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Abstract001

Personalizing large language models (LLMs)002
is important for aligning outputs with diverse003
user preferences, yet existing methods struggle004
with flexibility and generalization. We propose005
CoPL (Collaborative Preference Learning), a006
graph-based collaborative filtering framework007
that models user-response relationships to en-008
hance preference estimation, particularly in009
sparse annotation settings. By integrating a010
mixture of LoRA experts, CoPL efficiently011
fine-tunes LLMs while dynamically balancing012
shared and user-specific preferences. Addition-013
ally, an optimization-free adaptation strategy014
enables generalization to unseen users without015
fine-tuning. Experiments on UltraFeedback-P016
demonstrate that CoPL outperforms existing017
personalized reward models, effectively cap-018
turing both common and controversial prefer-019
ences, making it a scalable solution for person-020
alized LLM alignment.021

1 Introduction022

Large language models (LLMs) have rapidly ex-023

panded across diverse applications, from customer024

service and tutoring to creative content genera-025

tion (Shi et al., 2024; Molina et al., 2024; Venka-026

traman et al., 2024). As increasing numbers of027

users with varied backgrounds interact with LLMs,028

accounting for diverse preferences has become es-029

sential. Most reward models rely on the Bradley-030

Terry-Luce (BTL) framework (Bradley and Terry,031

1952), which learns preferences from pairwise com-032

parisons provided by human annotators. However,033

earlier studies largely assumed a single, uniform034

preference and neglected the diversity of user pref-035

erences (Siththaranjan et al., 2024; Li et al., 2024).036

This limitation has led to growing interest in per-037

sonalized reward models (Sorensen et al., 2024).038

There are two different approaches to utilizing039

the BTL framework for personalized reward mod-040

els. The first approach has explored combining041

multiple reward models, each trained for a specific 042

preference and later aggregated (Jang et al., 2023; 043

Oh et al., 2024). However, this approach relies on 044

pre-trained models for different preference types, 045

reducing flexibility. Another line of work intro- 046

duces user-specific latent variables into a single 047

BTL framework, learning personalized represen- 048

tations from user annotations (Chen et al., 2024a; 049

Poddar et al., 2024; Li et al., 2024). While this 050

method captures individual preferences, the latent 051

variable model does not explicitly account for rela- 052

tionships between users sharing similar responses. 053

As a result, it struggles to generalize in sparse an- 054

notation settings. 055

To address these limitations, we propose Collab- 056

orative Preference Learning (CoPL), which con- 057

structs a user-response bipartite preference graph 058

from pairwise annotations and uses a graph-based 059

collaborative filtering (GCF) framework for person- 060

alized reward modeling. Unlike approaches that 061

model each user separately, GCF on the graph struc- 062

ture allows preference signals to propagate across 063

users, enabling to exploit multi-hop relationships 064

among users and responses (Wang et al., 2019; He 065

et al., 2020). As a result, CoPL can capture diverse 066

preferences of users even in sparse annotation set- 067

tings. 068

Based on the user embedding, we develop an 069

LLM-based reward model that can predict the pref- 070

erence score of a user given input text. We adopt 071

the mixture of LoRA experts (MoLE) (Chen et al., 072

2023, 2024c; Liu et al., 2024) that allows parameter 073

efficient fine-tuning while routing different users 074

to different paths based on the learned embedding. 075

Specifically, we develop a user preference-aware 076

gating function that dynamically selects the experts 077

in the forward pass, making the LLM predict a 078

personalized preference. 079

While the reward model can predict preferences 080

for users included in the training set, the model can- 081

not handle newly participated unseen users whose 082
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embeddings are unknown. To estimate the prefer-083

ences of unseen users, we propose an optimization-084

free adaptation method. Given a few annotations085

from an unseen user, we exploit the existing graph086

to find users with similar preferences and aggregate087

their embeddings to represent the unseen user.088

Experimental results demonstrate that CoPL con-089

sistently outperforms existing personalized reward090

models in both seen and unseen users. Especially,091

CoPL generalizes to unseen users, maintaining092

high accuracy with only a few provided annota-093

tions. Embedding visualizations show that CoPL094

clusters users with similar preferences more closely095

than competing baselines. Further ablation stud-096

ies confirm that both GCF and MoLE contribute097

significantly to performance.098

2 Related Work099

In this section, we summarize relevant lines of re-100

search, such as personalized alignment and prefer-101

ence learning with sparse interactions.102

Personalized alignment. With the growth of gen-103

erative models, alignment has emerged as a crucial104

strategy for mitigating undesirable outcomes, such105

as biased or harmful outputs, and ensuring that the106

model works with human preference (Dai et al.,107

2023; Yang et al., 2024a). Alignment methods of-108

ten rely on reward models. They typically build109

on the BTL framework, which relies on pairwise110

comparisons from various annotators. However,111

previous research has often focused on the aver-112

age preference of annotators (Achiam et al., 2023),113

ignoring the diverse preferences.114

To address preference diversity, recent115

works (Jang et al., 2023; Oh et al., 2024; Yang116

et al., 2024b) view this problem as a soft clustering117

problem, where user-specific preferences are118

treated as mixtures of predefined preference119

types. Although this approach effectively handles120

diverse preferences, it relies on specifying several121

preference types in advance.122

Another line of work introduces user latent vari-123

able in the BTL framework (Poddar et al., 2024;124

Li et al., 2024; Chen et al., 2024a). Although ex-125

tending the BTL framework with latent user vari-126

ables can address diverse preferences, the main127

challenge lies in obtaining user representations.128

One approach is to treat each user embedding as129

learnable parameters, (Li et al., 2024; Chen et al.,130

2024a), and the other strategy is to train an encoder131

that infers embeddings from the small set of an-132

notated pairs provided by each user (Poddar et al., 133

2024). 134

Preference learning with sparse interactions. 135

Preference learning with sparse interactions is a 136

well-studied challenge in recommendation systems, 137

where each user typically interacts with only a 138

small fraction of the available items. Despite these 139

limited interactions, the system should infer the 140

preference of each user and recommend additional 141

items accordingly (He and Chua, 2017; Chen et al., 142

2020; Li et al., 2022; Lin et al., 2022). Collabo- 143

rative filtering (CF) is a widely adopted solution 144

that assumes users with similar interaction histories 145

will exhibit similar preferences. 146

Graph-based CF (GCF) (Wang et al., 2019; He 147

et al., 2020) has been considered one of the most 148

advanced algorithms for a recommendation system. 149

GCF leverages graph neural networks (GNNs) to 150

capture preference through the connectivity among 151

users and items. Many GCFs are developed based 152

on an implicit feedback assumption (Rendle et al., 153

2012), where an edge between a user and an item 154

reveals a preferable relation. Whereas in our set- 155

ting, users provide explicit feedback given a pair 156

of responses, making direct application of GCF 157

unsuitable. 158

3 Problem Formulation 159

We aim to develop a reward model that can cap- 160

ture diverse user preferences from a limited set of 161

preference annotations. Instead of directly defining 162

a user’s preference, we collect pairwise compar- 163

isons indicating which item a user prefers. Let 164

U = {1, · · · , U} be a set of users and X be 165

a space of LLM’s responses. To estimate the 166

preferences of users, we first curate a survey set 167

S = {(qi, ai, bi)}Ri=1 consisting of predefined ques- 168

tions qi and two different responses ai, bi ∈ X 169

from LLMs. For each user u, we first randomly 170

sampleNu number of survey items and then collect 171

the preferences over the response pairs, resulting 172

in preference dataset Du. We use (a ≻ b) ∈ Du 173

to denote that user u prefers response a over the 174

response b. Given these pairwise preferences, we 175

aim to learn a numerical reward function 176

f(u, r) : U × X → R, (1) 177

where f(u, r) represents a scalar preference score
of response r for user u. The model is trained to
satisfy

f(u, a) > f(u, b)
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for all u and preference pairs a ≻ b observed in the178

data.179

Following previous works (Li et al., 2024; Pod-180

dar et al., 2024), we consider the Bradly-Terry-181

Luce (BTL) choice model (Bradley and Terry,182

1952) with maximum likelihood estimation to train183

the reward function. The likelihood of user u184

prefers item a over b can be defined using the BTL185

model as186

p(a ≻ b | u) =
exp

(
f(u, a)

)
exp

(
f(u, a)

)
+ exp

(
f(u, b)

) .187

Conversely, if b was chosen over a, i.e., a ≺ b, the
likelihood is

p(b ≻ a | u) = 1− p(a ≻ b | u).

Through the maximum likelihood estimation with188

preference data for all users, one can learn the189

reward function f to make the reward function190

align with user preference. In the case of the191

universal preference model, user u is ignored in192

Eq. (1) (Chen et al., 2024b; Achiam et al., 2023;193

Dai et al., 2023; Bai et al., 2022). In practice, the194

user u is replaced by a user embedding (Poddar195

et al., 2024; Li et al., 2024; Chen et al., 2024a).196

4 Method197

In this section, we describe our Collaborative Pref-198

erence Learning (CoPL). We first learn user em-199

beddings based on GCF with the preference data.200

We then train the reward model based on the201

learned user embeddings. Finally, we provide an202

optimization-free adaptation strategy to obtain em-203

beddings of users who are unseen during training.204

4.1 User Representation Learning205

Users who share similar preferences are likely to206

respond to similar responses. When the number of207

annotated responses is very small, it is unlikely to208

annotate the same responses between users. How-209

ever, if we exploit multi-hop relations between210

users and responses, we may estimate user pref-211

erence accurately. In fact, the exploitation of the212

relationship between users and items is the key idea213

behind graph-based collaborative filtering (GCF).214

The preference dataset for all users can be natu-215

rally converted into a bipartite graph, where each216

user and response is represented as a node, and217

an edge between a user and a response represents218

the user’s preference over the response. The edge219

can have two different types: positive or negative,220

indicating whether a user prefers the response or 221

not. 222

Given a bipartite graph, we design a message- 223

passing algorithm to update user and response rep- 224

resentations. Let eu ∈ Rd be an embedding vector 225

of user u, and er ∈ Rd be an embedding vector 226

of response r. Since there are two different edge 227

types, we use different parameterizations for each 228

type. Let N+
u be a set of positive edges and N−

u be 229

a set of negative edges from user u. Similary, we 230

can define N+
r and N−

r for response r. Given user 231

and response embeddings at layer ℓ, the message 232

passing computes a message from neighborhood 233

responses to the user as 234

m+
u =

∑
r∈N+

u

αu,r

(
W

(ℓ)
1 e(ℓ)r +W

(ℓ)
2 (e(ℓ)r ⊙ e(ℓ)u )

)
, 235

m−
u =

∑
r∈N−

u

βu,r

(
W

(ℓ)
3 e(ℓ)r +W

(ℓ)
4 (e(ℓ)r ⊙ e(ℓ)u )

)
, 236

m(ℓ)
u =W

(ℓ)
self e

(ℓ)
u + m+

u + m−
u , (2) 237

where W (ℓ)
1 ,W

(ℓ)
2 ,W

(ℓ)
3 ,W

(ℓ)
4 ,W

(ℓ)
self ∈ Rd×d are 238

parameter matrices, ⊙ is element-wise multipli- 239

cation, and αu,r and βu,r are normalization fac- 240

tors, set to 1√
|N+

u ||N+
r |

and 1√
|N−

u ||N−
r |

, respec- 241

tively. Then, the user embedding is updated with 242

the aggregated message m(ℓ)
u : 243

e(ℓ+1)
u = ψ

(
m(ℓ)

u

)
, (3) 244

where ψ(·) is a non-linear activation. The response 245

embedding e(ℓ)r is updated with analogous process. 246

We randomly initialize the user and response em- 247

beddings at the first layer and then fine-tune the 248

embeddings through training. The update steps 249

for the response embeddings are provided in Ap- 250

pendix A. 251

After L propagation steps, user and response 252

embeddings accumulate information from their lo- 253

cal neighborhood. Given the final user embedding 254

e
(L)
u and response embedding e(L)r , we use the in- 255

ner product between the embeddings as a predicted 256

preference : 257

su,r =
(
e(L)u

)⊤(
e(L)r

)
. (4) 258

With the score function, the GNN is trained on 259

preference data Du for all users by minimizing the 260
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following loss function:261

LGCF(θ) := (5)262 ∑
u∈U

∑
(a≻b)∈Du

− log σ (su,a − su,b) + λ∥θ∥22,263

where σ(·) denotes a sigmoid function, λ is a reg-264

ularization hyper-parameter and θ represents all265

trainable parameters, including weights of the prop-266

agation layers and initial embeddings of the users267

e
(0)
u and responses e(0)r .268

4.2 Personalized Reward Model with User269

Representations270

Based on the learned user embeddings e(L)u , we271

build a reward model that can accommodate the272

preferences of diverse users. We use an LLM-based273

reward function:274

fϕ(eu, r) : Rd ×X → R (6)275

where f is an LLM parameterized by ϕ taking user276

embedding eu and the response r as inputs and277

predicts preference score. Unlike the response, the278

user embedding is not used as an input token. In-279

stead, it is used in the gating mechanism described280

below. To learn the reward model, we can employ281

the BTL model, resulting in the maximum likeli-282

hood objective:283

LRM(ϕ) =
∑
u

∑
(a≻b)∈Du

log pϕ(a ≻ b | eu) (7)284

However, naively optimizing this objective starting285

from a pretrained LLM requires fine-tuning billions286

of parameters. Moreover, different preferences of287

users result in conflicting descent directions of the288

model parameters, resembling a multi-task learning289

scenario.290

Mixture of LoRA experts for personalized re-291

ward function. For an efficient parameter update292

while minimizing the negative effect of diverse293

preferences, we adopt the mixture of LoRA experts294

(MoLE) (Hu et al., 2021; Liu et al., 2024) into our295

framework. MoLE is proposed to maximize the296

benefit of the mixture of experts (MoE) while main-297

taining efficient parameter updates. With MoLE,298

the model parameter matrix W is decomposed into299

pretrained and frozen W0 and trainable ∆W , i.e.,300

W =W0 +∆W . ∆W is further decomposed into301

a shared LoRA expert As ∈ Rdout×n, Bs ∈ Rn×din ,302

which is used across all users, and M individual303

LoRA experts {Ai, Bi}Mi=1 with the same dimen- 304

sionality of the shared expert. Formally, this can 305

be written as 306

∆Wu = AsBs +

M∑
i=1

wiAiBi, (8) 307

where wi ∈ [0, 1] denotes the importance of expert 308

i. 309

To adopt the different preferences of users, 310

we define a user-dependent gating mechanism to 311

model the importance parameter wi. For each user 312

u, a gating function g : Rd → RM maps e(L)u to 313

expert-selection logits: 314

z = g
(
e(L)u

)
. (9) 315

We convert these logits z into gating weight wi by 316

selecting the top one expert from the logits: 317

wi =


exp(zi/τ)∑M

j=1 exp(zj/τ)
if i = argmaxi zi

0 otherwise,
(10) 318

where τ is a temperature parameter. In practice, 319

one can use top-k experts, but we could not find a 320

significant difference in our experiments. For com- 321

putational efficiency, we keep the top one expert. 322

4.3 Optimization-free User Adaptation 323

While we can predict a preference score of un- 324

seen responses for a known user, the reward model 325

trained in Section 4.2 cannot be used to predict the 326

preference of users who have not been observed 327

during training. To estimate the embeddings of un- 328

seen users, we propose an optimization-free adap- 329

tation approach. 330

Let u∗ be an unseen user who annotates a small 331

set of response pairs. Under the assumption that 332

users who have similar responses have similar pref- 333

erences, we can estimate the embedding of an un- 334

seen user by taking an embedding of users with 335

similar tastes. For example, if both user u∗ and u 336

share positive preference over the same response r, 337

then we can use the embedding of u to approximate 338

that of u∗. Based on this intuition, we propose the 339

following optimization-free adaptation strategy for 340

unseen user embedding: 341

e
(L)
u∗ =

∑
u∈N+

u∗ (k)

wu,u∗e(L)u , (11) 342

4



where N+
u∗(k) is a set of k-hop neighborhood1

of user u∗ connected by only positive edges, and
wu,u∗ is a normalized alignment score between u
and u∗. The normalized alignment score wu,u∗ is
defined as

wu,u∗ =
exp(γu,u∗/κ)∑

ũ∈N+
u∗ (k)

exp(γũ,u∗/κ)
,

where

γu,u∗ =
∑

(a≻b)∈Du∗

log σ(su,a − su,b),

where su,i is an inner product between user and343

response embeddings, κ is a temperature parame-344

ter, and γu,u∗ is an alignment score between user345

u and u∗. Intuitively, γu,u∗ measures how well the346

predicted preference of user u aligns with the anno-347

tated preference provided by user u∗. If the prefer-348

ences of both users align well, γu,u∗ is large. Con-349

sequently, their embeddings become similar to each350

other. By collecting embeddings of well-aligned351

neighborhood users, we can obtain embeddings of352

user u∗ without having further optimization.353

5 Experiments354

In this section, we aim to show whether reward355

models can accurately learn user preferences in356

sparse annotation scenarios. Specifically, we exam-357

ine situations where many users contribute only a358

few annotated pairs.359

5.1 Experimental Settings360

Datasets. We employ the UltraFeedback-P (UF-361

P) dataset (Poddar et al., 2024), which is explic-362

itly designed to capture diverse user preferences363

from UltraFeedback (Cui et al., 2023). Unlike tra-364

ditional reward modeling datasets that assume a365

single dominant preference, UF-P explicitly builds366

diverse preference groups through fine-grained367

scores across multiple preference attributes about368

response from UltraFeedback.369

UF-P is created by grouping users based on dis-370

tinct preference priorities, including helpfulness,371

honesty, instruction-following, and truthfulness.372

This dataset consists of two environments, each373

with a different number of groups. First, UF-P-2374

consists of two user groups, each prioritizing either375

helpfulness or honesty. UF-P-4 expands to four376

groups, each concentrating on a different attribute.377

1k must be an even number to aggregate only the user
embeddings.

We provide a detailed explanation of the construc- 378

tion of the UF-P dataset from UltraFeedback in 379

Appendix C.1. 380

While UF-P supports personalized reward mod- 381

eling, it does not inherently reflect scenarios where 382

a large number of users each provides only a hand- 383

ful of annotations. To reflect our target scenario, we 384

generate a modified version of UF-P with 10,000 385

users evenly distributed across different preference 386

groups and a survey set of 25,993 pairs. 387

Specifically, we construct four experimental en- 388

vironments based on UF-P-2 and UF-P-4: 389

• UF-P-2-ALL: In two preference groups, each 390

user contributes exactly 8 annotations. 391

• UF-P-2-AVG: In two preference groups, each 392

user contributes 8 annotations on average. 393

• UF-P-4-ALL: In four preference groups, each 394

user contributes exactly 16 annotations. 395

• UF-P-4-AVG: In four preference groups, each 396

user contributes 16 annotations on average. 397

For UF-P-2-AVG and UF-P-4-AVG, we randomly 398

sample the number of annotations from a uniform 399

distribution over 1 ∼ 15 and 1 ∼ 31, respectively. 400

Since UF-P-4 encompasses a broader range of 401

preferences, users provide more annotations to cap- 402

ture this added complexity. These configurations 403

enable us to rigorously evaluate how reward mod- 404

els perform under sparse user annotations, a critical 405

challenge for large-scale personalized alignment in 406

practical settings. 407

Notably, our experimental environments remain 408

consistent with previous work (Poddar et al., 2024), 409

but more closely mirror our target environments. 410

Specifically, Poddar et al. (2024) infers user prefer- 411

ences from a small, predefined pool of unannotated 412

pairs, so all users must be evaluated within that 413

limited query set. In contrast, we consider a much 414

broader range of unannotated pairs, allowing the 415

model to capture preferences across diverse con- 416

texts and better adapt to real-world personalized 417

alignment scenarios. 418

Baselines. We evaluate six baselines to bench- 419

mark. First, we use a uniform preference model 420

(Uniform) trained on all annotations via BTL. Ad- 421

ditionally, we consider four personalized reward 422

models: I2E, I2Eproxy (Li et al., 2024), VPL (Pod- 423

dar et al., 2024), and PAL (Chen et al., 2024a). 424

Finally, we include an Oracle, which has access to 425
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Gemma-2b-it Gemma-7b-it

UF-P-2 UF-P-4 UF-P-2 UF-P-4

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

Oracle 64.53±0.14 64.53±0.14 61.52±0.13 61.52±0.13 66.80±0.17 66.80±0.17 62.17±0.09 62.17±0.09

Uniform 61.82±0.16 61.82±0.16 56.15±0.22 56.15±0.22 61.96±0.07 61.96±0.07 56.80±0.12 56.80±0.12

I2E 61.48±0.18 61.49±0.70 57.21±0.37 57.44±0.37 62.10±0.28 61.43±0.23 57.90±0.21 58.50±0.09

I2Eproxy 61.43±0.56 61.33±0.61 56.78±0.14 57.14±0.31 62.03±0.30 62.27±0.09 57.54±0.16 58.12±0.14

VPL 61.11±0.16 61.86±0.84 56.04±1.71 56.77±0.38 62.39±0.10 62.59±0.24 58.87±0.25 57.55±1.00

PAL 59.95±0.04 61.53±0.22 56.95±0.13 57.37±0.14 62.59±0.06 62.47±0.13 57.17±0.22 56.27±0.13

CoPL 63.81±0.16 63.45±0.38 62.57±0.38 62.08±0.27 63.90±0.07 63.48±0.13 62.90±0.05 61.93±0.02

U
ns

ee
n

Oracle 64.66±1.10 64.66±1.10 61.33±0.35 61.33±0.35 67.43±0.65 67.43±0.65 62.01±0.04 62.01±0.04

Uniform 62.82±0.59 62.82±0.59 55.65±0.61 55.65±0.61 62.23±0.06 62.23±0.06 57.02±0.27 57.02±0.27

I2E 61.67±0.82 59.52±0.51 56.42±0.41 56.75±0.68 62.62±0.95 61.88±0.21 57.62±0.92 58.12±0.98

I2Eproxy 62.30±0.54 61.70±0.63 56.00±1.15 56.50±0.34 61.99±0.33 62.84±0.40 57.69±0.70 57.73±0.32

VPL 60.83±0.40 62.62±0.49 54.03±1.54 56.13±0.57 62.69±0.99 63.67±0.12 58.49±1.22 56.85±0.84

PAL 59.83±0.69 61.71±0.31 57.07±0.22 57.13±0.33 63.08±0.73 62.52±0.58 57.15±0.48 56.44±0.67

CoPL 63.92±0.54 63.26±0.51 61.62±0.10 61.97±0.35 64.08±0.71 64.38±1.00 62.77±1.32 62.08±0.64

Table 1: Accuracy of reward models on unseen annotated pairs. The Seen user results report performance for all
users encountered during training in the upper block of the table. The Unseen user results report performance for 100
new users, evenly distributed across preference groups. Unseen users provide 8 annotations under UF-P-2-ALL/AVG
and 16 annotations under UF-P-4-ALL/AVG. Bold represents the best result, except with Oracle. All experiments
run on three seeds.

(a) I2E (b) I2Eproxy (c) VPL (d) PAL (e) CoPL

Figure 1: T-SNE visualization of seen user embeddings in UF-P-4-AVG with gemma-2b-it. Points are colored by
their preference group. Our method clusters users in the same group more effectively, whereas other baselines fail
to cluster users by their preference groups in user embedding space.

user group information and all annotations in the426

survey set and trains a separate reward function in427

Eq. (1) for each preference group. The details of428

each model are provided in the Appendix B.429

Training and evaluation details. For reward430

function training, we utilize two LLM back-431

bones: gemma-2b-it and gemma-7b-it (Team432

et al., 2024). Our model uses one shared LoRA,433

eight LoRA experts, each with a rank of eight, and434

a two-layer MLP for the gating function. The other435

baselines, e.g., Uniform, I2E, VPL, PAL, and Ora-436

cle, use a LoRA rank of 64. Other training details,437

such as hyper-parameters and model architecture,438

are provided in Appendix C.2.439

We report reward model accuracy on unseen test440

pairs that are not in the survey set. We define a441

correct prediction as assigning a higher score to442

the preferred response. We evaluate performance443

for both seen and unseen users. For seen user 444

experiments, each user is assigned 10 test pairs, 445

and accuracy is calculated over all seen users. We 446

fix the number of unseen users at 100, evenly dis- 447

tributed across preference groups. To adapt the 448

reward model for each unseen user, we provide 8 449

annotations in UF-P-2-ALL/AVG and 16 annota- 450

tions in UF-P-4-ALL/AVG, followed by evaluation 451

on 50 test pairs per unseen user. CoPL uses 2-hop 452

neighbors for unseen user adaptation. 453

5.2 Results 454

Table 1 presents accuracy for both seen and un- 455

seen users. CoPL consistently outperforms other 456

baselines, except for Oracle, in both seen user and 457

unseen user experiments. Notably, CoPL is com- 458

parable with Oracle in UF-P-4-ALL/AVG. In un- 459

seen user experiments, CoPL achieves accuracy 460
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Oracle Uniform I2E I2Eproxy VPL PAL CoPL

Common 71.86±0.14 74.52±0.45 73.94±0.21 74.15±1.53 72.73±1.00 70.82±0.17 71.23±1.63

Controversial 57.68±0.27 49.86±0.30 49.61±0.05 49.86±0.06 50.26±0.44 49.79±0.12 56.89±1.56

Total 64.53±0.14 61.82±0.16 61.48.±0.18 61.59±0.79 61.11±0.32 59.95±0.04 63.81±0.15

Table 2: Accuracy of reward models on UF-P-2-ALL with gemma-2b-it, broken down by pair type. Common
refers to pairs for which the two preference groups provide the same preference label, Controversial refers to pairs
labeled differently by the two groups, and Total encompasses all pairs. These categories reflect how diverse user
preferences affect the performance of reward models. Bold represents the best result, except with Oracle.
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Figure 2: Accuracy of unseen user adaptation as the
number of provided annotation sets increases, evaluated
on UF-P-2/4-AVG with gemma-2b-it. 2-hop and 4-hop
indicates 2-hop and 4-hop adaptation, respectively.

comparable to the seen user setting, indicating the461

effectiveness of our unseen user adaptation.462

Fig. 1 visualizes the embedding space of seen463

users in UF-P-4-AVG, which is the most challeng-464

ing environment in these experiments, and demon-465

strates that GNN-based representation learning can466

capture preference similarity between users even467

when each user provides few annotations.468

5.3 Analysis469

Analysis of performance in UF-P-2. In Table 1,470

all models appear capable of representing diverse471

preferences, surprisingly including the uniform472

models in UF-P-2-ALL/AVG. To investigate fur-473

ther, we divide the test pairs of UF-P-2 into com-474

mon and controversial categories, where common475

pairs have identical annotations from both prefer-476

ence groups, and controversial pairs differ. Focus-477

ing on the seen user results in UF-P-2-ALL with478

gemma-2b-it from Table 1, we break down the479

accuracy in Table 2. The results indicate that base-480

lines, except Oracle, struggle with controversial481

pairs, suggesting a tendency to capture only the482

common preference across all users. By contrast,483

our method achieves comparable performance to484

Oracle on controversial pairs while preserving high485

accuracy on common pairs.486
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Figure 3: Expert allocation at layers 2 and 3 in UF-
P-4-ALL with gemma-2b-it. Colors indicate prefer-
ence groups. Users with similar preference groups are
mapped to the same expert.

UF-P-2-ALL UF-P-4-ALL

CoPL 63.81±0.16 62.57±0.38

w/o GNN embedding 62.09±0.38 56.75±0.30

w/o MoLE (n = 64) 62.69±0.86 62.28±0.33

w/o MoLE (n = 16) 62.43±0.69 62.13±0.12

Table 3: Ablation study of CoPL in UF-P-2/4-ALL with
gemma-2b-it. w/o GNN embedding replaces user em-
beddings from GNN with learnable user embeddings.
w/o MoLE removes the MoLE and projects user embed-
dings into the token space. The symbol n denotes the
LoRA rank. All experiments run on three seeds.

Effect of the number of annotations in unseen 487

user adaptation. Fig. 2 shows accuracy as the 488

number of provided annotations increases in UF- 489

P-2-AVG and UF-P-4-AVG. We observe that addi- 490

tional annotations lead to more accurate preference 491

predictions for unseen users in general. However, 492

in practice, even eight annotations are sufficient, en- 493

abling accurate inference of each user’s preference. 494

We also compare two-hop and four-hop adaptations, 495

but there is no significant difference. 496

Ablation study of CoPL. Table 3 presents an 497

ablation study of CoPL, focusing on GNN-derived 498

user embeddings and the MoLE architecture. When 499

GNN embeddings are removed, user representa- 500

tions become learnable parameters. Without MoLE, 501
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UF-P-4-ALL UF-P-4-AVG

CoPL 61.62±0.10 61.97±0.35

Naive Avg. 59.91±0.59 59.39±0.50

User Opt. 59.24±0.71 59.45±0.72

Table 4: Accuracy of unseen-user adaptation in UF-P-
4-ALL/AVG with gemma-2b-it. Naive Avg. computes
the unseen user’s embedding as the unweighted aver-
age of 2-hop neighbors, while CoPL applies a weighted
average strategy. User Opt. represents an optimization-
based approach that learns a parameterized user embed-
ding by maximizing the likelihood of the given annota-
tions. All experiments run on three seeds.

user embeddings are projected into the token space502

and passed as an additional token to the reward503

model. The results indicate that components of504

CoPL are effective. Specifically, GNN-based em-505

beddings are a crucial component of CoPL, and the506

MoLE architecture further enhances accuracy. No-507

tably, CoPL uses fewer activated parameters than508

w/o MoLE (n = 64).509

Fig. 3 depicts expert allocation across layers two510

and three, where the user-conditioned gating mech-511

anism partitions users differently at each layer. We512

can observe that users with the same preferences513

tend to be routed to the same expert.514

Ablation study of unseen user adaptation. We515

conduct an ablation study to evaluate the effective-516

ness of the unseen user adaptation strategy, com-517

paring it to two baselines, Naive Avg and User Opt.518

Naive Avg assigns each unseen user embedding as519

the unweighted average of 2-hop seen user embed-520

dings. User Opt replaces e(L)u with a parameterized521

embedding learned by minimizing Equation (5) on522

the provided annotations. Table 4 reports results523

in UF-P-4-ALL/AVG with gemma-2b-it, show-524

ing that CoPL outperforms both alternatives while525

achieving better computational efficiency than the526

optimization-based User Opt.527

Fig. 4 illustrates that naive averaging places un-528

seen users away from identical preference group529

users, whereas our method clusters them more530

closely with users who share the same preferences.531

Training reward models with GNN. Table 5532

reports GNN accuracy on seen users and responses533

for test pairs excluded from the training dataset.534

The results demonstrate that GNN can accurately535

predict labels for unannotated pairs with sparse536

annotations.537

UF-P-2 UF-P-4

ALL AVG ALL AVG

84.84±0.83 84.32±0.09 90.01±0.35 87.74±0.19

Table 5: Test accuracy of the GNN. We evaluate the
model using the same users from training but with an-
notation pairs that are not reflected in the graph. All
experiments run on three seeds.

UF-P-2-ALL UF-P-4-ALL

CoPL 63.81±0.16 62.57±0.38

Pseudo label 62.77±0.70 62.26±0.27

Oracle 64.53±0.14 61.52±0.13

User-specific 58.09±1.73 55.30±3.30

Table 6: Accuracy of reward model trained by using a
pre-trained GNN in UF-P-2/4-ALL with gemma-2b-it.
The pseudo-label variant trains a reward model on all
seen user–response pairs, with annotations provided by
GNN-predicted labels. The user-specific variant refers
to a BTL model trained with pseudo labels for each user.
Only 10 users per group are sampled due to computa-
tional constraints. All experiments run on three seeds.

Table 6 examines the impact of training with 538

GNN-based pseudo labels, allowing the model to 539

leverage additional preference data. Although the 540

pseudo-labeled pairs increase the dataset size, per- 541

formance is slightly worse than using only user- 542

provided annotations, suggesting that noise de- 543

grades model accuracy. 544

To investigate the effect of noise further, a user- 545

specific reward model is trained on pseudo labels 546

for a random sample of 10 users per group. The 547

results are considerably worse than the Oracle, indi- 548

cating that noisy labels introduce training instabil- 549

ity. This observation aligns with Wang et al. (2024), 550

which notes that noisy preference labels can lead to 551

training instability and performance degradation. 552

6 Conclusion 553

In this work, we introduced CoPL, a novel ap- 554

proach for personalizing LLMs through graph- 555

based collaborative filtering and MoLE. Unlike ex- 556

isting methods that treat user preferences indepen- 557

dently or require predefined clusters, our approach 558

leverages multi-hop user-response relationships to 559

improve preference estimation, even in sparse anno- 560

tation settings. By integrating user-specific embed- 561

dings into the reward modeling process with MoLE, 562

CoPL effectively predicts an individual preference. 563
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Limitations564

This work demonstrates how GCF-based user em-565

beddings enable personalization in sparse settings,566

but we do not explore other GNN architectures that567

could further reduce sample complexity. Addition-568

ally, although CoPL employs a gating mechanism569

for user-specific expert allocation, we did not ap-570

ply load-balancing loss, which induces more even571

activation among experts. As a result, some ex-572

perts remain inactive in Fig. 3. Future work may573

investigate different GNN designs and incorporate574

load-balancing techniques to fully leverage the po-575

tential of GNN and MoLE, respectively.576

The oracle model may appear underwhelming,577

likely because our smaller backbone LLM strug-578

gles to capture subtle stylistic differences between579

responses. Larger-scale models (over 30B param-580

eters) could better handle these nuances; however,581

constraints in our current setup prevent such exper-582

iments, and we defer them to future work.583
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Appendix743

A Message Passing for Response744

Embeddings745

Given user and response embeddings at layer ℓ, a746

message from neighborhood users to the response747

as748

m+
r =

∑
u∈N+

r

αu,r

(
Ŵ

(ℓ)
1 e(ℓ)u + Ŵ

(ℓ)
2 (e(ℓ)u ⊙ e(ℓ)r )

)
,749

m−
r =

∑
u∈N−

r

βu,r

(
Ŵ

(ℓ)
3 e(ℓ)u + Ŵ

(ℓ)
4 (e(ℓ)u ⊙ e(ℓ)r )

)
,750

m(ℓ)
r = Ŵ

(ℓ)
self e

(ℓ)
r + m+

r + m−
r , (12)751

where Ŵ (ℓ)
1 , Ŵ

(ℓ)
2 , Ŵ

(ℓ)
3 , Ŵ

(ℓ)
4 , Ŵ

(ℓ)
self ∈ Rd×d are752

parameter matrices, ⊙ is element-wise multiplica-753

tion, and αu,r and βu,r are normalization factors,754

set to 1√
|N+

u |·|N+
r |

and 1√
|N−

u |·|N−
r |

, respectively.755

Then, the response embedding is updated with756

the aggregated message m(ℓ)
r :757

e(ℓ+1)
r = ψ

(
m(ℓ)

r

)
, (13)758

where ψ(·) is a non-linear activation.759

B Method Baselines760

Uniform. The uniform model is a standard ap-761

proach for pairwise preference comparisons. We762

train the uniform model with all annotation pairs,763

which will capture the common preference.764

Oracle. For an oracle model of our setting, we765

train the model with the true group membership766

of all users. A separate uniform model is trained767

for each group by aggregating annotations from the768

users in that group.769

I2E (Li et al., 2024). I2E is a framework that770

uses DPO to personalize LLM. However, it can be771

easily extended to reward modeling. I2E trains a772

model that maps the user index into a learnable773

embedding. It appends each user embedding as774

an additional input token to the LLM, providing775

user-specific signals for reward prediction.776

I2Eproxy (Li et al., 2024). A variant of I2E that777

introduces N proxy embeddings. A weighted com-778

bination of these proxies forms the final user em-779

bedding, which is passed to the LLM for reward780

prediction. In our experiments, we use N = 10.781

VPL (Poddar et al., 2024). Variational Prefer- 782

ence Learning (VPL) encodes user-specific annota- 783

tions into user embeddings. The user embeddings 784

are then combined with sentence representations 785

via an MLP to predict reward scores. To capture 786

the user preferences effectively, VPL uses a varia- 787

tional approach that maps the user annotations into 788

a prior distribution. 789

PAL (Chen et al., 2024a). Pluralistic Alignment 790

(PAL) applies an ideal-point model, where the dis- 791

tance between the user and the response determines 792

the reward. The ideal point of the user is repre- 793

sented by N proxies, set to N = 10 in this work. 794

Among variants of PAL, we use PAL-A with logis- 795

tic loss. 796

C Experimental Details 797

In this section, we provide a detailed explanation 798

of dataset construction and hyper-parameters. 799

C.1 Ultrafeedback-P 800

Poddar et al. (2024) proposes the Ultrafeedback-P 801

(UF-P) benchmark for personalized reward model- 802

ing, based on the Ultrafeedback (UF) dataset (Cui 803

et al., 2023), which provides response pairs rated 804

on four attributes: helpfulness, honesty, instruction 805

following, and truthfulness. In UF-P, each attribute 806

corresponds to a distinct preference. For instance, 807

a user belonging to the helpfulness group annotates 808

pairs, solely considering the helpfulness score. 809

UF-P-2. This version employs only two attributes 810

and removes pairs that both user groups label iden- 811

tically, focusing on controversial cases where pref- 812

erences differ. 813

UF-P-4. All four attributes are retained as pref- 814

erence dimensions, which allows for partial agree- 815

ment among groups and hence increases complex- 816

ity. Although Poddar et al. (2024) also excludes 817

pairs fully agreed upon by all users, the remaining 818

set is larger and exhibits more variety than UF-P-2. 819

In Poddar et al. (2024), each user is given a small 820

context sample from a limited set of unannotated 821

pairs to infer the user’s preference. In contrast, we 822

leverage every available pair in the dataset to infer 823

each user’s preferences. For our dataset construc- 824

tion, we use UF-P-4 dataset. 825

C.2 Hyper-parameters 826

We describe the training details of GNN, a reward 827

model, and unseen user adaptation, such as model 828
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architecture and hyper-parameters.829

GNN. The model consists of four message-830

passing layers, each with user and response em-831

beddings of dimension 512. We use Leaky ReLU832

as non-linear activation function to update user and833

response embeddings. Training proceeds for 300834

epochs using the AdamW optimizer (Loshchilov,835

2017) with a learning rate of 1× 10−4 and a cosine836

scheduler with warmup ratio 0.1. The batch size837

is 1024, and all experiments are conducted on an838

RTX 4090 GPU.839

Reward models. CoPL comprises an LLM back-840

bone and a MoLE adapter. We use gemma-2b-it841

or gemma-7b-it as the LLM backbone. MoLE in-842

cludes one shared expert and eight LoRA experts843

with a rank of eight. A two-layer MLP with a hid-844

den dimension of 256 and ReLU activation serves845

as the gating mechanism, with a temperature set to846

1.847

We train the reward models using the AdamW848

optimizer with a learning rate of 5 × 10−5 and a849

cosine scheduler with warmup ratio 0.03. Four850

GPUs, such as RTX6000ADA, L40S, and A100-851

PCIE-40GB, are employed with a batch size of852

32 per GPU for gemma-2b-it and 16 per GPU for853

gemma-7b-it.854

Baseline models use LoRA with rank 64. They855

also trained with an AdamW optimizer and a cosine856

scheduler with a warmup ratio 0.03. We search the857

learning rate from [1×10−4, 5×10−5, 1×10−5, 5×858

10−6].859

User adaptation. We use two-hop seen user and860

0.07 as temperature for unseen user adaptation of861

CoPL. For I2E, each learnable user representation862

is mapped into each user. For I2Eproxy and PAL,863

user representations are determined by N = 10864

proxies. Adapting to an unseen user requires pa-865

rameter optimization for unseen users, typically866

through several gradient steps. To optimize the867

parameters for unseen users, 50 gradient steps are868

applied during adaptation.869
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(a) Naive Avg. (b) User Opt. (c) CoPL

Figure 4: T-SNE visualization of seen and unseen user embeddings in UF-P-4-AVG. Naive Avg. computes unseen
user embeddings as the unweighted mean of 2-hop neighbor embeddings. User Opt. represents an optimization-
based approach that learns a parameterized user embedding by maximizing the likelihood of the given annotations.
Colors indicate preference groups, and points with black edges represent unseen users. Unseen users adapted by our
method align with their respective preference groups.
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