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ABSTRACT

Federated learning, as a distributed machine learning method, enables multiple
participants to collaboratively train a central model without sharing their private
data. However, this decentralized mechanism introduces new privacy and security
concerns. Malicious attackers can embed backdoors into local models, which are
inherited by the central global model through the federated aggregation process.
While previous studies have demonstrated the effectiveness of backdoor attacks, the
effectiveness and durability often rely on unrealistic assumptions, such as a large
number of attackers and scaled malicious contributions. These assumptions arise
because a sufficient number of attackers can neutralize the contributions of honest
participants, allowing the backdoor to be successfully inherited by the central model.
In this work, we attribute these backdoor limitations to the coupling between the
main and backdoor tasks. To address these backdoor limitations, we propose a
min-max backdoor attack framework that decouples backdoors from the main task,
ensuring that these two tasks do not interfere with each other. The maximization
phase employs the principle of universal adversarial perturbation to create triggers
that amplify the performance disparity between poisoned and benign samples.
These samples are then used to train a backdoor model in the minimization process.
We evaluate the proposed framework in both image classification and semantic
analysis tasks. Comparisons with three backdoor attack methods under six defense
algorithms show that our method achieves good attack performance even if there
is a small number of attackers and when the submitted model parameters are not
scaled. In addition, even if attackers are completely removed in the training process,
the implanted backdoors will not be dramatically weakened by the contributions of
other honest participants.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) is a distributed machine learning paradigm that
enables participants to collaboratively train a model without sharing their private data. In this
framework, participants train local models with their own data and then upload the updated model
parameters or gradients to a central server for aggregation. However, this distributed training method
introduces significant privacy and security concerns (Lyu et al., 2020; Rodríguez-Barroso et al.,
2023).

Among the various threats (Fang et al., 2020; Gu et al., 2017; Szegedy et al., 2013; Shokri et al., 2017;
Zhu et al., 2019), backdoor attacks (Gu et al., 2017) are particularly pernicious in federated settings
compared to centralized learning systems. FL is inherently vulnerable to backdoor attacks as the
central server cannot directly inspect the local training data, and some aggregation protocols (Cramer
et al., 2015; Bonawitz et al., 2017) in FL typically encrypt the updated parameters, making the
malicious modifications difficult to be discovered. In a backdoor attack, attackers can embed specific
triggers in their local models through their private data. Through aggregation, these malicious
modifications can be inherited, eventually integrating into the global model. The backdoored model
performs well on benign inputs but follows the attacker’s intentions when it processes inputs that
contain triggers.
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Bagdasaryan et al. (Bagdasaryan et al., 2020) first introduce backdoor attacks in FL, demonstrating
that semantic backdoors are more effective than pixel pattern backdoors (Gu et al., 2017). Despite
this, the high attack success rate (ASR) of most existing backdoor methods (Bagdasaryan et al., 2020;
Xie et al., 2019; Shejwalkar et al., 2022) typically requires either a substantial proportion of attackers
or scaling the submitted model weights. These requirements not only make attacks less effective
against defenses (Blanchard et al., 2017; Pillutla et al., 2022; Sun et al., 2019; Nguyen et al., 2022)
but also challenging to implement practically. Moreover, the backdoors in FL are not persistent, as
the ASR significantly drops once the attackers cease participating in the federated training process.

In this work, we attribute these shortcomings to the coupling between the backdoor and main tasks.
Therefore, we propose a min-max backdoor attack framework, termed EDBA, which ensures a distinct
separation between the main and backdoor tasks. This separation prevents the weights submitted
by other normal participants from influencing the backdoor task, thereby enhancing the ASR and
the durability of the backdoor attack. Specifically, EDBA consists of two phases: the maximization
phase aims at generating triggers that maximize the performance disparity between poisoned and
benign samples. In the minimization phase, both poisoned and benign samples are used to train the
backdoored local model. Our approach achieves a high ASR using only pixel pattern backdoors, with
a minimal number of attackers (1%) and without scaling model parameters. Moreover, it maintains
attack efficiency even when the attackers are no longer participating in the FL process. In summary,
our contributions are:

• We propose a novel min-max backdoor framework where the maximization phase focuses
on trigger generation to enhance the differentiation between poisoned and benign samples.
The minimization phase aims at backdoor injection, employing these two types of samples
to train a backdoored local model.

• We employ the principle similar to the universal adversarial perturbation to design triggers
that effectively separate the primary and backdoor tasks. In computer vision tasks, we
directly optimize pixels with cosine similarity loss, while in natural language processing
tasks, we focus on optimizing the trigger patterns.

• Experimental results demonstrate that our backdoor attack achieves a high ASR while
maintaining the main task accuracy without assuming that there is a large number of
attackers and that the model weights are scaled. The backdoor’s effectiveness remains
unchanged even after the removal of the attackers.

2 RELATED WORK

Federated Learning. Federated learning, as a decentralized learning method, ensures that partici-
pants collaboratively train a joint model safety and efficiency without sharing data. Recently, several
FL variants (Li et al., 2023; Tan et al., 2022; Karimireddy et al., 2020; Zhu & Jin, 2019) are proposed
to address challenges such as limited communication and unbalanced data distribution. Generally,
the FL training framework follows three main steps:

1. Model Distribution: The central server selects a subset of participants S ⊂ 1, 2, . . . , N for the
current communication, and distributes the current global model Gt to the selected participants S.

2. Local Model Training: The selected participants i ⊂ S train their local models Lt+1
i using their

own data Di. After that, they upload their updated model parameters or gradients Lt+1
i −Gt to the

server.

3. Model Aggregation: The server uses aggregation algorithms to update the global model with the
gradients or parameters submitted by the participants, as in FedAvg (McMahan et al., 2017), where:

Gt+1 = Gt +
1

|S|
∑
i⊂S

(
Lt+1
i −Gt

)
, (1)

where |S| represents the number of selected participants.

Backdoor Attacks in FL. Backdoor attacks in FL involve attackers uploading malicious parameters
to poison the central global model (Tolpegin et al., 2020; Bagdasaryan et al., 2020; Wang et al., 2020a).
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The compromised model performs well on benign samples but follows the attackers’ intentions when
it processes inputs with triggers. This type of attack is particularly insidious in FL since the central
server cannot access the privately poisoned data. BadNets (Gu et al., 2017) first demonstrates
injecting a specific pixel pattern trigger during the training process can easily backdoor the deep
neural networks. Subsequently, Bagdasaryan et al. (Bagdasaryan et al., 2020) show that the global
model can inherit these poisoned parameters through the aggregation process in FL. They further
suggest using semantic backdoors instead of pixel pattern backdoors and scaling the submitted model
parameters to increase the backdoor ASR of backdoor attacks in FL. DBA (Xie et al., 2019) reveals
that a common backdoor task could be executed collaboratively by multiple attackers, achieving a
higher backdoor ASR. Neuroxin (Zhang et al., 2022) extends the duration of backdoor attacks by
injecting backdoor tasks into the model parameters with minimal updates. IBA (Nguyen et al., 2024)
employs adversarial perturbations as triggers and selectively poisons specific neurons to preserve the
attack’s efficacy. While these variants significantly enhance backdoor attacks, most of them require a
substantial number of attackers or model weight scaling techniques to achieve a high ASR. Moreover,
the effectiveness of the injected backdoor quickly diminishes when the attackers are removed, as the
contributions of other participants mitigate it.

Defense in FL. Defense strategies in FL aim to eliminate the impact of malicious attackers, and
these defenses can implemented during various phases of FL (Lyu et al., 2022). Before the aggregation
phase, implementing some detecting defense algorithms is challenging as the FL server does not
have access to local private data (Huang et al., 2019; Hou et al., 2021; Nasr et al., 2018). During
the aggregation process, defenses (Liu et al., 2021; Yin et al., 2018; Panda et al., 2022) focus on
reducing the influence of potential attackers. NDC (Sun et al., 2019) employs a norm clipping to
limit large model updates, mitigating the impact of attackers uploading scaled malicious parameter
weights. Krum (Blanchard et al., 2017) calculates the Euclidean distance between the uploaded
weights and selects the smallest one for updating the global model. Similarly, RFA (Pillutla et al.,
2022) aggregates local models using their geometric median. The defenses after the aggregation
phase typically operate by identifying and removing potential backdoors in the model. However, a
limitation of this approach is that the central server requires access to some training data to implement
these defenses (Wang et al., 2019; Liu et al., 2018).

3 METHODOLOGY

The significant ASR achieved by the most existing attack methods typically requires a large proportion
of attackers. Moreover, once the attackers cease their participation in FL, the injected backdoor’s
effectiveness rapidly mitigates. The core reason for these issues is these strategies lack a clear
differentiation between the backdoor task and the main task, which allows the backdoor to be
neutralized by the model updates contributed by honest participants, diminishing the attack’s potency.

In this work, we propose a backdoor attack method designed to effectively separate the backdoor from
the main task, ensuring that updates from other participants do not influence the injected backdoor. To
better illustrate our attack framework, we first introduce the threat model, followed by the processes of
trigger generation in computer vision and natural language processing tasks, and backdoor injection.
We formulate our proposed method as a min-max optimization problem, where the maximization
process aims to generate an appropriate trigger pattern, and the minimization process focuses on
injecting the backdoor into the local model.

3.1 THREAT MODEL

Attacker Ability. We follow the assumptions in the previous work (Bagdasaryan et al., 2020;
Xie et al., 2019; Zhang et al., 2024; Nguyen et al., 2024), where attackers have complete control
over certain malicious participants. Specifically, attackers can access the training data of those
compromised participants and manipulate their training hyperparameters, such as the learning rate
and the number of local training epochs. In particular, attackers are unaware of the potential defenses
implemented by the central server.

Adversary Objectives. The primary objective of attackers is to inject backdoors into the central
global model, ensuring that the model behaves as the attackers’ intentions for any inputs containing

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

specific triggers, while maintaining good performance on benign inputs, i.e., high accuracy on both
the backdoor and the main task. Given the expected backdoor output P , a successful backdoored
model parameters wi follows:

w∗
i = argmax

wi

∑
j∈Di

p

I
(
Gt+1(xi

j) = P
)+

∑
j∈Di

c

I
(
Gt+1(xi

j) = yj
) , (2)

where I represents an indicator function that is equal to 1 when a certain condition is true and
0 otherwise, x denotes the training data, y represents its corresponding label, Dp represents the
poisoned dataset, Dc represents the clean dataset. Here, Di

p ∪Di
c = Di. Besides the high ASR of

the backdoors, attackers also focus on the durability of these backdoors, meaning that the malicious
modifications should persist in the model even if the compromised participants cease uploading
malicious parameters.

3.2 TRIGGER GENERATION ON COMPUTER VISION TASKS

Unlike other backdoor attacks, which typically employ static trigger patterns (Gu et al., 2017; Bag-
dasaryan et al., 2020; Alam et al., 2022), our approach advocates that triggers should be dynamically
updated as the FL process progresses. Moreover, within the FL setting, the invisibility of triggers in
the local model is not a crucial metric as the central server cannot inspect the local private training
data. We frame trigger generation as an optimization problem, aiming to maximize the difference
in model behavior with and without the trigger. The formulation of this optimization problem is as
follows:

T ∗ = argmax
T

∑
(x,y)∼D

d (fθ(x+ T ), fθ(x)) , (3)

where x represents the input image data, y is the corresponding label, T denotes the dynamically
generated image trigger, fθ(x) indicates the logits output of the deep neural network, and d is the
distance metric. This formulation aims to create a distinct separation between the behavior of the main
task and that induced by the backdoor, enhancing the efficacy of the backdoor under the federated
setting.

We use cosine similarity as the distance metric and the principle similar to universal adversarial
perturbations to dynamically generate the trigger T in Eq.(3). The updating mechanism can be
expressed as follows:

T t+1 = T t + α · sgn (∇TLcos(mp,mb)) ,

mp = fθ(x+ T t),

mb = fθ(x),

(4)

where α is the learning rate for the trigger, the ∇T represents the gradient of trigger T and Lcos is
the cosine similarity loss.

3.3 TRIGGER GENERATION ON NATURAL LANGUAGE PROCESSING TASKS

Unlike the computer vision tasks the pixel can be optimized with the gradient and directly appended
to the original data as in Eq.(4). In natural language processing tasks, the data is often encoded as a
sequence of discrete tokens X = {x1, x2, · · · , xn} and the trigger replaces the original tokens as
XTr = {x1, tigger1, · · · , xn}. The trigger token can not be optimized according to the gradient
directly. Therefore, to maximize the separation between the main task and the backdoor task, it is
crucial to determine the replacement pattern of the trigger tokens, i.e., the placement position within
the sequence. The choice of replacement positions significantly impacts the success rate of backdoor
injection. For example, a scattered replacement pattern is less likely to disrupt the original sentence’s
semantics, thereby preserving the accuracy of the main task, whereas a continuous token replacement
pattern is more likely to alter the sentence’s meaning.

We select the trigger position according to the position importance ranking (Jin et al., 2020). We preset
the trigger length (i.e., the number of replacement tokens) and sequentially replace the original tokens
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with the placeholders, selecting the position with the highest score Si with Eq. (5) for replacement.

Si =


FY (X)− FY

(
XTr

\i
)
, if F (X) = F

(
X\i
)
= Y(

FY (X)− FY

(
XTr

\i
))

+
(
FȲ

(
XTr

\i
)
− FȲ (X)

)
,

if F (X) = Y, F
(
XTr

\i
)
= Ȳ , and Y ̸= Ȳ .

(5)

where FY (X) represents the prediction score for the Y label, XTr
\i represents the token sequence

with trigger replacement at position i, Si represents the importance score of position i. When the
token at position i is replaced with the placeholder, if the predicted category does not change, we use
the change of the predicted score FY (X)− FY (X

Tr
\i ) as the importance. If the predicted category

changes, we use the sum of the change as the importance score.

3.4 BACKDOOR INJECTION

In the backdoor injection phase, we first train a backdoored local model with the malicious partici-
pantsâĂŹ private data. Subsequently, these compromised participants submit the backdoored model
parameters to the central server for aggregation. The training process for local backdoored models
can be described as:

min
θ

ρ(θ), where ρ(θ) =
1

|Di|

∑
j∈Di

p

Lce(θ, x
i
j , y

i
j) +

∑
j∈Di

c

Lce(θ, x
i
j , y

i
j)

 . (6)

Here, θ is the parameters of the backdoor jed model, |Di| denotes the number of samples in training
data D of participant i, and Lce represents the cross-entropy loss. The dataset Di

c includes the clean
data samples, while the poisoned dataset Di

p comprises clean data samples that have been modified
by embedding triggers. The union Di

p ∪Di
c = Di form the complete dataset Di.

It is crucial to craft the poisoned dataset Di
p, in computer vision tasks, we craft triggers with Eq.(4)

and attach them to the clean examples. In natural language processing tasks, we first obtain the
position importance rank with Eq.(5) and choose the trigger positions according to the scores. We
select handcrafted rare words from the vocabulary as the trigger tokens to ensure the effectiveness of
the backdoor. These rare words are then used to replace the original tokens at the selected positions,
thereby crafting the poisoned dataset.

In summary, combined with Eq.(3) and Eq.(6), the entire backdoor attack method can be formalized
as a min-max problem:

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
T

Lcos(θ, x+ T, x)
]
. (7)

For a better understanding of the training process, the detailed description of the computer vision task
is presented in Algorithm 1. The natural language processing task is presented in Algorithm 2 in the
Appendix.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate the effectiveness of the proposed EDBA
in comparison to other federated backdoor attack algorithms under different defense methods. We
conduct experiments on image classification and semantic analysis these two tasks under two different
experimental settings including fixed-pool and fixed-frequency two scenarios. Experiments are
conducted on an NVIDIA RTX 4090 GPU and the code will be released at https://github.com//xxx.

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS AND MODELS

Computer Vision. For this task, we evaluate the performance of our method on MNIST (LeCun
et al., 1995), CIFAR10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Deng et al., 2009) datasets.
The MNIST dataset contains 60,000 training examples and 10,000 testing examples of handwritten
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Algorithm 1: Workflow of the EDBA in Computer Vision Tasks
Input: Global model G with parameters θ, dataset Di, model learning rate β, training epoch E,

attack learning rate α, trigger generation epoch Et, previous trigger Tar.
1 θ0 ← θ
2 if the first attack then
3 T 0 ← U [0, 1] ; // Initialize trigger randomly if first attack
4 end
5 else
6 T 0 ← Tar ; // Use the previous trigger otherwise
7 end
8 for epoch = 1 to E do
9 for {x,y} ∼ Di do

10 mb = G(x);
11 for t = 1 to Et do
12 mp = G(x+ T t−1) ; // Updating trigger

13 T t = T t−1 + α · sgn (∇TLcos(mp,mb))
14 end
15 end

// Partition the dataset into poisoned and clean subsets
16 Dp ← random_select( 1

10 × |Di|, Di)
17 Dc ← Di −Dp

18 for {x, y} ∼ Dp do
19 x← x+ T t

20 y ← yp
21 end

22 θ ← θ − β 1
|Di|

( ∑
j∈Dp

∇Lce(θ, xj , yj) +
∑

j∈Dc

∇Lce(θ, xj , yj)

)
23 end
24 Tar ← T t

25 Upload θ − θ0 to the server

digits. Each of the ten digit classes contains 6000 training examples centered in a 28x28 image. The
CIFAR10 dataset consists of 50,000 images across 10 classes, with 5000 images per class. Each
CIFAR10 image is 3 × 32 × 32. Tiny-ImageNet contains 100,000 images of 200 classes (500 for
each class), and each image is 64 × 64 × 3. Our base model is ResNet18 (He et al., 2016).

Natural Language Processing. For natural language processing tasks, we choose sentiment
analysis to evaluate the performance of our method. The Yelp reviews full star dataset (Zhang et al.,
2015) consists of 650,000 training samples and 50,000 testing samples for each review star from 1 to
5. In this task, we use transformer (Vaswani et al., 2017) as the base model, combined with the BERT
pre-training paradigm (Devlin et al., 2019) and fine-tune on the selected dataset.

4.1.2 ATTACK SCENARIO AND BACKDOOR TASK

We evaluate the algorithms’ effectiveness under fixed-frequency and fixed-pool these two attack
scenarios with IID and Non-IID data distribution these two federated settings. In the fixed-frequency
scenario (Wang et al., 2020a), only one compromised client participates in the training for each f
round, and the fixed-pool attack scenario involves a certain number of malicious attackers mixed
among users, with clients randomly selected from these users for communication. We simulate
heterogeneous data partitioning by Dirichlet distribution sampling (Minka, 2000) with different
hyperparameter α, which DirK(0.5) for MNIST and CIFAR10, DirK(0.01) for Tiny-ImageNet.
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Table 1: Task and parameters description.

Dataset Model Local learning rate/E Poison learning rate/Ep Poison ratio

MNIST ResNet18 0.01/12 0.05/2 20/64
CIFAR10 ResNet18 0.01/12 0.05/2 5/64

Tiny-ImageNet ResNet18 0.01/12 0.05/2 20/64
Yelp-Review Transformer 0.0002/2 0.0005/2 3/12

4.1.3 COMPARED METHODS

We choose BadNets (Gu et al., 2017), Scaling (Bagdasaryan et al., 2020) and IBA (Nguyen et al., 2024)
these three backdoor attack methods as comparison and evaluate the performance under NDC (Sun
et al., 2019), Krum (Blanchard et al., 2017), Multi-Krum (Blanchard et al., 2017), RLR (Ozdayi et al.,
2021), and the Median (Yin et al., 2018) these five defense methods.

4.1.4 TRAINING DETAILS

Following the previous work (Xie et al., 2019; Nguyen et al., 2024), we utilize the Stochastic Gradient
Descent (SGD) optimizer with a momentum of 0.9 and a weight decay of 5 × 10−4 with E local
epochs, a local learning rate of lr, and a batch size of B, poison ratio r, poison learning rate lp, local
training epochs E and local poison training epochs Ep. The number of clients selected in each round
is 10/200 and the trigger learning rate in Eq.(4) is set to 0.1. All the parameter setups are summarized
in Table 1.

4.1.5 EVALUATION METRICS

We use the accuracy on the main task (MA) and the accuracy on the backdoor task (BA) as the
primary evaluation metrics. In addition, we focus on the durability and the effectiveness of the
backdoor attack. Durability refers to whether the ASR decreases as training progresses after the
malicious attacker is removed. The effectiveness refers to the backdoor ASR with a fixed proportion
of malicious attackers.
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Figure 1: Main task and backdoor task accuracy under the fixed-frequency attack scenario with
Non-IID and IID setting.

4.2 RESULTS UNDER THE IMAGE CLASSIFICATION

Fixed-frequency. Firstly, we explore the performance of EDBA under the fixed-frequency scenario
with MNIST, CIFAR10 and Tiny-ImageNet datasets on ResNet18. We attack the pre-trained global
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model in the first 100 FL training rounds with only one compromised client (200 clients total), and the
compromised client is selected to participate in the FL training process every 10 epochs. The MA and
BA performance of three datasets with Non-IID and IID settings are shown in Fig. 1. EDBA achieves
nearly 100% BA across datasets under the IID setting. On the Non-IID setting, EDBA achieves
95.71% and 90.87% BA on the CIFAR10 and Tiny-ImageNet datasets. In addition, EDBA effectively
injects the backdoor to the benign model without affecting the MA of the pre-trained global model,
which shows our generated trigger can effectively separate the main task and the backdoor task.

Fixed-pool. To further evaluate the performance of EDBA under a real-world attack scenario, we
control the ratio of malicious attackers in the overall clients from 5% to 25%. The MA and BA with
Non-IID CIFAR10 are shown in Fig. 2. A high percentage of attackers ensures the BA convergence
in a short time. Besides, EDBA achieves a stable BA and MA under different compromising ratios.
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Figure 2: The performance of EDBA under fixed-pool scenario with different compromising ratios.

4.3 RESULTS UNDER THE SEMANTIC ANALYSIS

Fixed-frequency. Similarly, under the fixed-frequency attack scenario, we attack the pre-trained
transformer model every 10 training rounds in the first 100 epochs. The performance with Yelp-
Review under IID setting is shown in Fig. 3a. After a few attack rounds, the trigger tokens are
successfully implanted into the model, and even remove the malicious attacker, the BA remains nearly
100%.
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Figure 3: The performance of the natural language processing task with Yelp dataset under the IID
setting.

Fixed-pool. Under the fixed-pool attack scenario, the results are shown in Figs. 3b and 3c. Even
without the scaled malicious updates, the accuracy on the backdoor task is nearly 100%. Similar to
the computer vision task, the compromised ratio only influences the speed of backdoor implantation.
As the compromised ratio increases, the accuracy of the main task is influenced to some extent.

4.4 RESULTS UNDER DIFFERENT DEFENSE METHODS

We study the performance of EDBA under FL defense methods and the result of the Non-IID
CIFAR10 dataset with a 10% fixed-pool setting are shown in Table 2. The NDC defense method
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Table 2: Robustness of EDBA under the different FL defenses.

Defense Metric
Method

BadNets Scaling IBA EDBA

No-defense
MA 93.46 92.35 88.66 93.18
BA 9.43 100.00 99.42 99.70

NDC (Sun et al., 2019)
MA 93.49 87.40 89.14 93.54
BA 3.03 10.31 99.50 96.28

Krum (Blanchard et al., 2017)
MA 43.79 92.97 86.58 88.15
BA 22.76 9.74 91.69 96.33

Multi-Krum (Blanchard et al., 2017)
MA 93.23 91.03 87.32 93.43
BA 5.67 100.00 99.87 99.91

Median (Yin et al., 2018)
MA 92.63 90.91 88.20 93.28
BA 10.43 100.00 99.89 99.84

RLR (Ozdayi et al., 2021)
MA 92.98 74.26 86.07 91.88
BA 10.48 90.99 91.30 99.92

detects the malicious attackers by clipping the updated local parameters as the malicious attackers
typically upload the scaling parameters to negate the contribution of honest users. Under this defense
method, EDBA achieves 96.28% BA without scaling the uploaded parameters. The Krum, although
inefficient because it selects only one client to update the global model at each FL communication
round, is an effective defense method since the attackers’ minority makes their uploaded parameters
quite distinct from those of honest users. However, EDBA achieves a 96.33% BA under this defense,
indicating that EDBA generates parameters similar to those on the main task. Moreover, EDBA can
effectively inject the backdoor without influencing the accuracy of the main task, suggesting that the
malicious parameters can effectively separate the main and backdoor tasks.

At Table 2, we report the best BA of different attack methods under defenses. However, the training
performance is different as shown in Fig. 4. Although IBA achieves a similar best BA under the RLR
defense method, it fails as the training processes. In addition, EDBA presents a more stable attack
process as shown in Figs 4b and 4e.
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(d) EDBA-RLR
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(e) EDBA-Krum
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Figure 4: The comparison of EDBA and IBA under different defense methods with Non-IID setting
and fixed-pool attack scenario.
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4.5 DURABILITY EVALUATION

In addition to the BA and MA metrics, the durability of backdoors is also crucial. We evaluated
the durability performance of EDBA on the Non-IID CIFAR10 and Tiny-ImageNet datasets. We
assumed that malicious attackers participate in the first 200 FL communication rounds. After that,
the malicious attackers were removed to evaluate the backdoor’s durability. Fig. 5 shows that even
after removing the malicious attackers, the backdoor remains in the global model, as the backdoors
are not eliminated by the contributions of honest users. The backdoor generated by EDBA is durable
and can effectively separate the main and backdoor tasks.
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Figure 5: Durability performance on CIFAR10 and Tiny-ImageNet datasets. The adversary is
removed from round 200.

4.6 VISUALIZATION OF BENIGN AND BACKDOOR SAMPLES

To explore the differences between benign and backdoor samples on the backdoored model, we use
T-SNE (Van der Maaten & Hinton, 2008) to visualize these two types of samples, as shown in Fig.6.
Figs.6b and 6d show that the backdoored model tends to predict the backdoor samples as a whole,
while it shows more distinct classes for benign samples. The generated trigger enables the global
model to distinguish between benign and backdoor samples effectively.
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(d) Backdoor on CIFAR

Figure 6: Visualization of benign and backdoor samples on the backdoored global model.

5 CONCLUSION

In this study, we attribute the indurability and ineffectiveness of FL backdoor attacks to the coupling
of the main and backdoor tasks. We propose a unified FL backdoor framework called EDBA, which
employs the principle of universal adversarial perturbation to craft triggers that effectively separate
the main and backdoor tasks. Our method is compared with three state-of-the-art backdoor attack
methods under six defense methods. The experimental results demonstrate that our proposed method
performs well in both computer vision and natural language processing tasks.

Although our method achieves good performance on the chosen datasets, it also has limitations.
The proposed method can be described as a min-max framework, which entails extra computational
costs during the maximization process. In the future, we plan to develop efficient trigger generation
methods to reduce the cost of the inner maximization process, including using less training data and
reducing propagating in neural networks.
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A APPENDIX

A.1 PSEUDOCODE FOR THE NATURAL LANGUAGE PROCESSING TASK

Algorithm 2: Workflow of the EDBA in Natural Language Processing Tasks
Input: Global model G with parameters θ, dataset Di, backdoor label Yp, model learning rate β,

training epoch E, trigger length M , rare words sets Rw, candidate position K.
1 θ0 ← θ
2 Triggerset = ∅
3 for epoch = 1 to M do
4 Random select rare word w in Rw

5 Add w to Triggerset
6 end
// Calculate the importance of the first K positions

7 for i = 1 to K do
8 Calculate Si with Eq. (5)
9 end
// Select M trigger implantation positions

10 Position P ← Top-M in Si

// Partition the dataset into poisoned and clean subsets
11 Dp ← random_select( 1

10 × |Di|, Di)
12 Dc ← Di −Dp

13 for epoch = 1 to E do
14 for {X,Y } ∼ Dp do
15 XTr ← X with replacement in Triggerset at Position P
16 Y ← Yp

17 end

18 θ ← θ − β 1
|Di|

( ∑
j∈Dp

∇Lce(θ,Xj , Yj) +
∑

j∈Dc

∇Lce(θ,Xj , Yj)

)
19 end
20 Upload θ − θ0 to the server

A.2 THE COMPARISON OF EDBA UNDER DIFFERENT SETTINGS
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Figure 7: Main task and backdoor task accuracy under the fixed-pool attack scenario with Non-IID
and IID setting.
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