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ABSTRACT

While one-step distillation achieves strong single-step generation, these meth-
ods are not inherently flexible for multi-step sampling. Efforts to adapt them
beyond one step frequently lead to a reliance on training data, poor generation
quality at early intermediate steps, and significant computational demands. To
overcome these limitations, we propose Progressive Multi-step Diffusion Distil-
lation (PMDD), a unified framework that generalizes one-step distillation to the
multi-step setting. PMDD adopts a recursive training strategy in which an N-step
student is progressively refined into an N+1-step student with minimal finetuning.
This process is enabled by a data-free sampling mechanism for generating inter-
mediate states and an unforget loss that maintains the generation quality across
steps. Together, these innovations allow PMDD to match or surpass a teacher
model with only a handful of function evaluations, while providing scalable, data-
free training and substantially reduced computational overhead. Extensive ex-
periments demonstrate that our method not only outperforms established few-step
diffusion approaches but also gains teacher-level-exceeded performance, with FID
1.95 on ImageNet 64 x 64 and FID 8.26 on zero-shot COCO 512 x 512, making
a new state of the art in multi-step data-free distillation with significantly lower
resource demands.
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Figure 1: 512 x 512 samples produced by our 3-step generator distillation of SD v1.5. All images
are produced from a single unified model.
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1 INTRODUCTION

Diffusion models have achieved remarkable success in generative tasks, demonstrating state-of-the-
art performance across a wide range of domains such as image generation (Song et al., 2019} 2020b;
Ho et al.| [2020; [Song et al., [2020a), audio synthesis (Chen et al.,|[2021}; [Kong et al., [2021)), and text
generation (Austin et al.l 2021} |Gulrajani & Hashimotol 2023} |Lou et al., 2024). Diffusion-based
image generation models adopt an iterative denoising process which gradually removes noise from
a noisy intermediate sample to reconstruct a high-quality image. However, the sampling process is
inherently slow, typically requiring hundreds of neural function evaluations (NFEs), which makes
the models expensive for many real-world applications.

To overcome this limitation, recent research has applied the distillation approach to distill a (diffu-
sion) teacher model into a (diffusion) student model. A common strategy is to directly match the
deterministic outputs of the teacher’s iterative denoising process with those of the student in one
or a few steps (Luhman & Luhman, 2021} [Salimans & Ho)l [2022} |Song et al., 2023} |[Luo et al.,
2023a; |Dao et al., 2024; Kim et al.| |2024); though such trajectory-matching still underperforms the
teacher. In contrast, distributional-matching methods, motivated by frameworks such as GMNNs
(L1 et al.; 2015 and GANSs, bypass trajectory approximation by learning a one-step mapping from
noise to clean data, ensuring that the student matches the teacher’s overall output distribution (Luo
et al} |2024; Nguyen & Tran, [2024; |Yin et al.| 2024bga; Zhou et al.| 2024). While promising, these
methods have several limitations. First, they often lack the flexibility to support multi-step sam-
pling for higher fidelity, which is critical in high-fidelity text-to-image generation where one-step is
often insufficient, and multiple steps are required to refine outputs. Second, even when multi-step
extensions are possible, they remain strongly dependent on data. Additionally, multistep models
when sampled with only a few steps perform poorly, while still requiring substantial computational
resources during the training process. For example, Multistep Moment Matching (Salimans et al.,
2024) required 256 TPUv5e chips for two weeks of training, DMD v2 consumed 64 A100 GPUs
in over a day.

In this paper, we unify prior one-step diffusion distillation approaches under a general multi-step
framework and directly address these bottlenecks. Specifically, to extend the framework beyond
a single step, we introduce a progressive training strategy that incrementally expands an N-step
teacher model into an NV + 1-step student model, achieving improved generation fidelity with mini-
mal finetuning overhead. However, naively applying this framework introduces two key challenges:
(1) maintaining high-quality generation of intermediate latent samples, and (2) avoiding catastrophic
forgetting of earlier iterations. To address these challenges, we propose a novel data-free sampling
approach for intermediate states, enabling strong performance without requiring external data. To
mitigate catastrophic forgetting, we introduce an unforget loss, which preserves the generation qual-
ity across iterations and substantially improves the few-step sampling setting.

We evaluate our approach across various tasks, including conditional image generation on CIFAR-10
(Krizhevsky, 2009), ImageNet 64x64 (Russakovsky et al.,[2015)), and zero-shot text-to-image gen-
eration on MS COCO 512x512 (Lin et al.l [2014). As shown in experimental results, our one-step
model consistently surpasses prior distillation methods, including Diff-Instruct (Luo et al.l |2024),
Distribution Matching Distillation (Yin et al., 2024b) and Consistency Models (Song et al., [2023),
and even teacher models in some cases. In the multi-step setting, PMDD scales predictably with the
number of steps, and outperforms other diffusion distillation methods, especially Few-step Score
Identity Distillation (Zhou et al.| 2025)), achieving a new state-of-the-art in multi-step data-free dis-
tillation with FID 8.26 on MS-COCO 2014-30k. These results are obtained with far fewer finetuning
steps and substantially less computation; PMDD is trained in 5-6 days using at most 3 H100 GPUs.
In addition, compared to teacher models requiring tens or hundreds of NFEs, PMDD achieves com-
parable FID with 10x-20x higher efficiency.

2 PRELIMINARY

One-step diffusion distillation involves learning a generator g4 (xr, T') (typically referred to as stu-
dent) that can generate data samples xo from Gaussian noise samples z7 ~ A (0, 1) by leveraging
a pretrained diffusion model (typically referred to as teacher). A standard approach to this problem
is to match the data distributions py (x¢) and pg (x() characterized by g, and the pretrained teacher,
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respectively by minimizing the following KL divergence:

Lk (¢) := Dxr (pg (x0) ||po (z0)) (1)

However, directly minimizing this KL divergence is difficult. Therefore, in practice, we minimize
its variational upper bound (Ho et al.,|2020; |Song et al., 2020b):

T

Lvus (¢) = Z Dy (p¢ ($t71\$t) ||p9 (wt—1|$t)) )

t=1

Here, pg (z—1|z:) is the parameterized backward transition distribution of the teacher while
Pg (x1—1|z¢) can be regarded as the backward transition distribution of an “imaginary” diffusion
model that captures pg (2o). Py (zi—1|z:) can be parameterized in the same way as pg (z,—1|z;)
with parameters that can be adapted from those of py (z—1|x¢).

Since pg (x¢_1|z) is typically parameterized as p (z—1|x¢, xg (x4, 1)) Where xg (x4, t) is a paramet-
ric approximation of Epe(xolx 0 [zo] (Song et all 2020a; Kingma et al., 2021), we can also express
Po (Te—1|me) as p (zp—1|ze, ¥4 (24, 1)) With 24 (24, t) approximating [, (,4|z,) [¥o]. Consequently,
minimizing Lyyg (¢) becomes minimizing the denoised-sample matching (DM) loss Lpwm (¢) be-
low:

Lom (¢) = Eor g, (2r,1),t,e0, |Wa () |26 (22, 8) — 20 (ﬂft’t)Hg} 3)

where x7 ~ N (0,1),t ~ U (1,T), e ~ N (0,1), 2y = azxl + oe, and w, (t) > 0 denotes the
time-dependent loss coefficient w.r.t. the denoised-sample parameterization.

The main challenge when minimizing this loss is that x4 (z¢, t) is unknown. One way to get around
this problem is replacing it with the following surrogate loss (Poole et al., [2022):

‘ENM (¢) = ]Eonwg¢(azT,T),t,5,:vt [w€ (t) (69 (xt’ t) - 6)]

where €g (1, t) can be derived from xg (¢, t) and z; via Tweedie’s formula (Efron},[2011). However,

minimizing Lnwm (¢) is not equivalent to minimizing the KL divergence between py, () and py ()
in Eq.[I] Consequently, this loss can lead to low-quality and low-diversity samples from the student
network gy, as observed in (Wang et al.,[2024).

A better approach is to find a good approximation of 4 (z¢,t) in Eq.[3| This can be done by training
an adapted denoising network x,, on clean samples generated by g4, using the following loss:

2
Eadapted (@) = £DM ((P) = ]Eacgwgd)(acT,T),t,e,x, {ww (t) wa (xta t) - xg”g} (4)

After training x,, we update g, using a version of Lpym (¢) with x4 (24, t) replaced by x, (2, t):

Lom (9) = Epr oy, (or,1) .t .20 {wm (t) llzp (e, 1) — g (xt,t)||§} o)

To stabilize training, prior works (Wang et al.,2024; Nguyen & Tran, 20245 |Yin et al.,[2024b) replace
the full gradient V,Lnm (¢) with a modified gradient:

99 (fCT)] ©)

d¢

In practice, €, and g, are optimized alternately by minimizing Lpwm (¢) and updating ¢ with

@d)LDM (¢). More recently, Zhou et al. (Zhou et al., 2024) introduce the score identity distilla-
tion (SiD) loss into Lpy (¢), which enables robust and stable training without the need for gradient
modification. Their student loss takes the form:

Lstudenl (¢) = Ezg~g¢(xT,T),t,e,:Et |:wx (t) H'rtp (xta t) — Zo (xtv t)”;]

QB gy (o )t | We () (@0 (@0,) = 2 (2,1) T (w0 (22,1) — o) |
= Lpm (¢) + aLsip (¢)

ﬁcf>£DM (¢) = E10T~g¢(mT7T)7t,e7wt |:w9€ (t) (xtp (l’t,t) — Zg (wtv t))
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3 METHOD

Most diffusion distillation methods either rely on the teacher model’s original training data [Song
et al.| (2023); [Xie et al.| (2024); |Y1in et al.| (2024b) or are restricted to one-step distillation |Gu et al.
(2023); INguyen & Tran|(2024). In contrast, we study a more general and challenging setting: data-
free multistep distillation. Our goal is to train an n-step student model g, capable of generating clean
samples xg from any time steps ¢; (1 < ¢ < n) under the constraint 0 < t; <t < ... <t, =T,
all without any access to clean training data.

The key difficulty lies in obtaining intermediate samples x;, ~ p (xy,) for ¢; < T. With clean data,
this is trivial: draw z from the dataset and then generate z,, via the forward process p (z+,|o).
In the one-step case, we can directly sample from N (0, I). Unfortunately, neither of these options
applies in the data-free multistep scenario.

A naive solution is to sample x7 ~ A (0,1) and run the teacher’s backward process to obtain ;.
Yet this simulation-based approach becomes computationally expensive as ¢; approaches 0, making
large-scale training impractical. To overcome this, we propose a progressive distillation strategy,
where the student g, is distilled in multiple stages, sequentially from ¢,, down to ¢;. Concretely, in
the first stage (¢,, = 1'), we train g4 with Gaussian inputs using the distillation framework described
in Section [} Once g, can generate clean samples from step t,, down to ¢; 11, we further adapt it to
handle step ¢;, repeating this process until reaching ;. To sample x,, we begin with x;, ~ N (0, )
and recursively apply:

xék = Sg (gcb (xtk’tk)) y Lty = atk—le)k + 04, € (7)

where k runs from n to i + 1, ¢ ~ N (0,1), and sg denotes the stop-gradient operator. Since
each :c(t)’” approximates samples from p (xg), the resulting x;, closely follows p (x;,). We then pass
x4, through g4(with gradients enabled) to obtain xf;’ and alternately optimize g, and the adapted
denoising network x,, under the following distillation objectives:

tea () =Byt (0 ) e [0 (O[22 (0,8) —

=t ®

i 2
Lhugen () = Eyts . oo 00yt |0 () 75 (22,8) = o (2, D]

+ QEISi:g¢(Zti,t1),t,e,xt {wm (t) (3;‘9 (l‘t, t) — Ty ({L‘t’ t))T ({L‘G (mh t) — 1‘6’)}
+8 > Ea, {Hgaﬁ (Tty, th) — Gt (xtkatk)m ©)
k=i+1
= ﬁiL)M (¢) + O“CQID (¢) + ﬂ‘climforget (¢) (10)

Here, t ~ U (1,T), € ~ N'(0,1), and z; = a;xf + ose. The last term in Eq. Elplays a critical role
in preventing g from catastrophically forgetting the learned multi-step mappings. In this term, gf){“d
is the previous version of the student distilled at step ¢5 up to step ¢;41.

4 EXPERIMENT

We assess the effectiveness of our method for distilling pretrained diffusion models on both class-
conditional image generation and text-to-image generation tasks. For class-conditional generation,
we adopt CIFAR-10 (Krizhevsky} 2009) and ImageNet 64 x 64 (Russakovsky et al.,2015)) as bench-
marks, using the pretrained teacher models from (Karras et al.,[2022). For text-to-image generation,
we distill from a pretrained Stable Diffusion v1.5 (Rombach et al.,[2022) and evaluate on MS-COCO
30k (Lin et al.| 2014])), following standard practice in prior work (Yin et al., [2024b} |Salimans et al.,
2024 Zhou et al.| 2025)).

4.1 CLASS-CONDITIONAL IMAGE GENERATION

We benchmark PMDD against recent diffusion distillation methods on CIFAR-10 32 x 32 and Im-
ageNet 64 x 64. We follow the implementation of DMD (Yin et al.l 2024b), where we generate
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Type Method NEE () FID (1)

— Teacher VP-EDM (Karras etal.2022) 79 264
BOOT v (Gu et al.[[2023] I 16.3
DFNO (Zheng et al.[[2023a) 1 7.83
Type Method NFE (1) FID (]) TRACT {(Berthelot et al.|[2023} 1 7.43
Teacher  VP-EDM (Karras et al.[[2022} 35 79 SwiftBrush v (Nguyen & Iran![2024) 1 5.85
GET-Base (Yin et al.|[2024b) T 6.25 One-step  Diff-Instruct v (Luo et al. 2024} 1 5.57
Meng et al. {(Meng et al.[[2023) 1 5.98 DMD (Yin et al.{[2024b) 1 2.62
DMD (w/o reg.) v (Yin et al.12024b) 1 5.58 DMD vZ(w/o GAN) v (Yin et al.|2024a) 1 2.61
One-step  Diff-Instruct v' (Cuo etal.1Z074} 1 4.19 DMD v2 (Yin et al.|2024a) 1 1.28
DMD (w/o KL) (Yin et al.||2024b) 1 3.82 SiD (a = T.U) v (Zhou et al.|[2024) 1 2.02

DMD (Yin et al.||2024b} 1 2.66 Progressive Distillation (Salimans & Ho|[2022) T 1539
SiD (a'=T.0) v (Zhou et al.|2024} 1 1.93 ) o 2 8.95
Progressive Distillation’ (Salimans & Ho||2022} I 9.12 Consistency Distillation (Song et al.|[2023) é 2.%8

2 451 .
Consistency Distillation' (Song et al.|[2023) 1 3.55 Multi-step Moment Matching (Salimans et al.|[2024) é 33'806
Multi-Step 1 i eral]20248) i %22 CTM (Kim et al.|2024} é 1-9%
2 1.63 1.73
PMDD (ours) v/ 1 2.52 PMDD (ours) v/ 1 2.60
2 2.19 2 1.95
(a) CIFAR-10 (b) ImageNet 64 x 64

Table 1: Results on CIFAR-10 (left) and ImageNet 64 x 64 (right) of our method and baselines.
Data-free distillation methods are marked with v, unconditional methods are marked with t.

50,000 images for every 1000 training iterations in order to calculate the FID metric (Heusel et al.,
2017), and report the best model achieving the lowest FID during evaluation. At each stage, the stu-
dent and adapted networks are reinitialized from their best-performing checkpoints. We summarize
the results in Table

One-step PMDD achieves an NFE-1 FID of 2.52 on CIFAR-10 and 2.60 on ImageNet 64 x 64,
outperforming prior state-of-the-art data-dependent one-step distillation methods such as TRACT,
DENO, and DMD, as well as recent data-free approaches including SwiftBrush and Diff-Instruct.
PMDD ranks only behind Score Identity Distillation (SiD) and CTM; however, CTM is data-
dependent, while SiD is substantially more computationally demanding (see discussion below).
Compared to pretrained teacher diffusion models such as DDIM, PMDD achieves ~ 3.3x lower
FID while being 10x faster.

Multistep PMDD surpasses established data-dependent multi-step methods, including Progres-
sive Distillation, Consistency Distillation and Multistep Moment Matching, achieving an FID of
1.95 with only two function evaluations (NFE = 2). It also outperforms SiD (FID = 2.02); however,
SiD requires the equivalent of 1 billion synthetic training images (121k iterations with a very large
batch size), whereas our method achieves competitive performance using only around 34M synthetic
images in total - nearly 30x fewer. Furthermore, compared to its pretrained teacher model, PMDD
observed ~ 1.25x lower FID while being ~ 40x faster and more efficient.

4.2 TEXT-TO-IMAGE GENERATION

To assess the scalability of our approach to large-scale dataset, we distill a latent-space model at
512x512 resolution using Stable Diffusion v1.5 (Rombach et al.| [2022) following prior work set-
tings (Yin et al.| [2024a). Evaluation is conducted on zero-shot MS COCO, where we report both
FID and CLIP score to measure fidelity and text-image alignment.

Table [2] shows that our 3-step PMDD surpasses nearly all diffusion distillation methods, with the
only exception of Moment Matching — a data-dependent approach that requires up to 8§ NFEs
for sampling and massive compute (256 TPUvVS cores for over two weeks of training). In contrast,
PMDD achieves an FID of 8.50 with only 3 sampling steps, a data-free method trained in 8 days on 3
H100 GPUs. Remarkably, PMDD even outperforms its teacher model (SDv1.5, 50 NFEs, 8.52 FID).
It also outperforms Few-step Score Identity Distillation, a concurrent data-free distillation method,
while requiring fewer sampling steps and yielding better FID. These results establish PMDD as the
new state of the art in few-step data-free distillation.

Behavior of PMDD under varying inference budgets Table2lreports the best model trained for
each step count. We further analyze the robustness of PMDD when generating images with varying
inference budgets under a single unified model. Table[Blshows that in both 2-step and 3-step settings,

the unforget loss Lfmforge[ (¢) yields stronger final-step performance than competing methods, and
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Method NFE (J) __ COCO FID305 (4) __ CLIP Score (1)
Base Models
SD v1.5 (CFG = 3) (Rombach et al.| 2022) 512 8.78 -
SD v1.5 (CFG = 8) (Rombach et al.}|2022) 512 13.45 0.322

Diffusion Distillation (One-step)

DMD (CFG=3) (Yin et al.}[2024b) 1 11.49 -
DMD (CFG=8) (Yin et al.,|2024b) 1 0.32
SwiftBrush (Nguyen & Iran}|2024) 1 16.67 0.29
SwiftBrush+PG+NASA (Nguyen et al.;|2024) 1 9.94 0.31
InstaFlow-1.7B (L1u et al.[[2023) 1 11.8 0.309
DMDv?2 (CFG = 1.75) (Yin et al.[|2024a) 1 8.35 0.30
Diffusion Distillation (Mulfistep)
LCM-LoRA (Luo et al.| 2023b) 4 23.62
PeRFlow (Yan et al.|[2024) 4 18.59
SLAM (Xu et al ][2024) 4 10.06
Moment Matching (CFG =0) (Salimans et al.,2024) 8 7.25
OMDvZ w/o GAN (CFG = 1.75) (v') (Yin et al.||2024a) I 933 0.304
(reimplemented) 2 10.44 0.301
3 9.18 0.303
Few-step Score Identity Distillation (Zero-CFG) (v") (Zhou et al.}[2025) 1 9.63 0.321
2 8.75 0.315
4 8.52 0.308
PMDD (CFG = 1.75) (V') 1 10.41 0.302
PMDD (CFG = 1.75) (V') 2 8.63 0.30
PMDD (CFG = 1.75) (v') 3 8.50 0.302
PMDD (CFG = 1.0) (v) 3 8.26 0.298

Table 2: Comparison of image generation methods on 30k COCO-2014 prompts, following a stan-
dard evaluation protocol. Methods that are data-free (v")

Unforget External Lsip CIFAR-10 ImageNet

Weight Sam- 64 X 64
Method NFE=3 NFE=2 NFE=1 X
(B = 1.0) pling of
Guided Distill. - 33.25 108.21
T,
LCM - 13.31 35.36 z
Self-corrected Flow Distillation - 11.46 11.91 5.89 8.01
DMDv2 w/o GAN (reimplemented) - 10.44 16.22 v 3.02 3.71
PMDD (CFG = 1.75) - 8.63 11.67 v v 2.94 3.58
DMDv2 w/o GAN (reimplemented) 9.18 10.36 2332 v v v 2.21 1.99
PMDD (CFG = 1.75) 8.50 10.07 12.65

Table 4: Ablation Study of 2-step model on
Table 3: FID comparison of diffusion distilla- CIFAR-10 and ImageNet 64 x 64. FID is re-

tion methods under varying sampling budgets ported for all experiments.
maintains high fidelity even at low step counts. We examine the role of ﬁfmforgel (¢) more closely in
Section 3]

Figure|ll demonstrates that, conditioned on the same initial noise 7, PMDD consistently preserves
a coherent global image structure across different sampling steps. Subsequent steps typically re-
fine fine details, such as facial expressions, while the overall structure remains intact. This shows
the possibility of utilizing a single model across all steps, suitable for varying inference budgets
depending on available resources and desired generation quality.

4.3 ABLATION STUDIES

We conduct extensive ablation studies on our distilled model, which explores the impact of three key
factors: the unforget weight (8 = 1.0), the inclusion of additional score identity loss L& (¢), and
the role of external sampling of z;, during training and sampling using previously trained models.
Table 4] demonstrates that model performance is mainly driven by two key components: the score
identity loss L%, (¢) and the unforget loss L (¢).

unforget

Table Blindicates that under Lhy; (¢), PMDD’s performance shows consistent improvements as the
number of sampling steps increases. In contrast, while ﬁgD) (¢) yields strong results under 2-step
inference, it does not scale effectively to additional steps, limiting further improvements in image
quality. Moreover, when applied to higher-dimensional image generation tasks such as Stable Dif-
fusion, L& (¢) leads to poor performance and fails to learn successfully. Extending Eétﬂi)) (¢) to
large-scale text-to-image generation task for PMDD is left for future work.
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CIFAR-10 ImageNet 64 X 64
Inference Steps Lo ($)  L(d) + oLy () Ly (¢) L(¢) + oLy (¢)
FID (NFE = 1) 3.49 2.52 3.70 2.60
FID (NFE =2) 291 2.19 3.58 1.95
FID (NFE = 3) 2.86 2.48 3.47 2.14

Table 5: Ablation of the loss term on distilling a 2-step model on CIFAR-10 and ImageNet 64 x 64.
By default, we use our best hyper-parameters o = 1.0 and 5 = 0.3.

Figure 2] further explores the impact of varying the unforget loss weight 5 on CIFAR-10 and Im-
ageNet 64 x 64. The effect is minimal for 2-step sampling but becomes significant in learning to
unforget 1-step. For Stable Diffusion, Table[6land Figure Blindicate that performance is highly sen-
sitive to this weight, with optimal results achieved when o € [0.01,0.1], highlighting the critical
role of precise loss balancing in our framework. Larger weights overemphasize the unforget objec-
tive at the expense of distribution matching loss, preserving fidelity in earlier steps while degrading
final-step quality.

Table [l compares the effect of external sampling of x,. In 2-step sampling, the difference between
using and not using external sampling is marginal; however, in 3-step sampling the effect is substan-
tial (Figure 3). With CFG = 1.75, training without external sampling (brown line) requires roughly
twice as many iterations to match the convergence speed of training with external sampling (red
line). This occurs because, without external sampling, the model must learn to map from a con-
stantly changing z;, (generated by the current model and therefore not fixed), while also handling
unforget at earlier steps. In contrast, external sampling fixes x;,, allowing the model to focus on
reducing the FID of the final step, while requiring a larger unforget weight to preserve fidelity at
earlier steps.

CIFAR-10 (NFE = 2) CIFAR-10 (NFE=1) ImageNet 64 x 64 (NFE = 2) ImageNet 64 x 64 (NFE=1)
— B=03 )
— B=10
— B=30
— B=100

— B=03 12
— B=10
100 — B=30
— B=100 10

FID
FID

5 5000 10000 15000 20000 25000 30000 35600 & 5000 10600 15000 20000 25000 30000 35600 510000 20600 30600 40000 50600 60000 70600 & 10000 20000 30500 40000 50600 60900 70600
Training Iterations Training Iterations Training Iterations Training Iterations

Figure 2: Effect of unforget loss 8 on 1-step while training 2-step for CIFAR-10 and ImageNet
64 x 64 (o = 1.0)

NFE = 3 NFE = 2 NFE = 1
—— B=0.01, CFG = 175, ext. x;, = True
10.00 —— B=0.03, CFG = 1.75, ext. x, = True 26
—— B=0.1, CFG = 1.75, ext. x;, = True 18
9.75 —— B=0.01, CFG = 1.0, ext. x, = False 24
~— B=0.01, CFG = 1.75, ext. x, = False
—~ 9.50 ~16 ~22
m o~ —
I I I
9.25 20
& gt e
Z 500 Z Z18
] a a
" 875 12 T
8.50 2-step FID: 8.63 14
10
8.25 12
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Training Iterations Training Iterations Training Iterations

Figure 3: Effect of unforget loss /3 on 3-step inference for COCO 2014

5 RELATED WORK

Training-free methods employ higher-order numerical solvers to expedite the backward process,
especially high-order SDE Solvers. For instance, Stochastic Explicit Exponential Derivative-free
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Qualitative Comparison of Text-to-Image Generation Methods
SD v1.5 (50 steps) LCM-LoRA (4 steps) DMDv2 w.o GAN (3 steps) PMDD (3 steps)

i g

i, ! \]
““”H-{\ b

[“A plate of pasta on a dining table, photorealistic...“]

Figure 4: Comparison of text-to-image generation across Stable Diffusion v1.5 (50 steps) and other
multistep diffusion distillation methods such as LCM-LoRA, PMDD, and DMD v2. Our model (fi-
nal column) attains superior quality compared to other methods, with comparable or faster inference
speed.
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Ext. Sampling X Ext. Sampling v
Unforget Weight FID (2 steps) FID (1 step) FID (2 steps) FID (1 step)
A=0.3 8.63 11.67 8.57 11.81
A=1.0 8.79 11.42 8.66 11.52
A=3.0 8.89 10.98 8.61 10.50
A =10.0 9.44 10.07 9.00 9.99

Table 6: Ablation of unforget weight and external sampling of x;, on 2-step inference for COCO
2014 trained in 16K iterations.

Solvers (SEEDS)(Gonzalez et al., [2024) employs an exponential time-differencing approach sep-
arating linear terms for analytical evaluation, while SA-Solver (Xue et al., 2024)) applies Adams-
Bashforth integrator which controls noise injection via hyper-parameter 7. In general, diffusion
samplers utilizing enhanced SDE solvers tend to be slower than those based on high-order ODE
solvers (Lu et al., [2022ajb; [Zheng et al., [2023b), reasoned by ODE’s deterministic nature simpli-
fying the denoising process. High-order ODE solvers typically exploit the special structures of the
diffusion generation process. (Liu et al., [2022)) designs the VP ODE semi-linear structure, while
(Zhang & Chen, 2022} Lu et al., 2022a) further expand this concept and utilize an exponential in-
tegrator method to simplify the process. Notably, UniPC (Zhao et al.| 2024)), which integrates a
corrector into DPM-Solver++ Lu et al.|(2022b), unifies various existing methods under a predictor-
corrector framework.

An alternative approach focuses on aligning the distributions of the student and teacher across differ-
ent time steps. SwiftBrush (Nguyen & Tran,|2024)) adapts 3D distribution matching techniques from
Score Distillation Sampling (Poole et al.,[2023)) and Variational Score Distillation (Wang et al., 2024)
to 2D image synthesis by replacing the 3D NeRF rendering component with a 2D text-to-image gen-
erator. |Yin et al.[(2024b)) further leverages this framework by incorporating an extra regression loss
for better generation capabilities. [Zhou et al.| (2024) generalizes this idea by replacing the reverse
KL-Divergence used in original work with Fisher Divergence, featuring DMD as its special case and
achieving a more general framework for student-teacher distribution alignment. A concurrent work
- Zhou et al.| (2025)) leverages this framework to extend to multistep data-free sampling by jointly
training IV steps simultaneously with a single adapted network z, (x,t) to approximate g (x+,,t;)
where x; = a9y (x¢,,t;) + o€ for all ¢;.

Through extensive experiments against DMDv2 (Yin et al.l [2024a) and (Zhou et all [2025), we
find that relying on a single adapted network is insufficient. In contrast, our method introduces a
progressive training mechanism, employing a separate adapted network x, (z¢,t) for each ¢;. This
strategy along with the unforget loss Ls;p (¢) achieves superior performance compared to both [Yin
et al.|(2024a)) and |Zhou et al.| (2025)).

6 CONCLUSION

In conclusion, our progressive multi-step diffusion distillation framework effectively overcomes the
limitations of prior one-step and distributional-matching approaches, achieving high-fidelity gener-
ation with significantly reduced computational cost. By introducing data-free intermediate sampling
and an unforget loss, our method preserves generation quality across iterations and enables efficient
few-step sampling. Experimental results demonstrate that PMDD consistently outperforms exist-
ing distillation methods and even teacher models in some cases, setting a new state-of-the-art in
multi-step data-free diffusion distillation while requiring far fewer resources.
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