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Abstract

Personalizing large language models (LLMs)
is important for aligning outputs with diverse
user preferences, yet existing methods struggle
with flexibility and generalization. We propose
CoPL (Collaborative Preference Learning), a
graph-based collaborative filtering framework
that models user-response relationships to en-
hance preference estimation, particularly in
sparse annotation settings. By integrating a
mixture of LoRA experts, CoPL efficiently
fine-tunes LLMs while dynamically balancing
shared and user-specific preferences. Addition-
ally, an optimization-free adaptation strategy
enables generalization to unseen users without
fine-tuning. Experiments on UltraFeedback-P
demonstrate that CoPL outperforms existing
personalized reward models, effectively cap-
turing both common and controversial prefer-
ences, making it a scalable solution for person-
alized LLM alignment.

1 Introduction

Large language models (LLMs) have rapidly ex-
panded across diverse applications, from customer
service and tutoring to creative content genera-
tion (Shi et al., 2024; Molina et al., 2024; Venka-
traman et al., 2024). As increasing numbers of
users with varied backgrounds interact with LLMs,
accounting for diverse preferences has become es-
sential. Most reward models rely on the Bradley-
Terry-Luce (BTL) framework (Bradley and Terry,
1952), which learns preferences from pairwise com-
parisons provided by human annotators. However,
earlier studies largely assumed a single, uniform
preference and neglected the diversity of user pref-
erences (Siththaranjan et al., 2024; Li et al., 2024).
This limitation has led to growing interest in per-
sonalized reward models (Sorensen et al., 2024).
There are two different approaches to utilizing
the BTL framework for personalized reward mod-
els. The first approach has explored combining

multiple reward models, each trained for a specific
preference and later aggregated (Jang et al., 2023;
Oh et al., 2024). However, this approach relies on
pre-trained models for different preference types,
reducing flexibility. Another line of work intro-
duces user-specific latent variables into a single
BTL framework, learning personalized represen-
tations from user annotations (Chen et al., 2024a;
Poddar et al., 2024; Li et al., 2024). While this
method captures individual preferences, the latent
variable model does not explicitly account for rela-
tionships between users sharing similar responses.
As a result, it struggles to generalize in sparse an-
notation settings.

To address these limitations, we propose Collab-
orative Preference Learning (CoPL), which con-
structs a user-response bipartite preference graph
from pairwise annotations and uses a graph-based
collaborative filtering (GCF) framework for person-
alized reward modeling. Unlike approaches that
model each user separately, GCF on the graph struc-
ture allows preference signals to propagate across
users, enabling to exploit multi-hop relationships
among users and responses (Wang et al., 2019; He
et al., 2020). As a result, CoPL can capture diverse
preferences of users even in sparse annotation set-
tings.

Based on the user embedding, we develop an
LLM-based reward model that can predict the pref-
erence score of a user given input text. We adopt
the mixture of LoRA experts (MoLE) (Chen et al.,
2023, 2024c; Liu et al., 2024) that allows parameter
efficient fine-tuning while routing different users
to different paths based on the learned embedding.
Specifically, we develop a user preference-aware
gating function that dynamically selects the experts
in the forward pass, making the LLM predict a
personalized preference.

While the reward model can predict preferences
for users included in the training set, the model can-
not handle newly participated unseen users whose



embeddings are unknown. To estimate the prefer-
ences of unseen users, we propose an optimization-
free adaptation method. Given a few annotations
from an unseen user, we exploit the existing graph
to find users with similar preferences and aggregate
their embeddings to represent the unseen user.

Experimental results demonstrate that CoPL con-
sistently outperforms existing personalized reward
models in both seen and unseen users. Especially,
CoPL generalizes to unseen users, maintaining
high accuracy with only a few provided annota-
tions. Embedding visualizations show that CoPL
clusters users with similar preferences more closely
than competing baselines. Further ablation stud-
ies confirm that both GCF and MoLE contribute
significantly to performance.

2 Related Work

In this section, we summarize relevant lines of re-
search, such as personalized alignment and prefer-
ence learning with sparse interactions.

Personalized alignment. With the growth of gen-
erative models, alignment has emerged as a crucial
strategy for mitigating undesirable outcomes, such
as biased or harmful outputs, and ensuring that the
model works with human preference (Dai et al.,
2023; Yang et al., 2024a). Alignment methods of-
ten rely on reward models. They typically build
on the BTL framework, which relies on pairwise
comparisons from various annotators. However,
previous research has often focused on the aver-
age preference of annotators (Achiam et al., 2023),
ignoring the diverse preferences.

To address preference diversity, recent
works (Jang et al., 2023; Oh et al., 2024; Yang
et al., 2024b) view this problem as a soft clustering
problem, where user-specific preferences are
treated as mixtures of predefined preference
types. Although this approach effectively handles
diverse preferences, it relies on specifying several
preference types in advance.

Another line of work introduces user latent vari-
able in the BTL framework (Poddar et al., 2024,
Li et al., 2024; Chen et al., 2024a). Although ex-
tending the BTL framework with latent user vari-
ables can address diverse preferences, the main
challenge lies in obtaining user representations.
One approach is to treat each user embedding as
learnable parameters, (Li et al., 2024; Chen et al.,
2024a), and the other strategy is to train an encoder
that infers embeddings from the small set of an-

notated pairs provided by each user (Poddar et al.,
2024).

Preference learning with sparse interactions.
Preference learning with sparse interactions is a
well-studied challenge in recommendation systems,
where each user typically interacts with only a
small fraction of the available items. Despite these
limited interactions, the system should infer the
preference of each user and recommend additional
items accordingly (He and Chua, 2017; Chen et al.,
2020; Li et al., 2022; Lin et al., 2022). Collabo-
rative filtering (CF) is a widely adopted solution
that assumes users with similar interaction histories
will exhibit similar preferences.

Graph-based CF (GCF) (Wang et al., 2019; He
et al., 2020) has been considered one of the most
advanced algorithms for a recommendation system.
GCF leverages graph neural networks (GNNs) to
capture preference through the connectivity among
users and items. Many GCFs are developed based
on an implicit feedback assumption (Rendle et al.,
2012), where an edge between a user and an item
reveals a preferable relation. Whereas in our set-
ting, users provide explicit feedback given a pair
of responses, making direct application of GCF
unsuitable.

3 Problem Formulation

We aim to develop a reward model that can cap-
ture diverse user preferences from a limited set of
preference annotations. Instead of directly defining
a user’s preference, we collect pairwise compar-
isons indicating which item a user prefers. Let
U = {1,---,U} be a set of users and X be
a space of LLM’s responses. To estimate the
preferences of users, we first curate a survey set
S = {(qi, ai, b;) } | consisting of predefined ques-
tions ¢; and two different responses a;,b; € X
from LLMs. For each user u, we first randomly
sample N, number of survey items and then collect
the preferences over the response pairs, resulting
in preference dataset D,,. We use (a > b) € D,
to denote that user u prefers response a over the
response b. Given these pairwise preferences, we
aim to learn a numerical reward function

flu,r) : U x X — R, €))

where f(u,r) represents a scalar preference score
of response r for user u. The model is trained to
satisfy

fu,a) > f(u,b)



for all u and preference pairs a > b observed in the
data.

Following previous works (Li et al., 2024; Pod-
dar et al., 2024), we consider the Bradly-Terry-
Luce (BTL) choice model (Bradley and Terry,
1952) with maximum likelihood estimation to train
the reward function. The likelihood of user u
prefers item a over b can be defined using the BTL
model as

eXp(f(u7a))
exp(f(u, a)) + exp(f(U, b)) .

Conversely, if b was chosen over a, i.e., a < b, the
likelihood is

pla=bu) =

plb=alu)=1—pla>>b]|u).

Through the maximum likelihood estimation with
preference data for all users, one can learn the
reward function f to make the reward function
align with user preference. In the case of the
universal preference model, user u is ignored in
Eq. (1) (Chen et al., 2024b; Achiam et al., 2023;
Dai et al., 2023; Bai et al., 2022). In practice, the
user u is replaced by a user embedding (Poddar
et al., 2024; Li et al., 2024; Chen et al., 2024a).

4 Method

In this section, we describe our Collaborative Pref-
erence Learning (CoPL). We first learn user em-
beddings based on GCF with the preference data.
We then train the reward model based on the
learned user embeddings. Finally, we provide an
optimization-free adaptation strategy to obtain em-
beddings of users who are unseen during training.

4.1 User Representation Learning

Users who share similar preferences are likely to
respond to similar responses. When the number of
annotated responses is very small, it is unlikely to
annotate the same responses between users. How-
ever, if we exploit multi-hop relations between
users and responses, we may estimate user pref-
erence accurately. In fact, the exploitation of the
relationship between users and items is the key idea
behind graph-based collaborative filtering (GCF).
The preference dataset for all users can be natu-
rally converted into a bipartite graph, where each
user and response is represented as a node, and
an edge between a user and a response represents
the user’s preference over the response. The edge
can have two different types: positive or negative,

indicating whether a user prefers the response or
not.

Given a bipartite graph, we design a message-
passing algorithm to update user and response rep-
resentations. Let e,, € R? be an embedding vector
of user u, and e, € R? be an embedding vector
of response r. Since there are two different edge
types, we use different parameterizations for each
type. Let NV, be a set of positive edges and N, be
a set of negative edges from user u. Similary, we
can define V" and N,~ for response 7. Given user
and response embeddings at layer /, the message
passing computes a message from neighborhood
responses to the user as

mi = 3 o (W76 + Wil 0 ),

reN;

my = 37 Bur (W + Wl 0 o)),
reNyg

m{) = Wield) + mi + my, @)

@ @ O p@ dxd
where W™, Wy, Wa !, W,/ Wy € R*™™® are
parameter matrices, ©® is element-wise multipli-
cation, and o, and 3, , are normalization fac-
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tively. Then, the user embedding is updated with

the aggregated message mq(f):

6(44’1) — w(mgf))j (3)

where 1) (-) is a non-linear activation. The response
embedding e,@ is updated with analogous process.
We randomly initialize the user and response em-
beddings at the first layer and then fine-tune the
embeddings through training. The update steps
for the response embeddings are provided in Ap-
pendix A.

After L propagation steps, user and response
embeddings accumulate information from their lo-
cal neighborhood. Given the final user embedding
egL) and response embedding efnL), we use the in-
ner product between the embeddings as a predicted

preference :

= (e(L))T (e(L)) ) 4)

Su,r

With the score function, the GNN is trained on
preference data D,, for all users by minimizing the



following loss function:

Lgcr(0) = )

> D — sup) + Al6II3,

u€U (a>b)€Dy

—logo ( Su,a

where o (-) denotes a sigmoid function, A is a reg-

ularization hyper-parameter and 6 represents all

trainable parameters, including weights of the prop-

agation layers and initial embeddings of the users

eg)) and responses ego).

4.2 Personalized Reward Model with User
Representations

Based on the learned user embeddings e&L), we

build a reward model that can accommodate the
preferences of diverse users. We use an LLM-based
reward function:

folew,7) :REX X - R (6)

where f is an LLM parameterized by ¢ taking user
embedding e, and the response r as inputs and
predicts preference score. Unlike the response, the
user embedding is not used as an input token. In-
stead, it is used in the gating mechanism described
below. To learn the reward model, we can employ
the BTL model, resulting in the maximum likeli-
hood objective:

Lrm(¢p) = Z Z logpy(a = b|ey,) (7)

U (a>b)EDy

However, naively optimizing this objective starting
from a pretrained LLM requires fine-tuning billions
of parameters. Moreover, different preferences of
users result in conflicting descent directions of the
model parameters, resembling a multi-task learning
scenario.

Mixture of LoRA experts for personalized re-
ward function. For an efficient parameter update
while minimizing the negative effect of diverse
preferences, we adopt the mixture of LoRA experts
(MoLE) (Hu et al., 2021; Liu et al., 2024) into our
framework. MoLE is proposed to maximize the
benefit of the mixture of experts (MoE) while main-
taining efficient parameter updates. With MoLE,
the model parameter matrix W is decomposed into
pretrained and frozen W, and trainable AW, i.e.,
W = Wy + AW. AW is further decomposed into
a shared LoRA expert A, € Réuxn B e R*din
which is used across all users, and M individual

LoRA experts {A;, B;}}£, with the same dimen-
sionality of the shared expert. Formally, this can
be written as

M
AW, = ABs + Y wiAiB;, ®)
=1

where w; € [0, 1] denotes the importance of expert
i.

To adopt the different preferences of users,
we define a user-dependent gating mechanism to
model the importance parameter w;. For each user
u, a gating function g : R — R™ maps quL) to
expert-selection logits:

zZ = g(e&L)). 9)

We convert these logits z into gating weight w; by
selecting the top one expert from the logits:

exp(z;/T)
S exp(z;/7)
0 otherwise,

if ¢ = arg max; z;

(10)

w; =

where 7 is a temperature parameter. In practice,
one can use top-k experts, but we could not find a
significant difference in our experiments. For com-
putational efficiency, we keep the top one expert.

4.3 Optimization-free User Adaptation

While we can predict a preference score of un-
seen responses for a known user, the reward model
trained in Section 4.2 cannot be used to predict the
preference of users who have not been observed
during training. To estimate the embeddings of un-
seen users, we propose an optimization-free adap-
tation approach.

Let u* be an unseen user who annotates a small
set of response pairs. Under the assumption that
users who have similar responses have similar pref-
erences, we can estimate the embedding of an un-
seen user by taking an embedding of users with
similar tastes. For example, if both user «* and
share positive preference over the same response 7,
then we can use the embedding of u to approximate
that of v*. Based on this intuition, we propose the
following optimization-free adaptation strategy for
unseen user embedding:

L
€, = g Wy el

ueN (k)

(1)



where N (k) is a set of k-hop neighborhood!
of user u* connected by only positive edges, and
Wy, 18 a normalized alignment score between u
and v*. The normalized alignment score wy, ,+ is
defined as

eXp(Vu,?L* /K/)
Zae/\fut (k) EXP(Vau /K) ’

Wy,u* =

Yu,u* = Z

(a>b)€Du*

log U(Su,a - Su,b)v

where s, ; is an inner product between user and
response embeddings, ~ is a temperature parame-
ter, and -y, .+ is an alignment score between user
u and v*. Intuitively, v, .+ measures how well the
predicted preference of user u aligns with the anno-
tated preference provided by user u*. If the prefer-
ences of both users align well, 7, .+ is large. Con-
sequently, their embeddings become similar to each
other. By collecting embeddings of well-aligned
neighborhood users, we can obtain embeddings of
user u* without having further optimization.

5 Experiments

In this section, we aim to show whether reward
models can accurately learn user preferences in
sparse annotation scenarios. Specifically, we exam-
ine situations where many users contribute only a
few annotated pairs.

5.1 Experimental Settings

Datasets. We employ the UltraFeedback-P (UF-
P) dataset (Poddar et al., 2024), which is explic-
itly designed to capture diverse user preferences
from UltraFeedback (Cui et al., 2023). Unlike tra-
ditional reward modeling datasets that assume a
single dominant preference, UF-P explicitly builds
diverse preference groups through fine-grained
scores across multiple preference attributes about
response from UltraFeedback.

UF-P is created by grouping users based on dis-
tinct preference priorities, including helpfulness,
honesty, instruction-following, and truthfulness.
This dataset consists of two environments, each
with a different number of groups. First, UF-P-2
consists of two user groups, each prioritizing either
helpfulness or honesty. UF-P-4 expands to four
groups, each concentrating on a different attribute.

'k must be an even number to aggregate only the user
embeddings.

We provide a detailed explanation of the construc-
tion of the UF-P dataset from UltraFeedback in
Appendix C.1.

While UF-P supports personalized reward mod-
eling, it does not inherently reflect scenarios where
a large number of users each provides only a hand-
ful of annotations. To reflect our target scenario, we
generate a modified version of UF-P with 10,000
users evenly distributed across different preference
groups and a survey set of 25,993 pairs.

Specifically, we construct four experimental en-
vironments based on UF-P-2 and UF-P-4:

* UF-P-2-ALL: In two preference groups, each
user contributes exactly 8 annotations.

* UF-P-2-AVG: In two preference groups, each
user contributes 8 annotations on average.

e UF-P-4-ALL: In four preference groups, each
user contributes exactly 16 annotations.

* UF-P-4-AVG: In four preference groups, each
user contributes 16 annotations on average.

For UF-P-2-AVG and UF-P-4-AVG, we randomly
sample the number of annotations from a uniform
distribution over 1 ~ 15 and 1 ~ 31, respectively.

Since UF-P-4 encompasses a broader range of
preferences, users provide more annotations to cap-
ture this added complexity. These configurations
enable us to rigorously evaluate how reward mod-
els perform under sparse user annotations, a critical
challenge for large-scale personalized alignment in
practical settings.

Notably, our experimental environments remain
consistent with previous work (Poddar et al., 2024),
but more closely mirror our target environments.
Specifically, Poddar et al. (2024) infers user prefer-
ences from a small, predefined pool of unannotated
pairs, so all users must be evaluated within that
limited query set. In contrast, we consider a much
broader range of unannotated pairs, allowing the
model to capture preferences across diverse con-
texts and better adapt to real-world personalized
alignment scenarios.

Baselines. We evaluate six baselines to bench-
mark. First, we use a uniform preference model
(Uniform) trained on all annotations via BTL. Ad-
ditionally, we consider four personalized reward
models: I2E, 12E,oxy (Li et al., 2024), VPL (Pod-
dar et al., 2024), and PAL (Chen et al., 2024a).
Finally, we include an Oracle, which has access to



Gemma-2b-it Gemma-7b-it
UF-P-2 UF-P-4 UF-P-2 UF-P-4

ALL AVG ALL AVG ALL AVG ALL AVG

Oracle 64.53i0,14 64.53i0<14 61.52i0,13 61.52i0,13 66.80i0,17 66480i0<17 62.17i0_09 62.17i0,()9
Uniform 61.8240916 61.824016 56.154000 56.1540.22 61.961007 61.961007 956.80+0.12 56.80+0.12

s IE 61.48:018 61494070 57.211037 57443037 621041008 61432093 57.901091 58.504009
& 2By  61.431056 61.331061 56.78+0.14 57.144031 62.031030 62.2710.00 57.5410.16 58.1210.14
VPL 61.11419.16 61.864984 56.044171 56.77+0.38 62.394+0.10 62.594094 588710995 5H7.554+1.00
PAL 59.9540.04 61.531009 56.954013 57.37+0.14 62.594006 62.4710.13 57.174092 56.27+0.13
CoPL 6381016 63.45.0335 62.57 033 62.081 (27 63.904007 6348013 629041005 61.93(02
Oracle 64.66i1'10 64.66i1_10 61.33i0,35 61.33i0,35 67-43i0.65 67~43i0.65 62~01i0.04 62.01i0,()4
Uniform 62.821059 62.821059 55.65+0.61 55.65+0.61 62.2310.06 62.2310.06 57.02+09.27 57.0210.27

§ I2E 61.67+082 59.524051 956.424041 56.75+0.68 62.624095 61.8840921 H7.6240092 58.1240098
§ REpoxy  62.30+054 61.701063 56.0041.15 56.50+40.34 61.994033 62.844040 ©57.694070 57.73+40.32
VPL 60.83+040 62.621049 54.034154 56.134057 62.694099 63.6710.12 58.494190 56.8540.84
PAL 59.83+069 61.711931 57.0740922 57.13+033 63.08+073 62.521058 57.154048 56.444067
CoPL 63.92 054 63264051 61.62.919 61.97 (35 64.08. 071 6438109 62.771135 62.08. (64

Table 1: Accuracy of reward models on unseen annotated pairs. The Seen user results report performance for all
users encountered during training in the upper block of the table. The Unseen user results report performance for 100
new users, evenly distributed across preference groups. Unseen users provide 8 annotations under UF-P-2-ALL/AVG
and 16 annotations under UF-P-4-ALL/AVG. Bold represents the best result, except with Oracle. All experiments
run on three seeds.

(a) I2E (b) I2Eproxy (c) VPL (d) PAL (e) CoPL

Figure 1: T-SNE visualization of seen user embeddings in UF-P-4-AVG with gemma-2b-it. Points are colored by
their preference group. Our method clusters users in the same group more effectively, whereas other baselines fail

to cluster users by their preference groups in user embedding space.

user group information and all annotations in the
survey set and trains a separate reward function in
Eq. (1) for each preference group. The details of
each model are provided in the Appendix B.

Training and evaluation details. For reward
function training, we utilize two LLM back-
bones: gemma-2b-it and gemma-7b-it (Team
et al., 2024). Our model uses one shared LoRA,
eight LoRA experts, each with a rank of eight, and
a two-layer MLP for the gating function. The other
baselines, e.g., Uniform, I2E, VPL, PAL, and Ora-
cle, use a LoRA rank of 64. Other training details,
such as hyper-parameters and model architecture,
are provided in Appendix C.2.

We report reward model accuracy on unseen test
pairs that are not in the survey set. We define a
correct prediction as assigning a higher score to
the preferred response. We evaluate performance

for both seen and unseen users. For seen user
experiments, each user is assigned 10 test pairs,
and accuracy is calculated over all seen users. We
fix the number of unseen users at 100, evenly dis-
tributed across preference groups. To adapt the
reward model for each unseen user, we provide 8
annotations in UF-P-2-ALL/AVG and 16 annota-
tions in UF-P-4-ALL/AVG, followed by evaluation
on 50 test pairs per unseen user. CoPL uses 2-hop
neighbors for unseen user adaptation.

5.2 Results

Table 1 presents accuracy for both seen and un-
seen users. CoPL consistently outperforms other
baselines, except for Oracle, in both seen user and
unseen user experiments. Notably, CoPL is com-
parable with Oracle in UF-P-4-ALL/AVG. In un-
seen user experiments, CoPL achieves accuracy



Oracle Uniform I2E I2Eproxy VPL PAL CoPL
Common 71.86:|:0_14 74.52:‘:0.45 73.94:|:0_21 74.15:‘:1.53 72~73:|:1.00 70.82:‘:0_17 71-23:|:1.63
Controversial 57.6810,27 49.86i0,30 49.61i0,05 49.86i0,06 50.26i0,44 49.7910,12 56.89i1.56
Total 64.53i0.14 61.82i0.16 61.48.i0‘18 61.59i0.79 61.11i0.32 599510‘04 63.81i0,15

Table 2: Accuracy of reward models on UF-P-2-ALL with gemma-2b-it, broken down by pair type. Common
refers to pairs for which the two preference groups provide the same preference label, Controversial refers to pairs
labeled differently by the two groups, and Total encompasses all pairs. These categories reflect how diverse user
preferences affect the performance of reward models. Bold represents the best result, except with Oracle.
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Figure 2: Accuracy of unseen user adaptation as the
number of provided annotation sets increases, evaluated
on UF-P-2/4-AVG with gemma-2b-it. 2-hop and 4-hop
indicates 2-hop and 4-hop adaptation, respectively.

comparable to the seen user setting, indicating the
effectiveness of our unseen user adaptation.

Fig. 1 visualizes the embedding space of seen
users in UF-P-4-AVG, which is the most challeng-
ing environment in these experiments, and demon-
strates that GNN-based representation learning can
capture preference similarity between users even
when each user provides few annotations.

5.3 Analysis

Analysis of performance in UF-P-2. In Table 1,
all models appear capable of representing diverse
preferences, surprisingly including the uniform
models in UF-P-2-ALL/AVG. To investigate fur-
ther, we divide the test pairs of UF-P-2 into com-
mon and controversial categories, where common
pairs have identical annotations from both prefer-
ence groups, and controversial pairs differ. Focus-
ing on the seen user results in UF-P-2-ALL with
gemma-2b-it from Table 1, we break down the
accuracy in Table 2. The results indicate that base-
lines, except Oracle, struggle with controversial
pairs, suggesting a tendency to capture only the
common preference across all users. By contrast,
our method achieves comparable performance to
Oracle on controversial pairs while preserving high
accuracy on common pairs.
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Figure 3: Expert allocation at layers 2 and 3 in UF-
P-4-ALL with gemma-2b-it. Colors indicate prefer-
ence groups. Users with similar preference groups are
mapped to the same expert.

UF-P-2-ALL. UF-P-4-ALL
CoPL 63.8110,16 62-57i0.38
w/o GNN embedding 62.0940.38 56.7540.30
w/o MoLE (TL = 64) 62.691(),86 62.2810_33
w/o MoLE (n = 16) 62-43:t0.69 62-13i0.12

Table 3: Ablation study of CoPL in UF-P-2/4-ALL with
gemma-2b-it. w/o GNN embedding replaces user em-
beddings from GNN with learnable user embeddings.
w/o MoLE removes the MoLE and projects user embed-
dings into the token space. The symbol n denotes the
LoRA rank. All experiments run on three seeds.

Effect of the number of annotations in unseen
user adaptation. Fig. 2 shows accuracy as the
number of provided annotations increases in UF-
P-2-AVG and UF-P-4-AVG. We observe that addi-
tional annotations lead to more accurate preference
predictions for unseen users in general. However,
in practice, even eight annotations are sufficient, en-
abling accurate inference of each user’s preference.
We also compare two-hop and four-hop adaptations,
but there is no significant difference.

Ablation study of CoPL. Table 3 presents an
ablation study of CoPL, focusing on GNN-derived
user embeddings and the MoLE architecture. When
GNN embeddings are removed, user representa-
tions become learnable parameters. Without MoLE,



UF-P-4-ALL UF-P-4-AVG
CoPL 61.62i0‘10 61.97i0.35
Naive Avg. 59.91:&0.59 59.39:&0.50
User Opt. 59.24:|:0.71 59.45:|:0.72

Table 4: Accuracy of unseen-user adaptation in UF-P-
4-ALL/AVG with gemma-2b-it. Naive Avg. computes
the unseen user’s embedding as the unweighted aver-
age of 2-hop neighbors, while CoPL applies a weighted
average strategy. User Opt. represents an optimization-
based approach that learns a parameterized user embed-
ding by maximizing the likelihood of the given annota-
tions. All experiments run on three seeds.

user embeddings are projected into the token space
and passed as an additional token to the reward
model. The results indicate that components of
CoPL are effective. Specifically, GNN-based em-
beddings are a crucial component of CoPL, and the
MoLE architecture further enhances accuracy. No-
tably, CoPL uses fewer activated parameters than
w/o MoLE (n = 64).

Fig. 3 depicts expert allocation across layers two
and three, where the user-conditioned gating mech-
anism partitions users differently at each layer. We
can observe that users with the same preferences
tend to be routed to the same expert.

Ablation study of unseen user adaptation. We
conduct an ablation study to evaluate the effective-
ness of the unseen user adaptation strategy, com-
paring it to two baselines, Naive Avg and User Opt.
Naive Avg assigns each unseen user embedding as
the unweighted average of 2-hop seen user embed-
dings. User Opt replaces e&L) with a parameterized
embedding learned by minimizing Equation (5) on
the provided annotations. Table 4 reports results
in UF-P-4-ALL/AVG with gemma-2b-it, show-
ing that CoPL outperforms both alternatives while
achieving better computational efficiency than the
optimization-based User Opt.

Fig. 4 illustrates that naive averaging places un-
seen users away from identical preference group
users, whereas our method clusters them more
closely with users who share the same preferences.

Training reward models with GNN. Table 5
reports GNN accuracy on seen users and responses
for test pairs excluded from the training dataset.
The results demonstrate that GNN can accurately
predict labels for unannotated pairs with sparse
annotations.

UF-P-4
ALL AVG
90.0140.35 87.74+0.19

UF-P-2
ALL AVG
84.841083 84.3210.09

Table 5: Test accuracy of the GNN. We evaluate the
model using the same users from training but with an-
notation pairs that are not reflected in the graph. All
experiments run on three seeds.

UF-P-2-ALL UF-P-4-ALL
CoPL 63.8140.16 62.574+0.38
Pseudo label 62.77:|:0.70 62.26:|:0‘27
Oracle 64.53;&0_14 61.52i0.13
User-specific 58.0941.73 55.3043.30

Table 6: Accuracy of reward model trained by using a
pre-trained GNN in UF-P-2/4-ALL with gemma-2b-it.
The pseudo-label variant trains a reward model on all
seen user—response pairs, with annotations provided by
GNN-predicted labels. The user-specific variant refers
to a BTL model trained with pseudo labels for each user.
Only 10 users per group are sampled due to computa-
tional constraints. All experiments run on three seeds.

Table 6 examines the impact of training with
GNN-based pseudo labels, allowing the model to
leverage additional preference data. Although the
pseudo-labeled pairs increase the dataset size, per-
formance is slightly worse than using only user-
provided annotations, suggesting that noise de-
grades model accuracy.

To investigate the effect of noise further, a user-
specific reward model is trained on pseudo labels
for a random sample of 10 users per group. The
results are considerably worse than the Oracle, indi-
cating that noisy labels introduce training instabil-
ity. This observation aligns with Wang et al. (2024),
which notes that noisy preference labels can lead to
training instability and performance degradation.

6 Conclusion

In this work, we introduced CoPL, a novel ap-
proach for personalizing LLMs through graph-
based collaborative filtering and MoLE. Unlike ex-
isting methods that treat user preferences indepen-
dently or require predefined clusters, our approach
leverages multi-hop user-response relationships to
improve preference estimation, even in sparse anno-
tation settings. By integrating user-specific embed-
dings into the reward modeling process with MoLE,
CoPL effectively predicts an individual preference.



Limitations

This work demonstrates how GCF-based user em-
beddings enable personalization in sparse settings,
but we do not explore other GNN architectures that
could further reduce sample complexity. Addition-
ally, although CoPL employs a gating mechanism
for user-specific expert allocation, we did not ap-
ply load-balancing loss, which induces more even
activation among experts. As a result, some ex-
perts remain inactive in Fig. 3. Future work may
investigate different GNN designs and incorporate
load-balancing techniques to fully leverage the po-
tential of GNN and MoLE, respectively.

The oracle model may appear underwhelming,
likely because our smaller backbone LLM strug-
gles to capture subtle stylistic differences between
responses. Larger-scale models (over 30B param-
eters) could better handle these nuances; however,
constraints in our current setup prevent such exper-
iments, and we defer them to future work.
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Appendix

A Message Passing for Response
Embeddings

Given user and response embeddings at layer /, a
message from neighborhood users to the response
as

m = > au, (W06 + W0 (elf) o el)),
ueN;T

m= 32 ur (W0l 1 W (el 0 ),
ueN,~

m® = Wiel + mi + mr, (12)

where Wl(g), VAV(E), i 3(6), Wf), Ws(fl)f € R¥*4 are
parameter matrices, © is element-wise multiplica-

tion, and «,, and (3, , are normalization factors,

1 1 :
set to ——— and ———=——, respectively.
W IV VING [N
Then, the response embedding is updated with

the aggregated message m,(ﬂé):

Cg,g—’—l) —_ w(m”(nf))’ (13)

where () is a non-linear activation.

B Method Baselines

Uniform. The uniform model is a standard ap-
proach for pairwise preference comparisons. We
train the uniform model with all annotation pairs,
which will capture the common preference.

Oracle. For an oracle model of our setting, we
train the model with the true group membership
of all users. A separate uniform model is trained
for each group by aggregating annotations from the
users in that group.

I2E (Li et al., 2024). I2E is a framework that
uses DPO to personalize LLM. However, it can be
easily extended to reward modeling. I2E trains a
model that maps the user index into a learnable
embedding. It appends each user embedding as
an additional input token to the LLM, providing
user-specific signals for reward prediction.

I2Eproxy (Li et al., 2024). A variant of 12E that
introduces N proxy embeddings. A weighted com-
bination of these proxies forms the final user em-
bedding, which is passed to the LLM for reward
prediction. In our experiments, we use N = 10.
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VPL (Poddar et al., 2024). Variational Prefer-
ence Learning (VPL) encodes user-specific annota-
tions into user embeddings. The user embeddings
are then combined with sentence representations
via an MLP to predict reward scores. To capture
the user preferences effectively, VPL uses a varia-
tional approach that maps the user annotations into
a prior distribution.

PAL (Chen et al., 2024a). Pluralistic Alignment
(PAL) applies an ideal-point model, where the dis-
tance between the user and the response determines
the reward. The ideal point of the user is repre-
sented by N proxies, set to N = 10 in this work.
Among variants of PAL, we use PAL-A with logis-
tic loss.

C Experimental Details

In this section, we provide a detailed explanation
of dataset construction and hyper-parameters.

C.1 Ultrafeedback-P

Poddar et al. (2024) proposes the Ultrateedback-P
(UF-P) benchmark for personalized reward model-
ing, based on the Ultrafeedback (UF) dataset (Cui
et al., 2023), which provides response pairs rated
on four attributes: helpfulness, honesty, instruction
following, and truthfulness. In UF-P, each attribute
corresponds to a distinct preference. For instance,
a user belonging to the helpfulness group annotates
pairs, solely considering the helpfulness score.

UF-P-2. This version employs only two attributes
and removes pairs that both user groups label iden-
tically, focusing on controversial cases where pref-
erences differ.

UF-P-4. All four attributes are retained as pref-
erence dimensions, which allows for partial agree-
ment among groups and hence increases complex-
ity. Although Poddar et al. (2024) also excludes
pairs fully agreed upon by all users, the remaining
set is larger and exhibits more variety than UF-P-2.

In Poddar et al. (2024), each user is given a small
context sample from a limited set of unannotated
pairs to infer the user’s preference. In contrast, we
leverage every available pair in the dataset to infer
each user’s preferences. For our dataset construc-
tion, we use UF-P-4 dataset.

C.2 Hyper-parameters

We describe the training details of GNN, a reward
model, and unseen user adaptation, such as model



architecture and hyper-parameters.

GNN. The model consists of four message-
passing layers, each with user and response em-
beddings of dimension 512. We use Leaky ReLLU
as non-linear activation function to update user and
response embeddings. Training proceeds for 300
epochs using the AdamW optimizer (Loshchilov,
2017) with a learning rate of 1 x 10~* and a cosine
scheduler with warmup ratio 0.1. The batch size
is 1024, and all experiments are conducted on an
RTX 4090 GPU.

Reward models. CoPL comprises an LLM back-
bone and a MoLE adapter. We use gemma-2b-it
or gemma-7b-it as the LLM backbone. MoLE in-
cludes one shared expert and eight LoRA experts
with a rank of eight. A two-layer MLP with a hid-
den dimension of 256 and ReL U activation serves
as the gating mechanism, with a temperature set to
1.

We train the reward models using the AdamW
optimizer with a learning rate of 5 x 1075 and a
cosine scheduler with warmup ratio 0.03. Four
GPUs, such as RTX6000ADA, L40S, and A100-
PCIE-40GB, are employed with a batch size of
32 per GPU for gemma-2b-it and 16 per GPU for
gemma-7b-it.

Baseline models use LoRA with rank 64. They
also trained with an AdamW optimizer and a cosine
scheduler with a warmup ratio 0.03. We search the
learning rate from [1x 1074 5x107%,1x107%, 5%
1079).

User adaptation. We use two-hop seen user and
0.07 as temperature for unseen user adaptation of
CoPL. For I2E, each learnable user representation
is mapped into each user. For I12E;,xy and PAL,
user representations are determined by N = 10
proxies. Adapting to an unseen user requires pa-
rameter optimization for unseen users, typically
through several gradient steps. To optimize the
parameters for unseen users, 50 gradient steps are
applied during adaptation.
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@ Unseen

(a) Naive Avg. (b) User Opt. (c) CoPL

Figure 4: T-SNE visualization of seen and unseen user embeddings in UF-P-4-AVG. Naive Avg. computes unseen
user embeddings as the unweighted mean of 2-hop neighbor embeddings. User Opt. represents an optimization-
based approach that learns a parameterized user embedding by maximizing the likelihood of the given annotations.
Colors indicate preference groups, and points with black edges represent unseen users. Unseen users adapted by our
method align with their respective preference groups.
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