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Abstract

Coreset selection aims to reduce the computational burden of training large-scale deep learning
models by identifying representative subsets from massive datasets. However, existing state-
of-the-art methods face a fundamental accessibility dilemma: they either require extensive
training on the target dataset to compute selection metrics, or depend heavily on large
pre-trained models, undermining the core purpose of coreset selection in resource-constrained
scenarios. Dataset Quantization (DQ) avoids full dataset training but relies on expensive
pre-trained models, introducing computational overhead and domain-specific biases that limit
generalization. In this work, we comprehensively redesign the DQ framework to establish
a truly accessible, theoretically sound, and domain-agnostic paradigm for coreset selection.
Through rigorous analysis, we identify that: (1) MAE functions primarily as biased data
augmentation leveraging memorized ImageNet patterns; (2) MAE benefits ImageNet-related
datasets but harms out-of-distribution performance; (3) the original pipeline suffers from
feature inconsistency between selection and training phases. We propose DQ_v2, which: (1)
eliminates pre-trained model dependencies via Semantically-Aware Data Augmentation (SDA)
using randomly initialized CNNs; (2) restructures the pipeline by performing augmentation
before selection, ensuring feature consistency. Extensive experiments demonstrate that
DQ_v2 achieves superior performance across diverse domains (such as ImageNet-1k, CUB-
200, Food-101, and medical imaging) while reducing computational costs by 75% in the
augmentation phase, establishing a robust and practical solution for resource-constrained
scenarios.

1 Introduction

Deep learning has become the gold standard for many computer vision and machine learning tasks (Dosovitskiy
et al., 2021), which have seen rapid growth due to increasing model sizes and dataset volumes. However,
training emerging deep models, e.g., vision transformers (ViTs) (Dosovitskiy et al., 2021), on large-scale
datasets like ImageNet (Deng et al., 2009) and LAION (Schuhmann et al., 2021) requires substantial
computational resources, including high-performance GPUs, large memory capacity, and high-speed storage
(Bartoldson et al., 2023). These requirements pose a significant barrier to entry for many researchers and
practitioners, especially those in resource-constrained environments. Thus, efficiently training large-scale
deep learning models with limited resources has become a common concern in both academia and industry.

Recent research has shown that large-scale datasets contain many redundant and irrelevant samples (Xia
et al., 2024; He et al., 2024), which can be compressed into smaller representative subsets without losing
model performance. Coreset selection and dataset distillation, as crucial methods to address this issue, aim
to choose or synthesize representative subsets from large-scale datasets to reduce computational complexity
while maintaining model performance (Guo et al., 2022; Bartoldson et al., 2023). However, existing coreset
selection methods face a fundamental dilemma: they either require full or partial training on the
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target dataset to compute selection metrics, or they depend heavily on large pre-trained models, undermining
the very purpose of coreset selection—reducing computational burden in resource-constrained scenarios.

The computational accessibility problem. Recent state-of-the-art coreset selection methods exhibit
severe practical limitations. Methods like D2 Pruning Maharana et al. (2023) and CCS Zheng et al. (2023)
require training on the complete target dataset to compute forgetting scores or AUM (Area Under the Margin)
scores, while MoSo Tan et al. (2023) demands training a surrogate network for 50 epochs to observe full
training dynamics. This creates a paradoxical situation: coreset selection methods designed to reduce training
costs actually require substantial upfront computational investments that many practitioners cannot afford.

Dataset Quantization (DQ) (Zhou et al., 2023; Zhao et al., 2024) represents progress by avoiding full dataset
training but introduces a different dependency on large pre-trained models, particularly a Masked Autoencoder
(MAE) (He et al., 2022). This dependence introduces two critical problems: (1) Computational overhead from
the MAE model’s substantial parameters; (2) Domain-specific biases where ImageNet pre-training benefits
related tasks but can harm out-of-distribution performance, limiting generalizability.

These limitations motivate a fundamental question: Can we develop a coreset selection method that is
both computationally accessible and free from pre-training dependencies while maintaining or exceeding
state-of-the-art performance across diverse domains?

In this paper, we answer this question affirmatively by comprehensively redesigning the DQ
framework. Through rigorous empirical and theoretical analysis, we reveal that: (1) MAE functions
primarily as biased data augmentation, leveraging memorized ImageNet patterns rather than general image
understanding; (2) MAE benefits ImageNet-related datasets but harms out-of-distribution performance; (3)
the original DQ pipeline suffers from feature inconsistency between selection and training phases.

Based on these findings, we propose DQ_v2, a comprehensively redesigned framework that establishes
a new practical paradigm for coreset selection: truly accessible, theoretically sound, and domain-agnostic.
Our key contributions are:

• Systematic problem identification: We rigorously analyze fundamental limitations in DQ including
MAE’s distribution-specific overfitting, feature inconsistency in the pipeline, and broader accessibility
problems in coreset selection methods.

• Novel augmentation strategy: We develop Semantically-Aware Data Augmentation (SDA) using
randomly initialized CNNs to preserve semantic objects while diversifying backgrounds, eliminating
pre-trained model dependencies.

• Comprehensive pipeline redesign: We restructure the framework to perform augmentation before
selection, ensuring feature consistency and enabling superior coreset quality without external knowledge
dependencies.

• Establishing practical accessibility: Extensive experiments on ImageNet-1k, CUB-200, Food-101,
and medical imaging demonstrate superior performance with 75% reduction in GPU hours, improved
cross-domain generalization, and robustness to distribution shifts.

Paper organization: The rest of this paper is organized as follows. Section 2 reviews related work on
coreset selection and data augmentation. Section 3 introduces the problem formulation and briefly reviews
the original DQ method. Section 4 presents our critical analysis of DQ’s limitations from both empirical and
theoretical perspectives. Section 5 introduces our proposed DQ_v2 method. Section 6 presents experimental
results and analysis. Section 7 concludes the paper with a discussion of limitations and future work.

2 Related Work

2.1 Coreset Selection and Data Pruning

Coreset selection is a crucial technique for reducing the computational complexity of deep learning models by
selecting a representative subset from large-scale datasets.
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Early efforts explored various selection criteria, including geometry-based methods (Agarwal et al., 2020;
Chen et al., 2012; Sener & Savarese, 2018), uncertainty-based methods (Coleman et al., 2019), error-based
methods (Toneva et al., 2019; Paul et al., 2021), decision boundary-based methods (Ducoffe & Precioso, 2018;
Margatina et al., 2021), gradient matching-based methods (Mirzasoleiman et al., 2020; Killamsetty et al.,
2021), and submodularity-based methods (Iyer et al., 2021).

Recent state-of-the-art methods have achieved impressive performance but at the cost of practical accessibility.
D2 Pruning Maharana et al. (2023) utilizes message passing over a dataset graph to jointly consider sample
diversity and difficulty, but it requires training on the complete target dataset to compute forgetting scores.
Similarly, Coverage-centric Coreset Selection (CCS) Zheng et al. (2023) balances data coverage and importance
by computing AUM (Area Under the Margin) scores, which also necessitates full dataset training. Moving-
one-sample-out (MoSo) Tan et al. (2023) evaluates each sample’s impact on empirical risk but demands
training a surrogate network for 50 epochs to observe complete training dynamics. InfoMax Tan et al. (2025)
formulates coreset selection as a discrete quadratic programming problem that jointly accounts for individual
sample information and pairwise redundancy and solves the resulting quadratic-form objective using an
iterative optimization procedure. Mind the Boundary (BoundarySet-CCS variant in our comparisons) Yang
et al. (2024) selects samples to reconstruct the decision boundary learned on the full dataset, achieving
strong performance but requiring initial full dataset training to establish the reference boundary. Other
methods include Moderate coreset Xia et al. (2023), which selects samples with scores close to the median,
and AdaPruner Liu et al. (2021), which jointly prunes training data and fine-tunes models.

While these methods achieve strong performance, their requirement for full or extensive partial training
on the target dataset creates a fundamental accessibility barrier: researchers with limited computational
resources—the very users who would benefit most from coreset selection—often cannot afford the upfront
computational investment these methods require.

2.2 Dataset Quantization

To address the scalability and accessibility challenges, Dataset Quantization (DQ) (Zhou et al., 2023) was
proposed as a method that avoids the need for full dataset training. DQ combines coreset selection with data
compression techniques, effectively selecting representative subsets from large-scale datasets while maintaining
high performance under various data keep ratios. By using pre-computed features and avoiding iterative
training-based selection, DQ represents an important step toward practical coreset selection.

However, DQ’s efficiency comes at a different cost: heavy dependence on large pre-trained models. The
framework relies on a Masked AutoEncoder (MAE) (He et al., 2022) with a ViT-Large architecture (304M
parameters) for image reconstruction, and a pre-trained ResNet model for feature extraction and importance
scoring. While these pre-trained models enable DQ to avoid target dataset training, they introduce substantial
computational overhead and, more critically, potential domain-specific biases from ImageNet pre-training.
Our analysis reveals that MAE’s benefits are dataset-dependent: it helps ImageNet-related datasets but
can harm performance on out-of-distribution domains. Furthermore, directly removing these pre-trained
components leads to performance degradation and increased variance, suggesting they play a crucial but
poorly understood role.

In this work, we systematically investigate the role of pre-trained models in DQ and comprehensively redesign
the framework to eliminate these dependencies while achieving superior performance. Our approach addresses
both the computational accessibility problem and the domain generalization limitation, establishing a new
practical paradigm for coreset selection that requires no pre-trained models, avoids training-dynamics-based
scoring (e.g., forgetting/AUM) on the target dataset, and demonstrates robust performance across diverse
domains.

2.3 Data Augmentation

Data augmentation (Shorten & Khoshgoftaar, 2019) plays an essential role in improving model robustness
and generalization ability. Traditional data augmentation methods focus mainly on simple image transforma-
tions, such as rotation, flipping, and color adjustment. Recent studies have explored more advanced data

3



Under review as submission to TMLR

augmentation strategies, such as random erasing (Zhong et al., 2020), Mixup (Zhang et al., 2018), CutMix
(Yun et al., 2019), and "Copy and paste" (Dwibedi et al., 2017; Ghiasi et al., 2020). These methods have
achieved significant success in enhancing the performance and stability of vision models. Although these data
augmentation methods have achieved significant success in improving model performance, they generally lack
consideration of image semantic structure. Cao & Wu (2022) propose a self-supervised learning framework
that we repurpose for data augmentation that leverages the inductive bias of random CNNs to preserve
semantic objects while mixing up the background. How to design data augmentation strategies that can both
maintain image naturalness and effectively enhance model learning ability remains an open question. In
this work, we first observe that the pre-trained MAE model is actually equivalent to a data augmentation
method, which introduces prior knowledge and implicit regularization into the training process. Thus, this
observation motivates us to explore a new data augmentation strategy that can replace the MAE model in
the DQ method.

3 Preliminaries

3.1 Problem Formulation

Suppose that we have a large dataset D = {(xi, yi)}T
i=1, where xi is the i-th image and yi is the corresponding

label, and T is the total number of training samples. Coreset selection aims to choose an optimal small subset
DS from a large-scale dataset D, where DS ⊂ D and |DS | ≪ |D|. The model trained on DS can achieve
comparable performance to the model trained on the entire dataset D. Finally, the model trained on the
coreset DS can be used to make predictions on the test set.

3.2 Review of Original DQ Framework

As discussed above, most coreset selection and dataset distillation methods suffer from some obvious drawbacks,
such as poor generalization and low scalability. Therefore, Zhou et al. (2023) proposed DQ, which consists of
three main steps: 1) dataset bin generation, 2) selection of subset bin, and 3) image pixel quantization.

The first step aims to generate multiple non-overlapping dataset subsets (referred to as bins), each containing
representative and diverse samples. Here, DQ leverages the traditional coreset selection method, i.e., GraphCut
method (Iyer et al., 2021) to select the most representative samples. A pre-trained ResNet model is used
to extract features for all images, and the GraphCut score is calculated for each unselected sample when
added to the current bin. The second step involves random sampling of the generated bins to form the
final compressed dataset. This design introduces additional randomness, contributing to improved model
robustness and generalization. The final step is to further reduce storage requirements and enhance data
quality. This process involves image patching, importance scoring, patch selection, and image reconstruction.
Specifically, a pre-trained ResNet model is first used to compute importance scores for different image patches
and guide the selection of informative patches; subsequently, the pre-trained Masked Autoencoder (MAE)
decoder is used to reconstruct the complete image from the selected patches. Thus, the original DQ framework
relies heavily on two large pre-trained models: a pre-trained ResNet for feature extraction and importance
scoring, and a 304M-parameter MAE for image reconstruction.

While DQ achieves state-of-the-art performance on various datasets, especially large-scale datasets like
ImageNet, it faces several key challenges in computational efficiency and method stability. As we will
demonstrate in Section 4, these limitations stem fundamentally from the heavy reliance on large pre-trained
models, particularly the 304M-parameter MAE model used in the pixel quantization step, which introduces
both computational overhead and domain-specific biases.

4 Rethinking DQ: Problems and Theoretical Flaws

In this section, we present a comprehensive analysis of the original DQ method from both empirical and
theoretical perspectives. Our investigation reveals fundamental limitations that motivate the design of our
improved framework. We first conduct controlled experiments to understand MAE’s role in DQ’s performance
(Section 4.1), then expose a critical theoretical flaw in the original pipeline design (Section 4.2).
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Figure 2: Comparison of MAE reconstruction on ImageNet and CUB-200 datasets.

4.1 Comprehensive Analysis of MAE’s Limitations

MAE’s Claimed Role in DQ. The original DQ paper (Zhou et al., 2023) justifies the use of MAE primarily
for storage efficiency: in the third step (pixel quantization), less-informative patches are removed based on
importance scores, and the complete image is reconstructed using MAE (Figure 2). The authors claim this
process reduces storage requirements while maintaining image quality through reconstruction.

Logical Contradictions in the Storage Efficiency Claim. Our investigation reveals that this storage
efficiency justification is untenable for several fundamental reasons: (1) In an era of inexpensive storage
but scarce GPU compute, using a computationally demanding MAE model merely to save storage space is
counterintuitive. The substantial computational overhead far outweighs modest storage savings, contradicting
the core motivation of coreset selection to reduce computational burden in resource-constrained scenarios;
(2) The reconstruction process requires temporary storage of approximately 1.75× the original dataset size
during processing, directly undermining the storage efficiency claims.
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Figure 1: Performance comparison between
models with and without MAE pre-training
across different datasets. For CUB-200-2011,
we evaluate with different data selection
rates (0.33, 0.66, and full set).

Our Empirical Investigation. To understand MAE’s actual
role, we conducted controlled experiments by removing the pixel
quantization step from the original DQ method and directly
using the selected images from the second step to train the
model. We conducted experiments on CIFAR-10, ImageNette,
and CUB-200 datasets with different random seeds and report
the mean accuracy and variance in Figure 1.

Our results reveal that MAE’s impact varies dramatically across
datasets: On ImageNette, removing MAE decreases perfor-
mance from 72.14% to 69.69% and increases variance. On
CUB-200, removing MAE significantly increases performance
across various selection ratios. On CIFAR-10, a small-scale
image dataset, removing MAE only slightly increases accuracy.
These mixed results suggest that MAE’s primary function is
not storage efficiency but rather introducing dataset-specific
prior knowledge from ImageNet pre-training.

Analysis: Four Fundamental Problems with MAE in
DQ. Based on our empirical findings and theoretical analysis,
we identify four critical issues:

Problem 1: Distribution-Specific Overfitting. MAE does
not truly understand semantic information but rather over-
fits to the ImageNet distribution. This explains its varying
effectiveness across datasets.

Figure 2a demonstrates this overfitting dramatically: even when
a dog image is completely replaced with background texture, the MAE still reconstructs the original dog,
suggesting memorization rather than an understanding of image completion principles.

On non-ImageNet datasets like CUB-200 (Figure 2b), MAE merely applies Gaussian-like blurring rather than
meaningful reconstruction, potentially degrading useful texture information.

5



Under review as submission to TMLR

This overfitting phenomenon explains why MAE improves performance on ImageNet-related datasets while
actually harming performance on other datasets. For ImageNet-related data, MAE’s memorized patterns
serve as effective data augmentation and regularization. However, for non-ImageNet datasets, MAE fails
to provide meaningful data augmentation and may even remove valuable texture information through its
ineffective reconstruction attempts.

Problem 2: Small-Image Limitation. MAE performs poorly on small-scale images like CIFAR-10
due to: (1) Ambiguous foreground-background boundaries: In 32×32 images, objects occupy most of the
frame, making the CNN’s texture-based attention mechanism less discriminative—the entire image becomes
uniformly "foreground-like"; (2) Coarse patch granularity: With limited patches available (e.g., 16 patches for
8×8 patch size), dropping any patch risks removing critical information that cannot be reliably reconstructed
from sparse neighbors.

Problem 3: Computational Cost. The MAE model used in DQ is computationally expensive: (1) The
ViT-Large architecture contains 304M parameters; (2) Processing large datasets like ImageNet-1k requires
significant GPU resources; (3) This computational overhead contradicts the presumed efficiency goal of
Dataset Quantization.

Problem 4: Fairness in Method Comparison. When DQ is compared to other coreset selection methods,
MAE introduces a confounding factor: (1) Performance improvements may stem from either better coreset
selection or the incorporation of ImageNet prior knowledge during reconstruction; (2) This makes it difficult
to isolate the true contribution of the coreset selection component; (3) The implicit transfer of knowledge
from ImageNet pre-training complicates fair comparison with methods that don’t leverage such external
knowledge.

In summary, our analysis reveals that MAE provides regularization benefits for ImageNet-like datasets by
leveraging memorized patterns, but it offers limited value for small-scale or out-of-distribution datasets while
introducing significant computational overhead and methodological fairness concerns.

4.2 Theoretical Flaw: Feature Inconsistency

Beyond the empirical issues with MAE, we identify a fundamental theoretical problem in the original DQ
pipeline itself. In the original DQ method, there exists a critical limitation: the inconsistency between the
features used for coreset selection and the features of the images used in the final training. This issue has also
been recently analyzed in depth by Zhao et al. (2024). As illustrated in Section 3, DQ follows a sequential
process: first performing dataset bin generation and bin selection based on the original images’ features, and
then applying pixel quantization with MAE reconstruction.

Following the formal analysis in Zhao et al. (2024), let us denote the original dataset as D, and the final
output dataset after pixel quantization as DMAE. The GraphCut algorithm used for bin generation calculates
submodular gains G(xk) based on features extracted from the original dataset D:

G(xk) =
∑

p∈Sk−1
n

∥∥f(p) − f(xk)
∥∥2

2 −
∑

p∈D\(S1∪···∪Sk−1
n )

∥∥f(p) − f(xk)
∥∥2

2, (1)

where f(·) is the feature extractor. However, the model is ultimately trained on images that have undergone
MAE reconstruction, where image features have been significantly altered. This means that while the dataset
bins are optimized for the original dataset D, they may not be optimal for the transformed dataset DMAE on
which the model actually trains.

This inconsistency can lead to suboptimal performance, as the coreset selection process is not aware of
the subsequent feature transformations caused by reconstruction. This theoretical flaw, combined with the
empirical problems identified in Section 4.1, motivates us to propose a fundamentally redesigned pipeline
that addresses both issues simultaneously.

In our improved approach (detailed in Section 5), we perform data augmentation first, then conduct bin
generation and selection on the augmented dataset. This reorganized pipeline ensures that feature extraction
and GraphCut selection operate in the same feature space that will be used for training. The submodular
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gains are now calculated as:

G(xk) =
∑

p∈Sk−1
n

∥∥f(p) − f(xk)
∥∥2

2 −
∑

p∈Daug\(S1∪···∪Sk−1
n )

∥∥f(p) − f(xk)
∥∥2

2, (2)

where Daug represents our augmented dataset. This approach ensures that the selected coreset is optimal for
the actual feature distribution used during training.

Furthermore, by conducting semantically aware augmentation prior to coreset selection while preserving the
original images, we significantly enhance the diversity of the training set. This strategic reordering enables
the GraphCut algorithm to select samples from an enriched feature space, thereby identifying the most
informative and representative instances. Consequently, our approach can achieve comprehensive coverage of
the feature distribution with a minimal number of samples, maximizing information density while minimizing
redundancy in the selected coreset.

A detailed formal theoretical framework grounded in submodular optimization theory is provided in Ap-
pendix A, which mathematically justifies why our pipeline redesign leads to superior performance.

5 Our Proposed Method: DQ_v2

This raises a crucial question: Can we design a more efficient method that achieves or surpasses DQ’s
performance without relying on large pre-trained models while also addressing the feature inconsistency
flaw? In this section, we present our answer: Dataset Quantization V2 (DQ_v2), a theoretically sound and
computationally efficient framework that simultaneously solves both the MAE dependency problem and the
feature inconsistency issue.

5.1 Semantically-Aware Data Augmentation (SDA)

As analyzed in Section 4.1, MAE’s reconstruction process in the pixel quantization step serves two roles:
(1) preserving semantic objects while modifying background regions, and (2) introducing regularization
through reconstruction-based augmentation. However, MAE suffers from distribution-specific overfitting and
computational overhead.

This motivates us to design a more efficient data augmentation strategy that achieves similar benefits without
pre-trained model dependencies. Classical augmentation methods like CutMix (Yun et al., 2019) generate
new samples by cutting and pasting patches between images, but may randomly cut foreground objects,
failing to preserve semantic integrity.

Thus, we need to design an augmentation method that: (1) maintains semantic object information, (2)
introduces beneficial background variations, and (3) requires no pre-trained models. Inspired by the self-
supervised learning framework of Cao & Wu (2022), we develop a data augmentation method that leverages
the inductive bias of randomly initialized CNNs. Specifically, the combination of CNN architectures with
ReLU activation functions naturally focuses on high-texture regions (foreground objects) while suppressing
low-texture regions (backgrounds), enabling automatic semantic object localization without any pre-training.
We repurpose this property for data augmentation: using a randomly initialized CNN to identify semantic
objects and then replacing background regions with random patches from other images. This method can
effectively maintain the naturalness of the image and introduce beneficial variations. Illustrative examples of
this process at different patch granularities (5×5, 16×16, or 40×40) are provided in Appendix D.1 (Figure 7a),
where we show that these randomly shuffled background patches contain only texture information, not
semantic content. For all experiments reported in this paper, we consistently use the 40×40 granularity
setting, which ensures that the semantic integrity of the main object is preserved while only introducing
variation in non-semantic texture patterns.

In addition, we mix the augmented data and the original images to further enhance the diversity of the training
data. We also report that using appropriate mixing rates can further improve the model’s performance.
While this strategy offers the following advantages:
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• Semantic Preservation: By preserving the image’s main object region, it ensures that augmented
images maintain the original semantic information.

• Diversity Introduction: The replacement of background regions introduces new visual contexts,
increases data diversity, and improves model generalization.

• Computational Efficiency: Compared to using large pre-trained models (like MAE), this method
has lower computational overhead and requires no additional model dependencies, making it suitable
for resource-constrained environments.

Theoretical Justification for SDA. The effectiveness of our SDA strategy can be understood from three
complementary theoretical perspectives:

(1) Sample Space Expansion Theory: As formalized in Appendix A (Assumption 2), SDA systematically
expands the dataset from D to Daug with |Daug| = 1.5|D|. This expansion is not arbitrary but semantically
structured—each augmented sample (x′

i, y′
i) preserves the label y′

i = yi while introducing controlled variation in
the contextual background. By expanding the sample space before coreset selection, we provide the GraphCut
algorithm with a richer pool of candidates from which to select maximally diverse and representative samples
(Theorem 1).

(2) Spurious Correlation Breaking: Traditional data augmentation often fails to address the problem of
spurious correlations between objects and their typical contexts (e.g., soccer balls primarily appearing on
grass). Our SDA explicitly breaks these correlations by replacing backgrounds with random patches from
other images. This forces the model to learn background-invariant representations that focus on the intrinsic
properties of foreground objects rather than contextual cues. By ensuring that semantic objects appear in
diverse, unrelated backgrounds during training, SDA prevents the model from relying on spurious background
cues for classification.

(3) Regularization through Controlled Diversity: Unlike MAE’s domain-specific biases (Section 4.1, Problem
1), SDA introduces diversity without injecting external prior knowledge. The random background replacement
acts as a powerful regularizer that prevents overfitting to specific background patterns while maintaining
semantic integrity. This is particularly valuable when |D| is limited or when the target distribution differs
from common pre-training datasets like ImageNet.

5.2 Our Proposed Framework: DQ_v2

Figure 3: The overall pipeline of DQ_v2.

Building upon our SDA strategy and the
feature consistency principle discussed in
Section 4.2, we propose DQ_v2, a com-
prehensively redesigned framework that
addresses both the pre-trained model de-
pendency and the feature inconsistency
issues in the original DQ method.

A key innovation in our approach is the
reordering of the pipeline steps: unlike
the original DQ, which performs augmen-
tation after coreset selection (leading to
feature inconsistency), we perform aug-
mentation first and then selection, ensuring that GraphCut operates in the same feature space used during
training (as formalized in Section 4.2, Proposition 1).

Our improved method includes the following key steps: 1) Mask Generation and Data Selection: We
randomly select 50% of the images from the training set for augmentation. For these selected images, we use
a randomly initialized ResNet-50 model to generate masks that localize the regions of the main objects. This
step leverages CNN’s inductive bias to effectively identify the main objects without requiring any pre-training
on object detection tasks. Our deliberate choice of ResNet-50 rather than a ViT architecture is based on

8



Under review as submission to TMLR

the inherent properties of CNN structures combined with ReLU activations: in CNNs with ReLU activation
functions, there is a natural tendency to distinguish between foreground objects and background regions
based on texture complexity. Background areas typically contain less texture compared to the main objects,
and as network depth increases, these texture-sparse regions are more likely to be deactivated by ReLU
functions. This emergent property makes CNNs particularly effective at identifying the main object regions
without explicit supervision. In contrast, ViT architectures rely on self-attention mechanisms without the
inherent spatial inductive biases of convolutions, and therefore do not naturally exhibit this object-background
separation capability. 2) Semantically-Aware Data Augmentation (SDA): Based on the generated
masks, we augment the selected images by retaining their main object parts while replacing the original
backgrounds with randomly selected backgrounds from other images. This process maintains the original
semantic information while introducing new visual contexts. We then combine these semantically-aware
augmented images with the original complete training set, effectively expanding the dataset to 1.5 times its
original size with increased diversity. 3) Dataset Binning: Use an EarlyTrain model to extract the visual
feature and then apply the GraphCut method (Iyer et al., 2021) to split the mixed training set, generating
multiple nonoverlapping bins. By performing this step after data augmentation, we ensure feature consistency
between selection and training. This step ensures that the selected samples are representative and diverse,
keeping the core advantages of the DQ method. 4) Bin Sampling: Randomly select a proportionally
adjusted percentage of images from each bin to form the final coreset. Since our dataset has been expanded
to 1.5x its original size, we accordingly adjust the selection ratio by a factor of 1/1.5 to maintain the same
effective number of samples as other methods. For example, to obtain a coreset equivalent to 60% of the
original dataset size, we select 40% (= 60% / 1.5) from the augmented dataset, yielding 0.4 × 1.5n = 0.6n
samples, where n is the original dataset size. This adjustment ensures fair comparison with other methods
(see Appendix D for detailed analysis). This random sampling process further increases the diversity of the
data, allowing users to flexibly adjust the proportions of the data to suit different task requirements. 5)
Model Training: Train the model using the selected coreset.

The complete pipeline of DQ_v2 is illustrated in Figure 3. As the coreset contains both original and
augmented images, the model can learn richer and more robust feature representations, enhancing model
performance and stability.

Through this comprehensive redesign, DQ_v2 simultaneously achieves three key advantages: (1) eliminates
all pre-trained model dependencies, reducing computational requirements by 75% in the augmentation phase;
(2) ensures feature consistency between selection and training through pipeline reordering; (3) improves
performance across diverse domains through semantically-aware augmentation. Experimental results (Section
6) demonstrate that DQ_v2 surpasses the original DQ and other state-of-the-art methods while maintaining
practical accessibility for resource-constrained scenarios.

6 Experimental Results and Analysis

6.1 Experimental Setup

Datasets: We conducted experiments on multiple datasets, including ImageNette Howard (2019) (a 10-class
subset of ImageNet), CUB-200-2011 Wah et al. (2011), and Food-101 Bossard et al. (2014). These datasets
cover a wide range of image classification tasks, enabling us to comprehensively evaluate the performance of
our proposed method. In addition, we also conducted experiments on ImageNet-1k to further validate the
effectiveness of our proposed method compared to the state-of-the-art methods.

Implementation Details: We implement our proposed DQ_v2 method using PyTorch and train the models
on NVIDIA V100 GPUs. We use the randomly initialized ResNet-50 model as the backbone for SDA. For
the dataset bin selection stage, we utilize the EarlyTrain ResNet-50 model as the feature extractor. The
number of dataset bins is set to 10 by default. We also use the timm library (Wightman, 2019) for model
training across all datasets. For comparisons with the original DQ, we follow exactly the same downstream
evaluation protocol as the original DQ method1. This ensures that improvements over DQ are attributable

1For ImageNet-1k experiments, we use ResNet-50 as the backbone model. For other datasets (CUB-200, Food-101, etc.), we
use ResNet-18 as the backbone model. This choice follows standard practice for datasets of different scales.
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to our coreset selection method rather than differences in training procedures. A detailed stability analysis
comparing DQ_v2 with the original DQ method across multiple datasets and random seeds is provided in
Appendix B.
6.2 Comparison with original DQ
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Figure 4: Preliminary evaluation of our proposed
DQ_v2 method. We report the mean accuracy (%)
and variance in five runs with different seeds.

In this part, we primarily evaluate the performance
of our DQ_v2 method compared to the original DQ
method. Specifically, the results on the ImageNette
and Food-101 datasets are shown in Figure 4 (b).
The results show that our method achieves better per-
formance compared to the original DQ method. No-
tably, in the Food-101 dataset, our method achieves a
significant performance improvement of 3.98% com-
pared to the original DQ method, while on Ima-
geNette, we observe a gain of 1.66%. The larger per-
formance gap on Food-101 aligns with our analysis:
MAE primarily benefits ImageNet-related datasets
(such as ImageNette) but functions merely as Gaus-
sian blur for non-ImageNet datasets like Food-101.
This explains why removing MAE and using our
SDA approach yields more substantial improvements on Food-101.

Moreover, to demonstrate that our coreset selection generalizes across different architectures, we train a
ViT model on the subset selected using the ResNet-50 feature extractor and evaluate the performance on
ImageNette. The accuracy of DQ method is 55.30%±2.73%, and ours is 57.67%±1.20%. The results further
verify the effectiveness and generalizability of our proposed method.

Computational Efficiency. Beyond accuracy improvements, our method also offers significant computational
advantages. It is worth noting that the original DQ method already provides substantial computational
benefits over many alternative approaches. Unlike dataset distillation methods where computational cost
scales quadratically with the size of the synthetic set, DQ offers more favorable scaling through its binning
approach. Moreover, compared to methods like D2 Pruning Maharana et al. (2023) and AdaPruner Liu et al.
(2021) that require training on the complete dataset, DQ’s pipeline avoids this computational burden entirely
by operating directly on feature representations. Our DQ_v2 method preserves these fundamental efficiency
advantages while providing further improvements.

Table 1: GPU-hour comparison between
MAE and SDA on ImageNet-1k (single
NVIDIA RTX 4090).

Method Params GPUh

MAE ViT-L (304M) 10.0
SDA (8×8) R50 (25.6M) 1.7
SDA (40×40) R50 (25.6M) 2.5

We compare the GPU hours required for processing the entire
ImageNet-1k dataset using the original MAE-based approach
versus our SDA method, as shown in Table 1.

Specifically, our SDA phase achieves at least a 75% reduction
in GPU hours compared to DQ’s MAE reconstruction phase.
This substantial efficiency gain in the augmentation component
stems from two key factors: (1) we employ a randomly initialized
ResNet-50 with only 25.6M parameters for data augmentation,
compared to the more computationally demanding ViT-Large
with 304M parameters used by MAE; and (2) our method only
requires applying the augmentation to 50% of the data, further reducing the computational cost. While the
complete pipelines of both methods include additional stages (bin generation, selection, and training), the
augmentation phase represents a significant computational bottleneck in the original DQ, and our redesign
substantially addresses this limitation.

6.3 Comparison with State-of-the-art Methods on ImageNet-1k

To fully validate the effectiveness of our proposed DQ_v2 method, we conduct extensive experiments on the
large-scale ImageNet-1k dataset, comparing it with recent state-of-the-art coreset selection and data pruning

10
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methods, including D2 Pruning, CCS. MoSo, InfoMax, and BoundarySet-CCS. The results are shown in
Figure 5. All baseline Top-1 accuracies are taken directly from the corresponding papers’ reported results. The
results demonstrate that our DQ_v2 method consistently outperforms other leading data pruning approaches
across most data keep ratios (Figure 5). Compared to the original DQ method, DQ_v2 shows consistent
improvements across all keep ratios, validating the effectiveness of our comprehensive pipeline redesign and
semantically-aware data augmentation strategy. Against other recent state-of-the-art methods, including
D2 Pruning Maharana et al. (2023), CCS Zheng et al. (2023), MoSo Tan et al. (2023), InfoMax Tan et al.
(2025), and BoundarySet-CCS Yang et al. (2024), DQ_v2 demonstrates competitive or superior performance,
particularly when the data keep ratio exceeds 20%, where it generally maintains a leading position.
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Figure 5: Performance comparison with state-of-the-art methods
on ImageNet-1k.

Notably, at a 60% data keep ratio
on ImageNet-1k, our DQ_v2 method
achieves an impressive 75.94% Top-1 ac-
curacy. This performance is particu-
larly significant as it surpasses the re-
ported accuracy of CCS (75.58%) which
requires a larger data selection rate of 80%.
This achievement establishes DQ_v2 as a
highly efficient solution for dataset com-
pression on ImageNet-1k, achieving better
performance with less data while also elim-
inating the need for expensive pre-trained
models and full dataset training that other
methods require. At very low data keep
ratios (10%), DQ_v2 is outperformed by
InfoMax and BoundarySet-CCS, which
demonstrate particularly strong perfor-
mance in this regime. This behavior is
expected and further analyzed in Appendix D, where we discuss how extremely low selection ratios pose
inherent challenges for sample space expansion approaches. Further detailed analyzes, including the factors
contributing to DQ_v2’s efficiency and a discussion on the fair comparison of training sample counts, are
provided in Appendix D.

6.4 Robustness and Cross-Domain Generalization

To comprehensively evaluate DQ_v2’s practical applicability and address the question of whether our
method truly overcomes the domain-specific limitations identified in Section 4.1, we conduct two additional
experiments that test the method’s behavior beyond the standard ImageNet evaluation.

Table 2: Cross-domain general-
ization results on COVID-19 Ra-
diography Database. (ResNet-
50)

Ratio Accuracy (%) Gain

(%) DQ DQ_v2 (%)

5 81.46 88.48 +7.02
10 85.96 90.01 +4.05
15 86.46 92.49 +6.03
30 87.99 93.08 +5.09
60 90.86 95.06 +4.20

Cross-Domain Generalization. A central claim of our work is that
DQ_v2 avoids the domain-specific biases inherent in MAE-based ap-
proaches (Section 4.1, Problem 1). To validate this claim, we evaluate our
method on the COVID-19 Radiography Database (Chowdhury et al., 2020),
a medical imaging dataset that is significantly different from ImageNet in
terms of image characteristics, semantic content, and visual features. This
dataset contains chest X-ray images across multiple categories, representing
a challenging out-of-distribution scenario.

Table 2 presents the comparison between the original DQ and our DQ_v2
across various data keep ratios. The results demonstrate substantial
improvements across all settings, with gains ranging from +4.05% to
+7.02%. Notably, even at very low selection rates (5%), DQ_v2 achieves
88.48% accuracy compared to DQ’s 81.46%, representing a remarkable 7.02% improvement. This consistent
superiority across all keep ratios strongly validates our hypothesis that eliminating pre-trained model
dependencies enables better generalization to out-of-distribution domains. The substantial performance
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gains on this medical imaging dataset directly demonstrate that DQ_v2’s design successfully addresses the
domain-specific overfitting problem we identified in the original DQ method.

Robustness to Image Corruptions. Beyond cross-domain generalization, we evaluate whether models
trained on DQ_v2-selected coresets exhibit improved robustness to distribution shifts at test time. We use
the ImageNet-C benchmark (Hendrycks & Dietterich, 2019), which applies 15 types of corruptions (e.g.,
Gaussian noise, motion blur, JPEG compression) at 5 severity levels to the ImageNet validation images,
providing a comprehensive assessment of model robustness.

We train ResNet-50 models on a 60% coreset selected by DQ_v2 and evaluate them on all ImageNet-C
corruptions, computing the mean Corruption Error (mCE) metric. Our method achieves an mCE of 71.26,
compared to 76.7 for the baseline ResNet-50 trained on the full ImageNet dataset (a 5.44 point improvement).
This substantial improvement in robustness can be attributed to our SDA strategy: by explicitly breaking
spurious correlations between foreground objects and their typical backgrounds (see Section 5.1 for details on
SDA), DQ_v2 encourages models to learn background-invariant representations that naturally generalize
better to distribution shifts. The coreset selected from the augmentation-enriched space contains more diverse
contextual variations, effectively serving as a built-in robustness-enhancing regularizer during training.

These robustness and generalization results provide strong empirical evidence that DQ_v2 not only matches
or exceeds DQ’s performance on standard benchmarks but also demonstrates superior practical applicability
across diverse domains and under distribution shifts. Detailed ablation studies on the impact of key components
(bin division algorithms, SDA patch granularities, and mixing ratios) are provided in Appendix C.

7 Conclusion, Limitations and Future Work

In this paper, we address the fundamental accessibility dilemma in coreset selection: existing state-of-the-art
methods either require extensive training on target datasets or depend heavily on large pre-trained models,
undermining the core purpose of reducing computational burden in resource-constrained scenarios. Through
comprehensive analysis of the Dataset Quantization (DQ) method, we identify critical limitations: (1) MAE
provides dataset-specific benefits through ImageNet prior knowledge but suffers from distribution-specific
overfitting, benefiting ImageNet-related datasets while harming out-of-distribution performance; (2) the
original pipeline suffers from feature inconsistency between selection and training phases due to applying
augmentation after selection; (3) heavy reliance on expensive pre-trained models (304M-parameter MAE and
pre-trained ResNet) introduces substantial computational overhead.

To address these fundamental issues, we propose DQ_v2, which establishes a new practical paradigm for
coreset selection that is truly accessible, theoretically sound, and domain-agnostic. By eliminating all pre-
trained model dependencies through Semantically-Aware Data Augmentation and fundamentally restructuring
the pipeline to ensure feature consistency, DQ_v2 provides a coreset selection method that: (1) requires no
pre-trained models, (2) avoids training-dynamics-based scoring on the target dataset, and (3) demonstrates
robust performance across diverse domains. Through extensive experiments on diverse domains (ImageNet-1k,
CUB-200, Food-101, medical imaging), we show that DQ_v2 improves performance and stability over the
original DQ and other state-of-the-art coreset selection methods, while reducing augmentation compute by
75% and improving cross-domain generalization and robustness to distribution shifts.

Limitations and Future Work. Despite its strong performance, DQ_v2 presents opportunities for further
development: 1. The current SDA employs a fixed 50/50 proportion for foreground and background patches,
which may not be optimal for all images. Future work will focus on developing adaptive techniques to
determine this ratio on a per-image basis, potentially improving object localization precision. 2. Our
validation of DQ_v2 has thus far been confined to classification tasks. A key direction for future research
is to extend its application and evaluate its effectiveness for other visual recognition tasks, such as object
detection and segmentation.

Reproducibility Statement. To facilitate reproducibility, we will release our code and implementation
details upon publication.

12



Under review as submission to TMLR

References
Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for active learning.

In European Conference on Computer Vision, pp. 137–153. Springer, 2020.

Brian R Bartoldson, Bhavya Kailkhura, and Davis Blalock. Compute-efficient deep learning: Algorithmic
trends and opportunities. Journal of Machine Learning Research, 24(122):1–77, 2023.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components with
random forests. In European conference on computer vision, pp. 446–461. Springer, 2014.

Yun-Hao Cao and Jianxin Wu. A random cnn sees objects: One inductive bias of cnn and its applications. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 136–144, 2022.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

Muhammad E. H. Chowdhury, Tawsifur Rahman, Amith Khandakar, Rashid Mazhar, Muhammad Abdul
Kadir, Zaid Bin Mahbub, Khandakar Reajul Islam, Muhammad Salman Khan, Atif Iqbal, Nasser Al-Emadi,
Mamun Bin Ibne Reaz, and Mohammad Tariqul Islam. Covid-19 radiography database. Kaggle, 2020.
URL https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In
International Conference on Learning Representations, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin based
approach. arXiv preprint arXiv:1802.09841, 2018.

Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly easy synthesis for
instance detection. In Proceedings of the IEEE international conference on computer vision, pp. 1301–1310,
2017.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation. arXiv preprint
arXiv:2012.07177, 2020.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selection in
deep learning. In International Conference on Database and Expert Systems Applications, pp. 181–195.
Springer, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022.

Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic uncertainty.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7713–7722,
2024.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations (ICLR), 2019.

13

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database


Under review as submission to TMLR

Jeremy Howard. Imagenette. https://github.com/fastai/imagenette, 2019. A smaller subset of ImageNet.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial information
measures with applications in machine learning. In Algorithmic Learning Theory, pp. 722–754. PMLR,
2021.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In International
Conference on Machine Learning, pp. 5464–5474. PMLR, 2021.

Xiangcheng Liu, Jian Cao, Hongyi Yao, Wenyu Sun, and Yuan Zhang. Adapruner: Adaptive channel pruning
and effective weights inheritance, 2021. URL https://arxiv.org/abs/2109.06397.

Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing diversity
and difficulty in data pruning, 2023. URL https://arxiv.org/abs/2310.07931.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by acquiring
contrastive examples. arXiv preprint arXiv:2109.03764, 2021.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine
learning models. In International Conference on Machine Learning, pp. 6950–6960. PMLR, 2020.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:20596–20607,
2021.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400
million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. Journal
of big data, 6(1):1–48, 2019.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data pruning via
moving-one-sample-out, 2023. URL https://arxiv.org/abs/2310.14664.

Haoru Tan, Sitong Wu, Wei Huang, Shizhen Zhao, and Xiaojuan Qi. Data pruning by information maximiza-
tion. In International Conference on Learning Representations, 2025.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during deep neural network learning. In International
Conference on Learning Representations, 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal method
of data selection for real-world data-efficient deep learning. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=7D5EECbOaf9.

Xiaobo Xia, Jiale Liu, Shaokun Zhang, Qingyun Wu, Hongxin Wei, and Tongliang Liu. Refined coreset
selection: Towards minimal coreset size under model performance constraints. In Forty-first International
Conference on Machine Learning, 2024.

14

https://github.com/fastai/imagenette
https://arxiv.org/abs/2109.06397
https://arxiv.org/abs/2310.07931
https://arxiv.org/abs/2310.14664
https://github.com/rwightman/pytorch-image-models
https://openreview.net/forum?id=7D5EECbOaf9


Under review as submission to TMLR

Shuo Yang, Zhe Cao, Sheng Guo, Ruiheng Zhang, Ping Luo, Shengping Zhang, and Liqiang Nie. Mind the
boundary: Coreset selection via reconstructing the decision boundary. In International Conference on
Machine Learning, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018.

Zhenghao Zhao, Yuzhang Shang, Junyi Wu, and Yan Yan. Dataset quantization with active learning based
adaptive sampling. In ECCV, 2024.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high pruning
rates, 2023. URL https://arxiv.org/abs/2210.15809.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–13008, 2020.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. Dataset quantization. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 20477–20488, 2023.

A Formal Theoretical Framework

To provide a rigorous foundation for our approach, we present a formal theoretical framework grounded in
submodular optimization theory. This framework mathematically justifies why our pipeline redesign leads to
superior performance.

Assumption 1: Properties of the Set Function. Let Ω be the ground set of dataset elements, |Ω| = |D|,
and let fΩ : 2Ω → R be a normalized, monotone, and submodular function as defined in Iyer et al. (2021).
We use subscripts (e.g., fD, fDaug) to denote the same function instantiated on different ground sets. In our
method, f is instantiated as the generalized graph cut function with similarity kernel s and parameter λ ≥ 2,
ensuring monotonicity and submodularity (Lemma 17 in Iyer et al. (2021)).

Assumption 2: Sample Space Expansion. Let D = {(xi, yi)}n
i=1 be the original dataset. Our

Semantically-Aware Data Augmentation (SDA) produces semantically consistent variants with altered
background textures but preserved labels. In our implementation, we augment exactly 50% of the dataset,
yielding:

|Daug| = |D| + 0.5|D| = 1.5|D| ⇒ α = 1.5. (3)

Label Preservation: For any (xi, yi) ∈ D, and any SDA variant (x′
i, y′

i) ∈ Daug derived from xi, we have
y′

i = yi.

Theorem 1 (Submodular Optimization in Expanded Space). We recall the submodular mutual
information from Iyer et al. (2021):

If (A; B) = f(A) + f(B) − f(A ∪ B). (4)

The generalized graph cut function (Lemma 17 in Iyer et al. (2021)) is:

f(A) = λ
∑
i∈Ω

∑
a∈A

sia −
∑

a1,a2∈A

sa1a2 , λ ≥ 2. (5)

GraphCut selects a subset S ⊆ Daug by maximizing coverage while minimizing redundancy, capturing:

• Original diversity: from D
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• Synthetic diversity: from SDA

• Boundary coverage: better representation of rare or borderline cases

Since Daug ⊃ D and f are monotone, we have:
max
|S|≤k

fDaug(S) ≥ max
|S|≤k

fD(S). (6)

This formalizes the advantage of selection in the expanded space.

Proposition 1 (Feature Space Consistency Advantage). Let ϕ : X → Rd be the feature extractor, and
define F (X) = {ϕ(x) | x ∈ X}. Let Fsel and Ftrain be the feature spaces seen at selection and training time,
respectively.

Augmentation-before-selection (ours):

1. SDA: D → Daug

2. Selection: S ⊂ Daug via GraphCut

3. Training: model trains on S

Then: Fsel = F (Daug), Ftrain = F (S) ⊆ F (Daug), which implies Fsel and Ftrain are consistent.

Augmentation-after-selection (baseline DQ):

1. Selection: S ⊂ D via GraphCut

2. Augmentation: S → Stransformed

3. Training: model trains on Stransformed

Then: Fsel = F (D), Ftrain = F (Stransformed), which implies Fsel ̸= Ftrain when augmentation changes feature
distributions.

Conclusion: Our pipeline ensures that the selection algorithm operates within the same feature distribution
as during training, eliminating the distribution mismatch identified in the original DQ.

B Stability Analysis

As discussed in the main paper, the pixel quantization step plays an important role in reducing the variance
of the trained model. Therefore, in this section, we investigate the stability of our proposed DQ_v2 method
compared to the original DQ method.

On the ImageNette dataset (Figure 4 (a) in the main paper), we observe that removing the MAE model
from the original DQ method significantly increases variance and decreases performance (from 72.14% to
69.69%). In contrast, our proposed DQ_v2 method achieves comparable variance while obtaining higher
accuracy (73.80%). This result indicates that our proposed method can effectively address the stability issue
of the original DQ method while maintaining high performance. Furthermore, we observe similar stability
improvements on the Food-101 dataset, where our proposed method achieves a variance of 0.0745, significantly
lower than DQ’s 0.197.

These results underscore the effectiveness of our method in addressing the instability issue of DQ when the
pre-trained model is removed. We attribute DQ_v2’s stability primarily to the following factors: 1) By
employing semantically-aware background replacement, it provides more diverse training samples, reducing
dependence on specific background features while expanding the sample space and mitigating the risk of
overfitting. 2) Maintaining a balance of original images and semantically-aware augmented images in the
dataset preserves the authenticity of the original data while introducing sufficient diversity. 3) Our modified
pipeline, which performs data augmentation before coreset selection, prevents the feature shifts that occur
in the original DQ method (as discussed in Section 4.2 of the main paper), where data augmentation after
coreset selection can lead to instability.
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C Ablation Studies

In this section, we conduct ablation studies to analyze the impact of key components in our proposed DQ_v2
method.

C.1 Impact of Bin Division Algorithms
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Figure 6: Visualization of bin division algorithm performance on ImageNette.

We analyze the impact of different bin split algorithms on the performance of our proposed method. We
compare the performance of our method with three different bin split strategies, including GraphCut (Iyer
et al., 2021), Random, and Uniform methods, on the ImageNette dataset at various data keep ratios (1%, 2%,
and 5%). To ensure reliability, we repeat each experiment three times with different random seeds and report
the mean accuracy and standard deviation. The results are shown in Figure 6.

The results demonstrate that the GraphCut method consistently achieves the best performance across all data
keep ratios (Figure 6). At the 1% keep ratio, GraphCut achieves 32.7% accuracy, outperforming Random
(31.5%) and Uniform (29.4%). This performance advantage becomes more pronounced at higher keep ratios,
with GraphCut reaching 60.1% at 5%, compared to 56.8% for Random and 57.3% for Uniform. These
results indicate that GraphCut can effectively select the most representative samples from the dataset, which
improves the performance of the trained model.

In summary, the GraphCut algorithm consistently outperforms Random and Uniform methods across different
data keep ratios. The performance improvements are substantial, particularly at lower keep ratios where
sample selection quality is most critical. Therefore, in practice, we strongly recommend using the GraphCut
method to achieve optimal performance and stability.

D Detailed Analysis of DQ_v2 Performance on ImageNet-1k

Performance Analysis at Low Data Ratios

We observe that at extremely low data keep ratios (e.g., 10%), our DQ_v2 method performs marginally below
CCS. This phenomenon can be attributed to the data expansion step in our pipeline. The primary purpose
of this step is to expand the sample space, enabling the subsequent coreset selection to choose more diverse
samples while reducing redundant information. It also provides augmentation to prevent rapid overfitting.
However, at very low sampling ratios, the original sample space can hardly be comprehensively captured,
making the additional samples less meaningful. Nevertheless, such extremely low selection ratios have limited
practical applications in real-world scenarios.
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Achieving Superior Efficiency and Performance against SOTA

DQ_v2 can achieve higher accuracy with less data (e.g., 75.94% at 60% keep ratio vs. 75.58% at 80% for the
strongest baseline) due to the synergy between SDA and GraphCut. SDA expands the candidate pool with
semantically consistent variations, and GraphCut then selects a diverse and informative subset from this
enriched space, yielding a better accuracy–efficiency trade-off at moderate keep ratios.

Fair Comparison of Training Sample Count

One might question whether DQ_v2 actually uses more training samples than other methods at the same
reported keep ratio, given that our pipeline includes a data expansion step. To address this concern, we
provide a mathematical formulation to demonstrate that our method maintains the same number of training
samples as other methods at equivalent keep ratios.

(a) Illustrative examples of different SDA sizes
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Figure 7: Impact of SDA sizes on DQ_v2
performance. Results on ImageNette
dataset.

Let x denote the number of training samples in the original
dataset. A conventional coreset selection method with a keep
ratio of r would select r · x samples. In our DQ_v2 pipeline, we
first expand the dataset to 1.5x samples through semantically-
aware augmentation, and then apply a proportionally reduced
selection ratio of r

1.5 to maintain the same final count:

Number of samples = 1.5x · r

1.5 = r · x (7)

For instance, to obtain a 60% subset (0.6x) from the original
dataset of size x, we first expand it to 1.5x and then select 40%
(0.4·1.5x = 0.6x). Therefore, DQ_v2 uses exactly the same
number of training samples as other methods at equivalent keep
ratios, ensuring a fair comparison.

D.1 Impact of SDA Size

We study the SDA patch size, which controls the granularity
of patch-wise background replacement. Larger values generally
preserve semantic structure better (Figure 7a). We evaluate
five sizes on ImageNette; results are shown in Figure 7b.

SDA patch size strongly affects performance: very small sizes
(e.g., 4×4, 8×8) degrade accuracy, while larger sizes improve
both mean accuracy and stability, peaking at 40×40.

We attribute this to finer background replacement removing more background-specific cues, which encourages
a stronger reliance on the foreground. Based on these results, we use an SDA patch size of 40×40 for optimal
performance and stability.

D.2 Impact of Mixing Ratio

Finally, we investigate the impact of the mixing ratio between the original images and Semantically-Aware
augmented images on the performance of our proposed method. Since we do not need to rely on the pre-trained
MAE model, we can simply mix semantically-aware augmented data and original images to improve the
diversity and quality of the data. Thus, we evaluated the performance of our proposed method with different
mixing ratios in the CUB-200, Food-101, and ImageNet-30 datasets. The ImageNet-30 dataset, a subset of
ImageNet-1k, was utilized in these specific experiments to enable faster validation.

The results are shown in Figure 8. We observe that performance consistently achieves the best score when we
use all original images together with 50% SDA images.
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Figure 8: Performance with different T (Semantically-Aware augmented) and O (Original) image ratios. We
report the mean accuracy (%) and variance in five runs with different seeds.
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