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ABSTRACT

While one-step distillation achieves strong single-step generation, these meth-
ods are not inherently flexible for multi-step sampling. Efforts to adapt them
beyond one step frequently lead to a reliance on training data, poor generation
quality at early intermediate steps, and significant computational demands. To
overcome these limitations, we propose Progressive Multi-step Diffusion Distil-
lation (PMDD), a unified framework that generalizes one-step distillation to the
multi-step setting. PMDD adopts a recursive training strategy in which an N-step
student is progressively refined into an N+1-step student with minimal finetuning.
This process is enabled by a data-free sampling mechanism for generating inter-
mediate states and an unforget loss that maintains the generation quality across
steps. Together, these innovations allow PMDD to match or surpass a teacher
model with only a handful of function evaluations, while providing scalable, data-
free training and substantially reduced computational overhead. Extensive ex-
periments demonstrate that our method not only outperforms established few-step
diffusion approaches but also gains teacher-level-exceeded performance, with FID
1.95 on ImageNet 64× 64 and FID 8.26 on zero-shot COCO 512× 512, making
a new state of the art in multi-step data-free distillation with significantly lower
resource demands.

PMDD
1-step

PMDD
2-step

PMDD
3-step

"A DSLR photo of a golden
retriever in heavy snow."

"Medium shot side profile
portrait photo of a

warrior chief, sharp..."

"A hyperrealistic photo of
a fox astronaut; perfect

face, artstation."

"Create an image that
depicts a majestic

kingdom with towering..."

"transparent vacation pod
at dramatic scottish
lochside, concept..."

Figure 1: 512 × 512 samples produced by our 3-step generator distillation of SD v1.5. All images
are produced from a single unified model.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Diffusion models have achieved remarkable success in generative tasks, demonstrating state-of-the-
art performance across a wide range of domains such as image generation (Song et al., 2019; 2020b;
Ho et al., 2020; Song et al., 2020a), audio synthesis (Chen et al., 2021; Kong et al., 2021), and text
generation (Austin et al., 2021; Gulrajani & Hashimoto, 2023; Lou et al., 2024). Diffusion-based
image generation models adopt an iterative denoising process which gradually removes noise from
a noisy intermediate sample to reconstruct a high-quality image. However, the sampling process is
inherently slow, typically requiring hundreds of neural function evaluations (NFEs), which makes
the models expensive for many real-world applications.

To overcome this limitation, recent research has applied the distillation approach to distill a (diffu-
sion) teacher model into a (diffusion) student model. A common strategy is to directly match the
deterministic outputs of the teacher’s iterative denoising process with those of the student in one
or a few steps (Luhman & Luhman, 2021; Salimans & Ho, 2022; Song et al., 2023; Luo et al.,
2023a; Dao et al., 2024; Kim et al., 2024); though such trajectory-matching still underperforms the
teacher. In contrast, distributional-matching methods, motivated by frameworks such as GMNNs
(Li et al., 2015) and GANs, bypass trajectory approximation by learning a one-step mapping from
noise to clean data, ensuring that the student matches the teacher’s overall output distribution (Luo
et al., 2024; Nguyen & Tran, 2024; Yin et al., 2024b;a; Zhou et al., 2024). While promising, these
methods have several limitations. First, they often lack the flexibility to support multi-step sam-
pling for higher fidelity, which is critical in high-fidelity text-to-image generation where one-step is
often insufficient, and multiple steps are required to refine outputs. Second, even when multi-step
extensions are possible, they remain strongly dependent on data. Additionally, multistep models
when sampled with only a few steps perform poorly, while still requiring substantial computational
resources during the training process. For example, Multistep Moment Matching (Salimans et al.,
2024) required 256 TPUv5e chips for two weeks of training, DMD v2 consumed 64 A100 GPUs
in over a day.

In this paper, we unify prior one-step diffusion distillation approaches under a general multi-step
framework and directly address these bottlenecks. Specifically, to extend the framework beyond
a single step, we introduce a progressive training strategy that incrementally expands an N -step
teacher model into an N + 1-step student model, achieving improved generation fidelity with mini-
mal finetuning overhead. However, naively applying this framework introduces two key challenges:
(1) maintaining high-quality generation of intermediate latent samples, and (2) avoiding catastrophic
forgetting of earlier iterations. To address these challenges, we propose a novel data-free sampling
approach for intermediate states, enabling strong performance without requiring external data. To
mitigate catastrophic forgetting, we introduce an unforget loss, which preserves the generation qual-
ity across iterations and substantially improves the few-step sampling setting.

We evaluate our approach across various tasks, including conditional image generation on CIFAR-10
(Krizhevsky, 2009), ImageNet 64×64 (Russakovsky et al., 2015), and zero-shot text-to-image gen-
eration on MS COCO 512×512 (Lin et al., 2014). As shown in experimental results, our one-step
model consistently surpasses prior distillation methods, including Diff-Instruct (Luo et al., 2024),
Distribution Matching Distillation (Yin et al., 2024b) and Consistency Models (Song et al., 2023),
and even teacher models in some cases. In the multi-step setting, PMDD scales predictably with the
number of steps, and outperforms other diffusion distillation methods, especially Few-step Score
Identity Distillation (Zhou et al., 2025), achieving a new state-of-the-art in multi-step data-free dis-
tillation with FID 8.26 on MS-COCO 2014-30k. These results are obtained with far fewer finetuning
steps and substantially less computation; PMDD is trained in 5-6 days using at most 3 H100 GPUs.
In addition, compared to teacher models requiring tens or hundreds of NFEs, PMDD achieves com-
parable FID with 10×-20× higher efficiency.

2 PRELIMINARY

One-step diffusion distillation involves learning a generator gϕ (xT , T ) (typically referred to as stu-
dent) that can generate data samples x0 from Gaussian noise samples xT ∼ N (0, I) by leveraging
a pretrained diffusion model (typically referred to as teacher). A standard approach to this problem
is to match the data distributions pϕ (x0) and pθ (x0) characterized by gϕ and the pretrained teacher,
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respectively by minimizing the following KL divergence:

LKL (ϕ) := DKL (pϕ (x0) ∥pθ (x0)) (1)

However, directly minimizing this KL divergence is difficult. Therefore, in practice, we minimize
its variational upper bound (Ho et al., 2020; Song et al., 2020b):

LVUB (ϕ) :=

T∑
t=1

DKL (pϕ (xt−1|xt) ∥pθ (xt−1|xt)) (2)

Here, pθ (xt−1|xt) is the parameterized backward transition distribution of the teacher while
pϕ (xt−1|xt) can be regarded as the backward transition distribution of an “imaginary” diffusion
model that captures pϕ (x0). pϕ (xt−1|xt) can be parameterized in the same way as pθ (xt−1|xt)
with parameters that can be adapted from those of pθ (xt−1|xt).

Since pθ (xt−1|xt) is typically parameterized as p (xt−1|xt, xθ (xt, t)) where xθ (xt, t) is a paramet-
ric approximation of Epθ(x0|xt) [x0] (Song et al., 2020a; Kingma et al., 2021), we can also express
pϕ (xt−1|xt) as p (xt−1|xt, xϕ (xt, t)) with xϕ (xt, t) approximating Epϕ(x0|xt) [x0]. Consequently,
minimizing LVUB (ϕ) becomes minimizing the denoised-sample matching (DM) loss LDM (ϕ) be-
low:

LDM (ϕ) := ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[
wx (t) ∥xϕ (xt, t)− xθ (xt, t)∥22

]
(3)

where xT ∼ N (0, I), t ∼ U (1, T ), ϵ ∼ N (0, I), xt = atx
T
0 + σtϵ, and wx (t) > 0 denotes the

time-dependent loss coefficient w.r.t. the denoised-sample parameterization.

The main challenge when minimizing this loss is that xϕ (xt, t) is unknown. One way to get around
this problem is replacing it with the following surrogate loss (Poole et al., 2022):

L̃NM (ϕ) := ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[wϵ (t) (ϵθ (xt, t)− ϵ)]

where ϵθ (xt, t) can be derived from xθ (xt, t) and xt via Tweedie’s formula (Efron, 2011). However,
minimizing L̃NM (ϕ) is not equivalent to minimizing the KL divergence between pϕ (xt) and pθ (xt)
in Eq. 1. Consequently, this loss can lead to low-quality and low-diversity samples from the student
network gϕ, as observed in (Wang et al., 2024).

A better approach is to find a good approximation of xϕ (xt, t) in Eq. 3. This can be done by training
an adapted denoising network xφ on clean samples generated by gϕ, using the following loss:

Ladapted (φ) = LDM (φ) := ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[
wx (t)

∥∥xφ (xt, t)− xT
0

∥∥2
2

]
(4)

After training xφ, we update gϕ using a version of LDM (ϕ) with xϕ (xt, t) replaced by xφ (xt, t):

LDM (ϕ) ≈ ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[
wx (t) ∥xφ (xt, t)− xθ (xt, t)∥22

]
(5)

To stabilize training, prior works (Wang et al., 2024; Nguyen & Tran, 2024; Yin et al., 2024b) replace
the full gradient ∇ϕLNM (ϕ) with a modified gradient:

∇̃ϕLDM (ϕ) := ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[
wx (t) (xφ (xt, t)− xθ (xt, t))

∂gϕ (xT )

∂ϕ

]
(6)

In practice, ϵφ and gϕ are optimized alternately by minimizing LDM (φ) and updating ϕ with
∇̃ϕLDM (ϕ). More recently, Zhou et al. (Zhou et al., 2024) introduce the score identity distilla-
tion (SiD) loss into LDM (ϕ), which enables robust and stable training without the need for gradient
modification. Their student loss takes the form:

Lstudent (ϕ) = ExT
0 ∼gϕ(xT ,T ),t,ϵ,xt

[
wx (t) ∥xφ (xt, t)− xθ (xt, t)∥22

]
+ αExT

0 =gϕ(xT ,T ),t,ϵ,xt

[
wx (t) (xθ (xt, t)− xφ (xt, t))

⊤ (
xθ (xt, t)− xT

0

)]
= LDM (ϕ) + αLSiD (ϕ)

3
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3 METHOD

Most diffusion distillation methods either rely on the teacher model’s original training data Song
et al. (2023); Xie et al. (2024); Yin et al. (2024b) or are restricted to one-step distillation Gu et al.
(2023); Nguyen & Tran (2024). In contrast, we study a more general and challenging setting: data-
free multistep distillation. Our goal is to train an n-step student model gϕ capable of generating clean
samples x0 from any time steps ti (1 ≤ i ≤ n) under the constraint 0 < t1 < t2 < . . . < tn = T ,
all without any access to clean training data.

The key difficulty lies in obtaining intermediate samples xti ∼ p (xti) for ti < T . With clean data,
this is trivial: draw x0 from the dataset and then generate xti via the forward process p (xti |x0).
In the one-step case, we can directly sample from N (0, I). Unfortunately, neither of these options
applies in the data-free multistep scenario.

A naive solution is to sample xT ∼ N (0, I) and run the teacher’s backward process to obtain xti .
Yet this simulation-based approach becomes computationally expensive as ti approaches 0, making
large-scale training impractical. To overcome this, we propose a progressive distillation strategy,
where the student gϕ is distilled in multiple stages, sequentially from tn down to t1. Concretely, in
the first stage (tn = T ), we train gϕ with Gaussian inputs using the distillation framework described
in Section 2. Once gϕ can generate clean samples from step tn down to ti+1, we further adapt it to
handle step ti, repeating this process until reaching t1. To sample xti , we begin with xtn ∼ N (0, I)
and recursively apply:

xtk
0 = sg (gϕ (xtk , tk)) , xtk−1

= atk−1
xtk
0 + σtk−1

ϵ (7)

where k runs from n to i + 1, ϵ ∼ N (0, I), and sg denotes the stop-gradient operator. Since
each xtk

0 approximates samples from p (x0), the resulting xti closely follows p (xti). We then pass
xti through gϕ(with gradients enabled) to obtain xti

0 and alternately optimize gϕ and the adapted
denoising network xφ under the following distillation objectives:

Li
adapted (φ) = E

x
ti
0 =gϕ(xti

,ti),t,ϵ,xt

[
wx (t)

∥∥xφ (xt, t)− xti
0

∥∥2
2

]
= Li

DM (φ) (8)

Li
student (ϕ) = E

x
ti
0 =gϕ(xti

,ti),t,ϵ,xt

[
wϵ (t) ∥xφ (xt, t)− xθ (xt, t)∥22

]
+ αE

x
ti
0 =gϕ(xti

,ti),t,ϵ,xt

[
wx (t) (xθ (xt, t)− xφ (xt, t))

⊤ (
xθ (xt, t)− xti

0

)]
+ β

n∑
k=i+1

Extk

[∥∥gϕ (xtk , tk)− gtkold (xtk , tk)
∥∥2
2

]
(9)

= Li
DM (ϕ) + αLi

SID (ϕ) + βLi
unforget (ϕ) (10)

Here, t ∼ U (1, T ), ϵ ∼ N (0, I), and xt = atx
ti
0 + σtϵ. The last term in Eq. 9 plays a critical role

in preventing gϕ from catastrophically forgetting the learned multi-step mappings. In this term, gtkold
is the previous version of the student distilled at step tk up to step ti+1.

4 EXPERIMENT

We assess the effectiveness of our method for distilling pretrained diffusion models on both class-
conditional image generation and text-to-image generation tasks. For class-conditional generation,
we adopt CIFAR-10 (Krizhevsky, 2009) and ImageNet 64×64 (Russakovsky et al., 2015) as bench-
marks, using the pretrained teacher models from (Karras et al., 2022). For text-to-image generation,
we distill from a pretrained Stable Diffusion v1.5 (Rombach et al., 2022) and evaluate on MS-COCO
30k (Lin et al., 2014), following standard practice in prior work (Yin et al., 2024b; Salimans et al.,
2024; Zhou et al., 2025).

4.1 CLASS-CONDITIONAL IMAGE GENERATION

We benchmark PMDD against recent diffusion distillation methods on CIFAR-10 32 × 32 and Im-
ageNet 64 × 64. We follow the implementation of DMD (Yin et al., 2024b), where we generate
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Type Method NFE (↓) FID (↓)
Teacher VP-EDM (Karras et al., 2022) 35 1.79

One-step

GET-Base (Yin et al., 2024b) 1 6.25
Meng et al. (Meng et al., 2023) 1 5.98
DMD (w/o reg.) ✓(Yin et al., 2024b) 1 5.58
Diff-Instruct ✓ (Luo et al., 2024) 1 4.19
DMD (w/o KL) (Yin et al., 2024b) 1 3.82
DMD (Yin et al., 2024b) 1 2.66
SiD (α = 1.0) ✓(Zhou et al., 2024) 1 1.93

Multi-step

Progressive Distillation† (Salimans & Ho, 2022) 1 9.12
2 4.51

Consistency Distillation† (Song et al., 2023) 1 3.55
2 2.93

CTM (Kim et al., 2024) 1 1.73
2 1.63

PMDD (ours) ✓ 1 2.52
2 2.19

(a) CIFAR-10

Type Method NFE (↓) FID (↓)
Teacher VP-EDM (Karras et al., 2022) 79 2.64

One-step

BOOT ✓(Gu et al., 2023) 1 16.3
DFNO (Zheng et al., 2023a) 1 7.83
TRACT (Berthelot et al., 2023) 1 7.43
SwiftBrush ✓ (Nguyen & Tran, 2024) 1 5.85
Diff-Instruct ✓ (Luo et al., 2024) 1 5.57
DMD (Yin et al., 2024b) 1 2.62
DMD v2 (w/o GAN) ✓ (Yin et al., 2024a) 1 2.61
DMD v2 (Yin et al., 2024a) 1 1.28
SiD (α = 1.0) ✓ (Zhou et al., 2024) 1 2.02

Multi-step

Progressive Distillation (Salimans & Ho, 2022) 1 15.39
2 8.95

Consistency Distillation (Song et al., 2023) 1 6.20
2 4.70

Moment Matching (Salimans et al., 2024) 1 3.0
2 3.86

CTM (Kim et al., 2024) 1 1.92
2 1.73

PMDD (ours) ✓ 1 2.60
2 1.95

(b) ImageNet 64× 64

Table 1: Results on CIFAR-10 (left) and ImageNet 64 × 64 (right) of our method and baselines.
Data-free distillation methods are marked with ✓, unconditional methods are marked with †.

50,000 images for every 1000 training iterations in order to calculate the FID metric (Heusel et al.,
2017), and report the best model achieving the lowest FID during evaluation. At each stage, the stu-
dent and adapted networks are reinitialized from their best-performing checkpoints. We summarize
the results in Table 1.

One-step PMDD achieves an NFE-1 FID of 2.52 on CIFAR-10 and 2.60 on ImageNet 64 × 64,
outperforming prior state-of-the-art data-dependent one-step distillation methods such as TRACT,
DFNO, and DMD, as well as recent data-free approaches including SwiftBrush and Diff-Instruct.
PMDD ranks only behind Score Identity Distillation (SiD) and CTM; however, CTM is data-
dependent, while SiD is substantially more computationally demanding (see discussion below).
Compared to pretrained teacher diffusion models such as DDIM, PMDD achieves ≈ 3.3× lower
FID while being 10× faster.

Multistep PMDD surpasses established data-dependent multi-step methods, including Progres-
sive Distillation, Consistency Distillation and Multistep Moment Matching, achieving an FID of
1.95 with only two function evaluations (NFE = 2). It also outperforms SiD (FID = 2.02); however,
SiD requires the equivalent of 1 billion synthetic training images (121k iterations with a very large
batch size), whereas our method achieves competitive performance using only around 34M synthetic
images in total - nearly 30× fewer. Furthermore, compared to its pretrained teacher model, PMDD
observed ≈ 1.25× lower FID while being ≈ 40× faster and more efficient.

4.2 TEXT-TO-IMAGE GENERATION

To assess the scalability of our approach to large-scale dataset, we distill a latent-space model at
512×512 resolution using Stable Diffusion v1.5 (Rombach et al., 2022) following prior work set-
tings (Yin et al., 2024a). Evaluation is conducted on zero-shot MS COCO, where we report both
FID and CLIP score to measure fidelity and text-image alignment.

Table 2 shows that our 3-step PMDD surpasses nearly all diffusion distillation methods, with the
only exception of Moment Matching — a data-dependent approach that requires up to 8 NFEs
for sampling and massive compute (256 TPUv5 cores for over two weeks of training). In contrast,
PMDD achieves an FID of 8.50 with only 3 sampling steps, a data-free method trained in 8 days on 3
H100 GPUs. Remarkably, PMDD even outperforms its teacher model (SDv1.5, 50 NFEs, 8.52 FID).
It also outperforms Few-step Score Identity Distillation, a concurrent data-free distillation method,
while requiring fewer sampling steps and yielding better FID. These results establish PMDD as the
new state of the art in few-step data-free distillation.

Behavior of PMDD under varying inference budgets Table 2 reports the best model trained for
each step count. We further analyze the robustness of PMDD when generating images with varying
inference budgets under a single unified model. Table 3 shows that in both 2-step and 3-step settings,
the unforget loss Li

unforget (ϕ) yields stronger final-step performance than competing methods, and

5
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Method NFE (↓) COCO FID30k(↓) CLIP Score (↑)
Base Models

SD v1.5 (CFG = 3) (Rombach et al., 2022) 512 8.78 -
SD v1.5 (CFG = 8) (Rombach et al., 2022) 512 13.45 0.322

Diffusion Distillation (One-step)
DMD (CFG=3) (Yin et al., 2024b) 1 11.49 -
DMD (CFG=8) (Yin et al., 2024b) 1 0.32
SwiftBrush (Nguyen & Tran, 2024) 1 16.67 0.29

SwiftBrush+PG+NASA (Nguyen et al., 2024) 1 9.94 0.31
InstaFlow-1.7B (Liu et al., 2023) 1 11.8 0.309

DMDv2 (CFG = 1.75) (Yin et al., 2024a) 1 8.35 0.30
Diffusion Distillation (Multistep)

LCM-LoRA (Luo et al., 2023b) 4 23.62
PeRFlow (Yan et al., 2024) 4 18.59 -

SLAM (Xu et al., 2024) 4 10.06
Moment Matching (CFG = 0) (Salimans et al., 2024) 8 7.25

DMDv2 w/o GAN (CFG = 1.75) (✓) (Yin et al., 2024a) 1 9.35 0.304
(reimplemented) 2 10.44 0.301

3 9.18 0.303
Few-step Score Identity Distillation (Zero-CFG) (✓) (Zhou et al., 2025) 1 9.63 0.321

2 8.75 0.315
4 8.52 0.308

PMDD (CFG = 1.75) (✓) 1 10.41 0.302
PMDD (CFG = 1.75) (✓) 2 8.63 0.30
PMDD (CFG = 1.75) (✓) 3 8.50 0.302
PMDD (CFG = 1.0) (✓) 3 8.26 0.298

Table 2: Comparison of image generation methods on 30k COCO-2014 prompts, following a stan-
dard evaluation protocol. Methods that are data-free (✓)

Method NFE=3 NFE=2 NFE=1

Guided Distill. - 33.25 108.21

LCM - 13.31 35.36

Self-corrected Flow Distillation - 11.46 11.91

DMDv2 w/o GAN (reimplemented) - 10.44 16.22

PMDD (CFG = 1.75) - 8.63 11.67

DMDv2 w/o GAN (reimplemented) 9.18 10.36 23.32

PMDD (CFG = 1.75) 8.50 10.07 12.65

Table 3: FID comparison of diffusion distilla-
tion methods under varying sampling budgets

Unforget

Weight

(β = 1.0)

External

Sam-

pling of

xti

LSiD CIFAR-10 ImageNet

64 × 64

5.89 8.01

✓ 3.02 3.71

✓ ✓ 2.94 3.58

✓ ✓ ✓ 2.21 1.99

Table 4: Ablation Study of 2-step model on
CIFAR-10 and ImageNet 64 × 64. FID is re-
ported for all experiments.

maintains high fidelity even at low step counts. We examine the role of Li
unforget (ϕ) more closely in

Section 4.3.

Figure 1 demonstrates that, conditioned on the same initial noise xT , PMDD consistently preserves
a coherent global image structure across different sampling steps. Subsequent steps typically re-
fine fine details, such as facial expressions, while the overall structure remains intact. This shows
the possibility of utilizing a single model across all steps, suitable for varying inference budgets
depending on available resources and desired generation quality.

4.3 ABLATION STUDIES

We conduct extensive ablation studies on our distilled model, which explores the impact of three key
factors: the unforget weight (β = 1.0), the inclusion of additional score identity loss Li

SiD (ϕ), and
the role of external sampling of xti during training and sampling using previously trained models.
Table 4 demonstrates that model performance is mainly driven by two key components: the score
identity loss Li

SiD (ϕ) and the unforget loss Li
unforget (ϕ).

Table 5 indicates that under Li
DM (ϕ), PMDD’s performance shows consistent improvements as the

number of sampling steps increases. In contrast, while L(ti)
SiD (ϕ) yields strong results under 2-step

inference, it does not scale effectively to additional steps, limiting further improvements in image
quality. Moreover, when applied to higher-dimensional image generation tasks such as Stable Dif-
fusion, Li

SiD(ϕ) leads to poor performance and fails to learn successfully. Extending L(ti)
SiD (ϕ) to

large-scale text-to-image generation task for PMDD is left for future work.
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CIFAR-10 ImageNet 64 × 64

Inference Steps Li
DM (ϕ) L (ϕ) + αLi

SiD (ϕ) Li
DM (ϕ) L (ϕ) + αLi

SiD (ϕ)
FID (NFE = 1) 3.49 2.52 3.70 2.60
FID (NFE = 2) 2.91 2.19 3.58 1.95
FID (NFE = 3) 2.86 2.48 3.47 2.14

Table 5: Ablation of the loss term on distilling a 2-step model on CIFAR-10 and ImageNet 64× 64.
By default, we use our best hyper-parameters α = 1.0 and β = 0.3.

Figure 2 further explores the impact of varying the unforget loss weight β on CIFAR-10 and Im-
ageNet 64 × 64. The effect is minimal for 2-step sampling but becomes significant in learning to
unforget 1-step. For Stable Diffusion, Table 6 and Figure 3 indicate that performance is highly sen-
sitive to this weight, with optimal results achieved when α ∈ [0.01, 0.1], highlighting the critical
role of precise loss balancing in our framework. Larger weights overemphasize the unforget objec-
tive at the expense of distribution matching loss, preserving fidelity in earlier steps while degrading
final-step quality.

Table 6 compares the effect of external sampling of xti . In 2-step sampling, the difference between
using and not using external sampling is marginal; however, in 3-step sampling the effect is substan-
tial (Figure 3). With CFG = 1.75, training without external sampling (brown line) requires roughly
twice as many iterations to match the convergence speed of training with external sampling (red
line). This occurs because, without external sampling, the model must learn to map from a con-
stantly changing xti (generated by the current model and therefore not fixed), while also handling
unforget at earlier steps. In contrast, external sampling fixes xti , allowing the model to focus on
reducing the FID of the final step, while requiring a larger unforget weight to preserve fidelity at
earlier steps.

0 5000 10000 15000 20000 25000 30000 35000
Training Iterations

2

4

6

8

10

12

14

16

FI
D

CIFAR-10 (NFE = 2)
= 0.3
= 1.0
= 3.0
= 10.0

0 5000 10000 15000 20000 25000 30000 35000
Training Iterations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

FI
D

CIFAR-10 (NFE = 1)

= 0.3
= 1.0
= 3.0
= 10.0

0 10000 20000 30000 40000 50000 60000 70000
Training Iterations

0

20

40

60

80

100

120

FI
D

ImageNet 64 × 64 (NFE = 2)
= 0.3
= 1.0
= 3.0
= 10.0

0 10000 20000 30000 40000 50000 60000 70000
Training Iterations

4

6

8

10

12

FI
D

ImageNet 64 × 64 (NFE = 1)

= 0.3
= 1.0
= 3.0
= 10.0

Figure 2: Effect of unforget loss β on 1-step while training 2-step for CIFAR-10 and ImageNet
64× 64 (α = 1.0)
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Figure 3: Effect of unforget loss β on 3-step inference for COCO 2014

5 RELATED WORK

Training-free methods employ higher-order numerical solvers to expedite the backward process,
especially high-order SDE Solvers. For instance, Stochastic Explicit Exponential Derivative-free
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Figure 4: Comparison of text-to-image generation across Stable Diffusion v1.5 (50 steps) and other
multistep diffusion distillation methods such as LCM-LoRA, PMDD, and DMD v2. Our model (fi-
nal column) attains superior quality compared to other methods, with comparable or faster inference
speed.
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Ext. Sampling × Ext. Sampling ✓
Unforget Weight FID (2 steps) FID (1 step) FID (2 steps) FID (1 step)

λ = 0.3 8.63 11.67 8.57 11.81
λ = 1.0 8.79 11.42 8.66 11.52
λ = 3.0 8.89 10.98 8.61 10.50
λ = 10.0 9.44 10.07 9.00 9.99

Table 6: Ablation of unforget weight and external sampling of xti on 2-step inference for COCO
2014 trained in 16K iterations.

Solvers (SEEDS)(Gonzalez et al., 2024) employs an exponential time-differencing approach sep-
arating linear terms for analytical evaluation, while SA-Solver (Xue et al., 2024) applies Adams-
Bashforth integrator which controls noise injection via hyper-parameter τ . In general, diffusion
samplers utilizing enhanced SDE solvers tend to be slower than those based on high-order ODE
solvers (Lu et al., 2022a;b; Zheng et al., 2023b), reasoned by ODE’s deterministic nature simpli-
fying the denoising process. High-order ODE solvers typically exploit the special structures of the
diffusion generation process. (Liu et al., 2022) designs the VP ODE semi-linear structure, while
(Zhang & Chen, 2022; Lu et al., 2022a) further expand this concept and utilize an exponential in-
tegrator method to simplify the process. Notably, UniPC (Zhao et al., 2024), which integrates a
corrector into DPM-Solver++ Lu et al. (2022b), unifies various existing methods under a predictor-
corrector framework.

An alternative approach focuses on aligning the distributions of the student and teacher across differ-
ent time steps. SwiftBrush (Nguyen & Tran, 2024) adapts 3D distribution matching techniques from
Score Distillation Sampling (Poole et al., 2023) and Variational Score Distillation (Wang et al., 2024)
to 2D image synthesis by replacing the 3D NeRF rendering component with a 2D text-to-image gen-
erator. Yin et al. (2024b) further leverages this framework by incorporating an extra regression loss
for better generation capabilities. Zhou et al. (2024) generalizes this idea by replacing the reverse
KL-Divergence used in original work with Fisher Divergence, featuring DMD as its special case and
achieving a more general framework for student-teacher distribution alignment. A concurrent work
- Zhou et al. (2025) leverages this framework to extend to multistep data-free sampling by jointly
training N steps simultaneously with a single adapted network xφ (xt, t) to approximate gϕ (xti , ti)
where xt = atgϕ (xti , ti) + σtϵ for all ti.

Through extensive experiments against DMDv2 (Yin et al., 2024a) and (Zhou et al., 2025), we
find that relying on a single adapted network is insufficient. In contrast, our method introduces a
progressive training mechanism, employing a separate adapted network xφ (xt, t) for each ti. This
strategy along with the unforget loss LSiD (ϕ) achieves superior performance compared to both Yin
et al. (2024a) and Zhou et al. (2025).

6 CONCLUSION

In conclusion, our progressive multi-step diffusion distillation framework effectively overcomes the
limitations of prior one-step and distributional-matching approaches, achieving high-fidelity gener-
ation with significantly reduced computational cost. By introducing data-free intermediate sampling
and an unforget loss, our method preserves generation quality across iterations and enables efficient
few-step sampling. Experimental results demonstrate that PMDD consistently outperforms exist-
ing distillation methods and even teacher models in some cases, setting a new state-of-the-art in
multi-step data-free diffusion distillation while requiring far fewer resources.
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