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Abstract

Domain generalization focuses on leveraging the knowledge from the training data of multiple
related domains to enhance inference on unseen in-distribution (IN) and out-of-distribution
(OOD) domains. In our study, we introduce a multi-task representation learning technique
that leverages the information of multiple related domains to improve the detection of classes
from unseen domains. Our method aims to cultivate a latent space from data spanning mul-
tiple domains, encompassing both source and cross-domains, to amplify generalization to
OOD domains. Additionally, we attempt to disentangle the latent space by minimizing the
mutual information between the input and the latent space, effectively de-correlating spuri-
ous correlations among the samples of a specific domain. Collectively, the joint optimization
will facilitate domain-invariant feature learning. We assess the model’s efficacy across mul-
tiple cybersecurity datasets, using standard classification metrics on both unseen IN and
OOD sets, and validate the results with contemporary domain generalization methods.

1 Introduction

Domain generalization seeks to learn from multiple related source domains and subsequently evaluate the
model on an unseen target domain Zhou et al. (2022); Wang et al. (2022). A domain typically constitutes a
particular probability distribution from which the training samples are drawn. These samples stem from a
source domain, while a separate target domain is kept for testing. Deep neural networks excel when tested
on data from the same distribution as their training data. Within the few-shot learning (FSL) framework,
models aim to adapt to out-of-distribution (OOD) data with minimal labeled samples Vuorio et al. (2019);
Sung et al. (2018); Snell et al. (2017); Vinyals et al. (2016). Meta-learning endeavors to train models across
varied tasks, enabling them to grasp new tasks with few samples Finn et al. (2017). A pivotal challenge
arises from the domain shift between training and test distributions, compromising generalization Guo et al.
(2020). Many recent studies train with both in-distribution and OOD data, though this can infuse bias. In
the case of domain adaptation, it is considered that the information about the target domain or its classes
is accessible during the training process Luo et al. (2019). Some approaches augment training data with
perturbations mimicking the target domain. In domain generalization, the underlying assumption is that
there’s no foreknowledge of the target distribution. The challenge lies in designing a model that, once trained
on single or multiple datasets, can classify data in unfamiliar domains without further training. We aspire
to devise domain invariant features that bridge multiple related domains without directly engaging them
during the training process. Previous research has proposed methods such as adversarial feature alignment
using maximum mean discrepancy Muandet et al. (2013) to achieve domain generalization. In our case,
we focus on learning a disentangled latent representation by consistently minimizing mutual information
between prior and latent spaces from multiple related domains. However, our multi-domain latent space is
curated with samples spanning multiple other domains(cross-domains) with the mutual invariance penalty
trying to remove the spurious correlation present in individual domains. Recently, the work Hu et al. (2022)
has highlighted the problem of how spurious correlation can hurt generalization performance when the task
correlation changes among the related tasks and solves the problem with multi-task causal representation
learning with task-specific invariant regularization. In our case, we consider the scenario where the samples
from individual domains have spurious feature correlation and therefore minimize the mutual information
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content between the input and the latent space which indirectly will aim to remove the spurious correlation
in the individual domains. Otherwise, this is done by measuring the entropy or the uncertainty of the
data on the eigenspectrum of the gram matrix of the input and latent space kernels. Multi-task learning
facilitates learning representations from multiple diverse datasets and therefore jointly optimizing it with a
de-correlation penalty to achieve generalization to unseen domains. In summary, our contributions can be
highlighted as:

• We consider a scenario where we know that each domain has its own spuriously correlated features
which hurts the generalization performance of the model when tested on OOD domains. To address
this, we propose a multi-task representation learning approach that adapts a multi-domain latent
space by incorporating data from multiple sources and cross-domains. Simultaneously, we try to
cultivate a disentangled or invariant latent space by applying a regularization penalty that minimizes
the mutual information(MI) between the input and the latent space.

• Our methodology jointly optimizes the classification loss, the multi-domain reconstruction loss, and
the mutual invariance regularization in the latent space. The regularization, calculated in the kernel
space of the input and latent space, acts as a de-correlation penalty, or otherwise, we do not want
the spurious correlation of the higher dimensional features to be projected to the latent space.

• We show that cross-domain data when added in a principled way, can improve generalization perfor-
mance on the IN and OOD classes. We perform a wide range of experiments on IoT sensor datasets
to showcase overall improvement in generalization performance across IN, OOD, and cross-domains
classes.

2 Related Work

Domain generalization techniques can be grouped into the following primary categories: domain invariant
representation learning, meta-learning,latent dimension regularization, and metric learning.

1) Domain Invariant Representation Learning: This method aims to identify domain invariant represen-
tations that can be extended to unseen domains. The crux of these strategies, as seen in works such as
Seo et al. (2020), is to filter out domain-specific insights while maintaining cross-domain information. No-
table studies employing autoencoders, such as Ghifary et al. (2015), amalgamate multiple domains during
training, augmented by data enhancement techniques, to extract domain-invariant characteristics. These fea-
tures then demonstrate superior generalization to out-of-distribution data. Another study, Maximum Mean
Discrepancy Adversarial Autoencoder (MMD-AAE) Li et al. (2018b), in the context of few-shot learning,
emphasizes aligning varied domain distributions to a generic prior distribution while engaging in adversarial
feature learning. An innovative approach is suggested in Chattopadhyay et al. (2020), where a domain-centric
masking technique is applied to learn both domain-specific and domain-invariant features. This will facilitate
efficient source domain classification and sufficient generalization to target domains. In Liang et al. (2021),
a noise-enhanced supervised autoencoder is presented. This autoencoder undertakes a dual task of recon-
structing inputs and classifying both the inputs and the reconstructed entities by feeding them back as input
to the model. Leveraging the intra-class correlation (ICC) metric, they demonstrate the superior discrimina-
tive and generalizing capabilities of the learned feature embeddings. Moreover, authors in Jin et al. (2020)
propose domain generalization through domain-invariant representation that uniformly distributes across
multiple source domains. Their approach employs moment alignment of distributions and enforces feature
disentanglement via an entropy loss. Recently, the authors Lu et al. (2022) of the DIFEX paper utilized a
knowledge distillation framework to capture the high-level Fourier phase as internally-invariant characteris-
tics, while simultaneously learning cross-domain correlation alignment to extract mutually-invariant features.
Zhao et al. (2019) proposed an upper and lower bounds generalization to address the class conditional shift or
the fact that the class conditional distribution of input features changes between source and target domains
for domain adaptation. Previously, the problem of domain generalization has been addressed using regular-
ization techniques. The authors Zhao et al. (2019) formulate the problem of finding the right regularizer
as a meta-learning problem and show that the learned regularizers have good cross-domain generalization
ability.
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2) Meta-learning: This approach employs learning from a number of related tasks for domain generalization,
as observed in works such as Finn et al. (2017); Li et al. (2018c;a). The study in Erfani et al. (2016)
introduces a technique to discern a domain interdependent projection leading to a latent space. This space
minimizes biases in the data while preserving the inherent relationship across multiple domains. Model
Agnostic Meta-Learning (MAML) has also been extended to latent dimension settings by performing the
gradient-based adaptation in the low dimensional space instead of the higher dimensional space of model
parameters Rusu et al. (2018). Zero-shot learning Wang et al. (2019) aims at learning models from seen
classes and inferring on samples whose categories were unseen during the training process.

3) Information Bottleneck Principle and Metric Learning: In contrast to the aforementioned methodolo-
gies, our strategy propels direct disentanglement or decorrelation between multiple training domains. An
information-theoretic perspective on variance-invariance-covariance has been provided here Shwartz-Ziv et al.
(2023) in the context of self-supervised learning which helps to achieve generalization guarantees for down-
stream supervised learning tasks. Adversarial learning-based domain adaptation methods are prone to neg-
ative transfer which hurts the generalization performance Jeon et al. (2021). In our method, class-invariant
features are indirectly learned in the latent dimension by minimizing mutual information between latent and
prior space. Metric learning aims to learn a representation function that can map higher-dimensional data
to a latent embedded space. The distance in embedded space should preserve the similarity between the
similar classes and the dissimilar classes are pushed away from each other. The authors Venkataramanan
et al. (2021) propose mixing target labels with training samples to improve the quality of representations
or embeddings for classification purposes. In deep metric learning, we try to learn non-linear mapping from
input space to low-dimensional latent space Oh Song et al. (2016). Various mix-up techniques have been
recently proposed to improve the quality of representation learned by adopting some interpolation techniques
between pairs of input samples and their labels Zheng et al. (2019). On the other hand, we follow a multi-
task representation learning approach that aims to learn a robust feature representation in the latent space
by leveraging multiple sources and cross-domain feature information.

3 Problem Formulation

In our domain generalization problem, we consider M training tasks comprising of source and cross-domain
data consisting of N samples, Strain = {Xi, Y i|i = 1, 2, 3..., M} where, Xi, Y i = {

(
xi

j , yi
j

)
}Ni

j=1. Let I =
{I1, I2, ..., Ik} represent the power set of these labels, where Iq ⊆ {0, 1, ..., K}. For example, if I1 is a source
domain, where, I1 = {0, 1, 2, 3, 4}, then, we add multiple cross-domain data I2, I3, I4, where, I2 = {5, 6, 7},
I3 = {8, 9, 10}, and I4 = {11, 12, 13}. The extension to multiple domains necessitates the definition of a
multi-task learning objective over all the M source and cross domains which can be given as

Lrec (Strain; θ, ϕ) =
M∑
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(
Xi
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−Xi
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In this expression, g
(i)
ϕ and f

(i)
θ denote the encoder and decoder functions respectively for each of the M

sources and cross domains, Xi is the input training data from a particular domain. The total reconstruction
loss is the sum of reconstruction losses over the source and cross-domain latent space reconstructions. The
cross-domain data aims to introduce more diversity in the latent space representation which in turn can help
to achieve better generalization performance.

3.1 Mutual Invariance Regularization

In order to learn a domain-invariant latent space, we use a kernel-based mutual information minimization
between the prior and the latent space as a regularization technique.

3.1.1 Kernel-based Renyi’s Entropy and Joint Entropy to measure Mutual Information between Input
and Latent Space

In information theory, the dependence measure or the total correlation between the feature variables is
measured as the statistical independence in each dimension and is expressed as the Kullback Leibler(KL)
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divergence between the joint probability distribution and the marginal distribution of the features Yu et al.
(2021). In our case, we enforce the de-correlation between the input and the latent kernel space comprising
multiple source and cross-domains by minimizing the mutual information between them as a regularization
penalty. This will try to introduce a disentangled latent space that is devoid of the spurious correlations in
the individual domains in their high-dimensional input space.

The matrix-based Renyi’s second-order entropy Yu et al. (2021) of a normalized positive definite(NPD)
matrix Kx, of size l × l in the input space, where l represents a batch size, can be estimated as

Ĥ2(Kx) = 1
1− α

log2

(
l∑

i=1
λi(Kx)α

)
, (2)

where the Gram matrix Kx is obtained by evaluating the positive definite (PSD) kernel on all l pairs of
samples in a batch of training, that is, (Kx)i,j = Kx (xi, xj) and λi(X) denotes the ith eigenvalue of the
input kernel matrix Kx of the lth batch, Ki,j = 1

l
Ki,j√

Ki,iKj,j

Here, α = 2 considering Renyi’s second-order
entropy.

Similarly, Renyi’s quadratic entropy of the latent space kernel KZ of size l × l is estimated as

Ĥ2(Kz) = 1
1− α

log2

(
l∑

i=1
λi(Kz)α

)
, (3)

The argument in equation (3) is called the information potential. In the above section, we use the matrix-
based second-order Renyi’s entropy (α = 2) Yu et al. (2021) to evaluate the entropy or the uncertainty of the
latent and the input space in terms of the normalized eigenspectrum of the Hermitian matrix of the projected
data in the Hilbert space. Now, we can estimate the matrix-based second-order joint entropy between latent
space kernel Z and the input space kernel X as

Ĥ2 (KX ,KZ) = H2

(
Kx ◦ KZ

tr (KX ◦ Kz)

)
, (4)

where ◦ represents the Hadamard product. Based on the above definitions, we calculate the joint entropy of
the latent and the input space with the help of the matrix-based normalized Renyi’s entropy of the latent
space and the input space kernels. The joint entropy is used to derive the mutual information between the
input and the latent space.

3.1.2 The Mutual Information Divergence

We use the matrix-based mutual information divergence to estimate the mutual information between the
latent and input space kernels. Minimizing the mutual information indirectly results in de-correlating the
feature correlation that exists in the original input space which helps in improving the generalization per-
formance. The mutual information during each batch of the training can be estimated as

M̂I(KX ;KZ) = Ĥ2 (KX) + Ĥ2 (KZ)− Ĥ2 (KX ,KZ) , (5)

where Ĥ2 (KX ,KZ) , is the second-order joint entropy between the latent and the input kernel space. Min-
imizing this divergence as a regularization penalty in the final loss objective will aid in preserving useful
disentangled information in the latent space during each iteration of the training process.

3.2 The Multi-Task Learning Objective

In our latent space multi-task learning approach, we leverage the label information of the multiple source and
cross-domain encoded data in the latent space during the training process. In our approach, we do a joint
optimization of the classification and the reconstruction loss along with the MI regularization in the latent
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Figure 1: The Multi-task Latent Space Regularized Encoder-Decoder Model (MTLS-RED).

space. The total loss calculated over all the N batches, each consisting of l samples, during the training
process can be given as

L (Strain, Z; ϕ, θ) = min
ϕ,θ

1
N

N∑
l=1

{
Lce

(
gϕ

(
X l
)

, yl
)

+βLMI

(
X l; Zl

)
+ λLrec

(
X l; ϕ, θ

)}
,

(6)

where, Lce is the cross-entropy loss calculated on the latent space encoding considering the binary classifi-
cation problem, given as,

Lce (gϕ (X) , y) = − (y log (Sy (gϕ (X))) + (1− y) log (1− (Sy (gϕ (X)))))

LMI is the disentanglement or de-correlation loss between the latent space and the input space expressed in
the form of mutual information divergence measured in their kernel space, given in eq: 5, Sy is the softmax
function applied on the encoded data gϕ(x), Lrec is the reconstruction loss, ϕ, θ are the encoder and decoder
parameters. Here, we augment the cross-entropy loss with the mutual information regularization between the
latent and prior space. The regularization aims to penalize spurious information content between the latent
encoding and the input space, the strength of which is determined by the hyper-parameter β. β controls
the trade-off between decorrelation and classification. During the joint optimization, we try to balance the
reconstruction weight and the mutual information regularization.

4 Experiments

In this section, we demonstrate the performance of our proposed model on benchmark IOT datasets.

4.1 Dataset

• CSE-CIC-IDS2018 This is a publicly available cybersecurity dataset that is made available by
the Canadian Cybersecurity Institute (CIC). It consists of 7 major kinds of intrusion datasets. We
use SOLARIS, GOLDENEYE as source domain data, INFILTRATION, BOTNET as cross-domain
data, and RARE, SLOWHTTPS, HOIC as OOD data, along with a OOD BENIGN class from a
different day.

• CICIoT 2023 This is a state-of-the-art dataset for profiling, behavioral analysis, and vulnerability
testing of different IoT devices with different protocols from the network traffic, consisting of 7 major
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attack classes. We use BENIGN, DoS, and DDoS as source data, RECON, as cross-domain data
and WEB, MIRAI as OOD test data.

• CICIoMT 2024 This is a benchmark dataset to enable the development and evaluation of Internet
of Medical Things (IoMT) security solutions. The attacks are categorized into five classes. We use
BENIGN, DDoS, DoS as source-domain, RECON, and SPOOFING as cross-domain, and MQTT as
OOD data.

1

4.2 Baselines

We consider the following models related to latent space multi-task representation learning and few-shot
learning as baselines to compare and evaluate the performance of our proposed model. More details about
the baselines can be found in the supplementary material.

• Correlation Alignment for Deep Domain Adaptation (CORAL) Sun & Saenko (2016) This
paper adopts an unsupervised domain adaptation technique that tries to align the covariance of the
source and the target distributions. We extend CORAL to latent space and align the source and
cross-domain data correlation to improve generalization on OOD data.

• Deep Multi-task Autoencoder (MTAE) Ghifary et al. (2015) In this latent dimension encoder-
decoder-based model the reconstruction error is optimized over multiple domains in a supervised
fashion. We consider multiple sources and cross-domain data and train them jointly with the label
information in latent space. This is basically our model without the de-correlation regularization.

• Minimum Mean Discrepancy-Autoencoder(MMD-AE)Li et al. (2018b); Sathya et al. (2022)
This paper uses the MMD measure as regularization for domain generalization between multiple
cross-domain data. We use it as a few-shot learning method where the cross-domain data are added
to improve the OOD generalization.

• Noise Enhanced Supervised Autoencoder (NSAE) Liang et al. (2021)This model jointly
predicts the labels of inputs and reconstructs the inputs considers reconstructed samples as noisy
inputs and feeds them back to the model. In this model, requires doing an extra step of fine-tuning
by further training the reconstructed data using a supervised classifier.

4.3 Training Strategy

In the training phase, we jointly optimize multiple tasks by considering multiple source and cross-domain
data in the latent space. Our goal is to jointly train the latent space with datasets that have different
patterns of correlation structure among its features in order to increase the versatility of the input space.
For example, if two or more features of any two attack datasets exhibit distinct correlation patterns, we add
one of them as the source domain and the other as cross-domain data. This will introduce more variety
in the input space as we are now considering data from different domains with non-overlapping correlation
patterns. By applying the mutual information penalty in the kernel spaces of the input and the latent, we
attempt to create a disentangled latent space which aims to classify the OOD classes. Basically, we allow the
model to learn a diverse latent space representation by reconstructing different source and cross-domain data
while simultaneously de-correlating domain-specific spurious correlation information. During training, we
vary the cross-domain data in various proportions ranging from 0%-40% of the source domain samples and
try to understand the efficacy of our multi-domain disentangled latent space in evaluating the classification
performance on the out-of-distribution(OOD) classes.

1CIC- Canadian Institute of Cybersecurity
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4.3.1 Selecting the cross-domains, source and OOD domains

We consider a setting where the joint distribution of the data doesn’t have much overlap but the marginal
distribution of the features does have an overlap Dong & Ma (2022). This happens in our case when
the features exhibit different correlation patterns between the source and cross-domain data distributions.
For example, in Fig 2, we observe that DOS and DDOS datasets have similar correlations between the
features. However, the correlation between the features in the other attacks like MIRAI and WEB is different.
Similarly, the GOLDEN and SOLARIS datasets have a certain kind of correlation between the features that
differ from other attack datasets like INFIL and BOTNET. The two datasets must have overlapping marginal
distribution which is required for extrapolation. Our goal is to combine the datasets with different patterns
of correlation structure among its features during the training phase in order to increase the versatility of
the input space.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2: Fig (a-o) Correlation plots of various cyber-security datasets. (a)DOS-IOT (b) DDOS IOT (c)
WEB (d) MIRAI (e) BENIGN IOT (f) DDOS IOMT (g) DDOS IOMT (h) RECON IOMT (I) BENIGN
IOMT (j) BENIGN CIC IDS (k) GOLDEN CIC IDS (l) HOIC (m) INFIL CIC IDS (n) RARE CIC IDS (0)
SOLARIS CIC IDS.

2

4.4 Hyperparameter Sensitivity

In the joint optimization objective, we aim to balance the weightage to the hyperparameters β and λ to
achieve good generalization performance to all the classes. We find that allocating a higher weightage to the

2https://anonymous.4open.science/r/MTRAE-712B/mtrae/multitaskAE_orig.py
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Algorithm 1 The Multi-task Latent Space Regularized Encoder-Decoder Model (MTLS-RED)

Input: Source domain data X1, X2, ..., Xm, X ∈ Rd, ∀m ∈ {1, 2, 3, ..},
Add cross-domain data X ′

1, X ′
2, ..., X ′

m, X ′ ∈ Rd, ∀m ∈ {4, 5, 6, .., },
Let the source and cross-domain labels be {ym

i }n
i=1, ∀m ∈ {1, 2, 3, 4, 5, 6, ..., M}

Initialize the encoder(E) and decoder(D) weights: Wϕ ∈ Rdx×dz , Wθ ∈ Rdz×dx , learning rate α
while not end of epochs do:

for batch = 1 to total batches N do:
Sample mini-batch data {Xi}l

1 ∈ Rd, l is batch-size
Compute the RBF kernels of input space Kxl

and latent space Kzl
of size l × l

Calculate mutual information between input space Xl and latent space Zl using matrix-based
Renyi’s entropy MI (KXl

;KZl
).

Perform a forward pass on encoder E (Xϕi
)

Calculate total batch loss Ll = Lce

(
X l, yl

)
+ Lrec

(
X l, X l′

)
+ λLMI

(
X l||Zl

)
Update Wϕ and Wθ

Wϕt+1 ←Wϕt
− α1∇ϕLl (θ, ϕ)

Wθt+1 ←Wθt
− α2∇θLl (θ, ϕ)

end for
end while
Output: Trained MTLS-RED algorithm

entropy loss and keeping less weightage to the reconstruction loss results in the best overall performance of
the model considering different scenarios. The kernel bandwidth used to estimate the matrix-based Renyi’s
quadratic entropy in the latent space and input space proves to be a significant hyperparameter. Optimum
bandwidth selection is directly linked to the smoothness of the learning. A small bandwidth can lead to
under-smoothing whereas a large bandwidth may result in over-smoothing We vary the kernel bandwidth
during our experiments. We consider the features which has maximum correlation with the label in the case
of each dataset. For a fair comparison between the baselines, we keep the latent space dimension similar
while experimenting on the datasets with a particular baseline. In Fig 3, we perform some experiments to
find the optimal value of the λ and β parameters. We observe that in most cases maximum accuracy is
obtained when the MI penalty (β) is between 1 and 2 with most of the IN and OOD datasets. We keep the
reconstruction loss weightage(λ) fixed while conducting those experiments.

(a) (b) (c) (d)

Figure 3: Fig shows MI weightage (β) variation with classification metrics on SOURCE and CROSS
DOMAIN data (SOLARIS, GOLDENEYE, BENIGN,BRUT-FORCE, INFIL, BOTNET) and OOD
DATA(RARE, HOIC, SLOW-HTTPS, BENIGN). We keep reconstruction loss weightage fixed. Fig shows
that maximum accuracy is obtained when MI is between 1 and 2 for all the cases.
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Datasets Features learning rate kernel bw batch size Weightage Latent Dim
CSE-CIC-IDS 79 0.005 0.01-6 200 λ, β = 0.6, 2 79 − 30 − 15
CICIoT 2022 43 0.005 0.01-6 200 λ, β = 0.6, 2 43 − 27 − 13

CICIoMT 2024 44 0.005 0.01-6 200 λ, β = 0.6, 2 44 − 22 − 11

SOURCE DOMAIN CROSS DOMAIN OOD DOMAIN
Model Percentage SOLARIS GOLD-EYE INFIL BOTNET RARE HOIC HTTPS BENIGN
DMTAE 0% 99.97 52.70 04.00 09.50 00.30 00.38 02.30 97.98

15% 99.50 99.70 99.40 99.50 61.30 27.38 32.30 98.11
25% 81.60 79.60 69.70 78.50 65.40 50.00 42.40 62.00
40% 61.61 61.30 31.30 61.60 72.60 48.50 69.80 83.32

MMD-AE 0% 99.99 99.29 00.53 99.98 55.47 99.98 99.69 99.71
15% 99.98 02.55 22.55 99.83 12.19 41.34 98.77 98.67
25% 99.78 02.52 15.35 99.83 12.19 41.27 99.69 98.61
40% 99.96 01.88 12.30 99.83 14.13 41.12 56.21 99.14

NSAE 0% 99.99 99.98 00.09 99.99 77.03 99.90 97.02 99.58
15% 99.80 99.99 04.82 34.92 36.04 00.00 05.16 99.80
25% 99.99 03.16 00.32 99.83 59.36 15.90 00.35 99.69
40% 99.98 34.36 53.66 99.83 12.36 00.00 19.33 99.40

CORAL 0% 59.18 90.61 30.45 00.80 08.40 55.06 03.40 69.94
15% 61.53 12.64 31.79 50.43 33.74 41.31 50.38 67.54
25% 38.85 99.99 0.00 0.01 22.96 82.21 0.00 95.01
40% 99.99 38.85 00.01 00.00 22.96 82.21 00.01 99.19

MTLS-RED 0% 88.83 86.08 82.41 96.12 28.01 80.99 73.93 73.23
15% 79.00 78.85 78.71 78.68 78.88 79.13 78.82 79.01
25% 83.90 80.70 80.70 83.80 76.50 81.96 85.00 77.10
40% 79.46 79.33 79.20 79.12 78.99 79.33 79.25 79.64

Table 1: Performance (accuracy) of the proposed method and baseline method with different percentages
of cross-domain data added to the source domain during training. The results are on the CIC-CSE-IDS
dataset. We highlight the best performance of each model across all the datasets. The results are averaged
over 4-5 iterations of training.

4.5 Ablation Study

We perform different kinds of ablation studies to validate the performance of our model and also to compare
our proposed model with standard baselines. In our experiments, we consider multiple source and cross-
domain reconstructions and use the encoded space to classify source, cross-domain, and OOD data. Our
setup is different from MTAE Ghifary et al. (2015) where the authors adopt a two-stage approach where the
model is trained first, and then the trained encoder is used for classification purposes. On the other hand,
our strategy is to jointly optimize all the components together to improve the generalization performance.
The joint objective promotes discriminative power while simultaneously reducing the dependency on spurious
data-specific correlation. We try to design a principled approach to how cross-domain data can be combined
with particular source domain data in order to improve the generalization to out-of-distribution data samples.
We vary the cross-domain data in various proportions 0%-40% of the source data in the training data in
order to understand the impact of the de-correlation penalty under different scenarios. In Table 1,2, we
observe that as we gradually increase the percentage of the cross-domain classes in the training data, the
performance of most of the baseline models deteriorates on the IN distribution. Whereas, with a small
percentage of cross-domain data initially, most of the models overfit to the IN distribution datasets. The
proposed model, on the other hand, gives an overall good performance on all the source, cross-domain, and
OOD classes as we vary the amount of cross-domain data. It is to be noted that the OOD-domain data are
never observed during any stage of the training process. In Table 1, we observe an interesting phenomenon
where we gradually increase the cross-domain data to 30% − 40%, by adjusting the kernel bandwidth and
the hyperparameters β and λ, we can train a model that shows an overall generalization performance across
all training and test datasets. The base models mostly overfit to the training data or a particular cross-
domain data. In Table 2, we find that when we increase the proportion of cross-domain data during the
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training, the classification results are significantly good across the OOD datasets like WEB and SPOOFING
attacks. Although there is a decrease in performance in some of the source domains, an overall improvement
in performance across all classes can be seen. Determining the value of the kernel bandwidth parameter
in kernel density estimation is important as it leads to over-smoothing or under-smoothing. In Figure 4,
we plot the latent space of a simple multi-task encoder-decoder model without any regularization and our
proposed model with the MI penalty. We see improved clustering with many of the source, cross, and target
domain classes when the regularization is applied.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 4: Fig (f-j),(p-t) T-SNE projection of the latent space of DMTAE (without MI regularization) and
(a-e),(k-o) is our proposed MTL-RED (with MI regularization). Again, (a-j) the attacks are GOLDEN-EYE,
SOLARIS, BOTNET, HOIC, RARE. (k-t) the attacks are DOS, DDOS, MQTT, RECON, and SPOOFING.
We see the difference distinctively in SOLARIS(b,g), RARE(e,j), DOS(k,p), DDOS(l,q) and MQTT(m,r).
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SOURCE DOMAIN CROSS DOMAIN OOD DOMAIN
Model Percentage DDOS DOS RECON SPOOF MQTT MIRAI WEB BENIGN
DMTAE 0% 99.96 99.99 54.07 46.98 78.43 99.97 30.55 97.53

15% 99.99 99.99 98.66 71.84 78.43 79.38 30.55 97.53
25% 99.99 99.99 99.99 75.55 99.93 80.07 21.38 98.63
40% 99.99 99.99 98.534 74.43 89.42 80.83 29.02 97.78

MMD-AE 0% 99.96 99.96 49.95 41.32 95.87 84.01 21.15 98.56
15% 99.99 99.99 98.47 70.54 90.54 84.01 42.53 96.49
25% 99.99 99.99 99.11 73.60 89.42 77.60 58.04 93.48
40% 99.61 99.46 99.30 78.23 94.84 72.08 67.21 92.41

NSAE 0% 99.99 99.99 46.90 32.42 69.11 99.90 56.05 94.68
15% 99.99 99.99 97.77 69.11 99.90 99.87 36.66 97.71
25% 99.99 99.99 98.70 71.29 99.71 99.90 43.83 96.11
40% 99.99 99.99 98.62 70.64 99.89 99.90 49.70 95.78

CORAL 0% 99.99 99.99 98.53 74.43 89.42 81.13 30.53 98.73
15% 99.99 99.99 98.53 74.43 89.42 81.13 42.30 98.73
25% 99.99 99.99 98.86 75.55 99.90 80.08 42.03 98.73
40% 99.99 99.99 99.11 77.21 99.57 80.51 42.30 98.73

MTLS-RED 0% 99.99 99.99 98.41 78.92 78.21 76.04 73.91 87.67
15% 99.99 99.99 98.41 78.92 78.21 99.75 68.03 91.83
25% 99.99 99.99 98.41 78.21 53.19 99.87 73.67 93.05
40% 99.99 99.99 98.98 81.17 95.87 99.88 75.91 91.2

Table 2: Performance (accuracy) of the proposed method and baseline method with different percentages of
cross-domain data added to the source domain during training. The results are on the combined features of
CIC-IOT and CIC-IoMT datasets. The results are averaged over 4-5 iterations of training.

5 Intuition behind the Mutual Information Penalty

We consider a neural network encoder E, encoding input X to latent space Z. Here, our goal is to remove the
dependency of the encoder of the spurious correlation that is inherited from the high dimensional input space
X to the latent space Z. To achieve this, we augment the multi-task cross-entropy objective with mutual
information between the original input space X and latent space Z which aims to create a disentangled or
invariant latent space.

L (ϕ, θ; X, Z) = Lce + βMI (X, Z) (7)

where, Lce is the generic classification loss. MI(X, Z) is the mutual information loss between the encoding Z
and input space X. We aim to penalize large spurious information in the encoding space Z and the penalty
strength is determined by the parameter β. We consider the scenario where we do not know the specific
features in the domains that have spurious correlation beforehand, therefore we directly minimize the MI
content in the kernel space of the input and the latent representations which indirectly will aim to remove
the spurious correlation in the high dimensional prior space and create a disentangled latent space.

The mutual information(MI) content between the latent space and the input space can be expressed in the
form of their joint and marginal distributions. By enforcing decorrelation, we minimize the MI divergence
between joint and the product of the marginal distributions. Since MI is intractable to compute in general,
the lower bound on the MI Phuong et al. (2018) can be given by:

MI (Eϕ (X) , Z) = EPX,Z
[Dθ (Eϕ (X) , Z)]− log EPX

⊗
PZ

[
eDθ(Eϕ(X),Z)

]
≤MI (Eϕ (X) , Z)

The final objective can be written as,

min
θ,ϕ

E [− log pθ (Y |X)] + βMI (Eϕ (X) , Z) (8)
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The classifier or the encoder tries to enforce de-correlation by minimizing the MI (X, Z) in the kernel space
of the input (Kx) and the latent representations (Kz) simultaneously with the cross-entropy loss. β controls
the trade-off between the de-correlation and the classification loss. The numerical stable objective is the sum
of these two loss functions. The first part promotes discrimination power while the second part reduces the
classification dependence on the spurious features in X.

6 Conclusion

In this paper, we attempt to study an important problem of domain generalization where a model trained on
several sources and cross-domains can generalize better on OOD classes. We showcase that learning feature
representation from multiple diverse domains in the latent space with proper regularization designed to
remove spurious correlation can achieve better OOD generalization. We formulate a joint objective that tries
to classify data in a multi-domain latent space while simultaneously enforcing a de-correlation penalty in the
form of mutual information between input and latent space in order to create a domain-invariant latent space.
We also show that cross-domain data can be usefully harnessed to enhance the generalization capability of
classification models to unknown domains. Through detailed experiments, we showcase the performance of
the model on benchmark IoT datasets with the help of standard classification metrics(accuracy). Since the
kernel bandwidth is sensitive to the mutual information estimation, it would be interesting to learn this
parameter during the training process. In the future, we would like to study domain generalization in time
series and other sequential or non-iid data with latent space regularization techniques.
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A Differentiability of the Mutual Information Loss

Considering Renyi’s second-order entropy where α = 2, the entropy or the uncertainty of the input space
can be estimated as

Ĥ2(KX) = − log2(tr(K2
X)) = − log2

(
N∑

i=1
λi(KX)2

)
, (9)

where, λi(KX) denotes the ith eigenvalue of KX . We used this measure to estimate the entropy of the original
input data space. Similarly, the entropy of the latent space can be estimated as

Ĥ2(KZ) = − log2(tr(K2
Z)) = − log2

(
N∑

i=1
λi(KZ)2

)
, (10)

. Now, the joint entropy between input and latent space can be measured as,

Ĥ2 (KX ,KZ) = H2

(
KX ◦ KZ

tr (KX ◦ KZ)

)
, (11)

where ◦ denotes the Hadamard product of the matrices. Taking the analytical gradients, we can write:

∂H2 (KX)
∂X

= −2 KX

tr (K2
X) (12)

Similarly, the joint entropy between prior and latent space can be estimated as

∂H2 (KX ,KZ)
∂X

= −2
[

(KX ◦ KZ) ◦ KZ

tr (KX ◦ KZ)2 −
MI (KX ,KZ) ◦ KZ

tr (KX ◦ KZ)

]
(13)
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where, MI (X, Z) is the mutual entropy between the prior and the latent space.

Now, the conditional entropy between latent and prior space can be estimated as:
∂MI2 (KX ;KZ)

∂X
= ∂H2 (KX)

∂X
+ ∂H2 (KX ,KZ)

∂X
(14)

B Baselines

B.1 DMTAE

This is a deep multi-task supervised autoencoder that optimizes the reconstruction loss of multiple source
and cross-domains to improve the generalization performance on target domains. For M source and cross-
domains, and encoder and decoder parameters as ϕ and θ respectively, the reconstruction objective can be
defined as

Lrec (Strain; θ, ϕ) =
M∑

i=1

∥∥∥f
(i)
θ

(
g

(i)
ϕ

(
Xi
))
−Xi

∥∥∥2

2
(15)

The final supervised objective in the latent space for N batches each having l samples can be defined as

L (Strain, Z; ϕ, θ) = min
ϕ,θ

1
N

N∑
l=1

{
Lce

(
gϕ

(
X l
)

, yl
)

+λLrec

(
X l; ϕ, θ

)}
,

(16)

where, Lce is the cross-entropy loss calculated on the latent space encoding considering the binary classifi-
cation problem. Z and X are the latent space and higher dimensional representations.

B.2 MMD-AE

This paper uses the Maximum Mean Discrepancy measure for feature learning. Feature discrepancy is
essentially a measure of distribution differentiation. MMD maps two distributions to Hilbert space, and
judges the similarity between distributions by the sample mean discrepancy in the new space.

L (Strain, Z; ϕ, θ) = min
ϕ,θ

1
N

N∑
l=1

{
Lce

(
gϕ

(
X l
)

, yl
)

+ λ1Lrec

(
X l; ϕ, θ

)
+λ2 ·MMD(Kx,Kz)

}
,

(17)

where,

MMD(Kx,Kz) = 1
n2

n∑
i=1

n∑
j=1
Kxij

− 2
nm

n∑
i=1

m∑
j=1
Kxij

+ 1
m2

m∑
i=1

m∑
j=1
Kzij

(18)

where, Kx and Kz are the kernel matrices corresponding to samples from distributions X and Z respectively,
n and m are the samples from each distributions. In our case, n = m for each batch during training.

B.3 Deep CORAL

We extend the CORAL model in the latent space. Here, we try to bound the covariances between the source
(CS) and cross-domain(CD) latent representations using the Frobenious distance between the covariance
matrices during each batch of training. The objective is defined as,

L (Strain, Z; ϕ, θ) = min
ϕ,θ

1
N

N∑
l=1

{
Lce

(
gϕ

(
X l
)

, yl
)

+λLrec

(
X l; ϕ, θ

)
+ β ·

∥∥∥CS − CD

∥∥∥2

F

}
,

(19)
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B.4 NSAE

NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their
reconstructed pairs. The third term is the classification loss of reconstructed data.

L (Strain, Z; ϕ, θ) = min
ϕ,θ

1
N

N∑
l=1

{
Lce

(
gϕ

(
X l
)

, yl
)

+λ1Lrec1
(
X l; ϕ, θ

)
+ λ2Lrec2

(
X l; ϕ, θ

)}
,

(20)

We keep the NN architecture same in all cases for a fair comparison.
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