7, (1)

sends a tangent vector v to the point at unit time on the geodesic +,, starting at p with initial velocity
v. The logarithmic map log;, : M — T}, M is the local inverse of expj, around p.

Properties.
1. exp;(0) = p and d(exp;)o = id;
2. for small steps, expf,(v) is locally p + v in coordinates;

3. Exp/Log provide a two-way bridge between the Euclidean tangent space and the manifold,
enabling on-manifold encoding/optimization.

Algorithmic use. Map Euclidean queries/memories into 75 M and then onto the manifold via exp§;
at iteration ¢, compute a descent direction in T¢: M and return to the manifold with expgt.

2.2.2 PRIMITIVE 2: GEODESIC DISTANCE

Definition. d ¢ (x, y) is the length of the shortest geodesic between x and y induced by g.

Hierarchy intuition. Radial distance grows roughly linearly with radius, but near the boundary
any fixed Euclidean displacement is exponentially magnified, naturally separating differences in
hierarchical depth (see the toy example [2.2.5)).
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2.2.3 PRIMITIVE 3: “MINKOWSKI-LIKE” INNER PRODUCT

We use

(x,y)pm = — cosh(dM (z, y))

as the similarity in hyperbolic space. Key properties:
* Monotonicity: strictly decreasing in daq(z,y); equals —1 at z = y and tends to —oo as
distance increases.

» Equivalence: in the Lorentz model this similarity is a monotone function of the Minkowski
bilinear form; it coincides numerically with it when curvature is —1. This choice is model-
agnostic and invariant under hyperbolic isometries.

2.2.4 ISOMETRY INVARIANCE
If¢: (M,g) = (M, g’) is an isometry, then

Hence, any energy and update constructed from daq and — cosh d 4 are model-equivalent across
hyperbolic realizations (Poincaré ball, Lorentz, Klein, upper-half plane, etc.).

2.2.5 WHY HYPERBOLIC FOR HIERARCHIES? A TOY EXAMPLE

For simplicity in this toy example we take curvature —c = —1 (i.e., ¢ = 1) on the Poincaré ball.

Euclidean space “flattens” hierarchies. Embed a tree of depth L into the plane: all nodes at level
£ lie on the same-radius circle. As L grows, the outermost nodes crowd the same ring and leaf—leaf
distances are governed almost only by the angular gap and become very similar, so leaves from
different major branches appear “about equally far”” and hierarchical information is weakened.

Hyperbolic space “pulls apart” hierarchies. Keep angles uniform, but encode depth by hyperbolic
radius:

pe = tanh(al/2), a > 0.
Since d(0, x) = 2 artanh ||z||, any level-¢ node satisfies:dp (0, ;) = a ¢
i.e., each additional level increases the radial hyperbolic distance by (approximately) a fixed amount,
so different levels separate naturally. Moreover, because the metric is “magnified” near the boundary,

two points on the same level but from different major branches acquire a much larger hyperbolic
distance even for a tiny angular gap, whereas points within the same subtree are closer.

Rule of thumb (consistency with hierarchy). If two leaves have lowest common ancestor depth a,
then the dominant term of their distance is

dp(x;i,z;) =~ 2a(L — a) (+ lower-order terms),

which increases strictly with tree distance and is monotone in the LCA depth (“closer relatives” are
more similar). Hence hyperbolic space simultaneously preserves two key signals—depth (radial)
and branching relation (angular)—and avoids the hierarchical “flattening” of Euclidean embed-
dings.

3 METHODOLOGY

Our proposed Hyperbolic Associative Memory Networks (HAMNSs) use hyperbolic geometry to
store and retrieve patterns. This section introduces the core components of HAMNS.

3.1 MEMORY ENCODING IN HYPERBOLIC SPACE

We first map all memories and the query onto a common hyperbolic manifold. Let z* € R¢
(¢ = 1,...,N) denote the N stored patterns in Euclidean space (these can be regarded as the
keys in memory), and let £ € R? be the query pattern (the cue or initial state). Let (M, g)
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be a complete, simply connected Riemannian manifold with constant negative curvature —c < 0.
Choose a reference point p € M and fix an orthonormal frame on its tangent space 7, M, thereby
identifying 7, M =2 R? via an isometric isomorphism ¢, : R? — T, M. We encode using the
exponential map at p:

vi=1p(@f),  ve=1,("),  wi=expy(M(v;)), &= expy(I(ve)), S
To avoid, in some models, mapped points becoming too close to the boundary (which may lead to
numerical instability and gradient explosion), we may perform norm clipping in the tangent space
before the exponential map. Given a clipping threshold c1ip,, > 0, II(-) denotes tangent-space
norm clipping:

14
II(v) = v- min(l, Clpt&“) ) e>0. 5)
o]l +¢

Here ¢ is a small constant for numerical stability (e.g. 10~°). After this encoding step, all memory
points x; and the query point £ lie on the manifold M.

3.2 ENERGY FUNCTION DESIGN

On a hyperbolic manifold, we use an energy function E () to measure how well the current retrieval
state & matches the stored patterns {z;}},: the energy should be low when ¢ is close to some
memory z;, and high otherwise. To this end, we replace the Euclidean inner product by a hyperbolic
similarity:
(x,y)m = —cosh(dM(ac,y)),

where d, is the geodesic distance induced by the metric g. This similarity is identical across
hyperbolic models; in particular, in the Lorentz (hyperboloid) model (x,y)as coincides with the
classical Minkowski inner product, while in other models it can be computed directly from d
without explicitly mapping between models.

Accordingly, for any £ € M we define the energy as

i=1
where § > 0 is a temperature parameter and p € M is a fixed reference point (e.g., the origin
in Poincaré coordinates). We use the intrinsic squared geodesic regularizer %d Mm(€,p)?, which is
geodesically convex in hyperbolic space and penalizes deviations from p.

N
E@¢) = ;log<ZeXp(9 <x¢,§>M)> + %dM(S,p)z, (6)

The first term in equation[6]is a smooth approximation to the “maximum similarity”: when 6 is large,
—3log >, exp(0(z;, &) m) ~ —max;(z;, &), so it is minimized when ¢ is close to one of the
memories x;. The second term penalizes large geodesic deviations from p, suppressing excursions
toward the boundary and stabilizing the optimization trajectory.

Together, these two terms yield energy minima around stored memories. When £ = xj, we have
dam(zg, &) = 0and (zy, &),y = —1, leading to a low energy; conversely, when ¢ is far from all mem-
ories, the energy becomes large. Further discussion of energy bounds is provided in Appendix [A.1]
For a detailed discussion of storage capacity, see Appendix [B]

3.3 MEMORY RETRIEVAL AND OPTIMIZATION

We optimize the retrieval energy using the Concave—Convex Procedure (CCCP)|Yuille & Rangara-
jan|(2001). A detailed derivation for our setting is provided in Appendix here we summarize
the resulting update rules.

CCCP decomposition. Decompose F(¢) in Eq. equation@into a geodesically convex term and a
concave term on a Hadamard manifold:
N

1 ,
E(ﬁ) = Ecvx(g) +Ecave(€)a Ecvx(f) = %dM(fvp)2a Ecave(g) = _gl()g(Zeg@“E)M)a
i=1
(7
where p € M is a fixed reference point and (z, £) 5y := — cosh(dr(z, €)) denotes the hyperbolic

similarity. The squared distance is geodesically convex on Hadamard manifolds.



Under review as a conference paper at ICLR 2026

Softmax weights. At iteration ¢, define

. e(t)
o = ;xp((?(xi,f ) )
>—1 exp (0 (2, €®) )

Riemannian linearization and surrogate. Let at) = grad Eeave (€ (t)) be the Riemannian gra-
dient at £(Y). The concave part admits the first-order (Riemannian) upper bound

Ecave(g) < Ecave(f(t)) + <a(t)7 IOgE(‘) (£)>£(t)v
so the CCCP surrogate reads

Q(e1€9) = 1dum(&,p)? + (al, logee ()  (constants dropped).  (9)

Closed-form CCCP step. The minimizer of equation [9] on a Hadamard manifold is obtained in
closed form:

0D = exp, (= PTer,(a?)), (10)
where PT¢ () _,,, denotes parallel transport along the unique geodesic from § ®) to p. Equivalently,
introducing v() := —PT,«_, (a'")) and a damping step size 1) € (0, 1], we use the stable update

4 = exp, (nol), (n

for which 1 = 1 recovers the exact minimizer in equation [I0]

Intrinsic gradient. Using equation[§] the Riemannian gradient of the concave term can be written
as

N
a® = grad Ecave(f(t)) = _va(;t) grad, (xi,@M’
i=1

e (12)

Convergence note. Since .,y is geodesically convex and FE,y. is concave, the CCCP iterations
monotonically decrease F(¢) on Hadamard manifolds; the sequence {£(Y)} converges to a (meta-
)stable fixed point corresponding to a stored memory.

3.4 HYPERBOLIC HOPFIELD MODULES FOR DEEP LEARNING

Inspired by the modular design of modern Hopfield networks Ramsauer et al.| (2020), we adopt a
similar architecture for modularization and replace its original Euclidean update mechanism with the
hyperbolic retrieval strategy proposed in this paper. Based on this formulation, we construct three
core modules—Hyperbolic Hopfield (HypHopfield), Hyperbolic Hopfield Pooling (HypPooling),
and Hyperbolic Hopfield Layer (HypLayer)—targeting association, aggregation, and retrieval, re-
spectively. All three are implemented on the Poincaré ball model and can be seamlessly integrated
into deep neural networks, thereby enhancing hierarchical modeling and memory capabilities. De-
tailed structure and implementation are provided in Appendix [D]

4 EXPERIMENTS

Instantiation. All experiments instantiate HAMNSs on the Poincaré ball model (constant negative
curvature —c); the model-agnostic derivations hold for any hyperbolic realization, and concrete
formulas for instantiations on common hyperbolic models are provided in Appendix [C]

Overview We systematically evaluate HAMNS around the “hierarchy-sensitivity hypothesis” and
delineate their effectiveness and scope via four groups of experiments:

(i) CIFAR-100 hierarchical classification: On our 2/3/4-layer label trees, HAMNSs deliver
the strongest cross-level consistency and competitive accuracy across levels, clearly outper-
forming Euclidean MHN:Ss; the consistency gap widens as the hierarchy deepens. HypAttn
is strongest for shallow/mid-level retrieval, while HypNN excels at fine-grained recogni-
tion.
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Table 1: Hierarchical classification on CIFAR-100 results.

Model top-acc super_acc coarse_acc fine_acc coph_corr

CIFAR-100-2-layer

Backbone only — — 64.20 £0.91 51.00 £ 1.28 0.6652 4+ 0.0163
HypAttn — — 70.67 £ 0.56 58.19 + 0.38 0.6740 £ 0.0142
HypNN — — 69.02 £0.47 56.824+0.41 0.5938 & 0.0202
MHNs — — 65.34 £0.86 49.86 £ 0.63 0.6295 4 0.0143
HAMNS (ours) — — 70.12 £ 0.57 56.00+0.64 0.6778 £ 0.0193
CIFAR-100-3-layer

Backbone only — 72.75+£1.89 62.58£1.35 50.79+0.82 0.7023 £ 0.0164
HypAttn — 79.33£0.66 68.68£0.78 54.01+0.97 0.6902 +£ 0.0240
HypNN — 79.40 £ 0.66 68.84 +0.95 54.09+ 1.05 0.7123 +£0.0211
MHNs — 79.17+0.59 68.08+0.84 52.89 +0.97 0.7152 4 0.0256
HAMN:Ss (ours) — 79.70 + 0.29 68.81 +0.59 54.27 +0.47 0.7017 + 0.0658
CIFAR-100-4-layer

Backbone only 87.51 £0.73 72.68 +£1.85 60.02+1.02 47.23+0.77 0.7180 % 0.0230
HypAttn 90.13 £0.48 78.234+0.48 67.74+£0.93 54.50£0.78 0.6795 £ 0.0143
HypNN 90.30 £0.35 78.72£0.59 68.29+0.80 55.93 +0.88 0.6046 £ 0.0149
MHNs 89.39 £0.29 76.97£0.44 65.56 £0.42 49.37 £0.57 0.5902 £ 0.0218
HAMNS (ours) 90.98 +0.39 79.48 + 0.57 68.51 + 0.84 53.49+1.05 0.7184 + 0.0254

(i) Weak/shallow hierarchical tasks: On classical MIL multi-instance learning and Molecu-
leNet molecular property prediction (where hierarchy is weak or only shallow), HAMNSs
perform on par with Euclidean MHNSs overall, with slight advantages on a few datasets;

(iii) Computation/performance comparison: Theoretically fewer FLOPs and parameters, but
due to hyperbolic operations and memory-access overhead, the current GPU implementa-
tion exhibits longer runtime and higher peak memorys;

(iv) Ablation studies: Performance is best when the curvature c lies in a moderate range (ap-
proximately 0.7-2.0); using too many stored patterns degrades top-level accuracy, though
the method is overall robust to this hyperparameter.

4.1 HIERARCHICAL CLASSIFICATION ON CIFAR-100

To demonstrate that HAMNSs can understand and exploit multi-level structure, we conduct hierar-
chical classification experiments on CIFAR-100. CIFAR-100 (60,000 color images of size 32 x 32)
groups 100 fine classes into 20 coarse classes, yielding a balanced two-level hierarchy. Without
modifying the original samples, we further cluster the 20 coarse classes into 7 “super” classes (e.g.,
large terrestrial vertebrates, plants, vehicles), and then group these 7 super classes into 3 “top”
classes (animals, plants & natural scenes, man-made objects), thereby forming three- and four-level
hierarchies.

On the model side, we adopt a ResNet-18 backbone with the final fully connected layer removed,
and insert one of four memory/retrieval modules: (i) HAMN (i) a hyperbolic attention baseline
(HypAttn; (Giilcehre et al., [2019)), (iii) a lightweight hyperbolic neural block (HypNN; (Ganea
et al 2018a)), and (iv) Euclidean-space modern Hopfield networks (MHNSs; (Ramsauer et al.,
2020)). The retrieved representations are then fed into level-specific classification heads. We also
report a Backbone only variant as a reference (See Table|T).

Coarse—Fine Coherence Correlation (coph_corr) measures the consistency between the model’s
“coarse” predictions and the “coarse” predictions obtained by aggregating its “fine” outputs.

From Table[I] we observe:

'Using our HypLayer; see Appendix@]for details.
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* Euclidean MHNs: Competitive but not leading overall. They achieve the best
coph_corr on the 3-layer hierarchy, yet fall behind markedly on the deepest (4-layer)
hierarchy in both high-level accuracies (top/super/coarse) and consistency; fine-grained ac-
curacy is also below the hyperbolic baselines.

* HypAttn vs. HypNN: On shallow hierarchies (2-layer), HypAttn attains the highest
coarse_acc/fine_acc. As depth increases, HypNN becomes strongest at fine-grained
recognition (best £ ine_acc on 4-layer), while both methods lag behind HAMNs on top-
and mid-level accuracies as well as cross-level coherence.

* HAMNSs (ours): Improvements grow with depth. On 3-layer, HAMNSs deliver the
best super_acc and the best fine_acc with near-best coarse_acc. On 4-
layer, they achieve state-of-the-art top_acc/super_acc/coarse_acc and the highest
coph_corr; fine_acc remains competitive though below HypNN.

Takeaway. Hyperbolic, energy-based retrieval aligns predictions across hierarchy levels as depth
grows. Euclidean MHNs can peak at a single level (e.g., 3-layer consistency) but do not scale
to deeper hierarchies; HypAttn suits shallow aggregation, HypNN excels at fine granularity, and
HAMNE s strike the best accuracy—consistency balance overall.

4.2 WEAK/SHALLOW HIERARCHY TASKS: MIL AND MOLECULAR PROPERTY PREDICTION

Multi-Instance Learning (MIL). We evaluate on three classical MIL datasets—Tiger, Ele-
phant, and Fox—to probe the bag—instance regime without instance-level labels (Dietterich et al.,
1997)), using the standard splits introduced by (Ilse et al., 2018} |Kiiciikasc1 & Baydoganl 2018 |Car-
bonneau et al.L|2018). We plug our HypPooling into the MIL pipeline: embedded instances serve as
stored memories (Y'), while a fixed set of learnable query vectors acts as state (query) patterns (R)
on the same Poincaré ball; retrieval is performed via hyperbolic attention and on-manifold updates.
See Appendix [D] for the layer design and Appendix [E.T|for training protocol and hyperparameters.
We compare against representative MIL baselines (e.g., attention-MIL (Ilse et al., [2018), mi-Net
variants (Carbonneau et al.,|2018)), and Euclidean MHNs). Results show competitive overall perfor-
mance and new SOTA on Fox; elsewhere the margins over Euclidean MHNSs are modest (Table E])

Molecular property prediction. Experiments on four MoleculeNet datasets—HIV, BACE (Sub-
ramanian et al., |2016), BBBP (Martins et al.| 2012), and SIDER (Kuhn et al.| 2016)—probe the
weak/shallow—hierarchy regime. The proposed HypLayer is inserted into standard pipelines: train-
ing samples serve as stored memories (Y"), inputs as queries (R), followed by hyperbolic embedding
and retrieval (exact layer design, training protocol, and hyperparameters are detailed in Appendix[D).
Comparisons cover representative baselines (classical ML, GNNs, and Euclidean MHNSs). This ap-
proach yields competitive overall performance and establishes new SOTA on BBBP and SIDER
(full tables in Appendix @]); nevertheless, margins over Euclidean MHNs remain small, consistent
with the weak—hierarchy hypothesis.

4.3 COMPUTATIONAL COST AND PERFORMANCE

We compared our method against modern Hopfield networks in Euclidean space in terms of compu-
tational cost and performance. Using an input size of 128 x 3 x 224 x 224, in table2]

Observations. From the table above, we observe: (i) FLOPs And Parameter Count—HAMNs
require much fewer computations (27.2G FLOPs) and have far fewer parameters (3.3M) than Eu-
clidean MHNs (108.3G FLOPs, 8.5M), making them theoretically more lightweight; (ii) Run-
time Overhead—despite nearly 4x fewer FLOPs, HAMNSs are significantly slower in both for-

Table 2: Computational cost and performance comparison.
Method FLOPs Params Forward + Backward Forward Only Peak GPU Mem

HAMNs  27.177G 3.3M 147.6 ms 43.0ms 6578.8 MB
MHN 108.252G  8.5M 83.3 ms 23.4ms 4305.3 MB
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ward+backward (147.6ms vs. 83.3ms) and forward-only (43.0ms vs. 23.4ms) passes, reflecting
the extra overhead of hyperbolic operations (e.g. Mobius addition, exponential/logarithmic maps,
Riemannian gradient transforms) and associated memory-access costs; and (iii) Memory Us-
age—HAMNs consume more peak GPU memory (6.4GB) than MHNs (4.3GB), indicating that
maintaining hyperbolic representations and intermediate states has a higher memory footprint.

4.4 ABLATIONS: CURVATURE AND NUMBER OF STORED PATTERNS

Summary. A moderate curvature provides the best trade-off across 2/3/4-level hierarchies; ex-
tremes are harmful (too small under-expresses hierarchy, too large degrades accuracy). Varying the
number of stored patterns causes only small overall fluctuations: oversized memories reduce top-
level accuracy, moderate increases help mid-level, and fine-level peaks at higher counts. In practice,
we recommend moderate curvature and a modest memory size. See AppendixE.3|for details.

5 RELATED WORK

Hopfield Networks. Hopfield networks were initially proposed by Hopfield| (1982) as a type of
recurrent neural network designed to store discrete binary patterns as stable attractors and to retrieve
them via energy minimization dynamics, enabling associative memory functionality. To better han-
dle continuous data,|{Tank & Hopfield|(1986)) introduced the continuous Hopfield network, which ex-
tends the state space from binary to real-valued domains. In recent years, modern Hopfield networks
have advanced rapidly. By introducing differentiable continuous energy functions, they significantly
improve memory capacity and support one-step convergence. A representative work is the modern
Hopfield layer proposed by [Ramsauer et al.| (2021)), which is highly compatible with deep learning
models and can be viewed as a generalization of the attention mechanism. Building on prior work,
we extend Hopfield networks to hyperbolic space to better model hierarchies.

Hyperbolic Geometry. |Nickel & Kiela| (2017) first proposed using hyperbolic space to learn hi-
erarchical representations of symbolic data, such as text and graphs, by embedding them into the
Poincaré ball model. Since then, the application of hyperbolic geometry has been explored in vari-
ous domains. (Ganea et al.|(2018b)) introduced hyperbolic neural network layers, which have enabled
the development of hybrid architectures such as hyperbolic convolutional neural networks (Shimizu
et al.,[2021), hyperbolic graph convolutional networks (Chami et al., 2019)), hyperbolic variational
autoencoders (Ovinnikov et al., [2021)), and hyperbolic attention networks (Gulcehre et al., |2019).
These architectures have been successfully applied to tasks such as deep metric learning, object
detection , and natural language processing. Beyond practical applications, theoretical investiga-
tions into hyperbolic spaces and their models have also deepened, demonstrating properties such as
lower representation distortion (De Sa et al., 2018)), better generalization ability (Bachmann et al.,
2021)), and stronger representation power in low-dimensional spaces (Sala et al., 2018). Unlike
prior implicit uses of hyperbolic geometry, energy-based Hopfield retrieval is carried out directly in
hyperbolic space, broadening applicability to hierarchical representation learning.

6 DISCUSSION AND CONCLUSION

We propose a plug-and-play, model-agnostic memory framework that generalizes modern Hop-
field networks from Euclidean to hyperbolic geometry, formulating retrieval as energy minimization
based on geodesic distance and its induced “Minkowski-like” similarity. As a general-purpose mem-
ory module, HAMNs can be deployed in any downstream task that requires storing and retrieving
hierarchical patterns, providing a geometry-aware memory pathway for hierarchical modeling. Our
experiments support the hierarchy-sensitivity hypothesis: as hierarchical depth increases, HAMNs
deliver statistically significant gains; in flat or shallow settings, they perform on par with Euclidean
MHNSs. Importantly, hierarchy restructuring on CIFAR-like data serves as a component-level val-
idation: by keeping the data fixed and altering only the label hierarchy, we can more cleanly test
whether the memory module truly exploits hierarchical geometry. Compute/perf analysis shows a
trade-off: despite lower theoretical FLOPs/parameters, current GPU hyperbolic ops and memory
access add overhead, yielding longer runtimes and higher peak memory. Ablation studies show the
model is overall robust to curvature and memory size.
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REPRODUCIBILITY STATEMENT

We provide a runnable implementation of HAMNSs instantiated on the Poincaré ball and the CIFAR-
100 hierarchical experiments, submitted as supplementary materials. Code-level implementation
details for HypHopfield, HypPooling, and HypLayer are given in Appx. [D] For other common
hyperbolic models (Lorentz, Klein, upper half-plane, hemisphere), model-agnostic replacement for-
mulas are provided in Appx.[C| The supplementary code package includes the training scripts and
module-instantiation code required to reproduce the experiments.
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A  HYPERBOLIC ENERGY-BASED OPTIMIZATION FRAMEWORK

A.1 BOUNDING THE ENERGY FUNCTION

We consider the energy

s
1 1 )
where the (hyperbolic) similarity is (z,y) s := — cosh(daq(z, y)) on a complete, simply connected

Riemannian manifold (M, g) of constant negative curvature —c.

Setup and notation. Fix a base point p € M and define

Ty = d/\/i(xiap)v ri= d/\/l(fap)

Let M, := max;r;. We assume optimization is restricted (by standard clipping/projection) to a
geodesic ball around p, i.e., r < R,.. Here S is the number of stored patterns and 6 > 0 the inverse
temperature.

12
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A.1.1 BOUNDING THE SIMILARITY
By the triangle inequality,
Iri —r| < dm(wi,§) < ri+r

Since cosh(-) is strictly increasing on [0, c0) and (z;, &) ;s = — cosh daq (x4, £), we obtain for each
1
—cosh(r; +7) < (z;,&)m < —cosh(|r; —7]). (14)

Consequently, using r; < M, and r < R,,

‘ —cosh(M, + R,) < (x;,)m < -1 ‘ (i), (15)

because cosh(0) = 1 and |r; — r| can be as small as 0.

A.1.2 BOUNDING THE ENERGY

Write E(€) = Ecave(§) + Ecyx(§) with

1 S
Eeave(§) = ) IOgZ eezia 2 = (x,§) M Eevx(§) = %dM(&p)Q'
=1

For any 6 > 0, the log-sum-exp bounds yield

1 02, log S log
miaxzi < élogZe < m?XZi+T == —mlale-—
K2

S Ecave(g) S —maxz;.

K2

From equationwe have max; z; € [— cosh(M, + R,), —1 ] . Hence

B log S

1
0

< Eeave(§) < cosh(M, + R,) | (16)

For the convex part (squared distance to p),

0 < Eewx(§) = 2dm(é,p)? < LR2 (17)

A.1.3 FINAL BOUNDS

Combining equation [T6]and equation [T7] yields

_ 185 pie) < cosh(M, + Ry) + 1R? | (18)

1
g =

The constants depend only on the maximal radial extents of memories and states (M,., R,-) and the
inverse temperature 6, but not on the specific hyperbolic model. Thus the boundedness of F—and
hence the numerical stability of CCCP or Riemannian-gradient iterations—holds uniformly across
all constant-curvature hyperbolic realizations.

A.2 OPTIMIZATION OF THE ENERGY FUNCTION VIA CCCP
A.2.1 CONCAVITY/CONVEXITY ON HADAMARD MANIFOLDS

We work on a Hadamard manifold (M, g) with constant negative curvature. Write

N
E(f) = Ecvx(g) + Ecave(g)a ECVX(&) = %d./\/l(€7p)2a Ecave(é) = _% lOgZ 69 Si(g)a
i=1

where s;(£) := {(x;,&)pm = — cosh(dap (x4, €)). It is known that daq(-, -) is geodesically convex
on Hadamard manifolds; since cosh is convex and strictly increasing on [0, cc), the composition
coshod v is geodesically convex, hence s;(§) = — cosh(daq (x4, §)) is geodesically concave. For
the concavity of Ecave(§) = —lIseg({s:(€)}s), let F(§) = 1seg({s;(£)};). For any unit tangent

13
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vector u € Tz M, the (Riemannian) Hessian admits the standard decomposition (see the derivation

in §A.3):

Hess¢ F'lu, u] Zpl €) Hesses;[u,u] + 60 Var,)((grad s;(€),u)g),

where p;(§) = % Each s; is geodesically concave, so Hessgs;[-, -] < 0; the second term is
J

a nonnegative variance term. Therefore Hess¢ (—F)[u,u] = — >, p; Hessesi[u,u] — 6 Vary(-)
is “a difference of a negative semidefinite and a positive semidefinite term.” On a bounded geodesic
ball, if there exists £ > 0 such that —Hess¢s; > I and L := max; ¢ [|grad s;(§)||; < oo, then
whenever 0 < 6 < r/L? we have Hess¢(—F) < 0, hence Ecaye is geodesically concave. Under
this temperature range, £ = FE.yx + Ecave satisfies the “convex + concave” requirement for CCCP.
In practice, we also observe monotone decrease under typical training temperatures.

A.2.2 CCCP LINEARIZATION AND SURROGATE

Let ¢() be the current iterate. A first-order (Riemannian) upper bound for the concave part yields

Eeave(§) < Feave(€®) + (" loge (), al? = grad Beave (§).
Thus the “bound-minimization” surrogate for CCCP is
Qe1€9) = Ldu(En)? + (a®, logewo (€))) + const (19)

A.2.3 CLOSED-FORM UPDATE (WITH PARALLEL TRANSPORT)

On a Hadamard manifold, the minimizer of equation [19|admits the closed form
€0+ = exp, (= PTer, (o)), (20)

where PT¢)_,,, denotes parallel transport along the unique geodesic from § ) to p. For numerical
stability, we employ a damped step with € (0, 1]:

é—(t—‘rl) — expp(nv(t)>’ U(t) = _PTg(t)*)p(a/(t))’ (21)

which reduces to equation[20]when 7 = 1.

A.2.4 SOFTMAX WEIGHTS AND RIEMANNIAN GRADIENT OF THE CONCAVE TERM

Let p(t) Zingﬁ(se—lm. By the chain rule together with -, Eq. equation , we obtain

a®) = grad Ecave (€ Zp( )gradE )‘ e’ (22)

Convergence note When 6 satisfies the above sufficient condition, E.,y is geodesically convex
and E,y. is geodesically concave; therefore CCCP guarantees that £(£(*)) decreases monotonically
and {£®} converges to a (meta-)stable memory attractor.

A.3 RIEMANNIAN GRADIENT OF THE CONCAVE TERM

Consider the hyperbolic similarity

sa(z,y) == (z,y)p = — cosh(da(z,y)).

Let drq denote the geodesic distance and log,, : M — T, M the Riemannian logarithm at . On a
Hadamard manifold, for any = # v,

log,, (v)

%82\ 23
Tog. ()], *)

grad, dyp(z,y) = —

where || - ||, is the norm induced by ¢ on T, M.
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Chain rule for the similarity gradient By the chain rule,

grad, sar(,y) = — sinh(duv (2, y)) grad, du(z,y),
and substituting equation [23]yields

I
grad, syr(z,y) = sinh(d(z, y)) thgg((;))u . (24)
z g

The gradient points along the unit tangent from 2 to y with magnitude sinh(d v (z, y)).

Riemannian gradient of E..,. Lets;(§) = (x;,£)n and p;(§) = % Then
al al . IOgg(xi)
grad Eeave(§) = — Y _pi(€) grade si(€) = — > pi(€) sinh(daq(w;,€)) ozl | &
i=1 i=1 E\ g

Coordinate gradient (Poincaré ball example) If the chosen coordinates are conformal (e.g., the
Poincaré ball), then g(&) = A(€)21 with \(§) = ﬁ The Euclidean (coordinate) gradient V¢

and the Riemannian gradient grad, satisfy
Vef = G(&) 'gradef = A(€)?grad,f. (26)

Plugging equation [23]into equation [26] yields an implementation-ready Euclidean gradient expres-
sion.

B SUPPLEMENTARY NOTES ON STORAGE CAPACITY

We analyze the storage capacity of HAMNs on a Hadamard manifold (M, g) of constant negative
curvature —c¢ < 0. The similarity is (z,y)as := — cosh(daq(,y)), and the (intrinsically regular-
ized) energy is

N
E(¢) = _% logz (el %d/\/((f,p)27
i=1
where p € M is a fixed reference point (see Sec.[3.2).

B.1 ENERGY-WELL SEPARATION AND RECALLABILITY

Let the stored patterns be {x;}¥; C M, and define the minimum pairwise geodesic separation
0 = mindn(zs, ;).
i#]
Fix any radius p < ¢/2. If the query lies in the intrinsic ball £ € B (xk, p), then by the triangle

inequality daq(§, zx) < pand, forany j # k, dap(§, ) > 0 —p > §/2+¢e withe :=§/2—p > 0.
Since cosh is increasing and s, () := (z;, &) pr = — cosh d (x4, €), we obtain

sk(§) = —cosh(p),  5;(§) < —cosh(6—p) (j#k),
hence the gap s;,(£) — s;(£) > A(J,¢) := cosh($ +¢) — cosh(§ — &) = 2sinh($) sinh(e) > 0.
This yields the softmax dominance bound
exp(6 s (€)) - 1
Zjexp(esj(f)) T 1+ (N-=1exp(—0A(5¢e))

For sufficiently separated patterns (large §) and/or a sharp energy (large 6), pr(§) is close to 1, and
the Riemannian gradient of the concave term

pr(§) =

loge ()

N N
a(§) = grad Ecave(§) = — Zpi(ﬁ) grad, 5;(§) = — Zpi(ﬁ) sinh(d (24, €)) m
i=1 i=1 o
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(see App. §A.J) is nearly aligned with the unit tangent toward xj. More explicitly, choosing

1 sin —
9 > m(log(Q(Nfl)) + IOgsi}rlx(lif(p)p))’

ensures (—a(§), ug)g > 0 (uy the unit tangent from & to zy,), so the CCCP update T = expp( —

PTe¢,p(a(€))) moves & toward z, and keeps it within By(zy, p). Under this condition, each
induces a stable well and an attraction basin.

Effect of the intrinsic regularizer The intrinsic penalty %d M (€,p)? suppresses excursions far
from p. The dominance bound for py () is determined solely by the concave term and is unaf-
fected by the regularizer; its role appears in the CCCP closed-form step taken at p, which improves
numerical stability and step-size control.

B.2 HYPERBOLIC VOLUME AND A SPHERE-PACKING UPPER BOUND

Assume all patterns lie in a geodesic ball Ba(p, R). If the recall basins Bag(z;,d/2) are pairwise
disjoint, then
N Vol(Ba(p, R))
" T Vol(Bal(56/2))
In a d-dimensional hyperbolic space of curvature —c, the ball volume satisfies

o, d—
Vol (B(r)) = qu/ (%) U = ke exp((d—1)er) (r>1/yc),
0
whence

Nmax S exp((d —1)Ve (R - g)) = exp(anyp (R — g)), Qnyp = (d —1)Ve.

Thus capacity grows exponentially in the radius with a rate controlled by both the dimension d and
curvature c: very small ¢ under-expresses hierarchy (small rate), whereas overly large ¢ increases
metric distortion and may hurt optimization.

B.3 COMPARISON WITH EUCLIDEAN MHNS

Modern Euclidean Hopfield networks can achieve exponential capacity in the ambient dimension
for random patterns (e.g., N = 2@ under log-sum-exp energy). Our hyperbolic packing bound is
complementary: due to the exponential volume growth of negatively curved spaces, when hierarchi-
cal data concentrate outward along the radius (depth), the number of non-overlapping basins grows
exponentially with (d — 1)+/c. This aligns with our empirical advantages on deep hierarchies.

Takeaway Error-free recall is ensured by a geometric margin J; the total number of recallable
patterns is upper-bounded by a hyperbolic sphere-packing law scaling as exp ((d—1)y/c (R—§/2)).
This complements classical Euclidean capacity results and explains why HAMNs benefit more as
hierarchical depth (effective hyperbolic radius) increases.

C KEY FORMULAS FOR COMMON HYPERBOLIC MODELS (CONSTANT
CURVATURE —c < 0)

Notation & convention. Let the curvature be —c with ¢ > 0 and write arcosh(-) for the inverse
hyperbolic cosine. All standard hyperbolic models are isometric; hence any model-agnostic deriva-
tion in the paper becomes an implementation by choosing d4, expy, log; from a specific model.
We use the hyperbolic similarity

<(L’, y>]ﬂ = = COSh(dM (Z, y))v
with the universal chain rule

Vaol@,y)u = — sinh(drm(z,y)) Vadm(z,y),

equivalently grad, (z,y) s = sinh(dam(z,y)) m (see App. ~i
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Model-agnostic CCCP closed form (used in this work). Let

CIRIPY
a(§) = grad Ecave(¢ sz §) grade (zi, S)m,  pil€) = SN
Our CCCP step reads
v = —PTep(alf)), £ = expy(nv), ne(0,1]. (27)

Thus each model only needs expy, log;:,7 dq (and, if desired, a convenient form of parallel transport).

C.1 POINCARE BALLDY = {z € R?: ||z|| < 1/\/c}

Exponential/log at the origin

. . T
expj(v) = tanh(VE ) s log(r) = antanh(ve )
Base-point maps (with Mobius addition @, and conformal factor A = ﬁ)
e VeIl v 2 (=p) &z
exp (v) :p@,(tanh —3—) = ), logy(¢) = —= artanh (V¢ ||[(=p)®@ex]]) -
o) = o tanh (5 ey ) log() = g atanh ) Ty el
Geodesic distance
1 2c|jz —y|?
dp,(x,y) = — arcosh(l + .
Ve (1 =cllzl*)(A = cllyll*)

Parallel transport & implementation note. The ball is conformal, g(z) = \(x)?I with \(z) =

ﬁ. Choosing p = 0, the transport along the unique geodesic to the origin can be imple-

mented as a scalar rescaling PT¢_,o(u) = %u. This scaling preserves the Riemannian norm
because the ball is conformal: letting || - /\(0) ||uH [ ensures
A0)2|[u'[|% = A(€)?|lull%. Then equation 27)amounts to vy := ( (¢ )//\( ) a(€) followed by

expg.

Mbobius addition / scalar multiplication.

1+ 2¢(u,v) + Hu+(1-— 2
pow = (L 2elw o)+ clpolP)ut (L —clulP)o

1
1+ 2¢(w, v) + C[a2l[o]? tanh(r artanh(\fHuH))

7

C.2 UPPER HALF-PLANE H,. = {(u,y) € RI"! xR}
Exponential/log at o = (0,...,0,1/\/c) Letv = (v,,v,) € R¥~! x R. Then
1 /u
c _ Ve 1 ﬁvy) log® :7(7 1 )
expfe) = (Vv o), ogi(uny) = 22 (4 (vew)

Geodesic distance

a2 )2
i, ((u1, 1), (u2, y2)) = L arcosh(l + c(llur — ual® + (1 — v2) )> )

Ve 2y192
Parallel transport & implementation note.  This model is conformal with g(u,y) =
A
Mu,y)21, Mu,y) = ﬁy If p= o, then PT¢_,,(w) = /\ng = \/Elyg w, followed by exp¢.

C.3 KLEINMODELKY = {z e R?: ||z|| < 1/\/c}

Exponential/log at the origin coincide with the ball at 0: exp§, logg as above. Geodesic distance

1—cp'q
d ,q) = arcosh '
x. (P q) <\/(1c|p||2)(16”qn2)>

Parallel transport: recommendation. Since the Klein model is not conformal, closed-form PT is
more involved. In practice, use an isometry to Lorentz (or Poincaré), perform PT and the exponential
step there, and map back to Klein.
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C.4 HEMISPHERE J, = {u € S" : uy 41 > 0}

Implementation note. We recommend using the standard isometry to the Lorentz (hyperboloid)
model to compute exp /log, d, and PT, and then map back to the hemisphere. We omit redun-
dant explicit formulas here to avoid confusion, since our experiments instantiate Poincaré/Lorentz
directly.

C.5 LORENTZ (HYPERBOLOID) L. = {X e R"™': X2 -7 X?=1 X,>0}

Minkowski bilinear form. (X,Y )y =—XoYo + >, X;V,.

Distance and similarity.

1
dr, (X,Y) = 7 arcosh( — ¢(X,Y)n), (X,Y)y = —cosh(dp,(X,Y)).
c
Exponential/logarithm at ¢; = (--,0,...,0).
c w c 1 X 1:n
expg, (W) = ( cosh(v/c||W])), bmh(\f”WH)W) logg (X) = 7 arcosh(y/c Xo) Kol

Parallel transport. It can be implemented by a Lorentz boost: let Bx_,, € SOT(1,n) map X to
eg, then PTX—)eo (V) = BX%eoV'

Where to plug in the main text.
* Memory encoding (Sec. , Eq. equation ). Pick expy, log, from any model. If tangent
clipping is used, clip in 7), M and map back via exp;,.

* Energy (Eq. equation @) Substitute the chosen model’s dq (or equivalently (-, -)ar);
nothing else changes.

* Retrieval/optimization (CCCP step equation 27). Use the model-agnostic gradient of
the concave term via logg(-) and sinh d, then apply the model’s PT and expy, to update.

* Energy bounds (Appendix [A.T). Plug the model’s d ( into the same bounding argument.

D HYPERBOLIC HOPFIELD LAYERS FOR DEEP LEARNING

To seamlessly integrate hyperbolic associative memory into end-to-end networks, we construct three
core modules on the Poincaré ball D?:

Hyperbolic Hopfield, Hyperbolic Hopfield Pooling, Hyperbolic Hopfield Layer.

All three share the curvature parameter ¢ (which can be made learnable) and follow the CCCP
closed-form step derived in the main text: first parallel-transport the Riemannian gradient of the
concave term to a reference point p, then take the exponential-map update at p; in our implementa-
tion we set p = 0 (the ball center).

D.1 HYPERBOLIC HOPFIELD

HypHopfield takes queries R € RZ*¢ and memories Y € RV ¥4 as input, and outputs Z € RE*¢,
It implements the retrieval update on D¢ (see Appendix § §'

1. Hyperbolic attention (similarity and soft weights)

0Sp.;
e il
Spi = (Y, Ry)pr = — cosh(dp, (Yi, Ry)), Poi=—x—c>
b, ( b)M ( D ( ’)) b, Z;\le €05,

yielding P € RB*N,
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Algorithm 1 HypHopfield retrieval on the Poincaré ball D¢

Require: Memories Y = {Y;}¥, c DY, queries R(") = {Rgo)}le C DY, curvature ¢ > 0,

c*

temperature § > 0, stepsize ) € (0, 1], base point p = 0, max iters Ty, tolerance &

1: fort =0,1,...,Th.x — 1 do
2: Hyperbolic similarities: S ; < — cosh(dp, (Y}, R,(f)))
3: Soft weights: P, ; < exp(65y:)/ >, exp(65s,5)
4:  Riemannian gradient of concave term at Rl()t):
N log o) (Vi)
ap < =Y Py sinb(dp, (Y, R))
2 P sinbldo. (Vi R) g ST,

5:  Parallel transporttop = 0: v, < — PTR<t)_>0(ab)
b

6:  Base-point update (CCCP with damping): RétH) < exp§(nvy), project back to D if
needed

7:  Stopping: if dp, (Rl(fﬂ), Rz()t)) < eforall b then break

8: end for

. Output: 7 = {R\'""V}B

Nel

2. Intrinsic gradient and parallel transport to the base point Let the concave term be
Eeave(§) = —51og Y-, e{@:$)2 For each batch element Ry, the Riemannian gradient of
the concave term is (see Appendix §A.3)

N
@, = grad Bewe(Ry) = =Y Py grade (Vi hu| .
=11p

i=1

where grad, (Y;, &)y = sinh(dp, (Y5, €)) Hll(fj#))”g Parallel-transport this direction to
the reference point p = 0:

Vp = _PTRh*)O(ab).
In the conformal Poincaré model, the metric is g(z) = A(z)%I with A\(z) = ﬁ We

adopt the transport rule consistent with our implementation (see Appendix §C):

MR, AR
PTg,—o(u) = %u, = = —%ab.

(Using the exact PT of the model is also possible; empirically the results are consistent with
our implementation.)

3. Base-point exponential map (at p = 0) Update with stepsize € (0, 1]:
U

velnsll’

and apply ball projection when necessary to avoid numerical issues near the boundary (stan-
dard clipping in our implementation).

Zy, = expg(nv,) = tanh(v/e|nvy|)

Implementation hints (consistent with code) (1) If upstream features are in Euclidean coordi-
nates, first map them to the ball with ToPoincaré and then perform the three steps above; if Eu-
clidean outputs are required, apply FromPoincaré at the end. (2) All submodules in this paper share
the same curvature handle ¢ (either learnable or fixed).

Pseudocode. The retrieval step is summarized in Alg.[1]7]

2For parallel transport (PT) we use the exact PT (via an isometry to the Lorentz model); our code also
provides the conformal-scaling approximation PT4_,o(u) = A=)y with Ax) = which yielded

Alz) 2
2 I—c[lz[2>
similar results in our experiments.
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Table 3: Results for MIL datasets Tiger, Fox, Elephant (AUC). Except for our method, results are
from Ramsauer et al.|(2020).

Method tiger fox elephant
HAMNSs(ours) 890.0+04 773+0.8 92.8+0.2
MHNSsRamsauer et al.| (2020) 91.3+£05 6405+04 949 +0.3
Path encoding |Kiiciikagc1 & Baydogan|(2018) 91.0+ 1.0 71.2+14 944+0.7
MInD |Cheplygina et al.[(2015) 83+1.1 704+£16 93.6+£09
MILES|Chen et al.| (2006)) 872+17 738+£1.6 92.7+0.7
APR Dietterich et al.[(1997) 77.8+0.8 541+09 550=£1.0
Citation-kNN|Wang & Zucker| (2000) 855+09 635+£15 89.6+09

D.2 HYPERBOLIC HOPFIELD POOLING

HypPooling aggregates m learnable query vectors R € R™*? and N instance embeddings (as mem-

ories) Y € R™*? into m hyperbolic summary vectors. Its computation is identical to HypHopfield
(hyperbolic attention — Riemannian gradient with PT to p = 0 — base-point exponential map),
except that R is a fixed-size learnable parameter while Y comes from upstream instances or outputs
of previous layers. We validate its effectiveness in multi-instance learning tasks.

D.3 HYPERBOLIC HOPFIELD LAYER

HypLayer propagates a small number of queries (input vectors) R through a learnable memory
matrix Y € RN*?; Y can be initialized from a reference set (class prototypes, training-set em-
beddings, etc.) and trained. The update rule is the same as HypHopfield (base-point exponential
update at p = 0), thereby supporting prototype/similarity-based retrieval, nearest-neighbor match-
ing, and pattern aggregation; we verify its effectiveness in CIFAR-100 hierarchical classification
and molecular property prediction tasks.

E EXPERIMENTS

E.1 EXPERIMENT I: MULTIPLE INSTANCE LEARNING DATASETS.

Table 4: Hyperparameter search space for manual selection on the Elephant, Fox, and Tiger valida-
tion sets.

Parameter Values
Learning rates {1073,1075}
Learning rate decay (vy) {0.98,0.96,0.94}
Number of heads {8,12,16, 32}
Hidden dimensions {32,64,128}
Bag dropout {0.0,0.75}
Poincaré curvature (c) {1.0,0.5,0.1}
Clipping threshold (c1ip,) {0.9,1.2,2.8}
RSGD max iterations {1,5,10}
RSGD learning rate (7)) {1.0,0.1,0.001}

To evaluate the performance of our Hyperbolic Associative Memory Networks (HAMNs) on
multi—instance learning (MIL) tasks Dietterich et al.|(1997)), we conduct experiments on three clas-
sical benchmark datasets: Tiger, Elephant, and Fox (originally introduced by [lIse et al.| (2018));
Kiictikasc1 & Baydogan| (2018)); |Carbonneau et al.| (2018))). Each dataset consists of color images
that are segmented into multiple regions and thus form a set of instances (segments or blobs); each
instance is represented by color, texture, and shape descriptors. The learning objective is to clas-
sify the entire bag according to the presence of certain positive instances, despite the absence of
instance—level annotations.
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We introduce the proposed HypPooling module, which aggregates instance—level embeddings into
a fixed—dimensional bag representation. Given a set of embedded instances as stored memory pat-
terns Y (already mapped into hyperbolic space), we further introduce a set of static and learnable
query vectors as state (query) patterns R, which also reside in the same Poincaré ball. Each query
retrieves similar patterns from memory via a hyperbolic attention mechanism, thereby constructing
a compressed representation of the input bag.

Elephant, Fox and Tiger are MIL datasets |/Andrews et al.|(2002) for image annotation which com-
prise color images from the Corel dataset that have been preprocessed and segmented. An image
consists of a set of segments (or blobs), each characterized by color, texture and shape descriptors.
The datasets have 100 positive and 100 negative example images. The latter have been randomly
drawn from a pool of photos of other animals. Elephant has 1391 instances and 230 features. Fox
has 1320 instances and 230 features. Tiger has 1220 instances and 230 features. We used the Hyp-
Pooling layer to perform hyperbolic aggregation of the input instances, and conducted a manual
hyperparameter search on a validation set. Specifically, on the Elephant, Fox, and Tiger datasets we
used the following architecture:

1. A fully connected linear embedding layer with ReLU activation;
2. Our HypPooling layer to perform the hyperbolic pooling operation on the embeddings;
3. A final ReLU-linear block as the classification output layer.

Results (Table [3) show that HAMNSs match or outperform prior baselines and achieve the best score
on Fox; overall, they remain comparable to Euclidean MHNSs.

Among various hyperparameters, we focused particularly on those of the HypPooling layer, in-
cluding the curvature ¢, the number of Riemannian gradient steps, and the learning rate 7. All
models were trained for 160 epochs using the AdamW optimizerLoshchilov & Hutter| (2017)) with
exponential learning rate decay (see Table [). We validated performance using 10-fold nested
cross-validation repeated five times with different data splits; the reported ROC AUC scores are
the averages across these runs. We also applied bag dropout at the bag level as our regularization
technique.

E.2 EXPERIMENT 2: DRUG DESIGN BENCHMARK DATASETS.

To evaluate the effectiveness of our proposed Hyperbolic Associative Memory Networks (HAMN )
on molecular property prediction, we conduct experiments on four representative datasets from
MoleculeNet (Wu et al.| 2018)). These datasets represent four main modeling tasks in drug design:
(a) HIV for anti-viral activity prediction, introduced by the Drug Therapeutics Program (DTP) AIDS
Antiviral Screen; (b) BACE for human -secretase inhibitors (Subramanian et al., 2016)); (c) BBBP
for predicting blood-brain barrier permeability (Martins et al.| 2012)); and (d) SIDER for predicting
drug side effects (Kuhn et al., 2016).

We apply the proposed HypLayer to the above molecular prediction tasks. Specifically, the training
samples are used as stored memory patterns Y, while the input samples serve as state (query) patterns
R. Each input is first mapped into the Poincaré ball via hyperbolic embedding, then undergoes state

Table 5: Results on drug design benchmark datasets. Predictive performance (ROCAUC) on test set
as reported bylJiang et al.| (2021) for 50 random splits

Method HIV BACE BBBP SIDER
HAMNSs(ours) 785+26 872+3.0 902+25 621+£23
MHNSs 793+24 88415 89.1=£17 61.8+26
Attentive FP 748+ 15 708+33 84.1+£22 562£15
GCN 77.5+1.6 632+45 792+£39 554+12
GAT 72.1+36 774+30 837£20 564+15
DNN 73.0+1.8 865+22 87620 620%£1.38
RF 823+22 892+12 900£2.0 -
SVM - 893+15 894 +2.1 -
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evolution through the Hopfield retrieval mechanism in hyperbolic space, and eventually converges
to a stable point close to one of the memory patterns. The final prediction is determined based on
the association between the converged state and the corresponding label in memory.

Table 6: Hyperparameter search-space for grid-search on HIV, BACE, BBBP and SIDER. All mod-
els were trained, if applicable, for 4 epochs using Adam and a batch size of 1 sample.

Parameter Values
Learning rates {0.0002}
Number of heads {1, 32,128, 512}
Dropout {0.0,0.1, 0.2}
Poincaré curvature (c) {1.0,0.5,0.1}
Clipping threshold (clip,) {0.9,1.2,2.8}
RSGD max iterations {1,5,10}
RSGD learning rate () {1.0,0.1,0.001}
quantity {2,4,8}

We compare HAMNS against several representative baselines, including Support Vector Machines
(SVM), Random Forest (RF), Deep Neural Networks (DNN), and state-of-the-art graph neural net-
works: Graph Convolutional Networks (GCN) (Kipf & Welling, 2016), Graph Attention Networks
(GAT) (Velickovic€ et al.| [2017), AttentiveFP (Xiong et al., 2019), and modern Hopfield networks
(MHNSs) (Ramsauer et al) [2020). All models follow the standard splitting protocol provided by
MoleculeNet. We report the average AUC over 50 random splits for each dataset.

As shown in Table[5] our method achieves competitive performance across all datasets and sets a new
state-of-the-art result on BBBP(AUC = 90.24-2.5), SIDER (AUC =62.1+£2.3). All hyperparameters
were selected on separate validation sets and we selected the model with the highest validation AUC
on five different random splits. (see Table [6)

E.3 EXPERIMENT 3: ABLATIONS: CURVATURE AND NUMBER OF STORED PATTERNS.
We also added a comparative experiment to study the effect of curvature ¢ and the number of stored

patterns:

Table 7: Comparison of curvature c (higher is better).
c flat_top flat_super flat_coarse flat fine

0.1 0.8834 0.7501 0.5891 0.3524
02 08784 0.7366 0.5614 0.2798
0.3  0.8656 0.7225 0.5888 0.3498
04  0.8942 0.7629 0.6342 0.3757
0.5 0.8897 0.7439 0.6142 0.3617
0.6  0.8755 0.7687 0.6493 0.4372
0.7  0.9030 0.7774 0.6695 0.4823
0.8 0.8841 0.7571 0.6204 0.4505
0.9  0.8898 0.7675 0.6514 0.4563

1.0 0.8818 0.7592 0.6522 0.4715
20 0.8919 0.7570 0.6455 0.4737
3.0 0.8902 0.7624 0.6461 0.4467

4.0 0.8924 0.7711 0.6459 04112
5.0 0.8577 0.7541 0.6395 0.4099
6.0 0.8807 0.7429 0.5745 0.2680
7.0  0.8860 0.7521 0.6262 0.3536

8.0 0.8704 0.7446 0.6035 0.3288
9.0 0.8715 0.7280 0.5661 0.2162
10.0 0.8617 0.6864 0.4368 0.1468
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The curvature ¢ comparison data above come from hierarchical classification results on CIFAR-100
after imposing a four-level structured hierarchy.

Table 8: Comparison of number of stored patterns on CIFAR-100 (4-level hierarchy).
stored_n flat_ top flat super flat_coarse flat fine

100 0.8898 0.7517 0.6419 0.4498
150  0.8893 0.7680 0.6563 0.4670
200 0.8826 0.7394 0.6413 0.4754
250 0.8710 0.7466 0.6494 0.4642

300 0.8917 0.7563 0.6463 0.4596
350  0.8889 0.7641 0.6431 0.4505
400 0.8954 0.7630 0.6379 0.4558
450  0.8945 0.7649 0.6282 0.4290

500 0.8851 0.7586 0.6458 0.4728
550  0.8928 0.7674 0.6400 0.4647
600 0.8932 0.7491 0.6426 0.4740
650 0.8916 0.7796 0.6507 0.4643
700  0.8893 0.7676 0.6513 0.4749
750  0.8932 0.7473 0.6419 0.4547
800 0.8836 0.7778 0.6575 0.4780

From this experiment we observe that choosing a moderate curvature (e.g. ¢ ~ 0.7-2.0) yields the
best trade-off across multiple hierarchy levels. Extreme curvatures should be avoided: too small a ¢
fails to express the hierarchy well, while too large a c leads to degraded performance. (see Table [/)

Similarly, the stored-pattern comparison uses CIFAR-100 with a four-level hierarchy. Since CIFAR-
100 contains 100 classes, the number of stored patterns starts at 100 and is increased for comparison.

From the table, accuracies at each level are not monotonic: too many stored patterns can degrade
the top level, the middle level benefits from a somewhat larger pattern count, and the coarse/fine
levels peak at high capacity (800). Overall the metrics fluctuate little across different pattern counts,
indicating the model is fairly robust to this choice. Empirically, very large pattern counts increase
computation cost, so using a somewhat smaller number incurs little performance loss while saving
resources. (see Table [8))

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as a general-purpose assistant only for: (i) translation
and grammar correction; (ii) text polishing and wording refinement; and (iii) suggesting interme-
diate steps or equivalent formulations in a small subset of mathematical derivations. Specifically,
the LLM provided text-level assistance when drafting or rewriting the following parts: the model-
agnostic gradient form of the hyperbolic similarity (Appendix [A.3)) and the structured presentation
of upper/lower bounds for the energy function (Appendix [A.T)). All assumptions, derivations, and
final proofs were independently re-derived, verified, and corrected by the authors as needed.
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