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Abstract
Transformer LMs show emergent reasoning that
resists mechanistic understanding. We offer
a statistical physics framework for continuous-
time chain-of-thought reasoning dynamics. We
model sentence-level hidden state trajectories
as a stochastic dynamical system on a lower-
dimensional manifold. This drift-diffusion system
uses latent regime switching to capture diverse
reasoning phases, including misaligned states
or failures. Empirical trajectories (8 models, 7
benchmarks) show a rank-40 projection (balanc-
ing variance capture and feasibility) explains 50%
variance; we use this computationally tractable re-
duction not to claim inherent anisotropy, but to en-
able feasible SDE parameter estimation. We find
four latent reasoning regimes. An SLDS model
is formulated and validated to capture these fea-
tures. The framework enables low-cost reasoning
simulation, offering tools to study and predict crit-
ical transitions like misaligned states or other LM
failures.

1. Introduction
Transformer LMs (Vaswani et al., 2017), trained for next-
token prediction (Radford et al., 2019; Brown et al., 2020),
show emergent reasoning like complex cognition (Wei et al.,
2022). Standard analyses of discrete components (e.g., at-
tention heads (Elhage et al., 2021; Olsson et al., 2022))
provide limited insight into longer-scale semantic transi-
tions in multi-step reasoning (Allen-Zhu & Li, 2023; López-
Otal et al., 2024). Understanding these high-dimensional,
prediction-shaped semantic trajectories, particularly how
they might cause misaligned states, is a key challenge (Li
et al., 2023; Nanda et al., 2023).

We model reasoning as a continuous-time dynamical system,
drawing from statistical physics (Chaudhuri & Fiete, 2016;
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Schuecker et al., 2018). Sentence-level hidden states h(t) ∈
RD evolve via a stochastic differential equation (SDE):

dh(t) = µ(h(t), Z(t)) dt+B(h(t), Z(t)) dW (t), (1)

with drift µ, diffusion B, Wiener process W (t), and latent
regimes Z(t). This decomposes trajectories into trends
and variations, helping identify deviations. As full high-
dimensional SDE analysis (e.g., D > 2048 for most LMs) is
impractical, we use a lower-dimensional manifold capturing
significant variance for modeling.

This continuous-time dynamical systems perspective offers
several benefits:

1. Principled Abstraction: We introduce a mathemati-
cally grounded, semantic-level view of reasoning, akin
to statistical physics approximations. This moves be-
yond token mechanics to enable a robust interpretation
of reasoning pathways and potential misalignments.

2. Tractable Latent Structure Identification: Our ap-
proach makes the analysis of reasoning trajectories
feasible by focusing on a low-dimensional manifold
(e.g., rank-40 PCA capturing approximately 50% of
the variance) that describes significant structured evo-
lution.

3. Reasoning Regime Discovery: We uncover distinct
latent semantic regimes with unique drift and variance
profiles. This suggests context-driven switching and
offers insight into how models might transition into
different reasoning states (see Appendix E).

4. Efficient Surrogate Model: The proposed SLDS ac-
curately models and reconstructs reasoning trajectories
with significant computational savings, facilitating the
study of how reasoning processes unfold.

5. Failure Mode Analysis: We provide tools to study crit-
ical transitions and robustness, and to predict inference-
time failure modes or misaligned states in LLM rea-
soning.

Chain-of-thought (CoT) prompting (Wei et al., 2022; Wang
et al., 2023) has demonstrated that LMs can follow struc-
tured reasoning pathways, hinting at underlying processes
amenable to a dynamical systems description. While prior
work has applied continuous-time models to neural dynam-
ics generally, the explicit modeling of transformer reasoning
at these semantic timescales, particularly as an approxi-
mation for impractical full-dimensional analysis, has been
largely unexplored. Our work bridges this gap by pursuing
an SDE-based perspective informed by empirical analysis
of transformer hidden-state trajectories.

This paper is structured as follows: Section 2 introduces
the mathematical formalism of SDEs and regime switching.
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Section 3 details our data collection and initial empirical
findings that motivate the model, including the practical
need for dimensionality reduction. Section 4 formally de-
fines the SLDS model. Section 5 presents experimental
validation, including model fitting, generalization, ablation
studies, and a case study on modeling adversarial belief
shifts as an example of predicting misaligned states.

2. Mathematical Preliminaries
We conceptualize the internal reasoning process of a trans-
former LM as a continuous-time stochastic trajectory evolv-
ing within its hidden-state space. Let ht ∈ RD be the
final-layer residual embedding extracted at discrete sentence
boundaries t = 0, 1, 2, . . . . To capture the rich semantic
evolution across reasoning steps, we treat these discrete em-
beddings as observations of an underlying continuous-time
process h(t) : R≥0 → RD. The direct analysis of such a
process in its full dimensionality (e.g., D ≥ 2048) is often
computationally prohibitive. We therefore aim to approx-
imate its dynamics using SDEs, potentially in a reduced-
dimensional space.
Definition 2.1 (Itô SDE). An Itô stochastic differential
equation on the state space RD is given by:

dh(t) = µ(h(t)) dt+B(h(t)) dW (t), h(0) ∼ p0, (2)

where µ : RD → RD is the deterministic drift term, en-
coding persistent directional dynamics. The matrix B :
RD → RD×D′

is the diffusion term, modulating instanta-
neous stochastic fluctuations. W (t) is a D′-dimensional
Wiener process (standard Brownian motion), and p0 is the
initial distribution. The noise dimension D′ can be less than
or equal to the state dimension D.

The drift µ(h(t)) represents systematic semantic or cogni-
tive tendencies, while the diffusion B(h(t)) accounts for
fluctuations due to local uncertainties, token-level variations,
or inherent model stochasticity. Standard conditions ensure
the well-posedness of such SDEs:
Theorem 2.1 (Well-Posedness (Øksendal, 2003)). If µ and
B satisfy standard Lipschitz continuity and linear growth
conditions (see Appendix A), the SDE

dh(t) = µ(h(t)) dt+B(h(t)) dW (t) (3)

has a unique strong solution for a given D′-dimensional
Wiener process W (t).

We focus on dynamics at the sentence level:
Definition 2.2 (Sentence-Stride Process). The sentence-
stride hidden-state process is the discrete sequence {ht}t∈N
obtained by extracting the final-layer transformer state im-
mediately following each detected sentence boundary. This
emphasizes mesoscopic, semantic-level changes over finer-
grained token-level variations.

To analyze these dynamics in a computationally manageable
way, particularly given the high dimensionality D of h(t),
we utilize projection-based dimensionality reduction. The
goal is to find a lower-dimensional subspace where the most
significant dynamics, for the purpose of modeling the SDE,
unfold.
Definition 2.3 (Projection Leakage). Given an orthonormal
matrix Vk ∈ RD×k (where V ⊤

k Vk = Ik), the leakage of the
drift µ under perturbations v orthogonal to the image of Vk

(i.e., v ⊥ Im(Vk)) is

Lk = sup
x∈RD, ∥v∥≤ϵ

v⊤Vk=0

∥µ(x+ v)− µ(x)∥
∥µ(x)∥

.

A small leakage Lk implies that the drift’s behavior relative
to its current direction is not excessively altered by com-
ponents outside the subspace spanned by Vk, making the
subspace a reasonable domain for approximation.
Assumption 2.1 (Approximate Projection Closure for Mod-
eling). For practical modeling of the SDE (Eq. 2), we as-
sume there exists a rank k (e.g., k = 40 in our work, cho-
sen based on empirical variance and computational trade-
offs) and a perturbation scale ϵ > 0 such that Lk ≪ 1.
This allows the approximation of the drift within this k-
dimensional subspace:

µ(h(t)) ≈ VkV
⊤
k µ(h(t))

holds up to an error of order O(Lk). This assumption un-
derpins the feasibility of our low-dimensional modeling
approach, enabling the analytical treatment inspired by sta-
tistical physics; this assumption is purely pragmatic, and we
make no claims about intrinsic anisotropy of hidden states,
only that this reduction enables feasible SDE parameter
estimation.

Empirical observations of reasoning trajectories suggest
abrupt shifts, potentially indicating transitions between dif-
ferent phases of reasoning or slips into misaligned states.
This motivates a regime-switching framework:
Definition 2.4 (Regime-Switching SDE). Let Z(t) ∈
{1, . . . ,K} be a latent continuous-time Markov chain with
a transition rate matrix T ∈ RK×K . The corresponding
regime-switching Itô SDE is:

dh(t) = µZ(t)(h(t)) dt+BZ(t)(h(t)) dW (t), (4)

where each latent regime i ∈ {1, . . . ,K} has distinct drift
µi and diffusion Bi functions. This allows for context-
dependent dynamic structures (Ghahramani & Hinton,
2000), crucial for capturing diverse reasoning pathways.

These definitions establish the mathematical foundation
for our analysis of transformer reasoning dynamics as
a tractable approximation of a more complex high-
dimensional process.
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3. Data and Empirical Motivation
We build a corpus of sentence-aligned hidden-state trajecto-
ries from transformer-generated reasoning chains across a
suite of models (Mistral-7B-Instruct (Jiang et al., 2023), Phi-
3-Medium (Abdin et al., 2024), DeepSeek-67B (DeepSeek-
AI et al., 2024), Llama-2-70B (Touvron et al., 2023),
Gemma-2B-IT (Gemma Team & Google DeepMind, 2024),
Qwen1.5-7B-Chat (Bai et al., 2023), Gemma-7B-IT (also
(Gemma Team & Google DeepMind, 2024)), Llama-2-13B-
Chat-HF (also (Touvron et al., 2023))) and datasets (Strat-
egyQA (Geva et al., 2021), GSM-8K (Cobbe et al., 2021),
TruthfulQA (Lin et al., 2022), BoolQ (Clark et al., 2019),
OpenBookQA (Mihaylov et al., 2018), HellaSwag (Zellers
et al., 2019), PiQA (Bisk et al., 2020), CommonsenseQA
(Talmor et al., 2021)), yielding roughly 9,800 distinct trajec-
tories spanning ∼40,000 sentence-to-sentence transitions.

3.1. Sentence-Level Dynamics and Manifold Structure
for Tractable Modeling

First, we confirmed that sentence-level increments effec-
tively capture semantic evolution. Figure 1(a) compares the
cumulative distribution functions (CDFs) of jump norms
(∥∆ht∥) at both token and sentence strides. Token-level
increments show a noisy distribution skewed towards small
values, primarily reflecting syntactic variations. In contrast,
sentence-level increments are orders of magnitude larger,
clearly indicating significant semantic shifts and validating
our choice of sentence-stride analysis. To reduce "jitter"
from minor variations, we filtered out transitions below a
minimum threshold (∥∆ht∥ ≤ 10 in normalized units),
yielding cleaner semantic trajectories.

To uncover underlying geometric structures that could make
modeling tractable, we applied Principal Component Analy-
sis (PCA) (Jolliffe, 2002) to the sentence-stride embeddings.
We found that a relatively low-dimensional projection (rank
k = 40) captures approximately 50% of the total variance in
these reasoning trajectories (details in Appendix A). While
reasoning dynamics occur in a high-dimensional embed-
ding space, this finding suggests that a significant portion of
their variance is concentrated in a lower-dimensional sub-
space. This is crucial because constructing and analyzing
a stochastic process (like a random walk or SDE) in the
full embedding dimension (e.g., 2048) is often impracti-
cal. The rank-40 manifold thus provides a computationally
feasible domain for our dynamical systems modeling, not
necessarily because the process is strictly confined to it,
but because it offers a practical and informative approxima-
tion. (To be clear: we are not claiming hidden states are
inherently anisotropic by employing this 40-dimensional
manifold. Rather, this manifold serves as a computational
crutch to make it feasible to compute the SDE parameters
without extraordinary computational resources or having

to employ advanced optimization techniques. The choice
prioritizes tractability while capturing sufficient variance for
meaningful modeling.)

3.2. Linear Predictability and Multimodal Residuals

To assess the predictive structure of the semantic drift within
this tractable manifold, we performed a global ridge re-
gression (Hoerl & Kennard, 1970), fitting a linear model
to predict subsequent sentence embeddings from previous
ones:

ht+1 ≈ Aht + c, (5)

(A, c) = argmin
A,c

∑
t

∥∆ht − (A− I)ht − c∥2 + λ∥A∥2F .

(6)

Using a modest regularization (λ = 1.0), this global linear
model achieved an R2 ≈ 0.51, indicating substantial linear
predictability in sentence-to-sentence transitions.

However, an examination of the residuals from this linear fit,
ξt = ∆ht− [(A− I)ht+ c], revealed persistent multimodal
structure, even after the linear drift component was removed
(Figure 1(b)). This multimodality suggests the presence of
distinct underlying dynamic states or phases—some poten-
tially representing "misaligned states" or divergent reason-
ing paths—that are not captured by a single linear model.

Inspired by Langevin dynamics, where a particle in a
multi-well potential U(x) can exhibit metastable states (Ap-
pendix E), we interpret these multimodal residual clusters
as evidence of distinct latent reasoning regimes. The sta-
tionary probability distribution pst(x) ∝ e−U(x)/D for an
SDE dx = −U ′(x) dt +

√
2D dWt becomes multimodal

if U(x) has multiple minima and noise D is sufficiently low.
Analogously, the observed clusters in our residual analysis
point towards the existence of multiple metastable semantic
basins in the reasoning process. This strongly motivates
the introduction of a latent regime structure to adequately
model these richer, nonlinear dynamics and to understand
how an LLM might transition between effective reasoning
and potential failure modes.

4. A Switching Linear Dynamical System for
Reasoning

The empirical evidence that a significant portion of variance
is captured by a low-dimensional manifold (making it a
practical subspace for analysis, as directly modeling a 2048-
dim random walk is often infeasible) and the observation of
multimodal residuals motivate a model that combines linear
dynamics within distinct regimes with switches between
these regimes. Such switches may represent transitions
between different cognitive states, some of which could be
misaligned or lead to errors.
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Figure 1. (a) CDF comparison of token and sentence jump norms,
illustrating that sentence-level increments capture more substantial
semantic shifts. (b) Histograms of residual norms from a global
linear fit, showing raw residuals ∥ξt∥ (left) and residuals projected
onto a low-rank PCA space ∥ζt∥ (right). Both reveal significant
multimodality, motivating regime switching to capture distinct
reasoning phases or potential misalignments.

4.1. Linear Drift within Regimes

While a single global linear model (Eq. 5) captures about
half the variance, the residual analysis (Figure 1(b)) indi-
cates that a more nuanced approach is needed. We project
the residuals ξt onto the principal subspace Vk (from As-
sumption 2.1, where k = 40 offers a balance between ex-
plained variance and computational cost) to get ζt = V ⊤

k ξt.
The clustered nature of these projected residuals ζt sug-
gests that the reasoning process transitions between several
distinct dynamical modes or ‘regimes’.

4.2. Identifying Latent Reasoning Regimes

To formalize these distinct modes, we fit a K-component
Gaussian Mixture Model (GMM) to the projected resid-
uals ζt, following classical regime-switching frameworks
(Hamilton, 1989):

p(ζt) =

K∑
i=1

πi N (ζt | µi,Σi). (7)

Information criteria (BIC/AIC) suggest K = 4 as an appro-
priate number of regimes for our data. While the true un-
derlying multimodality is complex across many dimensions
(see Figure 5, Appendix A), a four-regime model provides a
parsimonious yet effective way to capture key dynamic be-
haviors, including those that might represent misalignments
or slips into undesired reasoning patterns, while maintaining
computational tractability. We interpret these K = 4 modes
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Figure 2. GMM clustering (K=4) of low-rank residuals ζt pro-
jected onto the first two principal components colored by discov-
ered "reasoning phase"

as distinct reasoning phases, such as systematic decomposi-
tion, answer synthesis, exploratory variance, or even failure
loops, each characterized by specific drift perturbations and
noise profiles. Figure 2 visualizes these uncovered regimes
in the low-rank residual space.

4.3. The Switching Linear Dynamical System (SLDS)
Model

We integrate these observations into a discrete-time
Switching Linear Dynamical System (SLDS). Let Zt ∈
{1, . . . ,K} be the latent regime at step t. The state ht

evolves according to:

Zt ∼ Categorical(π), P (Zt+1 = j | Zt = i) = Tij ,

ht+1 = ht + Vk

(
MZt(V

⊤
k ht) + bZt

)
+ εt, (8)

εt ∼ N (0,ΣZt).

Here, Mi ∈ Rk×k and bi ∈ Rk are the regime-specific
linear transformation matrix and offset vector for the drift
within the k-dimensional semantic subspace defined by Vk.
Σi is the regime-dependent covariance for the noise εt. The
initial regime probabilities are π, and T is the transition
matrix encoding regime persistence and switching proba-
bilities. This SLDS framework combines continuous drift
within regimes, structured noise, and discrete changes be-
tween regimes, which can model shifts between correct
reasoning and misaligned states.

The multimodal structure of the full residuals ξt (before pro-
jection, see Figure 3) invalidates a single-mode SDE. This
motivates our regime-switching formulation. The SLDS in
Eq. 8 serves as a discrete-time surrogate for an underlying
continuous-time switching SDE (Eq. 4):

dh(t) = µZ(t)(h(t)) dt+BZ(t)(h(t)) dW (t), (9)

where each regime i has its own drift µi(h) =
Vk(Mi(V

⊤
k h) + bi) (approximating the continuous drift

within the chosen manifold for tractability) and diffusion

4



A Statistical Physics of Language Model Reasoning

−60 −40 −20 0 20 40 60
0

2

4

·10−2

Coord0

D
en

si
ty

−600 −400 −200 0 200 400 600
0

1

2

3

·10−3

Factor0

D
en

si
ty

Figure 3. Failure of single-mode noise models for the full residuals
ξt (before projection). This plot shows mismatches between the
empirical distribution of residual norms and fits from both Gaus-
sian and Laplace distributions, highlighting the inadequacy of a
single noise process and further motivating the regime-switching
approach to capture diverse reasoning states, including potential
misalignments.

Bi (related to Σi). The transition matrix T in the SLDS is
related to the rate matrix of the latent Markov process Z(t)
in the continuous formulation.

5. Experiments & Validation
We empirically validate the proposed SLDS framework
(Eq. 8). Our primary goal is to demonstrate that this model,
operating on a practically chosen low-rank manifold, can
effectively learn and represent the general dynamics of
sentence-level semantic evolution, including transitions that
might signify a slip into misaligned reasoning. The SLDS
parameters ({Mi, bi,Σi}Ki=1, T , π) are estimated from our
corpus of ∼40,000 sentence-to-sentence hidden state transi-
tions using an Expectation-Maximization (EM) algorithm
(Appendix B). It is crucial to note that the SLDS is trained
to model the process by which language models arrive
at answers—and potentially how they deviate into failure
modes—not to predict the final answers of the tasks them-
selves. Based on empirical findings (Section 4), we use
K = 4 regimes and a projection rank k = 40 (chosen for
its utility in making the SDE-like modeling feasible).

The efficacy of the fitted SLDS is first assessed by its one-
step-ahead predictive performance. Given an observed hid-
den state ht and the inferred posterior regime probabili-
ties γt,j = P(Zt = j | h0, . . . , ht) (obtained via forward-
backward inference (Rabiner, 1989)), the model’s predicted
mean state ĥt+1 is computed as:

ĥt+1 = ht + Vk

 K∑
j=1

γt,j
(
Mj(V

⊤
k ht) + bj

) . (10)

On held-out trajectories, the SLDS yields a predictive
R2 ≈ 0.68. This significantly surpasses the R2 ≈ 0.51
achieved by the single-regime global linear model (Eq. 5),
confirming the value of incorporating regime-switching dy-
namics. Beyond quantitative prediction, trajectories simu-

lated from the fitted SLDS faithfully replicate key statistical
properties observed in empirical traces, such as jump norms,
autocorrelations, and regime occupancy frequencies. This
dual capability—accurate description and realistic synthe-
sis of reasoning trajectories—substantiates the SLDS as a
robust model. Furthermore, the inferred regime posterior
probabilities γt,j provide valuable interpretability, allowing
for the association of observable textual behaviors (e.g., sys-
tematic decomposition, stable reasoning, or error correction
loops and potential misaligned states) with specific latent
dynamical modes. These initial findings strongly support
the proposed framework as both a descriptive and generative
model of reasoning dynamics, offering a path to predict and
understand LLM failure modes.

5.1. Generalization and Transferability of SLDS
Dynamics

A critical test of the SLDS framework is its ability to cap-
ture generalizable features of reasoning dynamics, includ-
ing those indicative of robust reasoning versus slips into
misalignment, beyond the specific training conditions. We
investigated this by training an SLDS on hidden state tra-
jectories from a source (a particular LLM performing a
specific task or set of tasks) and then evaluating its capac-
ity to describe trajectories from a target (which could be
a different LLM and/or task). Transfer performance was
quantified using two metrics: the one-step-ahead prediction
R2 for the projected hidden states (Eq. 10) and the Negative
Log-Likelihood (NLL) of the target trajectories under the
source-trained SLDS. Lower NLL and higher R2 values
signify superior generalization.

Table 1 presents illustrative results from these transfer exper-
iments. For instance, an SLDS is first trained on trajectories
generated by a ‘Train Model’ (e.g., Llama-2-70B) perform-
ing a designated ‘Source Task’ (e.g., GSM-8K). This single
trained SLDS is then evaluated on trajectories from various
‘Test Model’ / ‘Test Task’ combinations. The results indi-
cate that while the SLDS performs optimally when training
and testing conditions align perfectly (e.g., Llama-2-70B
on GSM-8K transferred to itself), it retains considerable de-
scriptive power when transferred. Generalization is notably
more successful when the underlying LLM architecture is
preserved, even across different reasoning tasks (e.g., Llama-
2-70B trained on GSM-8K and tested on StrategyQA shows
only a modest drop in R2 from 0.73 to 0.65). Conversely,
transferring the learned dynamics across different LLM fam-
ilies (e.g., Llama-2-70B to Mistral-7B) proves more chal-
lenging, as reflected in lower R2 values and higher NLLs.
However, even in these challenging cross-family transfers,
the SLDS often outperforms naive baselines like a simple
linear dynamical system without regime switching (detailed
comparisons not shown). These findings suggest that while
some learned dynamical features are model-specific, the
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Table 1. SLDS transferability across models and tasks. Each SLDS
is trained on trajectories from the specified ‘Train Model’ on its
‘Source Task’ (GSM-8K for Llama-2-70B, StrategyQA for Mistral-
7B). Performance (R2 for next hidden state prediction, NLL of
test trajectories) is evaluated on various ‘Test Model’ / ‘Test Task’
combinations, demonstrating patterns of generalization in captur-
ing underlying reasoning dynamics.

TRAIN MODEL TEST MODEL TEST TASK R2 NLL
(SOURCE TASK)

LLAMA-2-70B LLAMA-2-70B GSM-8K 0.73 80
(ON GSM-8K) LLAMA-2-70B STRATEGYQA 0.65 115

MISTRAL-7B GSM-8K 0.48 240
MISTRAL-7B STRATEGYQA 0.37 310

MISTRAL-7B MISTRAL-7B STRATEGYQA 0.71 88
(ON STRATQA) MISTRAL-7B GSM-8K 0.63 135

LLAMA-2-70B STRATEGYQA 0.42 270
GEMMA-7B-IT BOOLQ 0.35 380
PHI-3-MED TRUTHFULQA 0.30 420

SLDS framework, by approximating the reasoning process
as a physicist might model a complex system, is capable of
capturing common, fundamental underlying structures in
reasoning trajectories. Extended transferability results are
provided in Appendix D.

5.2. Ablation Study

To elucidate the contribution of each core component within
our SLDS framework, we conducted an ablation study. The
full model (Eq. 8 with K = 4 regimes and k = 40 projec-
tion rank, selected for practical modeling of the SDE) was
compared against three simplified variants:

• No Regime (NR): A single-regime model (K = 1),
still projected to the k = 40 dimensional subspace.
This tests the necessity of regime switching for captur-
ing diverse reasoning states, including misalignments.

• No Projection (NP): A K = 4 regime switching
model operating directly in the full D-dimensional
embedding space (i.e., without the Vk projection). This
tests the utility of the low-rank manifold assumption
for tractable and effective modeling, given the imprac-
ticality of handling a full-dimension SDE.

• No State-Dependent Drift (NSD): A K = 4 regime
model where the drift within each regime is merely
a constant offset VkbZt

, and the linear transformation
MZt

is zero for all regimes. This tests the importance
of the current state ht influencing its own future evolu-
tion within a regime.

Table 2 summarizes the performance of these models on a
held-out test set. Each ablation led to a notable reduction
in performance, robustly demonstrating that all three key
elements of our proposed model—regime-switching, low-
rank projections (for practical SDE approximation), and

Table 2. Ablation study results comparing the full SLDS against
simplified variants: NR (single-regime projected model), NP (full-
dimensional switching without projection), NSD (regime-switched
offsets, no state-dependent linear drift). Performance is measured
by R2 and NLL. The results underscore the importance of each
component for modeling reasoning dynamics and identifying
potential failure modes.

MODEL R2 NLL

FULL SLDS (K = 4, k = 40) 0.74 78
NO REGIME (NR, K = 1, k = 40) 0.58 155
NO PROJECTION (NP, K = 4) 0.60 210
NO STATE-DEP. DRIFT (NSD) 0.35 290

Global Linear (ref.) 0.51 180

state-dependent drift—are jointly essential for accurately
capturing the nuanced dynamics of transformer reasoning.
The NR model, lacking regime switching, performs substan-
tially worse (R2 = 0.58) than the full SLDS (R2 = 0.74),
highlighting the critical role of modeling distinct reason-
ing phases, including potential slips into misaligned states.
Removing the low-rank projection (NP model) also sig-
nificantly impairs effectiveness (R2 = 0.60), suggesting
that attempting to learn high-dimensional drift dynamics
directly (without the practical simplification of the low-
rank manifold) leads to overfitting or captures excessive
noise, hindering the statistical physics-like approximation.
Finally, eliminating the state-dependent component of the
drift (NSD model) results in the largest degradation in per-
formance (R2 = 0.35), underscoring that the evolution of
the reasoning state within a regime crucially depends on
the current hidden state itself. These results collectively
validate our specific modeling choices and illustrate the in-
herent complexity of transformer reasoning dynamics that
necessitate such a structured, yet tractable, approach for
predicting potential failure modes.

5.3. Case Study: Modeling Adversarially Induced Belief
Shifts

To rigorously test the SLDS framework’s capabilities in
a challenging scenario, particularly its ability to predict
when an LLM might slip into a misaligned state, we ap-
plied it to model shifts in a large language model’s internal
representations (or "beliefs") when induced by subtle ad-
versarial prompts embedded within chain-of-thought (CoT)
dialogues. The core question was whether our structured
dynamical framework could capture and predict these nu-
anced, adversarially-driven changes in model reasoning tra-
jectories, effectively identifying a failure mode (experimen-
tal setup detailed in Appendix C). We employed Llama-
2-70B and Gemma-7B-IT, exposing them to a diverse ar-
ray of misinformation narratives spanning public health
misconceptions, historical revisionism, and conspiratorial
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Figure 4. SLDS model validation via adversarial belief manipulation. Each row shows a distinct topic. Empirical belief trajectories where
blue and red follow the clean and poisoned belief trajectories, respectively (left). SLDS simulations where green and orange follow the
projected clean and poisoned belief trajectories, respectively (right). Gold lines mark poison steps. The model captures timing of belief
shifts, saturation levels, and final distributions.

claims. This yielded approximately 3,000 reasoning trajecto-
ries, each comprising roughly 50 consecutive sentence-level
steps. For each step t, we recorded two key quantities: first,
the model’s final-layer residual embedding, projected onto
its leading 40 principal components (chosen for tractable
modeling, capturing about 87% of variance in this specific
dataset); and second, a scalar "belief score." This score was
derived by prompting the model with a diagnostic binary
query directly related to the misinformation, calculated as
P (True)/(P (True) + P (False)), where a score of 0 indi-
cates rejection of the misinformation and 1 indicates strong
affirmation.

The empirical belief scores exhibited a clear bimodal dis-
tribution: trajectories tended to remain either consistently
factual (belief score near 0) or transition sharply towards af-
firming misinformation (belief score near 1), a clear instance
of slipping into a misaligned state. This observation natu-

rally motivated an SLDS with K = 3 latent regimes for this
specific task: (1) a stable factual reasoning regime (belief
score < 0.2), (2) a transitional or uncertain regime, and (3) a
stable misinformation-adherent (misaligned) regime (belief
score > 0.8). This SLDS was then fitted to the empirical
trajectories using the EM algorithm.

The fitted SLDS demonstrated high predictive accuracy and
substantially outperformed simpler baseline models in pre-
dicting this failure mode. For one-step-ahead prediction
of the projected hidden states (h′

t = V ⊤
k ht), the SLDS

achieved R2 values of approximately 0.72 for Llama-2-70B
and 0.69 for Gemma-7B-IT. These results are significantly
superior to those from single-regime linear models (which
achieved R2 ≈ 0.45) and standard Gated Recurrent Unit
(GRU) networks (R2 ≈ 0.57− 0.58). Similarly, in predict-
ing the final belief outcome—whether the model ultimately
accepted or rejected the misinformation after 50 reasoning
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steps (i.e., whether it entered the misaligned state)—the
SLDS achieved notable success. Final belief prediction ac-
curacies were around 0.88 for Llama-2-70B and 0.85 for
Gemma-7B-IT, compared to baseline methods which ranged
from 0.62 to 0.78 accuracy (see Table 3). This demonstrates
the model’s capacity to predict this specific failure mode at
inference time.

Table 3. Comparative performance in modeling and predicting ad-
versarially induced belief shifts (a failure mode). R2(h′

t+1) de-
notes one-step-ahead prediction accuracy for projected hidden
states. ‘Belief Acc.’ is the accuracy in predicting whether the
final belief score bT > 0.5 (misaligned state) after 50 reasoning
steps. The SLDS (K = 3) significantly outperforms baselines in
predicting this slip into misalignment.

MODEL METHOD R2(h′
t+1) BELIEF ACC.

LLAMA-2-70B LINEAR 0.35 0.55
GRU-256 0.48 0.68
SLDS (K=3) 0.72 0.88

GEMMA-7B LINEAR 0.33 0.52
GRU-256 0.46 0.65
SLDS (K=3) 0.69 0.85

Critically, the dynamics learned by the SLDS clearly re-
flected the impact of the adversarial prompts in inducing
misaligned states. Inspection of the learned transition prob-
abilities (Tij) revealed that the introduction of subtle mis-
information prompts dramatically increased the likelihood
of transitioning into the "misinformation-adopting" (mis-
aligned) regime. Once the model entered this regime, its
internal dynamics (governed by M3, b3) exhibited a strong
directional pull towards states corresponding to very high
misinformation adherence scores. Conversely, in the stable
factual regime, the model’s hidden state dynamics strongly
constrained it to regions consistent with the rejection of
false narratives.

Figure 4 compellingly illustrates the close alignment be-
tween the empirical belief trajectories and those simu-
lated by the fitted SLDS. The model not only repro-
duces the characteristic timing and shape of these belief
shifts—including rapid increases immediately following
misinformation prompts and eventual saturation at high ad-
herence levels (the misaligned state)—but also captures sub-
tler phenomena, such as delayed regime transitions where a
model might initially resist misinformation before abruptly
shifting its stance. Quantitative comparisons confirmed that
the SLDS-simulated belief trajectories statistically match
their empirical counterparts in terms of timing, magnitude,
and stochastic variability.

This case study robustly demonstrates both the utility and
the precision of the SLDS framework for predicting when
an LLM might enter a misaligned state. The approach effec-

tively captures and predicts complex belief dynamics arising
in nuanced adversarial scenarios. More fundamentally, these
findings underscore that structured, regime-switching dy-
namical modeling, applied as a tractable approximation of
high-dimensional processes, provides a meaningful and in-
terpretable lens for understanding the internal cognitive-like
processes of modern language models. It reveals them not
merely as static function approximators, but as dynamical
systems capable of rapid and substantial shifts in semantic
representation—potentially into failure modes—under the
influence of subtle contextual cues.

5.4. Summary of Experimental Findings

The comprehensive experimental validation confirms that
a relatively simple low-rank SLDS (where low rank is cho-
sen for practical SDE modeling), incorporating a few latent
reasoning regimes, can robustly capture complex reasoning
dynamics. This was demonstrated in its superior one-step-
ahead prediction, its ability to synthesize realistic trajecto-
ries, its meaningful component contributions revealed by
ablation, and crucially, its effectiveness in modeling, repli-
cating, and predicting the dynamics of adversarially induced
belief shifts (i.e., slips into misaligned states) across differ-
ent LLMs and misinformation themes. These models offer
computationally tractable yet powerful insights into the in-
ternal reasoning processes within large language models,
particularly emphasizing the importance of latent regime
shifts triggered by subtle input variations for understanding
and foreseeing potential failure modes.

6. Impact and Future Work
Our framework, inspired by statistical physics approxima-
tions of complex systems, offers a means to audit and com-
press transformer reasoning processes. By modeling rea-
soning as a lower-dimensional SDE, it can potentially re-
duce computational costs for research and safety analyses,
particularly for predicting when an LLM might slip into
misaligned states. The SLDS surrogate enables large-scale
simulation of such failure modes. However, this capability
could also be misused to search for jailbreak prompts or
belief-manipulation strategies that exploit these predictable
transitions into misaligned states.

Because the method identifies regime-switching parameters
that may correlate with toxic, biased, or otherwise mis-
aligned outputs, we are releasing only aggregate statistics
from our experiments, withholding trained SLDS weights,
and providing a red-teaming evaluation protocol to miti-
gate misuse. Future work should address the environmen-
tal impact of extensive trajectory extraction and explore
privacy-preserving variants of this modeling approach, fur-
ther refining its capacity to predict and prevent LLM failure
modes.
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7. Conclusion
We introduced a statistical physics-inspired framework for
modeling the continuous-time dynamics of transformer rea-
soning. Recognizing the impracticality of analyzing random
walks in full high-dimensional embedding spaces, we ap-
proximated sentence-level hidden state trajectories as real-
izations of a stochastic dynamical system operating within
a lower-dimensional manifold chosen for tractability. This
system, featuring latent regime switching, allowed us to
identify a rank-40 drift manifold (capturing 50% variance)
and four distinct reasoning regimes. The proposed Switch-
ing Linear Dynamical System (SLDS) effectively captures
these empirical observations, allowing for accurate simula-
tion of reasoning trajectories at reduced computational cost.
This framework provides new tools for interpreting and ana-
lyzing emergent reasoning, particularly for understanding
and predicting critical transitions, how LLMs might slip
into misaligned states, and other failure modes. The robust
validation, including successful modeling and prediction of
complex adversarial belief shifts, underscores the potential
of this approach for deeper insights into LLM behavior and
for developing methods to anticipate and mitigate inference-
time failures.
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(0)
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Standard arguments leveraging Itô isometry (see e.g., Øk-
sendal, 2003) and Grönwall’s lemma (Grönwall, 1919) es-
tablish convergence of this sequence to a unique strong
solution Xt.

We next address the bound on projection leakage Lk (Defi-
nition 2.3). By definition,

Lk = sup
x∈RD, v⊤Vk=0,

∥v∥≤ε

∥µ(x+ v)− µ(x)∥
∥µ(x)∥

.

Using the Lipschitz continuity of the drift µ (with Lipschitz
constant Lµ), for perturbations ∥v∥ ≤ ε:

∥µ(x+ v)− µ(x)∥ ≤ Lµ ε.

Assuming that the magnitude of the drift does not vanish
on the domain of interest D (justified empirically), we set
µmin := infx∈D ∥µ(x)∥ > 0. This yields the bound:

Lk(ε) ≤
Lµ ε

µmin
.

We can sharpen this by decomposing µ(x) into projected
and residual components: µ(x) = VkV

⊤
k µ(x) + rk(x),

where rk(x) = (I − VkV
⊤
k )µ(x) is the residual. Defining

the ratio ρk = supx∈D
∥rk(x)∥
∥µ(x)∥ , the triangle inequality gives

a refined bound:

Lk ≤ ρk +
Lµ ε

µmin
.

Practically, we enforce Lk ≪ 1 by selecting k large enough
to reduce ρk (i.e., capture most of the drift direction within
a computationally tractable subspace) and restricting pertur-
bations to small ε.

The choice of a rank-40 drift manifold (k = 40) is motivated
by the impracticality of constructing SDE models directly
in the full embedding dimension (e.g., D ≥ 2048). Empiri-
cal PCA on observed drift increments ∆ht (summarized in
a data matrix H) shows that the first 40 principal compo-
nents capture approximately 50% of the drift variance. If
H = UΣW⊤ is the SVD of H , the relative Frobenius norm
of the residual after rank-k truncation is

√∑
i>k σ

2
i /
∑

i σ
2
i .

For k = 40, this value is ρ40 ≈ 0.50. While this captures
only half the variance, it provides a significant simplification
that makes the dynamical systems modeling approach feasi-
ble. Subsequent components add diminishing amounts of
variance. Perturbation theory, specifically the Davis–Kahan
sine-theta theorem (Davis & Kahan, 1970),further ensures
this empirical drift manifold is stable given the observed
spectral gap at the 40th eigenvalue and large sample size.
Higher ranks would increase inference complexity with di-
minishing returns in variance capture for this approximate

model, making k = 40 a pragmatic choice for balancing
model fidelity with the computational feasibility of the SDE
approximation. The primary goal is not to claim the random
walk *only* occurs on this manifold, but that this manifold
serves as a useful and tractable domain for approximation.

Figure 5 shows the distribution of residuals ∆ht projected
onto each of these 40 principal component dimensions, re-
vealing rich multimodal structures that motivate the regime-
switching approach. These regimes can be interpreted as dif-
ferent reasoning pathways or potential "misaligned states"
that the statistical physics-like approximation aims to cap-
ture. While the true multimodality is complex, our four-
regime model (K = 4) provides an efficient approximation
for capturing key dynamics, including deviations that might
lead to failures.

Figure 5. Violin plot of residual ∆ht values projected across the
40 principal component dimensions of the drift manifold (chosen
for tractable SDE modeling). Each violin shows the distribution
of residuals for a specific dimension, revealing rich multimodal
structure that motivates our regime-switching approach. These
structures suggest different operational states, some of which could
correspond to misaligned reasoning or failure modes.

B. EM Algorithm for SLDS Parameter
Estimation

This appendix details the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) used for fitting the
parameters of the Switching Linear Dynamical System
(SLDS) as defined in Eq. 8. The model parameters are
θ = (π, T, {Mj , bj ,Σj}Kj=1), where Vk is a fixed orthonor-
mal PCA projection basis (e.g., k = 40, chosen for practical
modeling).

The SLDS dynamics are:

Zt ∼ Categorical(π) for t = 0,

P (Zt+1 = j |Zt = i) = Tij for t ≥ 0,

ht+1 = ht + Vk(MZt+1
(V ⊤

k ht) + bZt+1
) + ϵt+1,

with residual noise ϵt+1 ∼ N (0,ΣZt+1).

The log-likelihood for observed data H = (h0, . . . , hTend
)

is P (H | θ) =
∑

Z P (H,Z | θ), where Z =
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(Z0, . . . , ZTend−1). Direct maximization is intractable,
hence EM. At iteration m, EM alternates:

B.1. E-step

Compute expected sufficient statistics under θ(m). Use stan-
dard forward (αt(j) = P (h0, . . . , ht, Zt = j|θ(m))) and
backward (βt(j) = P (ht+1, . . . , hTend

|Zt = j, θ(m))) re-
cursions (Rabiner, 1989). Posterior regime probabilities:

γt(j) = P (Zt = j|H, θ(m))

=
αt(j)βt(j)∑K
i=1 αt(i)βt(i)

,

ξt(i, j) = P (Zt = i, Zt+1 = j|H, θ(m))

=
αt(i)T

(m)
ij βt+1(j)

P (H|θ(m))

+N (∆h′
t|M

(m)
j xt + b

(m)
j ,Σ

(m)
j )

where ∆h′
t = V ⊤

k (ht+1 − ht) and xt = V ⊤
k ht. The N (·)

term is the emission probability of observing ht+1 given ht

and Zt+1 = j. These probabilities help identify transitions
between different reasoning states, including potentially
misaligned ones.

B.2. M-step

In the M-step, parameters are updated to maximize the ex-
pected complete data log-likelihood. The initial state proba-
bilities π̂j are given by π̂j = γ0(j). Transition probabilities
T̂ij are calculated as:

T̂ij =

∑Tend−2
t=0 ξt(i, j)∑Tend−2
t=0 γt(i)

.

The regime-specific dynamics {Mj , bj ,Σj} are determined
through a process analogous to weighted linear regression.
We define the projected change as ∆h′

t = V ⊤
k (ht+1 −

ht) and the projected state as xt = V ⊤
k ht. Augmented

regressors Xt = [x⊤
t , 1]

⊤ and corresponding augmented
parameters Mj = [M⊤

j , bj ]
⊤ are utilized. The update for

M̂j is then computed as:

M̂j =

(
Tend−1∑
t=0

γt+1(j)XtX⊤
t

)−1

×

(
Tend−1∑
t=0

γt+1(j)Xt(∆h′
t)

⊤

)
.

From M̂j , the dynamics matrix M̂j and bias vector b̂j are
extracted using M̂j = M̂j(1 : k, :)⊤ and b̂j = M̂j(k +

1, :)⊤, respectively. To update the covariance matrix Σ̂j ,
we first define the residuals for each regime j at time t as
ejt = ∆h′

t − M̂jxt − b̂j . Then, Σ̂j is computed by:

Σ̂j =

∑Tend−1
t=0 γt+1(j)ejte

⊤
jt∑Tend−1

t=0 γt+1(j)
.

These updates are derived from maximizing the expected
complete data log-likelihood.

Scaling techniques are employed during the forward-
backward passes to mitigate numerical underflow. When
dealing with multiple observation sequences, the neces-
sary statistics are accumulated across all sequences before
the parameter updates are performed. Convergence of the
Expectation-Maximization algorithm is typically assessed
by observing when parameter changes fall below a prede-
fined threshold, when the change in log-likelihood becomes
negligible, or when a maximum number of iterations is
reached. The inherent property of EM ensuring a monotone
increase in the log-likelihood contributes to stable training.
Ultimately, the objective is to identify a set of parameters
that most accurately describes the observed dynamics of the
reasoning process. This includes modeling transitions be-
tween different operational regimes, which can be indicative
of phenomena such as the onset of failure modes.

C. Adversarial Chain-of-Thought Belief
Manipulation

This appendix describes experimental details for the adver-
sarial belief-manipulation results in Section 5.3, focusing
on how the SLDS framework can model and predict LLMs
slipping into misaligned states, following ICML practice.

C.1. Experimental Design

We studied Llama-2-70B and Gemma-7B-IT under adver-
sarial prompting on twelve misinformation themes (public
health, conspiracies, financial myths, AI fears, historical
revisionism, pseudoscience, etc.). For each theme/model,
paired clean and poisoned CoTs were generated. Clean
CoTs used neutral questions (e.g., “Summarize arguments
for and against vaccination”). Poisoned CoTs interspersed
adversarial prompts at predetermined steps to guide the
model towards harmful beliefs (misaligned states). Each
CoT had ∼50 sentence-level steps. We collected ∼100 tra-
jectories per combination, totaling ∼3000 trajectories. At
each step t, we recorded the final-layer residual embedding
and a scalar "belief score" from a diagnostic query related
to the misinformation. Belief score = P (True)/(P (True) +
P (False)), where 0 is rejection and 1 is strong affirmation
of the false claim (a clear misaligned state).
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C.2. Data Preprocessing

Raw hidden-state vectors were standardized (mean-
subtracted, variance-normalized per dimension) and pro-
jected onto their first 40 principal components (PCA, ∼87%
variance explained for this dataset, chosen for practical
SLDS modeling) using scikit-learn 1.2.1 (SVD
solver, whitening enabled).

C.3. Switching Linear Dynamical System (SLDS)

PCA-projected states were modeled with an SLDS having
three latent regimes (K = 3), chosen via BIC on validation
data, representing factual, transitional, and misaligned belief
states. Dynamics per regime: h′

t+1 = Mzth
′
t + czt + εt,

εt ∼ N (0,Σzt), zt ∈ {1, 2, 3}. Parameters (T,M, c,Σ)
were learned via EM, initialized from K-means. For adver-
sarial steps, regime-transition probabilities were examined
to see if they reflected an increased likelihood of entering
the "adverse" belief state. The SLDS aims to predict such
slips into misaligned states.

C.4. Belief-Score Prediction

Since SLDS models latent PCA dynamics, a small two-layer
MLP regressor (32 ReLU units/layer, Adam, early stopping)
mapped PCA-projected states to belief scores for validation
and for assessing the prediction of the misaligned (high
belief score) state.

C.5. Simulation Protocol and Validation

Trajectories were simulated starting from empirical hidden-
state distributions in the "safe" (low-belief) regime. Clean
simulations used standard transitions. Poisoned simulations
introduced adversarial perturbations (small fixed displace-
ments estimated from empirical poisoned data) at random
preselected intervals. Simulated trajectories matched em-
pirical ones closely in timing/magnitude of belief shifts
(slips into misaligned states), variance, and distributional
characteristics (Kolmogorov-Smirnov test p > 0.3 for final
belief scores). Ablating adversarial perturbations confirmed
their necessity for replicating rapid belief shifts towards mis-
aligned states. This validates the SLDS’s ability to predict
such failure modes.

C.6. Computational Details

NVIDIA A100 GPUs were used for state extraction and
PCA. State extraction took ∼3 hours per model. PCA and
SLDS estimation took <2 CPU hours on Intel Xeon Gold
CPUs. Code used PyTorch 2.0.1, NumPy 1.25, scikit-learn
1.2.1.

C.7. Summary of Findings

A simple three-regime, low-rank SLDS (with low rank cho-
sen for practical SDE approximation) captures adversarial
belief dynamics for various misinformation types and re-
produces complex empirical temporal behaviors, effectively
modeling the process of an LLM slipping into a misaligned
state. These models offer tractable insights into LLM reason-
ing, highlighting latent regime shifts from subtle adversarial
prompts and demonstrating the potential to predict such
failure modes at inference time.

D. Extended Generalization Study Results
This appendix provides more comprehensive SLDS trans-
ferability results (Section 5.1). Table 4 shows R2 (one-
step-ahead hidden state prediction) and NLL (test trajecto-
ries) when an SLDS trained on a source (Train Model/Task)
is tested on target combinations. SLDS hyperparameters
(K = 4 regimes, k = 40 projection rank, chosen for prac-
tical SDE approximation) were consistent. Training data
for each "Source SLDS" used all available trajectories for
the specified Train Model/Task from our main corpus (Sec-
tion 3). Evaluation used all available trajectories for the
Test Model/Task. The goal is to assess how well the learned
approximation of reasoning dynamics (including potential
failure modes) generalizes.

Extended results corroborate main text observations: SLDS
models are most faithful when applied to their training dis-
tribution (model/task). Transfer is reasonable within the
same model family or to similar tasks. Performance de-
grades more significantly across different model architec-
tures or distinct task types. These patterns indicate SLDS,
as a statistical physics-inspired approximation, captures fun-
damental reasoning dynamics (including propensities for
certain failure modes), but model-specific architecture and
task-specific semantics also matter. Future work could ex-
plore learning more invariant reasoning representations for
better generalization in predicting these misaligned states.

E. Noise-induced Criticality and Latent Modes
We briefly derive how noise-induced criticality leads to
distinct latent modes in a 1D Langevin system, analogous
to how LLMs might slip into misaligned reasoning states.
Consider an SDE:

dxt = −U ′(xt) dt+
√
2D dWt,

with a double-well potential U(x) = a
4x

4 − b
2x

2, where
a, b > 0. The stationary density solves the Fokker–Planck
equation (Risken & Frank, 1996):

0 = − d

dx
[−U ′(x)pst(x)] +D

d2pst(x)

dx2
,
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Table 4. Extended SLDS transferability results. Each SLDS is trained on trajectories from the ‘Train Model’ on its indicated ‘Source
Task’. Performance is evaluated on various ‘Test Model’ / ‘Test Task’ combinations, testing the generalization of the approximated
reasoning dynamics.

TRAIN MODEL (SOURCE TASK) TEST MODEL TEST TASK R2 NLL

LLAMA-2-70B (ON GSM-8K)
LLAMA-2-70B GSM-8K 0.73 80
LLAMA-2-70B STRATEGYQA 0.65 115
LLAMA-2-70B COMMONSENSEQA 0.62 128
MISTRAL-7B GSM-8K 0.48 240
MISTRAL-7B STRATEGYQA 0.37 310
GEMMA-7B-IT GSM-8K 0.40 275
PHI-3-MED PIQA 0.28 430

MISTRAL-7B (ON STRATEGYQA)
MISTRAL-7B STRATEGYQA 0.71 88
MISTRAL-7B GSM-8K 0.63 135
MISTRAL-7B OPENBOOKQA 0.60 145
LLAMA-2-70B STRATEGYQA 0.42 270
LLAMA-2-70B GSM-8K 0.35 320
GEMMA-7B-IT BOOLQ 0.35 380
QWEN1.5-7B HELLASWAG 0.31 405

GEMMA-7B-IT (ON BOOLQ)
GEMMA-7B-IT BOOLQ 0.69 95
GEMMA-7B-IT TRUTHFULQA 0.62 140
GEMMA-2B-IT BOOLQ 0.55 190
LLAMA-2-13B BOOLQ 0.33 350
MISTRAL-7B COMMONSENSEQA 0.29 415

DEEPSEEK-67B (ON COMMONSENSEQA)
DEEPSEEK-67B COMMONSENSEQA 0.74 75
DEEPSEEK-67B GSM-8K 0.66 110
LLAMA-2-70B COMMONSENSEQA 0.45 255
MISTRAL-7B STRATEGYQA 0.36 330
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yielding pst(x) =
1
Z0

exp
(
−U(x)

D

)
, where Z0 is a normal-

ization constant.

For low noise (D < b2

4a ), pst(x) becomes bimodal, con-
centrating probability around two metastable wells at x ≈
±
√
b/a. Trajectories cluster in these basins, separated by a

barrier at x = 0. Rare fluctuations cause transitions between
wells at rates ∝ exp(−∆U/D), where ∆U is the barrier
height. Our empirically observed multimodal residual struc-
ture is interpreted analogously: each cluster is a distinct
metastable basin, potentially representing different reason-
ing qualities (e.g., aligned vs. misaligned). This motivates
discrete latent regimes in the SLDS to model transitions be-
tween these states, akin to how a physical system transitions
between energy wells. This provides a conceptual basis for
how LLMs might "slip" into different operational modes,
some of which could be failure modes.
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