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ABSTRACT

Accents play a pivotal role in shaping human communication, enhancing our ability
to convey and comprehend messages with clarity and cultural nuance. While there
has been significant progress in Automatic Speech Recognition (ASR), African-
accented English ASR has been understudied due to a lack of training datasets,
which are often expensive to create and demand colossal human labor. Combining
several active learning paradigms and the core-set approach, we propose a new
multi-rounds adaptation process that uses epistemic uncertainty to automate the an-
notation process, significantly reducing the associated costs and human labor. This
novel method streamlines data annotation and strategically selects data samples
contributing most to model uncertainty, enhancing training efficiency. We define a
new U-WER metric to track model adaptation to hard accents. We evaluate our
approach across several domains, datasets, and high-performing speech models.
Our results show that our approach leads to a 27% WER relative average improve-
ment while requiring, on average, 45% less data than established baselines. Our
approach also improves out-of-distribution generalization for very low-resource
accents, demonstrating its viability for building generalizable ASR models in the
context of accented African ASR. We open-source the code here.

1 INTRODUCTION

Automatic Speech Recognition (ASR) is an active research area that powers voice assistant systems
(VASs) like Siri and Cortana, enhancing daily communication (Kodish-Wachs et al. (2018); Finley
et al. (2018); Zapata & Kirkedal (2015)). Despite this progress, no current VASs include African
languages, which account for about 31% of the world languages, and their unique accents (Eberhard
et al. (2019); Tsvetkov (2017)). This gap underscores the need for ASR systems that can handle
the linguistic diversity and complexity of African languages, especially in crucial applications like
healthcare. Due to the lack of representations of these languages and accents in training data,
existing ASR systems often perform inadequately, even mispronouncing African names (Olatunji
et al. (2023a)).

To address these challenges, our work focuses on adapting pretrained speech models to better
transcribe African-accented English, defined by unique intonations and pronunciations (Benzeghiba
et al. (2007); Hinsvark et al. (2021)). We use epistemic uncertainty (EU) (Kendall & Gal (2017))
to guide the adaptation process by identifying gaps in model knowledge and prioritizing data for
the model to learn from next. This is particularly beneficial in scenarios where data annotation
is costly or time-consuming, as often seen in the African context (Badenhorst & De Wet (2019;
2017); Barnard et al. (2009); Yemmene & Besacier (2019); DiChristofano et al. (2022); Dossou
et al. (2022); Dossou & Emezue (2021)). EU also improves robustness and encourages exploration
to mitigate inductive bias from underrepresented accents. Common approaches to compute EU
include Monte Carlo Dropout (MC-Dropout) (Gal & Ghahramani (2016)) and Deep Ensembles
(Lakshminarayanan et al. (2017)), with the latter being more effective but computationally expensive.
Due to resource constraints, we use MC-Dropout, which requires models to have dropout components
during pretraining.
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To further enhance the efficiency and effectiveness of model adaptation, we employ Active Learning
(AL) techniques. AL leverages epistemic uncertainty to select the most informative data points from
an unlabeled dataset for labeling, thereby improving model performance with fewer training instances.
Common types of AL include Deep Bayesian Active Learning (DBAL) (Gal et al. (2017); Houlsby
et al. (2011)) and Adversarial Active Learning (AAL) (Ducoffe & Precioso (2018)). AAL selects
examples likely to be misclassified by the current model, refining it iteratively by challenging it with
complex cases to enhance robustness. The core-set approach (CSA) (Sener & Savarese (2017)) is
also related, as it selects a subset of training data to ensure a model trained on this subset performs
comparably to one trained on the entire dataset, addressing scalability and efficiency. A critical
component of AL is the acquisition function (AF), which determines the most informative samples
from an unlabeled dataset for labeling. Key AFs include uncertainty sampling (US) (Liu & Li (2023)),
Bayesian Active Learning by Disagreement (BALD) (Gal et al. (2017)), and BatchBALD (Kirsch
et al. (2019)). US targets data points with the highest model uncertainty. BALD maximizes the
mutual information between model parameters and predictions. BatchBALD is an extension of
BALD that selects multiple samples simultaneously but may choose redundant points. US is the least
computationally expensive, making it ideal for efficient data labeling.

In this work, we leverage and combine DBAL, AAL, US, and CSA in the following way (in order):
First, we integrate the CSA by leveraging smaller training subsets (∼ 45% smaller than the full
available training sets). Second, we use DBAL with MC-Dropout, to apply dropout during training
and inference to estimate Bayesian posterior distribution. This allows us to practically and efficiently
estimate EU in the models used (Gal et al. (2017)) (see section 3.2 for more details). Third, we use
the estimated EU and integrate the idea of AAL by using the US acquisition function.

We evaluate our approach across several domains (general, clinical, general+clinical aka both),
several datasets (AfriSpeech-200 (Olatunji et al. (2023b)), SautiDB (Afonja et al. (2021b)), Med-
icalSpeech, CommonVoices English Accented Dataset (Ardila et al. (2019))), and several high-
performing speech models (Wav2Vec2-XLSR-53 (Conneau et al. (2020)), HuBERT-Large (Hsu et al.
(2021)), WavLM-Large (Chen et al. (2022)), and NVIDIA Conformer-CTC Large (en-US) (Gulati
et al. (2020))). Our results show a 27% Word Error Rate (WER) relative average improvement
while requiring on average 45% less data than established baselines. We also adapt the standard
WER to create a new metric called Uncertainty WER (U-WER) to track model adaptation to African
accents.

The impact of our approach is substantial. It develops more robust, generalizable, and cost-efficient
African-accented English ASR models and reduces dependency on large labeled datasets, enabling
deployment in various real-world scenarios. Our results show improved generalization for out-
of-distribution (OOD) cases, especially for accents with minimal resources, addressing specific
challenges in African-accented ASR. Additionally, by focusing on equitable representation in ASR
training, our methodology promotes fairness in AI, ensuring technology serves users across diverse
linguistic backgrounds without bias (Selbst et al. (2019); Mitchell et al. (2019); Mehrabi et al. (2021)).
Our contributions are listed as follows:

• we combine DBAL, AAL, CSA, and EU to propose a novel way to adapt several high-
performing pretrained speech models to build efficient African-accented English ASR
models,

• we evaluate our approach across several speech domains (clinical, general, both), and
African-accented speech datasets (AfriSpeech-200 (Olatunji et al. (2023b)), SautiDB (Afonja
et al. (2021b)), MedicalSpeech and CommonVoices English Accented Dataset (Ardila et al.
(2019))), while providing domain and accent-specific analyses,

• we define a new and simple metric called U-WER that allows us to measure and track how
the variance of the model, across hard accents, changes over the adaptation process,

• we show that our approach improves the relative average WER performance by 27% while
significantly reducing the required amount of labeled data (by ∼45%),

• we show, based on additional AL experiments, that our approach is also efficient in real-
world settings where there are no gold transcriptions.
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2 BACKGROUND AND RELATED WORKS

2.1 CHALLENGES FOR AFRICAN-ACCENTED ASR

State-of-the-art (SOTA) ASR technologies, powered by deep learning and neural network architectures
like transformers, achieve high accuracy with Standard American English and major European
languages. However, they often fail with African accents due to high variability in pronunciation
and lack of quality speech data (Koenecke et al. (2020); Das et al. (2021)). This results in racial
bias, poor performance, and potential social exclusion as speakers might alter their speech to be
understood (Koenecke et al. (2020); Koenecke (2021); Chiu et al. (2018); Mengesha et al. (2021)).
Enhancing ASR for African languages is crucial for equitable voice recognition, especially in
healthcare, education, and customer service. Solutions should focus on diversifying training datasets
and developing robust modeling techniques tailored to the unique characteristics of these languages.

2.2 ACTIVE LEARNING

AL aims to reduce the number of labeled training examples by automatically processing the unlabeled
examples and selecting the most informative ones concerning a given cost function for a human to
label. It is particularly effective when labeled data is scarce or expensive, optimizing the learning
process by focusing on samples that most improve the model performance and generalization (Settles
(2009); Gal et al. (2017)). Several works have demonstrated its effectiveness and efficiency. An AL
setup involves an unlabeled dataset Dpool = {xi}

npool

i=1 , a labeled training set Dtrain = {xi, yi}ntrain
i=1 ,

and a predictive model with likelihood pw(y|x) parameterized by w ∼ p(W |Dtrain) (W are the
parameters of the model). The setup assumes the presence of an oracle to provide predictions y for
all xi ∈ Dpool. After training, a batch of data {x∗

i }bi=1 is selected from Dpool based on its EU.

In (Hakkani-Tür et al. (2002)), AL was applied to a toy dataset of How May I Help You recordings.
Confidence scores were estimated for each word and used to compute the overall confidence score
for the audio sample. This approach achieved competitive results using 27% less data compared to
the baseline. In (Riccardi & Hakkani-Tur (2005)), the authors estimated confidence scores for each
utterance using an online algorithm with the lattice output of a speech recognizer. The utterance
scores were filtered through an informativeness function to select an optimal subset of training
samples, reducing the labeled data needed for a given WER by over 60%. (Nallasamy et al. (2012))
experimented with AL for accent adaptation in speech recognition. They adapted a source recognizer
to the target accent by selecting a small, matched subset of utterances from a large, untranscribed,
multi-accented corpus for human transcription. They used a cross-entropy-based relevance measure
alongside uncertainty-based sampling. However, their experiments on Arabic and English accents
showed worse performance compared to baselines while using more hours of recordings.

3 DATASETS AND METHODOLOGY

3.1 DATASETS

We used the AfriSpeech-200 dataset (Olatunji et al. (2023b)), a 200-hour African-accented English
speech corpus for clinical and general ASR. This dataset includes 120+ African accents from five
language families: Afro-Asiatic, Indo-European, Khoe-Kwadi (Hainum), Niger-Congo, and Nilo-
Saharan, representing African regional diversity. It was crowd-sourced from over 2000 African
speakers from 13 anglophone countries in sub-Saharan Africa and the US (see Table 1).

To demonstrate the dataset-agnostic nature of our approach, we also explored three additional datasets:
(1) SautiDB (Afonja et al. (2021a)), Nigerian accent recordings with 919 audio samples at a 48kHz
sampling rate, totaling 59 minutes; (2) MedicalSpeech1, containing 6,661 audio utterances of
common medical symptoms, totaling 8 hours; and (3) CommonVoices English Accented Dataset, a
subset of English Common Voice (version 10) (Ardila et al. (2019)), excluding western accents to
focus on low-resource settings.

1https://www.kaggle.com/datasets/paultimothymooney/
medical-speech-transcription-and-intent
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Figure 1: Our adaptation pipeline involves several phases. Initially, the dataset is split into a training
set (D1 = D∗

train, 30%) and a pool dataset (D2 = Dpool, 70%). In the iterative process between
phases 2 and 3, D1 is used to finetune a pretrained model. The top-k samples are selected using
defined strategies and added to D1 for the next round. For more details on the uncertainty selection
strategy, see section 3.2.

Table 1: AfriSpeech-200 Dataset statistics

AfriSpeech Dataset Statistics
Total duration 200.91 hrs
Total clips 67,577
Unique Speakers 2,463
Average Audio duration 10.7 seconds

Speaker Gender Ratios - # Clip %
Female 57.11%
Male 42.41%
Other/Unknown 0.48%

Speaker Age Groups - # Clips
<18yrs 1,264 (1.88%)
19-25 36,728 (54.58%)
26-40 18,366 (27.29%)
41-55 10,374 (15.42%)
>56yrs 563 (0.84%)

Clip Domain - # Clips
Clinical 41,765 (61.80%)
General 25,812 (38.20%)

3.2 METHODOLOGY

In our approach, to compute EU for a given input x ∈ Dpool, we perform MC-Dropout to obtain mul-
tiple stochastic forward passes through a finetuned ASR model g with likelihood pw∼p(W|D∗

train)
(y|x)

where W is the weights of g. Let f be a function that computes the WER between the predicted and
the target transcripts. Let T be the number of stochastic forward passes. For each pass t, we apply
dropout, obtain the output transcript, and compute the WER:

ft = f(y, ŷt); ŷt = g(W, x̃t); x̃t = x ·Mt

4
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Table 2: Dataset splits showing speakers, number of clips, and speech duration in Train/Dev/Test
splits.

AfriSpeech-200 Dataset Splits
Item Train (D∗

train) Dev Test AL Top-k
# Speakers 1466 247 750 ✗
# Hours 173.4 8.74 18.77 ✗
# Accents 71 45 108 ✗
Avg secs/speaker 425.81 127.32 90.08 ✗
clips/speaker 39.56 13.08 8.46 ✗
speakers/accent 20.65 5.49 6.94 ✗
secs/accent 8791.96 698.82 625.55 ✗
# general domain 21682 (*6504) 1407 2723 2000
# clinical domain 36318 (*10895) 1824 3623 3500
# both domain 58000 (*17400) 3221 6346 6500

Algorithm 1 Selection of the best-generated transcript in Active Learning for an input Sample x

1: we generate the predictions ŷ1, .., ŷT corresponding to each stochastic forward pass (T=10 in
our experiments)

2: we define a list variable called wer_list and a dictionary variable called wer_target_dict, respec-
tively tracking all pairwise WERs and the average pairwise WER of each target prediction

3: for ∀ i,j ∈ {1, ..., T} do
4: → ŷi is set as target transcription
5: → target_wer = list()
6: for for j ̸= i do
7: w = WER(ŷj , ŷi)
8: wer_list.append(w)
9: target_wer.append(w)

10: end for
11: werŷi = mean(target_wer)
12: wer_target_dict[ŷi]← werŷi

13: end for
14: ŷbest = ŷi, such that wer_target_dict[ŷi] = min(wer_target_dict.values())
15: return (pbest, std(wer_list))

where Mt is a binary mask matrix sampled independently for each pass. EU(x|g, T ) can then be
estimated from the T stochastic forward passes as follows:

EU(x|g, T ) = σ(f) =

√√√√ 1

T

T∑
t=1

f2
t −

(
1

T

T∑
t=1

ft

)2

(1)

The use of MC-Dropout requires models to have dropout components during training. This excludes
some models like Whisper (Radford et al. (2022)), which we still finetuned and evaluated as a baseline.
We use four state-of-the-art pretrained models: Wav2Vec2-XLSR-53, HuBERT-Large, WavLM-Large,
and NVIDIA Conformer-CTC Large (en-US), referred to as Wav2Vec, Hubert, WavLM, and Nemo,
respectively.

3.2.1 UNCERTAINTY WER

To handle diverse accents, we aim to reduce the EU of the models across hard accents after each
adaptation round. We define a metric called U-WER to track this. To compute U-WER(a) where a is
a hard accent, we condition EU on a:

EU(x|g, T, a) = σ(fa) =

√√√√ 1

T

T∑
t=1

f2
t,a −

(
1

T

T∑
t=1

ft,a

)2

(2)

where xa is the audio sample with accent a and

ft,a = f(ya, ŷt,a); ŷt,a = g(W, x̃t,a); x̃t,a = xa ·Mt

5
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Ideally, U-WER→0. The rationale behind U-WER is that as beneficial data points are acquired,
U-WER should decrease or remain constant, indicating increased robustness, knowledge, and per-
formance, which is crucial for generalization. During AL, U-WER is computed using pairwise
WER scores among predicted transcriptions, not gold transcriptions (see section 3.3). To select the
best-generated transcript for unlabeled speech x, we follow Algorithm 1.

Algorithm 2 Adaptation Round using Epistemic Uncertainty-based Selection

Require: Pretrained ModelM, Training Dataset D∗
train, Validation Dataset DV al, and Pool Dataset

Dpool

1: N ← 3 ▷ Number of Adaptation Rounds
2: T ← 10 ▷ Number of Stochastic Forward Passes
3: for k ← 1 to N do
4: g ← FinetuneM on D∗

train using DV al

5: EUL ← {} ▷ List of Uncertainty Scores
6: for x in Dpool do ▷ x is an audio sample
7: EUx ← EU(x|g, T ) ▷ Epistemic Uncertainty of x
8: EUL ← EUL ∪ {(x,EUx)}
9: end for

10: topk ← {x1, ..., xk} ▷ Samples with highest EU
11: D∗

train ← D∗
train ∪ topk

12: Dpool ← Dpool \ topk
13: end for

3.3 EXPERIMENTAL DESIGN

To work within our framework, we define the following selection strategies:

• random: Randomly selects audio samples from Dpool.
• EU-Most: Selects the most uncertain audio samples from Dpool to add to Dtrain.
• AL-EU-Most: Combines AL with the EU-Most strategy to finetune the pretrained model.

We also define standard fine-tuning (SFT) as baseline using all available data for finetuning. In SFT,
Dpool is empty. While running the defined strategies in our framework, we impose data constraints,
not exceeding 60-65% of the initial dataset after all adaptation rounds. D∗

train is 30% of Dtrain,
and Dpool is 70% of Dtrain. This simulates realistic scenarios where not all data might be available,
testing the approach’s robustness and efficiency under constraints. The number of samples in Dtrain
and Dpool is based on available training examples for each domain (see Tables 2, 4, and Appendix
A.1).

Our EU-based pipeline is shown in Figure 1 and Algorithm 2. In each adaptation round, we use
a finetuned model and a selection strategy to choose samples from Dpool to add to D∗

train. During
AL experiments, we consider samples from Dpool as unlabeled: (1) using MC-Dropout, we obtain
n = 10 different input representations per audio sample to get n different transcripts; (2) we then
learn to select the best-generated transcription as the target transcription according to Algorithm 1.

Our experiments aim to answer the following research questions:

1. how does the pretrained ASR model adapt to a set of African accents across adaptation
rounds and domains?

2. which selection strategy (EU-most or random) works better, and for which domain(s)?
3. which domain(s) help the model perform better, and how does the model perform (in terms

of uncertainty) across the domain(s)?
4. what is the impact of EU-based selection on the model’s efficiency in low-resource data

scenarios?
5. is uncertainty-based selection, model, and dataset agnostic?

U-WER will answer question 4. To answer question 5, we evaluated our approach with three addi-
tional pretrained models (Nemo, WavLM, and Hubert) and across three external datasets (SautiDB,
CommonVoices English Accented Dataset, and MedicalSpeech). For consistency and better visual-
ization, we considered the top-10 (in terms of frequency) accents across three adaptation rounds and

6
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Table 3: We used Wav2Vec to conduct initial experiments across domains and strategies to identify
the best selection strategy. Models marked with ** are used to demonstrate that our algorithm is
model agnostic, utilizing the EU-Most selection strategy, which has been proven the most effective.
Our AL experiments also use this strategy. Wav2Vec, using the random strategy, scored 0.1111,
0.3571, and 0.1666 for the general, clinical, and both domains, respectively. We omit random results
to enhance readability.

Model
General Clinical Both

Baseline EU-Most AL-EU-Most Baseline EU-Most AL-EU-Most Baseline EU-Most AL-EU-Most

Wav2vec 0.2360 Olatunji et al. (2023b) 0.1011 0.1059 0.3080 Olatunji et al. (2023b) 0.2457 0.2545 0.2950 Olatunji et al. (2023b) 0.1266 0.1309

**Hubert 0.1743 0.1901 0.1887 0.2907 0.2594 0.2709 0.2365 0.2453 0.2586

**WavLM 0.1635 0.1576 0.1764 0.3076 0.2313 0.2537 0.2047 0.1897 0.1976

**Nemo 0.2824 0.1765 0.1815 0.2600 0.2492 0.2526 0.3765 0.2576 0.2610

Average Performance 0.2141 0.1563 0.1631 0.2916 0.2464 0.2579 0.2782 0.2043 0.2120

Whisper-Medium 0.2806 - - 0.3443 - - 0.3116 - -

both selection strategies to answer questions 1-4. For very low-resource settings, we considered the
five accents with the least recording hours.

For our experiments, we used 6 RTX8000 GPUs and 4 A100 GPUs. Training and evaluation were
conducted over a month. Our models have approximately 311 million trainable parameters. Each
audio sample was normalized and processed at a 16kHz sample rate. We used default parameters
from the HuggingFace library for each pretrained model.

(a) (b)

Figure 2: WER Performance on Accents from General Domain

Table 4: WER Evaluation Results on External Datasets, with α ∈ [0.60, 0.65] as described in Section
3.1 and on Figure 1. We see an improvement for WER using our approach in all datasets, showing
that our algorithm is dataset-agnostic.

Dataset
Split and Size for our approach

Finetuning Epochs
Baseline EU-Most

D∗
train Dpool Top-k Test (Dtrain) (D∗

train + αDpool)

SautiDB Afonja et al. (2021a) 234 547 92 138 50 0.50 0.12

MedicalSpeech 1598 3730 1333 622 5 0.30 0.28

CommonVoices English Accented Dataset (v10.0) Ardila et al. (2019) 26614 62100 10350 232 5 0.50 0.22

Average ✗ ✗ ✗ ✗ ✗ 0.43 0.20

7
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(a) (b)

Figure 3: WER Performance on Accents from Clinical Domain

(a) (b)

Figure 4: WER Performance on Accents from Clinical+General (Both) Domain

4 RESULTS AND DISCUSSION

To assess the performance improvement for each domain, we compute the relative average improve-
ment

RIAwer,d =

(
bdwer − sdwer

bdwer

)
× 100%

where bdwer and sdwer are the average WER respectively of the baseline, and the best selection strategy,
in a domain d ∈ {general, clinical, both}. A higher percentage reflects a higher improvement in
our approach.

Table 3 shows the results of our experiments, indicating that our uncertainty-based selection approach
significantly outperforms the baselines across all models, domains, and datasets: general (27.00%),
clinical (15.51%), and both (26.56%). Our approach also surpasses Whisper-Medium (Olatunji

8
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et al. (2023b); Radford et al. (2023)), demonstrating the importance of epistemic uncertainty in ASR
for low-resource languages. The EU-Most selection strategy proves to be the most effective across
all domains due to the model’s exposure to highly uncertain samples, enhancing robustness and
performance. However, performance disparities between general and clinical domains are noted,
likely due to clinical samples complexity. These findings confirm EU-Most as the superior selection
strategy, as detailed in the results and illustrated in Figures 2, 3, and 4. This answers question 2.

To identify the best learning signals within a diverse dataset characterized by various accents, speaker
traits, genders, and ages, we analyzed the top-k uncertain accents using the EU-Most selection strategy.
Our findings, illustrated in Figures 2, 3, and 4, show that the top-10 accents (most represented in
recording hours) remained consistently challenging across all rounds of analysis (refer to Figures 2,
3, 4 and Tables 6, 7, and 8). These accents, characterized by high linguistic richness and variability,
aid in model learning and enhance performance over time. We positively answer questions 1 and
3, confirming that the model adapts effectively to the beneficial accents from all domains. This
demonstrates that the model adapts qualitatively and quantitatively well to the beneficial accents and
benefits from all domains. Figures 2 (b), 3 (b), and 4 (b) also affirm positive outcomes for question 4,
showing consistent improvement or stable performance on low-resource accents. This highlights the
relevance of our approach in addressing the challenges associated with the low resource availability
typical of many African accents and languages.

To demonstrate the agnostic aspect of our approach, we evaluated it with three additional pretrained
models (Hubert, WavLM, and Nemo) and three datasets containing accented speech in general and
clinical domains, using only the EU-Most selection strategy. The results, shown in Tables 3 and 4,
indicate that our uncertainty-based adaptation approach consistently outperforms baselines. This
confirms that our approach applies to any model architecture and dataset and allows us to answer
positively question 5.

5 CONCLUSION

We combined several AL paradigms, the CSA, and the EU to create a novel multi-round adaptation
process for high-performing pretrained speech models, aiming to build efficient African-accented
English ASR models. We introduced the U-WER metric to track model adaptation to intricate accents.
Our experiments showed a remarkable 27% WER ratio improvement while reducing the data required
for effective training by approximately 45% compared to existing baselines. This demonstrates
our approach’s efficiency and potential to significantly lower the barriers to ASR technologies in
underserved regions. Our method enhances model robustness and generalization across various
domains, datasets, and accents, which are crucial for scalable ASR systems. This also helps mitigate
bias in ASR technologies, promoting more inclusive and fair AI applications.

6 LIMITATIONS

In discussing trade-offs (Section 4), we noted that while our approach enhances performance,
particularly with linguistically rich accents, a stopping criterion is essential for complex domains like
the clinical one to balance adaptation rounds with the pool size. With better resources, we would
consider implementing Deep Ensembles (Lakshminarayanan et al. (2017)) as an alternative to our
current MC-Dropout method for estimating epistemic uncertainty and leveraging other acquisition
functions (such as BALD, BatchBALD) highlighted in this work.
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A APPENDICES

A.1 HYPER-PARAMETERS

Table 5 shows the hyper-parameter settings used in this study. The top-k value in the table is changed
according to the domain used in each of the experiments. For example, when conducting experiments
in the general domain, we set the value of top-k to 2k.

Hyper-parameters Values
attention dropout 0.1
hidden dropout 0.1
layer drop 0.1
train batch size 16
val batch size 8
number of epochs 5
learning rate 3e-4
maximum audio length 260000
maximum label length 260
minimum transcript length 10
top_k 2000, 3500, 6500
domains general, clinical, all
active learning rounds 3
sampling mode EU-Most, random
MC-Dropout round 10

Table 5: Hyper-parameters summary

A.2 COUNTRY STATISTICS

Table 6 shows the statistics of the countries across the AfriSpeech-200 dataset.

Country Clips Speakers Duration (seconds) Duration (hrs)
Nigeria 45875 1979 512646.88 142.40
Kenya 8304 137 75195.43 20.89
South Africa 7870 223 81688.11 22.69
Ghana 2018 37 18581.13 5.16
Botswana 1391 38 14249.01 3.96
Uganda 1092 26 10420.42 2.89
Rwanda 469 9 5300.99 1.47
United States of America 219 5 1900.98 0.53
Turkey 66 1 664.01 0.18
Zimbabwe 63 3 635.11 0.18
Malawi 60 1 554.61 0.15
Tanzania 51 2 645.51 0.18
Lesotho 7 1 78.40 0.02

Table 6: Countries Statistics across the dataset

A.3 DATASET ACCENTS STATS

Tables 7 and 8 provide a list of AfriSpeech accents along with the number of unique speakers,
countries where speakers for each accent are located, duration in seconds for each accent, and their
presence in the train, dev, and test splits.

A.4 MOST COMMON ACCENT DISTRIBUTION

Figures 5 and 6 show the most common accent distribution across the general domain with random
and EU-Most selection strategies.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Accent Clips Speakers Duration(s) Countries Splits
yoruba 15407 683 161587.55 US,NG train,test,dev
igbo 8677 374 93035.79 US,NG,ZA train,test,dev
swahili 6320 119 55932.82 KE,TZ,ZA,UG train,test,dev
hausa 5765 248 70878.67 NG train,test,dev
ijaw 2499 105 33178.9 NG train,test,dev
afrikaans 2048 33 20586.49 ZA train,test,dev
idoma 1877 72 20463.6 NG train,test,dev
zulu 1794 52 18216.97 ZA,TR,LS dev,train,test
setswana 1588 39 16553.22 BW,ZA dev,test,train
twi 1566 22 14340.12 GH test,train,dev
isizulu 1048 48 10376.09 ZA test,train,dev
igala 919 31 9854.72 NG train,test
izon 838 47 9602.53 NG train,dev,test
kiswahili 827 6 8988.26 KE train,test
ebira 757 42 7752.94 NG train,test,dev
luganda 722 22 6768.19 UG,BW,KE test,dev,train
urhobo 646 32 6685.12 NG train,dev,test
nembe 578 16 6644.72 NG train,test,dev
ibibio 570 39 6489.29 NG train,test,dev
pidgin 514 20 5871.57 NG test,train,dev
luhya 508 4 4497.02 KE train,test
kinyarwanda 469 9 5300.99 RW train,test,dev
xhosa 392 12 4604.84 ZA train,dev,test
tswana 387 18 4148.58 ZA,BW train,test,dev
esan 380 13 4162.63 NG train,test,dev
alago 363 8 3902.09 NG train,test
tshivenda 353 5 3264.77 ZA test,train
fulani 312 18 5084.32 NG test,train
isoko 298 16 4236.88 NG train,test,dev
akan (fante) 295 9 2848.54 GH train,dev,test
ikwere 293 14 3480.43 NG test,train,dev
sepedi 275 10 2751.68 ZA dev,test,train
efik 269 11 2559.32 NG test,train,dev
edo 237 12 1842.32 NG train,test,dev
luo 234 4 2052.25 UG,KE test,train,dev
kikuyu 229 4 1949.62 KE train,test,dev
bekwarra 218 3 2000.46 NG train,test
isixhosa 210 9 2100.28 ZA train,dev,test
hausa/fulani 202 3 2213.53 NG test,train
epie 202 6 2320.21 NG train,test
isindebele 198 2 1759.49 ZA train,test
venda and xitsonga 188 2 2603.75 ZA train,test
sotho 182 4 2082.21 ZA dev,test,train
akan 157 6 1392.47 GH test,train
nupe 156 9 1608.24 NG dev,train,test
anaang 153 8 1532.56 NG test,dev
english 151 11 2445.98 NG dev,test
afemai 142 2 1877.04 NG train,test
shona 138 8 1419.98 ZA,ZW test,train,dev
eggon 137 5 1833.77 NG test
luganda and kiswahili 134 1 1356.93 UG train
ukwuani 133 7 1269.02 NG test
sesotho 132 10 1397.16 ZA train,dev,test
benin 124 4 1457.48 NG train,test
kagoma 123 1 1781.04 NG train
nasarawa eggon 120 1 1039.99 NG train
tiv 120 14 1084.52 NG train,test,dev
south african english 119 2 1643.82 ZA train,test
borana 112 1 1090.71 KE train

Table 7: Dataset Accent Stats, Part I
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Figure 5: Most common accents distribution across the general domain with EU-Most sampling
strategy.

A.5 ASCENDING AND DESCENDING ACCENTS

Figure 7 shows ascending and descending accents across the Top 2k most uncertain samples.
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Figure 6: Most common accents distribution across the general domain with random selection
strategy.
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908
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914
915
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917

Accent Clips Speakers Duration(s) Countries Splits
swahili ,luganda ,arabic 109 1 929.46 UG train
ogoni 109 4 1629.7 NG train,test
mada 109 2 1786.26 NG test
bette 106 4 930.16 NG train,test
berom 105 4 1272.99 NG dev,test
bini 104 4 1499.75 NG test
ngas 102 3 1234.16 NG train,test
etsako 101 4 1074.53 NG train,test
okrika 100 3 1887.47 NG train,test
venda 99 2 938.14 ZA train,test
siswati 96 5 1367.45 ZA dev,train,test
damara 92 1 674.43 NG train
yoruba, hausa 89 5 928.98 NG test
southern sotho 89 1 889.73 ZA train
kanuri 86 7 1936.78 NG test,dev
itsekiri 82 3 778.47 NG test,dev
ekpeye 80 2 922.88 NG test
mwaghavul 78 2 738.02 NG test
bajju 72 2 758.16 NG test
luo, swahili 71 1 616.57 KE train
dholuo 70 1 669.07 KE train
ekene 68 1 839.31 NG test
jaba 65 2 540.66 NG test
ika 65 4 576.56 NG test,dev
angas 65 1 589.99 NG test
ateso 63 1 624.28 UG train
brass 62 2 900.04 NG test
ikulu 61 1 313.2 NG test
eleme 60 2 1207.92 NG test
chichewa 60 1 554.61 MW train
oklo 58 1 871.37 NG test
meru 58 2 865.07 KE train,test
agatu 55 1 369.11 NG test
okirika 54 1 792.65 NG test
igarra 54 1 562.12 NG test
ijaw(nembe) 54 2 537.56 NG test
khana 51 2 497.42 NG test
ogbia 51 4 461.15 NG test,dev
gbagyi 51 4 693.43 NG test
portuguese 50 1 525.02 ZA train
delta 49 2 425.76 NG test
bassa 49 1 646.13 NG test
etche 49 1 637.48 NG test
kubi 46 1 495.21 NG test
jukun 44 2 362.12 NG test
igbo and yoruba 43 2 466.98 NG test
urobo 43 3 573.14 NG test
kalabari 42 5 305.49 NG test
ibani 42 1 322.34 NG test
obolo 37 1 204.79 NG test
idah 34 1 533.5 NG test
bassa-nge/nupe 31 3 267.42 NG test,dev
yala mbembe 29 1 237.27 NG test
eket 28 1 238.85 NG test
afo 26 1 171.15 NG test
ebiobo 25 1 226.27 NG test
nyandang 25 1 230.41 NG test
ishan 23 1 194.12 NG test
bagi 20 1 284.54 NG test
estako 20 1 480.78 NG test
gerawa 13 1 342.15 NG test

Table 8: Dataset Accent Stats, Part II
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Figure 7: Ascending and descending accents across Top-2K most uncertain samples.
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