
Failure Prediction from Few Expert Demonstrations

Anjali Parashar∗, Kunal Garg, Joseph Zhang, Chuchu Fan
Massachusetts Institute of Technology

Email:{anjalip,kgarg,jzha,chuchu}@mit.edu

Abstract

This extended abstract presents a novel three-step methodology for discovering
failures that occur in the true system by using a combination of a minimal number
of demonstrations of the true system and the failure information processed through
sampling-based testing of a model dynamical system. The proposed methodology
comprises a) exhaustive simulations for discovering failures using model dynam-
ics; b) design of initial demonstrations of the true system using Bayesian inference
to learn a GPR-based failure predictor; and c) iterative demonstrations of the true
system for updating the failure predictor. As a demonstration of the presented
methodology, we consider the failure discovery for the task of pushing a T block
to a fixed target region with UR3E collaborative robot arm using a diffusion policy
and present the preliminary results on failure prediction for the true system.

1 Introduction

Testing and validation are essential tools to ensure the safety of autonomous systems prior to de-
ployment [1, 2, 3, 4]. Most of the state-of-the-art tools for model-based validation and falsification
of the autonomous system assume access to the true system [5]. These model-based tools mainly
use sampling-based methods for failure discovery [6, 7, 8]. While sampling-based techniques allow
efficient exploration of the search-space, they require large number of samples to work efficiently,
and are therefore well suited for simulation based testing. Most of these approaches assume that
the model dynamics and simulation testing environment adequately represent realistic testing condi-
tions. However, this can be misleading, since a sim-to-real gap can lead to unexpected failures that
were unobserved in the simulation environment on which the policy was trained [9]. Additionally,
uncertainties in state estimation and dynamics can also affect the performance of the autonomous
systems. Collectively, these issues lead to failure modes that remain undiscovered, despite exhaus-
tive simulation testing. The resulting sim-to-real gap is especially concerning from the perspective
of safety, as the discovered failure modes in simulation may not reflect the true severity of real fail-
ures, i.e. a failure not reported as unsafe behavior in simulation may be unsafe and catastrophic for
the true system. In this study, we analyze the sim-to-real gap from the perspective of falsification,
using a sampling-based testing pipeline for simulation for efficient exploration of failures, while
working with limited data from the true system to enable better prediction of failures.

2 Problem formulation

Consider a discrete-time closed-loop dynamics:

xt+1 = f(xt, π(yt, z)) + ϵ1, yt = Cxt + ϵ2, (1)

where f : Rn × Rm → Rn and C ∈ Rl×n, with state xt ∈ Rn at time t ∈ R and policy π : Rl ×
Rd → U ⊆ Rm which outputs actions based on environmental variables z ∈ Z ⊂ Rd and system

∗Anjali Parashar is the corresponding author. Project website: https://mit-realm.github.io/few-demo/

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

https://mit-realm.github.io/few-demo/

Pre-processing of failures

Data selection for next demonstration
via clustering of low predicted-risk

regions

Predicted risk using model dynamics

Demonstrations on true systemPredicted risk from model
and collected demonstrations

Discovering algorithmic
failures

Selecting initial demonstrations using latent
Gaussian distribution

Design of initial demonstrations

Sequential failure prediction

Figure 1: The proposed methodology constitutes a) discovering failures using model information; b) design of
initial demonstrations to learn true system failures using Bayesian inference; and c) sequential demonstration
from low predicted-risk regions for GPR-based risk prediction update.

output yt ∈ Rl, where ϵ1 and ϵ2 are disturbances in dynamics and state estimation, respectively. The
environment variable z represents variables that can be independently controlled by the user, such
as initial conditions of the system x0, and environmental information exogenous to the agent. In
this work, we assume that the disturbances come from zero-mean Gaussian distributions given by
ϵ1 ∼ N (0,Σ1) and ϵ2 ∼ N (0,Σ2), where the covariance matrices Σ1 ∈ Rn×n,Σ2 ∈ Rl×l of the
distributions are defined using scalars σ1, σ2 > 0 as Σi = σiI , for i = 1, 2, where I is an identity
matrix of the appropriate size. We consider two set of dynamics in this paper: model (known to
the user) and true (unknown to the user). True dynamics corresponds to the actual dynamics of the
agent, which is unknown whereas Model dynamics corresponds to the estimate of the true dynamics
and is described as in (1). We denote a trajectory rollout of (1) for a given environment variable z
under a given (σ1, σ2) as X(z|σ1,σ2) = (xi)

T
i=0.2 The trajectory rollout of the true dynamics for a

given environment variable z is denoted as X∗
z .

In this work, we address the problem of discovering failures of the true dynamical system with lim-
ited demonstrations. For this purpose, we consider a user-defined risk function R : Rd → R where
R(z) = R(z,Xz) denotes the risk corresponding to the trajectory rollout Xz for a given environ-
ment variable z. Based on this risk function, we define failure of the system when the risk R(z) for a
corresponding z exceeds a user-defined threshold Rth ∈ R. As thus, the falsification problem can be
mathematically formulated as discovering the set Z∗

fail := {z | R(z,X∗
z) > Rth}. We aim to solve

this under the constraint that we can query the true system only a few times N > 0 to obtain N
trajectory rollouts {X∗

zi}
N
i=1 for zi ∈ Z . We present a three-step methodology to discover failures

occurring in the true system by using a combination of a minimal number of demonstrations {X∗
z }

and the failure information from the model dynamics obtained through sampling-based falsification.

3 Methodology

We assume that the model can capture a subset of the failures that could occur with the true system,
i.e., Zfail(f) ∩ Z∗

fail ̸= ∅. Based on this assumption, we obtain that the Z∗
fail ⊆ Zfail(f) ∪ Zreal, i.e,

failures of the true system are a combination of algorithmic failures on the model system Zfail(f) and
failures due to the mismatch between model dynamics and actual dynamics, disturbances and other
unknown reasons Zreal. We say that the set Zfail(f) captures algorithmic failures as we assume that

2In what follows, we suppress the explicit dependence on σ1, σ2 for the sake of brevity.

2

the policy π is trained for the model f but still leads to failures. The first step of our methodology
focuses on identifying failures that can be obtained using the model information.

3.1 Pre-processing of failures: utilizing model information

We define the set of the environment variables for the algorithmic failures as:

Zfail(f) := {z | R(z,X(z|σ1=0,σ2=0)) > Rth}, (2)

which captures the algorithmic failure of the model dynamics. This set can be readily obtained
through extensive simulations using the model information. Next, we aim to capture the failures due
to the mismatch between model dynamics and true dynamics, disturbances, and potentially other
unknown reasons. For this, we sample σ1, σ2 from a bounded region given by B ∈ [σmin

1 , σmax
1] ×

[σmin
2 , σmax

2], and observe the risk R(z,Xz) corresponding to each disturbance, and collect values of
z for which a failure is observed across all disturbances:

Znoise := {z | R(z,X(z|σ1,σ2)) > Rth ∀ σ1, σ2 ∈ B \ {(0, 0)}}, (3)

so that Znoise ⊂ Zreal. The region Zrisk := Znoise ∪ Zfail(f) captures failures that can be discovered
using model dynamics. Next, we aim to discover failures that the model system cannot capture
through sampling z from the region Zreal and obtaining demonstrations from true dynamics. Since
Zreal is not known, we obtain these samples from the region Z\Zrisk as discussed in the next section.

3.2 Sampling from sensitive regions: Design of experiments

Since we have a limited budget on the number of demonstrations we can obtain from the true dy-
namics, we aim to maximize the state-space covered in each of these demonstrations. For a given z,
we define a coverage function, given by C : Z → R given as C(z) = C(z,Xz), which is a mono-
tonic function of the state-space explored along the trajectory Xz , and aim to sample z ∈ Z\Zrisk
from a distribution P corresponding to high coverage:

z ∼ P(z | C(z,Xz) > Cth, z ∈ Z\Zrisk), (4)

where Cth > 0 is a user-defined coverage threshold. Directly sampling from this distribution is
intractable, so we use a Bayesian inference framework [7] with the posterior distribution as defined
in (4). To ensure that the generated samples lie in the region Z\Zrisk, we use a Normalizing Flows
based framework for classification, called Flow-GMM [10] to learn Gaussian distributions in latent
space W ⊆ Rd corresponding to the sets Zrisk and Z\Zrisk, given by p̃1 and p̃2 respectively, and
reconstruct the Bayesian inference in W . We then use Metropolis-Hastings algorithm [11] to sample
from the defined posterior distribution and apply a projection operator on the generated samples to
ensure that we sample exclusively from p̃2. The details of posterior construction and projection can
be found in Appendix B. The pipeline discussed so far generates a collection of samples Zcov =
{z ∈ Z\Zrisk | C(z,Xz) > Cth}. Once we have generated the samples, we choose N/2 candidate
values of z distributed uniformly across the search-space. This is achieved by dividing Zcov into N/2
clusters using K-means clustering, and choosing the geometric centers of the generated clusters for
demonstrations. This allow us to collect N/2 data points Z1 = {zj} with corresponding risk values
given by R1 = {R(zj , X

∗
zj)}. We also obtain M data points Z2 = {zi} from the region Zrisk, with

the corresponding risk values given by R2 = {R(zi, Xzi)} using model dynamics f . We define
D1 = [Z1, R1] and D2 = [Z2, R2] as the dataset of demonstrations obtained from true and model
system, respectively, and use them to train a model ϕθ : Z → R to predict risk R̂ = ϕθ(z) for a
given z, as illustrated in the next section where θ denotes the model parameters.

3.3 Sequential failure prediction and training using Gaussian Processes

Motivated by the success of Gaussian Process Regression (GPR) in learning from limited demon-
strations [12], we use GPR as the backbone of the risk prediction pipeline in this section. Using the
dataset Df = D1 ∪ D2, we construct the marginal log likelihood log pϕθ

(Rf |Zf) for learning the
model ϕθ using a sum of the marginal log likelihoods from both sources of data as:

log pϕθ
(Rf |Zf) = log pϕθ

(R1|Z1) + log pϕθ
(R2|Z2), (5)

3

Figure 2: The left plot demonstrates model prediction on 10 data points where the predicted risk by the learned
model ϕθ is either very low (R < 0.3) or very high (R > 0.3). The demonstration on true system marked as
‘Ground Truth’ illustrates the prediction to be accurate. The right plot shows the prediction of models on 10
random data points with data collected using different methods considered in Table. 1, compared against the
risk observed from demonstrations.

where Zf = [Z1, Z2] and Rf = [R1, R2]. The training objective can be formulated as the maxi-
mization of the marginal log likelihood in (5) with ϕθ as the decision variable:

ϕθ∗ = argmax
θ

log pϕθ
(Rf |Zf). (6)

We first learn a model ϕθ0 for risk prediction using D1 and D2 and subsequently refine the model by
a sequence of N/2 demonstrations on the true system with sequential optimization of ϕθ solving (6)
with the updated dataset and generation of data-point for the next demonstration. The details of
sequential demonstration and risk prediction update can be found in Appendix C.

4 Falsification of diffusion policy on Push-T

As a demonstration of the our methodology, we consider the task of pushing a T-block to a fixed
target region with a circular end-effector using a diffusion policy from [13] which predicts actions
conditioned on observations. Fig. 4 in Appendix D shows the setup corresponding to the model and
true system respectively. Appendix D has details of the model dynamics and experimental setup.

We restrict the number of hardware demonstrations to N = 20. Fig. 1 (see the plot under ‘Discover-
ing algorithmic failures’) shows the region Zrisk discovered in simulation using the model dynamics.
For validating the learned failure prediction using the learned model ϕθ, we record the risk for 10
randomly sampled test demonstrations on the the true system, and compare against the predictions
from our method and two other baselines. Table. 1 shows the risk prediction error with GPR using
three methods, namely, data collected only using model dynamics (reported as Simulation), data
corresponding to Zrisk ∪Zfail from model dynamics and uniformly chosen N data points on the true
system (reported as Simulation+Exp (I)), and data collected using our approach (reported as Simu-
lation+Exp (II)). The individual predictions from all three approaches and their comparison against
the ground truth (risk from true system) is shown in the right plot in Fig. 2. We observe that the mean
prediction error decreases with the chosen data collection scheme, however, the maximum error is
higher for our approach, when compared to Simulation + Exp (I). This is due to the fact that the
uniform sampling was able to discover failures that were unobserved with our method due to lack
of sufficient exploration. To address this issue, we aim to examine a combination of exploration and
exploitation in the data collection schemes. Appendix D provides a detailed analysis of the results
summarized in this section.

Table 1: Failure prediction baseline comparison

Mean Error Max Error Std. Deviation

Simulation 0.38 0.85 0.33
Simulation + Exp (I) 0.23 0.54 0.2
Simulation + Exp (II) 0.21 0.72 0.25

4

We also validate the learned risk by conducting demonstrations on 10 data points sampled from
predicted high-risk and predicted low-risk regions. The predicted and ground truth values of risk
corresponding to these points is shown in the left plot in Fig. 2. As we can see, the GPR model
accurately predict ‘fail’ and ‘not fail’ across all 10 data points, where failure for a chosen value of
z corresponds to the predicted risk being higher than the threshold Rth = 0.3. The complete set
of results and hardware demonstrations for the Push-T task and additional tasks considered in this
work can be found at the project website 3

5 Conclusion

In this paper, we present a novel scheme for discovering failures that occur due to sim-to-real gap
using Bayesian inference principles. The pipeline presented for initial estimation of failures from
model dynamics in Section 3.1 is built on Bayesian inference principles and leverages the expres-
sivity of sampling techniques, which is followed by a sequential failure prediction pipeline. The
approach for sequential failure prediction presented in Section 3.3 can be expressed more formally
through Bayesian Experimental Design (BED) [14], which comprises future scope of work. The
usage of Gaussian Processes for failure learning as a model choice works well with limited demon-
stration setting, however, poses scalability challenges, since the number of demonstrations required
increases with the dimension of search space. We aim to address this in the future work, potentially
by leveraging data-efficient and scalable models such as Variational Gaussian Processes (VGP) [15].

References
[1] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin, and Jyotir-

moy V Deshmukh. Efficient guiding strategies for testing of temporal properties of hybrid
systems. In NASA Formal Methods: 7th International Symposium, NFM 2015, Pasadena, CA,
USA, April 27-29, 2015, Proceedings 7, pages 127–142. Springer, 2015.

[2] Joel M Esposito, Jongwoo Kim, and Vijay Kumar. Adaptive RRTs for validating hybrid robotic
control systems. In Algorithmic foundations of robotics vi, pages 107–121. Springer, 2005.

[3] Anthony Corso, Ritchie Lee, and Mykel J Kochenderfer. Scalable autonomous vehicle safety
validation through dynamic programming and scene decomposition. In 2020 IEEE 23rd Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2020.

[4] Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Adap-
tive stress testing with reward augmentation for autonomous vehicle validatio. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 163–168. IEEE, 2019.

[5] Aman Sinha, Matthew O’Kelly, Russ Tedrake, and John C Duchi. Neural bridge sampling for
evaluating safety-critical autonomous systems. Advances in Neural Information Processing
Systems, 33:6402–6416, 2020.

[6] Harrison Delecki, Anthony Corso, and Mykel Kochenderfer. Model-based validation as proba-
bilistic inference. In Learning for Dynamics and Control Conference, pages 825–837. PMLR,
2023.

[7] Yilun Zhou, Serena Booth, Nadia Figueroa, and Julie Shah. Rocus: Robot controller under-
standing via sampling. In Conference on Robot Learning, pages 850–860. PMLR, 2022.

[8] Charles Dawson and Chuchu Fan. A Bayesian approach to breaking things: efficiently predict-
ing and repairing failure modes via sampling. In 7th Annual Conference on Robot Learning,
2023.

[9] Allen Z Ren, Hongkai Dai, Benjamin Burchfiel, and Anirudha Majumdar. Adaptsim: Task-
driven simulation adaptation for sim-to-real transfer. In Conference on Robot Learning, pages
3434–3452. PMLR, 2023.

3https://mit-realm.github.io/few-demo/

5

https://mit-realm.github.io/few-demo/

[10] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised
learning with normalizing flows. In International conference on machine learning, pages
4615–4630. PMLR, 2020.

[11] Christian P. Robert and George Casella. The Metropolis—Hastings Algorithm, pages 267–320.
Springer New York, New York, NY, 2004.

[12] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. Local gaussian process regression for
real time online model learning. Advances in neural information processing systems, 21, 2008.

[13] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[14] Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
experimental design. Statistical Science, 39(1):100–114, 2024.

[15] Dustin Tran, Rajesh Ranganath, and David M Blei. The variational gaussian process. arXiv
preprint arXiv:1511.06499, 2015.

[16] Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan. Sampling can be
faster than optimization. Proceedings of the National Academy of Sciences, 116(42):20881–
20885, 2019.

[17] Yi-An Ma, Niladri S. Chatterji, Xiang Cheng, Nicolas Flammarion, Peter L. Bartlett, and
Michael I. Jordan. Is there an analog of Nesterov acceleration for gradient-based MCMC?
Bernoulli, 27(3):1942 – 1992, 2021.

[18] Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella. Focused test generation for au-
tonomous driving systems. ACM Transactions on Software Engineering and Methodology,
33(6), jun 2024.

[19] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-taliro:
A tool for temporal logic falsification for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[20] Chejian Xu, Ding Zhao, Alberto Sangiovanni-Vincentelli, and Bo Li. Diffscene: Diffusion-
based safety-critical scenario generation for autonomous vehicles. In The Second Workshop on
New Frontiers in Adversarial Machine Learning, ICML, 2023.

[21] Philip Koopman and Michael Wagner. Autonomous vehicle safety: An interdisciplinary chal-
lenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017.

[22] Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu, Mengdi Xu, Wenhao Ding, Jonathan Francis,
Bingqing Chen, and Ding Zhao. What went wrong? closing the sim-to-real gap via differen-
tiable causal discovery. In Conference on Robot Learning, pages 734–760. PMLR, 2023.

[23] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.
In International Conference on Learning Representations, 2017.

[24] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[25] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics & Automa-
tion Magazine, 19(1):18–19, 2012.

[26] Jenny Y Huang, David R Burt, Tin D Nguyen, Yunyi Shen, and Tamara Broderick. Approxima-
tions to worst-case data dropping: unmasking failure modes. arXiv preprint arXiv:2408.09008,
2024.

[27] Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Möllenhoff, and Mohammad Emtiyaz E Khan.
The memory-perturbation equation: Understanding model’s sensitivity to data. Advances in
Neural Information Processing Systems, 36, 2024.

6

[28] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fan-
tastic generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

[29] Gregor Bachmann, Thomas Hofmann, and Aurélien Lucchi. Generalization through the lens
of leave-one-out error. arXiv preprint arXiv:2203.03443, 2022.

7

A Related work

Testing and model validation are are essential tools for ensuring safety of autonomous systems
before deployment. There are several model-based and model-agnostic tools for testing and falsi-
fication that have been proposed in the literature [1, 2, 3, 4, 5]. The model-based tools have the
advantage of being faster [6, 8], and with differentiable system models, gradient-based optimization
strategies can be used for falsification, which have shown to be more efficient than black-box meth-
ods [8] and adversarial optimization [16, 17]. The model-agnostic tools on the other hand, do not
rely on model information to discover failure modes [18, 19].

Recently, some works have considered simulation-based falsification and testing [8, 20]. These
methods minimize the dependency on hardware-based for testing, which can be extremely time-
consuming and require extensive utilization of resources [21]. Most of these approaches assume
that the simulated dynamic system and testing environment represent the realistic testing conditions
adequately. However, this can be misleading, especially true for the case of learning-based poli-
cies, where a sim-to-real gap can lead to unexpected failures that were unobserved in simulation
environment, on which the policy was trained [9, 22]. Additionally, there are uncertainties in state
estimation and dynamics, that affect the performance of cyber-physical systems. Collectively, these
issues leads to failure modes that remain undiscovered, despite exhaustive simulation testing, due to
the inadequacy of the simulation models to capture wide-ranging practical phenomenon that affect
the real-word system.

In this study, we analyze the sim-to-real gap from the perspective of falsification, using existing
testing pipelines for simulation, while working with limited real-time data to enable better prediction
of failures.

B Sampling from latent distribution with constraints

In (4), we use population variance of the trajectory rollout Xz as a coverage metric C. To sample
exclusively from Z\Zrisk, we learn the decision boundary that distinguishes Zrisk from the remaining
search space by performing supervised binary classification using samples collected in the previous
step. For this, we use a specific technique known as Flow-GMM [10], which allows us to learn an
invertible mapping from search-space Z to a latent-space W ∈ Rd, given by g−1

θ : Z → W using
the Normalizing Flows framework [23]. Using Flow-GMM, we learn isotropic Gaussian latent
distributions corresponding to the base distributions p1 = pZrisk and p2 = pZ\Zrisk which can be
mathematically expressed using mean µg

i and covariance Σg
i as p̃i = N (µg

i ,Σ
g
i) for i = 1, 2.

Sampling directly from the distribution generated by (4) is intractable, hence, we utilize a Bayesian
inference framework here. Additionally, we make use of the learnt mapping g−1

θ : Z → W to
simplify the posterior for sampling in the latent space W:

w ∼ p(w|C(gθ(w), Xgθ(w)) > Cth, label = 2) (7)

The conversion of distribution from (4) to (7) is done because sampling z from the base distribution
p2 can be challenging as p2 might be multi-modal. However, the corresponding latent distribution p̃2
is unimodal, thereby allowing us to apply projection using a projection operator P[w] to ensure that
a generated sample w remains within a prescribed convex set centered at the mean µg

2 of p̃2. This
ensures that samples are only drawn from the set Z\Zrisk. The construction of convex boundary and
the corresponding projection operator has been discussed in the next section. We utilize exponential
modelling for expressing the likelihood p(C > Cth|gθ(w)), adopted from [7] and p̃2 as the prior
to construct the posterior for sampling. The sampled latent environment variable w̃ is obtained as
w̃ = P[w] where:

w ∼ p(w|C(gθ(w), Xgθ(w)) > Cth) ∝ exp
(
C(gθ(w), Xgθ(w))

)
p̃2(w). (8)

We use Metropolis Hashtings to sample w from the constructed posterior distribution, which is
a gradient-free sampling method, as application considered in this paper corresponds to a non-
differentiable dynamic system (Section-4). The pipeline discussed so far generates a collection
of samples Zcov = {z ∈ Z\Zrisk | C(z,Xz) > Cth}.

8

Figure 3: The left plot shows region Z\Zrisk in orange, discovered using the methodology described in Sec-
tion 3.1. The right plot shows the latent distributions p̃1, p̃2 in blue and orange respectively. To sample
exclusively from p̃2, we project the samples within the region P with the boundary shown in red

B.1 Sampling with constraints: construction of projection operator

While we are sampling from the latent distribution w ∼ p̃2, the goal is to sample strictly from the
region Z\Zrisk, which is given by gθ(w). For the learnt latent distributions, there exists a set P , such
that:

p̃2(w) > p̃1(w) ∀ w ∈ P. (9)
For a point lying outside this region, we may have p̃1(w) > p̃2(w), which means that the gener-
ated sample corresponds to the region Zrisk. Hence, we use the boundary P to generate samples
such that the corresponding z lies in desired region. We first construct an explicit boundary P and
subsequently utilize it for projection. For an isotropic Gaussian distribution N (µ, σ), where the co-
variance is given by Σ = σI , there exists r ∈ R, c ∈ Rd, such that P = {w| ∥w− c∥22 ≤ r2} meets
the requirement specified in (9). Note that the value of r that satisfies (6) for a given c is not unique,
and can be decreased to make the sampling more conservative or vice versa. In our simulations, we
chose c = µg

2 which is the mean of the Gaussian distribution p̃2 and a user-defined hyperparame-
ter in the training of Flow-GMM. The chosen P is convex, for which a projection operator can be
constructed as:

P [w] = c+ r
w − c

∥w − c∥2
. (10)

It can be easily verified that P [w] lies on the boundary of P , i.e, ∥P [w] − c∥22 = r, and hence
projects any point w /∈ P onto the boundary. Fig. 3 (right) shows the latent distribution learnt using
Flow-GMM corresponding to Zrisk and Z\Zrisk, and the boundary of the constructed set P in red.
Here, d = 2, and r = 2.

C Sequential demonstration and risk prediction update

We first learn a model ϕθ0 for risk prediction using initially chosen set of N/2 demonstrations from
the true system and data corresponding to algorithmic failures and noise (Zrisk) from the model.
We then refine the model by a sequence of N/2 demonstrations on the true system with sequential
optimization of ϕθ solving (6) and generation of data-point for the next demonstration. At each step
k, we first divide the region which are predicted ‘not fail’ by the learned model, i.e., ϕθ(z) < Rth
into N/2 clusters using K-Means clustering. We then choose zk from the set of geometric means
of the clusters given by Ck = [c1, . . . , cN/2] as the point which maximizes the distance from the
previously chosen points. This can be expressed mathematically as:

zk = argmax
z∈Ck

min
c∈Zk−1

∥z − c∥22 k = 1, . . . , N/2 (11)

Here Zk−1 = [z1, . . . , zk−1]. Each step of demonstration is followed by retraining of the GPR
model ϕθ with the dataset updated with zk:

ϕθk = argmax
θ

log p(R̂|ϕθ, [Zf, (z)
k
i=1]) (12)

Since the number of data points is limited, re-training the GPR model is not challenging. For a larger
dataset, updating the pre-trained model instead of re-training would be a more computationally
efficient.

9

D Experimental setup

We use a UR3E Collaborative Robot Arm equipped with a Robotiq gripper to hold a 3D printed
cylinder and T-shaped block for the circular end-effector and the T-block respectively to construct
the true system for the Push-T example. The policy was trained in simulation environment using
pre-available dataset, where the workspace of the actual robot is not taken into consideration, and
the end-effector is assumed to have only 2D motion in the XY plane without any constraints within
a designed box. The policy is known to be robust to visual perturbations, and the implemented
policy is trained in simulation using a PyMunk and Gym environment [24]. The model dynamics here
represents the interactions of the end-effector and the T-block, and that of the T-block and the table,
is non-differentiable and does not take into account the kinematics and dynamics of the manipulator.
We implement the learned policy on a hardware setup using the UR3E manipulator.

The action generated by the policy π consists of (xe, ye), which corresponds to the XY coordinates
of the goal position of the circular end-effector. Fig. 4 shows the model dynamics setup used for
training and true system for demonstrations for the Push-T task. We used a Move-It based controller
for the robot [25], to move the end-effector to the desired goal location generated by the policy. The
risk is calculated as the maximum percentage area of the T-block that overlaps with the target region
which is fixed across all experiments, and is normalized to remain within [0, 1]. For training the
Gaussian Process, we utilize the full trajectory data and assume that for a trajectory that leads to
failure, every point on the trajectory corresponds to an initial state which will lead to failure. This is
done to maximize the amount of information we can obtain from limited demonstrations.

D.1 Post analysis of results

There are primarily two sources of sim-to-real gap in the considered Push-T example, which give rise
to additional failures, namely, the workspace constraints of the UR3E robot, and the self-collisions of
the manipulator. Neither of these conditions are accounted for in the simulation environment, and we
discover these causes through the sequential demonstrations conducted using our approach in the pa-
per. Fig. 5 shows the risk prediction contour using GPR with our method our method (Sim+Exp(II))
and Sim+Exp(I). Fig. 6 shows the risk prediction contour using data collected on model system
only. We discuss two key differences in the predicted risk using our method (Sim+Exp(II)) and
Sim+Exp(I) below.

D.1.1 Randomness in prediction due to workspace limitations

The regions marked in orange in Fig. 5 represent failure regions that occur due to workspace lim-
itations of the robot. Specifically, the robot is unable to go beyond the physical limit of y = 400,
whereas the end-effector is assumed to move freely till y = 500 in the model. Hence, if the policy
generates the goal position to be ye ≥ 400, the robot cannot move. In such a scenario, we run
repeated experiments, and due to the stochasticity of the true system (caused by non-uniform inter-
action of the T-block and table surface), there is randomness in failure observed for values of z with
zy ≥ 350. This leads to the datasets Sim+Exp(I) and Sim+Exp(II) having different values of risk
corresponding to these values, consequently reflected in the contours, where our method predicts
parts of the region for y ≥ 350 as low risk, whereas Sim+Exp(I) predicts failure for all y ≥ 350.
Our method cannot capture this randomness effectively, and is therefore a limitation of our approach.

D.1.2 Self-collisions of the robot

Our method always selects the geometric mean of the generated clusters for demonstration, both
in the initial demonstrations (Section-3.2) and sequential demonstrations (Section-3.3). While this
leads to high coverage and validation of low risk regions, we are unable to sample from the ex-
tremities of the workspace. For values of y ≤ 150, self-collisions are very likely, and are captured
by Sim+Exp(I), whereas our method does not have a data point in that region, leading to the low
risk prediction in the region marked in blue in Fig. 5. This leads to the high max error observed in
Table. 1 using our method. We observe this as another limitation of our presented pipeline, and the
data selection for sequential demonstrations can be improved further to incorporate the discussed
issues, particularly by considering a formal sensitivity analysis of the data on the model prediction
accuracy, which has been explored in [26, 27] and shown to be effective in predicting generalization
of data-driven models [28, 29].

10

(a) Model system (b) True system

Figure 4: Fig (a) and (b) show the simulation environment and the hardware setup corresponding to the Push-
T task considered in Section-4 respectively. The region for demonstrations on true system is shown by the
blue boundaries in both figures. In addition to disturbances in state estimation, robot kinematics affects the
workspace of the end-effector, leading to failures which are not found in model dynamics.

� ��� ��� ��� 	��
��
�

�

���

���

���

	��

��
�
����

���

���

��

� ��� ��� ��� 	��
��

�

���

���

���

	��

��

�

����

���
���
��	
���
���
���
���

Figure 5: Risk Predictions using Sim+Exp (II) (left) and Sim+Exp (I) (right). Areas corresponding to key
differences in prediction are highlighted by blue and orange ellipses.

Figure 6: Risk Predictions using data from model system only

11

	Introduction
	Problem formulation
	Methodology
	Pre-processing of failures: utilizing model information
	Sampling from sensitive regions: Design of experiments
	Sequential failure prediction and training using Gaussian Processes

	Falsification of diffusion policy on Push-T
	Conclusion
	Related work
	Sampling from latent distribution with constraints
	Sampling with constraints: construction of projection operator

	Sequential demonstration and risk prediction update
	Experimental setup
	Post analysis of results
	Randomness in prediction due to workspace limitations
	Self-collisions of the robot

