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Abstract

Inductive reasoning is a core component of hu-001
man intelligence. In the past research of induc-002
tive reasoning within computer science, logic003
language is used as representations of knowl-004
edge (facts and rules, more specifically). How-005
ever, logic language can cause systematic prob-006
lems for inductive reasoning such as disability007
of handling raw input such as natural language,008
sensitiveness to mislabeled data, and incapacity009
to handle ambiguous input. To this end, we pro-010
pose a new paradigm (task), which is to induce011
natural language rules from natural language012
facts, and create a dataset termed DEER con-013
taining 1.2k rule-fact pairs for the task, where014
rules and facts are written in natural language.015
New automatic metrics are also proposed and016
analysed for the evaluation of this task. With017
DEER, we investigate a modern approach for018
inductive reasoning where we use natural lan-019
guage as representation for knowledge instead020
of logic language and use pretrained language021
models as “reasoners”. Moreover, we provide022
the first and comprehensive analysis of how023
well pretrained language models can induce024
natural language rules from natural language025
facts. We also propose a new framework draw-026
ing insights from philosophy literature for this027
task, which we show in the experiment section028
that surpasses baselines in both automatic and029
human evaluations.030

1 Introduction031

Inductive reasoning is to reach to a hypothesis (usu-032

ally a rule that explains an aspect of the law of033

nature) based on pieces of evidence (usually ob-034

served facts of the world), where the observations035

can not provide conclusive support to the hypothe-036

sis (Salmon, 1989). It is ampliative, which means037

that the hypothesis supports more than mere refor-038

mulation of the content of the evidence (Norton,039

2005). An example is shown in Table 1 that after040

observing three carnivorous plants each having a041

trapping structure, one might reach to a hypothe- 042

sis (rule) that every carnivorous plant has a trapping 043

structure. Inductive reasoning was firstly proposed 044

by Aristotle in the 4th century B.C. in his Posterior 045

Analytics (Aristotle, 1994). Since then it is used as 046

a fundamental tool to obtain axioms, and therefore 047

subjects can be developed from these axioms. It 048

is also recognized as a core component of human 049

intelligence (Mercier, 2018). 050

Past research works on inductive reasoning 051

within computer science are investigated by Induc- 052

tive Logic Programming (ILP) (Muggleton et al., 053

2012). ILP investigates the inductive construction 054

of first-order logic (FOL) (Smullyan, 1995) rules 055

from examples and background knowledge (Mug- 056

gleton and Raedt, 1994). However, ILP uses 057

logic language as representation and uses sym- 058

bolic reasoner, which results in systematic disad- 059

vantages (Cropper et al., 2022). Specifically, ILP 060

systems heavily rely on human effort, since it typi- 061

cally assumes that the input has already been pre- 062

processed into symbolic declarative form, other- 063

wise ILP systems cannot handle raw inputs such 064

as natural language and images. In addition, ILP 065

systems are very sensitive to label error and am- 066

biguity in data, since the final induced rules are 067

required to satisfy all input facts, and symbolic sys- 068

tems can not recognize different symbols with the 069

same meaning (e.g. be capable of, be able to). 070

To overcome the challenges above, we present 071

a novel paradigm for inductive reasoning based 072

entirely on natural language, i.e., inducing natu- 073

ral language rules from natural language facts. In 074

particular, we create a first-of-its-kind natural lan- 075

guage inductive reasoning dataset named DEER 076

containing 1.2k rule-fact pairs (more details illus- 077

trated in §3.1). With this dataset, we investigate 078

a modern approach to inductive reasoning where 079

both facts and rules are in natural language, and 080

pretrained language models (PLMs) are used as the 081

inductive reasoner. Note that the inductive reason- 082
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Short fact 1 Short fact 2 Short fact 3 Rule

The Venus flytrap is a carnivorous
plant native to subtropical wetlands

on the East Coast of the United States
in North Carolina and South Carolina.

It catches its prey-chiefly insects
and arachnids—with a trapping structure

formed by the terminal portion of each
of the plant’s leaves, which is triggered

by tiny hairs on their inner surfaces.

Pitcher plants are several different
carnivorous plants which have modified

leaves known as pitfall traps—a prey
-trapping mechanism featuring a deep
cavity filled with digestive liquid. The

traps of what are considered to be "true"
pitcher plants are formed by

specialized leaves. The plants attract
and drown their prey with nectar.

Drosera, which is commonly known
as the sundews, is one of the largest genera

of carnivorous plants, with at least
194 species. The trapping and digestion
mechanism of Drosera usually employs
two types of glands: stalked glands that

secrete sweet mucilage to attract and ensnare
insects and enzymes to digest them, and sessile
glands that absorb the resulting nutrient soup.

If a
plant is

carnivorous
, then it

probably
has a

trapping
structure.

Table 1: An example of inductive reasoning in DEER dataset. We embolden the words in facts that contain the key
information to induce this rule (just to explain the relation between facts and rule, in DEER there’s no special word
annotations for fact).

ing considered in this paper has several distinctions083

considered by other reasoning tasks over text (Clark084

et al., 2020; Bhagavatula et al., 2020; Sinha et al.,085

2019). We defer a more detailed discussion to §2.086

With natural language as representation and087

PLMs as the reasoner, such an inductive reason-088

ing system can avoid the systematic disadvantages089

of logic language and symbolic reasoners. Specif-090

ically, with natural language as representation,091

it can naturally handle raw input as natural lan-092

guage text. In addition, different from symbolic093

methods, PLMs contain knowledge via pretrain-094

ing (Davison et al., 2019) and use embedding for095

concepts (Mikolov et al., 2013), making it less af-096

fected by input errors (Meng et al., 2021) and more097

robust to paraphrasing.098

Based on the proposed dataset, we study the099

PLM’s ability to induce (generate) natural language100

rules from natural language facts under different101

settings, such as different FOL rule types and topics102

with varying input facts and PLM model sizes.103

We also propose a new framework for this task,104

named chain-of-language-models (CoLM) which105

is shown in Figure 1. It draws insights from the106

requirements of rule induction in philosophy litera-107

ture (Norton, 2005). Specifically, CoLM consists108

of five modules all based on PLMs, where one109

model proposes rules (rule proposer M1), and the110

other four models (M2, M3, M4, M5) each classify111

whether a generated rule satisfies one particular112

requirement of induction. In our experiments, we113

find that our framework surpasses the baselines in114

terms of both automatic and human evaluations.115

To sum up, our contributions are three-fold:116

• We propose a new paradigm (task) of inducing117

natural language rules from natural language118

facts, which naturally overcomes three system-119

atic disadvantages of past works on inductive120

reasoning. In particular, we create a first-of-121

its-kind natural language inductive reasoning 122

dataset DEER containing 1.2k rule-fact pairs, 123

where fact and rule are both written in natural 124

language. New automatic metrics are also pro- 125

posed for task evaluation, which shows strong 126

consistency with human evaluation. 127

• We provide the first and comprehensive anal- 128

ysis of how well PLMs can induce natural 129

language rules from natural language facts. 130

• Drawing insights from philosophy litera- 131

ture (Norton, 2005), we propose a framework 132

for inductive reasoning. Empirically, we show 133

that it surpasses baselines substantially in both 134

automatic and human evaluations. 135

2 Related Work 136

Definition of Inductive Reasoning It is still un- 137

der debate on the definition of inductive reasoning 138

in philosophy research (Yang et al., 2023b). Here 139

we adopt Flach and Kakas (2000)’s view that an 140

inductive argument should satisfy (1) its premise 141

cannot provide conclusive support to its conclu- 142

sion since its conclusion amplify or go beyond the 143

information found in their premises; (2) its con- 144

clusion generalize over its premise in a way that 145

the conclusion can be applied to more instances 146

other than instances mentioned in its premise. An 147

example of inductive argument is that “if a white 148

ball is found in a bag, then all balls in this bag 149

are white.” In this paper, we call the premises as 150

“facts”, and conclusions as “rules”. Prior computa- 151

tional method for inductive reasoning is inductive 152

logic programming, which is introduced in §A.13. 153

Inductive Reasoning & Neural Networks 154

Sinha et al. (2019) proposes CLUTRR dataset, but 155

a set of facts that can make conclusive support 156

to the target kinship relation is included in back- 157

ground information, hence require to perform de- 158
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ductive reasoning instead of inductive reasoning.159

Inductive relation induction task (Teru et al., 2020;160

Misra et al., 2022) focuses on prediction of relation161

that involves unseen entities, which only involves162

an induction from specific entities to specific en-163

tities, where we focus on the induction from spe-164

cific entities or individual phenomenons to general165

knowledge. Yang and Deng (2021) also works on166

rule induction, but their induced rule is not in real167

natural language, and uses symbolic reasoners.168

Relation with Other Reasoning Tasks The goal169

is quite different from (1) deductive reasoning as170

given facts and rules and reach to new facts (Clark171

et al., 2020) (2) abductive reasoning as given facts172

and finding the casual reasons for the facts (Bha-173

gavatula et al., 2020). Rather, we want to induce174

rules (from facts) that generalize over fact itself175

and possibly can fit other circumstances.176

3 Dataset Collection and New Metrics177

In this section, we discuss the data collection pro-178

cess for our proposed dataset, and our proposed179

metrics for automatic and human evaluation.180

In general, we propose two datasets. The first181

one, named DEER (inDuctive rEasoning with nat-182

ural languagE Representation), contains 1.2k rule-183

fact pairs, where rules are written by human an-184

notators in English, and facts are existing English185

sentences on the web. The other one, named DEER-186

LET (classification of inDucEd rulEs with natuRal187

LanguagE representaTion), including (fact, rule,188

label0, label1, label2, label3) tuples, where facts189

are the same as in DEER, rules are generated out-190

put from PLMs, and label0/1/2/3 are classification191

labels describing different aspects of induced rules.192

Specifically, rules in DEERLET are collected from193

GPT-J (Wang and Komatsuzaki, 2021) using the194

in-context learning setting. We choose this setting195

because (1) GPT-J in this setting can generate many196

reasonable rules, and (2) not all generated rules are197

correct so that the annotations on the generated198

rules are valuable to be used for fine-tuning. Over-199

all, DEER is used as the main dataset for the task,200

and DEERLET is used to measure the classification201

performance of specific capabilities described in202

§3.2.203

3.1 Dataset Collection of DEER204

Collected by a human expert (the first author),205

DEER contains 1.2k natural language rule-fact206

pairs where rules cover 6 topics and 4 common rule207

Rule Template
(First Order Logic)

Rule Template
(Natural Language)

∀x, condition(x) =⇒ conclusion If __, then __.
∃x, condition(x) =⇒ conclusion There exists __, which __.

∀x, condition(x) [∧ condition(x)]+

=⇒ conclusion
If __ and __, then __.

∀x, condition(x) [∨ condition(x)]+

=⇒ conclusion
If __ or __, then __.

Table 2: The mapping relation between basic first-order
logic rule template and natural language rule template.

types of FOL. The 6 topics are zoology, botany, ge- 208

ology, astronomy, history, and physics. Shown in 209

Table 2, sequentially the 4 FOL rule types are impli- 210

cations with universal quantifier, implications with 211

existential quantifier, conjunctive implications with 212

universal quantifier, and disjunctive implications 213

with universal quantifier. In practice we collect 214

rules with the natural language rule templates. 215

Natural language rule is firstly written by a hu- 216

man expert, then for each rule 6 supporting facts (3 217

long facts and 3 short facts) are collected from ex- 218

isting human-written text from commercial search 219

engines and Wikipedia. Long facts are paragraphs 220

collected from different web pages to for more dif- 221

ference, and short facts are core sentences selected 222

from corresponding long facts. Each fact itself 223

should contain enough information that is possible 224

to induce the full corresponding rule (an example 225

is shown in Table 1). 226

To validate the correctness of the DEER dataset, 227

we randomly split DEER data to 4 subsets, and 228

4 graduate students manually check each of the 229

subsets on whether each fact contains enough in- 230

formation that is possible to induce the given rule. 231

The overall correctness of DEER is 95.5%. 232

The reason that DEER is not larger is that it 233

requires experts who are familiar enough with in- 234

ductive reasoning and possesses a relatively high 235

level of science knowledge to annotate. 236

3.2 Dataset Collection of DEERLET 237

DEERLET is a dataset collected by a human ex- 238

pert (the first author) in inductive reasoning for 239

classification tasks to evaluate the specific capabil- 240

ities required by inductive reasoning. It contains 241

846 tuples with format (fact, rule, label0, label1, 242

label2, label3). Among the tuples, 546 are used 243

for training, 100 for validation, and 200 for testing. 244

Here, facts are directly from DEER, and the corre- 245

sponding rules are collected from PLMs. Label0 246

to label3 are classification labels evaluating spe- 247
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Generated rules
with top

0%∼top10%
METEOR

Generated rules
with top

10%∼top20%
METEOR

...
Generated rules

with top
90%∼top100%

METEOR

Weight weight0(45) weight1(35) ... weight9(−45)
Recall recall0 recall11 ... recall9

Table 3: Illustration of the weights and recalls in WRe-
call, one of our proposed automatic evaluation metrics.
Here weights reflect the importance of blocks of gener-
ated rules.

cific aspects of the generated rules. The reason in248

DEERLET we collect rules from the generation of249

PLMs is that we want to avoid human annotation250

biases (Amidei et al., 2020).251

We develop label 0/1/2 based on the require-252

ments of induced rules in philosophy litera-253

ture (Norton, 2005), and develop label 3 based254

on a NLP aspect. In particular, label0 measures255

whether a rule is not in conflict with its fact; label1256

measures whether a rule fits commonsense; label2257

measures whether a rule is more general than its258

fact, as inductive reasoning is “ampliative”, and259

requires the induced rule to have higher coverage260

than facts (Norton, 2005). More details on label2261

is illustrated in §A.10. Label3 measures whether262

a rule is not trivial (mostly incomplete sentence or263

the latter part is a repetition of its former part).264

Inspired by Obeid and Hoque (2020), label 0/1/2265

are annotated on a 3-point scale (true / partially266

true / false), and label 3 are annotated on a 2-point267

scale (true / false). More details on annotation of268

DEERLET are illustrated in §A.5.269

3.3 Adopted & New Evaluation Metrics270

3.3.1 Human Evaluation Metric271

DEERLET provides human annotations for eval-272

uation of the generated rules from four different273

aspects. Here we use precision / recall / f1, and the274

four aspects in DEERLET for human evaluation.275

3.3.2 Automatic Evaluation Metric276

For the DEER dataset, as it requires generating277

rules based on input facts, the first metric we278

adopt is METEOR (Banerjee and Lavie, 2005),279

which has been widely used for evaluating machine-280

generated text quality. §A.7 compares METEOR281

and BLEU (Papineni et al., 2002), and illustrates282

the reasons why METEOR should be a better met-283

ric for this task. More specifically, we calculate the284

averaged METEOR score of the generated rules285

(after filtering, if a model had a filtering phase).286

From the observation that even humans still con- 287

stantly make mistakes on inductive reasoning, we 288

assume any framework for this task might (but not 289

necessarily) contain two phases as generation and 290

filtering to obtain higher performance. However, if 291

with a filtering phase, METEOR only considers the 292

rules that are not filtered. 293

It makes the METEOR metric here a similar 294

metric to “precision”, as it only calculates the score 295

for rules that are classified as “true”. As a result, the 296

model might have a low recall in that it might only 297

keep the rule with the highest confidence score, and 298

classify many reasonable good rules as “false”. 299

To measure the “recall” of inductive reasoning 300

models, we propose “weighted recall (WRecall)” 301

as the second automatic evaluation metric for this 302

task. The difficulty lies in that we don’t have the 303

ground truth labels for generated rules without hu- 304

man evaluation. To calculate WRecall, we make 305

an assumption, which is that the higher METEOR 306

a rule has, generally the higher probability it is a 307

reasonable rule for given facts. This assumption 308

is reasonable given the relatively high correlation 309

coefficient between METEOR and human evalu- 310

ation shown in §A.7. Specifically, as shown in 311

table 3, we can first calculate the METEOR for 312

each generated rule, and sort them based on the 313

value of METEOR. Then we calculate the recall 314

value for each block of generated rules, during 315

which we assume only the rules in that block have 316

“true” ground truth label. We also add a linearly 317

changing weight for each block according to their 318

importance. To ensure WRecall is in the range 319

[0,1], WRecall is linearly normalized: 320

WRecall =

∑9
i=0 weighti ∗ recalli + 125

250
(1) 321

Now that we have a METEOR metric that 322

provides a similar measurement of “preci- 323

sion”, and WRecall for “recall”, we propose 324

GREEN (GeometRic mEan of METEOR aNd 325

WRecall) to consider METEOR and WRecall to- 326

gether. It is defined as a geometric mean instead of 327

a harmonic mean because METEOR is not in the 328

range [0, 1]. More specifically, 329

GREEN =
√
METEOR ∗ WRecall (2) 330

In general, compared with METEOR, GREEN 331

gives a more comprehensive evaluation of the in- 332

duced rules. Therefore GREEN can be a more 333

favorable metric when the recall is an important fac- 334

tor (e.g., computational power is limited). However, 335
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Fact(s)

Rule Proposer

Module 1

Generalization

Checker

𝑃𝑀4(𝑓𝑎𝑐𝑡|𝑟𝑢𝑙𝑒)

Module 4  
Deductive 

Consistency 

Evaluator

𝑃𝑀2(𝑓𝑎𝑐𝑡|𝑟𝑢𝑙𝑒)

Module 2

Indiscriminate 

Confirmation

Handler

𝑃𝑀3(𝑟𝑢𝑙𝑒)

Module 3

Rules Rules Rules Rules Triviality

Detector

𝑃𝑀5(𝑟𝑢𝑙𝑒)

Module 5  

Rules

E.g., Three facts in Table 1

If a plant is carnivorous, 

then it does not have a 

trapping structure.

If a plant is carnivorous, 

then it uses traps with 

sharpened bamboos.

If Drosera is carnivorous, 

then it uses traps to catch 

insects.

If a plant is carnivorous, 

then it is carnivorous.

If a plant has

a trapping

mechanism,

then it 

probably will 

attract 

insects and 

other small 

creatures to 

obtain 

nutrients.

Figure 1: Our proposed framework (CoLM) for inductive reasoning with natural language representation task. Rule
Proposer is a generative model based on input facts and desired rule template, aiming at generating (a large number
of) rule candidates. Deductive consistency evaluator, indiscriminate confirmation handler, generalization checker,
and triviality detector are classification models that filter improper rules according to four requirements of the
induced rules in inductive reasoning. Texts with ✗ are representative filtered rules for each module.

when the precision of the induced rules is more fa-336

vored, METEOR should be a more proper metric337

than GREEN. §A.6 discusses more on the impor-338

tance of each metric for this task. More discussions339

on the usage of automatic evaluation metrics and340

how should we interpret the results of automatic341

metrics can be found in §A.8.342

4 Methodology343

In this section, we formally present the task def-344

inition and our proposed framework for natural345

language inductive reasoning. Figure 1 illustrates346

the general architecture of our proposed approach.347

4.1 Task Definition348

DEER dataset is used as the dataset for the natu-349

ral language inductive reasoning task. The data350

format for DEER is (rule, fact), where both rule351

and fact are natural language sentences. The goal352

of the task is to generate reasonable natural lan-353

guage rules given fact in an inductive reasoning354

way (the rules should be more general and therefore355

cover more information than fact).356

4.2 Our Framework357

Hypothetical Induction is an important induction358

type in inductive reasoning (Norton, 2005). It can359

be understood as when people make observations,360

they might propose a hypothesis as a general rule361

that can entail the observations. For example, when362

people observe that the Sun rises and falls every363

day, they might induce a hypothesis that the Earth364

is rotating itself, which is more general than the365

observations as the hypothesis can also help to ex-366

plain the observable movements of the other Milky367

Way stars relative to the Earth.368

Hypothetical induction fits our task well, as in369

DEER we also want to induce a hypothesis as a370

more general rule that can entail the facts. We 371

borrow insights from the requirements for the in- 372

duced rules in hypothetical induction to develop 373

our framework. Specifically, there are mainly three 374

requirements (Salmon, 1989; Norton, 2005). The 375

first is that a correct hypothesis should be able to 376

entail deductively as many observations as possible. 377

The second is that the hypothesis should follow the 378

laws of nature, as one could always concoct some 379

imaginary hypothesis that is able to explain the 380

observations but violates reality (e.g., the Earth is 381

the center of the Universe so that the Sun orbits 382

around the Earth). In inductive reasoning, the fail- 383

ure to recognize a rule that runs counter to reality is 384

called “indiscriminate confirmation”. The third is 385

a basic requirement for inductive reasoning, where 386

the hypothesis should be a more general statement 387

than the observations (Appendix A.10 illustrates 388

the meaning of “general”). We additionally intro- 389

duce a fourth requirement from NLP aspects since 390

this task uses natural language as knowledge repre- 391

sentation. It is that a rule should not be trivial (e.g. 392

incomplete sentence or the latter sub-sentence sim- 393

ply repeats its former sub-sentence). 394

More concretely, we define the requirements for 395

designing our framework as 1) there should be as 396

fewer contradictions between facts and the rule 397

as possible, and 2) the rule should comply with 398

commonsense, 3) the content in facts should be 399

relevant specific statements that are covered by the 400

rule, 4) the rule should not be trivial. 401

Based on this, we develop our framework as 402

shown in Figure 1. It consists of five modules, 403

where module 1 (M1) is the rule proposer, module 404

2 (M2) is the deductive consistency evaluator, mod- 405

ule 3 (M3) is the indiscriminate confirmation han- 406

dler, module 4 (M4) is the generalization checker, 407

and module 5 (M5) is the triviality detector. Specif- 408
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ically, M1 is in charge of the generation of rules.409

M2, M3, M4, M5 are independent classification410

models each verifying rules with different require-411

ment. The role of M2/3/4/5 is similar to the verifier412

developed for deductive reasoning to make more413

solid reasoning steps (Yang et al., 2022). The in-414

dependence of M2/3/4/5 makes it possible to run415

them in parallel.416

In practice, we implement all five modules417

with PLMs. We call our implementation as418

CoLM (Chain-of-Language-Models). The goal of419

M1 is to generate rules based on the input facts and420

a given rule template. Thus, M1’s input contains421

facts, a rule template, and prompts that demonstrate422

the rule induction task.M2 and M4’s inputs include423

prompts that explain the rule-fact compatibility, a424

rule, and fact(s); M3 and M5’s inputs include again425

prompts that explain the task and a rule, as their426

targets are independent of fact.427

More interestingly, although our framework428

is solely based on the insights from philosophy429

literature, we also find a mathematical interpre-430

tation of this approach. Here, we denote P (A)431

as the probability indicating whether A is valid432

for simplicity. Thus, M2 and M4 jointly measure433

the validness of a fact given the corresponding434

rule P (fact|rule) ≈ PM24(fact|rule) =435

PM2(fact|rule)PM4(fact|rule), M3 and436

M5 directly measure the validness of the437

rule itself P (rule) ≈ PM35(rule) =438

PM3(rule)PM5(rule). Here PM24 and PM35 are439

parameterized as the product of two corresponding440

probabilities. By using Bayes’ rule, we can easily441

show that the validness of a rule based on the442

input fact is (here we omit P (facts) since it is a443

constant value)444

P (rule|fact) ≈ PM24(fact|rule)PM35(rule). (3)445

Note that this score is merely a discrimination score446

and thus different from the generation probability447

from M1. In other words, the rules proposed by448

M1 are then selected by M2/3/4/5 in a Bayesian449

inference fashion.450

5 Experiments451

In this section, we discuss the evaluation metrics452

and baselines, and then present the main results of453

our framework (all are averaged by 5 runs).454

5.1 Evaluation Metrics455

We carry out evaluations for the framework (the456

rule generation task with DEER) and individual457

modules for classification using DEERLET. 458

For evaluation of the rule generation of the over- 459

all framework, we use METEOR, WRecall, and 460

GREEN as automatic evaluation metrics; And 461

use precision, recall, f1, and the four metrics in 462

DEERLET as human evaluation metrics. WRecall, 463

GREEN, and the four metrics in DEERLET are our 464

newly proposed metrics for inductive reasoning 465

introduced in §3.3. 466

For evaluation of the classification tasks on 467

DEERLET, we use accuracy, f1, and averaged pre- 468

cision as metrics. 469

5.2 Baselines 470

We use a non-neural method and a neural method 471

as baselines for the framework. We call the non- 472

neural baseline “R+F”, as it randomly fills the given 473

rule template with sentences or phases from the 474

given fact. The neural baseline we use is the rule 475

proposer itself in Figure 1. 476

We use majority class and TF-IDF (Jones, 2004) 477

as baselines for individual modules. The major- 478

ity class baseline always predicts “yes”, which is 479

equivalent to not using M2/3/4/5 to filter rules from 480

M1. TF-IDF is another reasonable baseline as the 481

induced rules contain similar contents compared 482

to input facts. In practice, each input fact-rule pair 483

is assigned a TF-IDF value, and a threshold for 484

correctness (to compare with the TF-IDF value) is 485

tuned on the DEERLET validation set. 486

5.3 Main Results 487

All modules are implemented with GPT-J (Wang 488

and Komatsuzaki, 2021), a pre-trained language 489

model with 6 billion parameters. Results on other 490

LLMs such as LLaMA (Touvron et al., 2023) can 491

be found in §A.9. For better analysis, we con- 492

duct the experiments in two settings, including in- 493

context learning setting (Liu et al., 2021; Brown 494

et al., 2020) and finetuning setting. The only ex- 495

ception is that we do not test finetuning setting 496

on M1 (the only generative module), since we are 497

mainly investigating (out-of-box) PLM’s ability. 498

However if with finetuning, language model might 499

perform worse on out-of-distribution data and lose 500

their generality for input facts from different top- 501

ics (Kumar et al., 2022). For this reason we do not 502

implement with T5 (Raffel et al., 2020). 503

We report the results of in-context learning set- 504

ting and finetuning setting in Table 4 and Table 8. 505

The thresholds of M2/3/4/5 used in Table 4 and 506

Table 8 are tuned on the DEERLET validation set. 507
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Models METEOR WRecall GREEN Precision (%) Recall (%) F1 Consistent Commonsense General Non-trivial

R+F 11.20 0.50 2.37 9.0 100.0 0.17 0.90 0.15 0.28 0.85
M1 25.49 0.50 3.57 45.0 100.0 0.62 0.63 0.60 0.83 0.86

M1 + M2 25.77 / 27.71 0.52 / 0.59 3.64 / 4.04 45.9 / 59.8 87.8 / 71.1 0.60 / 0.65 0.63 / 0.75 0.62 / 0.72 0.83 / 0.92 0.86 / 0.94
M1 + M3 25.57 / 27.44 0.50 / 0.59 3.59 / 4.03 45.2 / 60.2 84.4 / 75.6 0.59 / 0.67 0.63 / 0.77 0.60 / 0.74 0.83 / 0.89 0.87 / 0.91
M1 + M4 25.84 / 26.90 0.51 / 0.59 3.62 / 3.99 48.5 / 53.3 92.2 / 88.9 0.64 / 0.67 0.64 / 0.67 0.64 / 0.65 0.84 / 0.91 0.88 / 0.89
M1 + M5 25.54 / 25.97 0.50 / 0.53 3.58 / 3.72 46.1 / 48.1 97.8 / 97.8 0.63 / 0.65 0.64 / 0.66 0.61 / 0.63 0.83 / 0.83 0.88 / 0.91

CoLM 26.30† / 29.07† 0.53 / 0.57† 3.74†/4.08† 48.1 / 70.0 72.2 / 54.4 0.58 / 0.61 0.65 / 0.81 0.64 / 0.80 0.84 / 0.94 0.90 / 0.97

Table 4: Result of CoLM and baselines on DEER under in-context learning / finetuning setting. The first three
metrics are automatic metrics, and the last seven metrics are human evaluation metrics. † indicates that the difference
compared to M1 is statistically significant (p < 0.05) using Bootstrap method(Berg-Kirkpatrick et al., 2012).

More details on setting up thresholds are illustrated508

in §A.11. The results on DEER are shown in Ta-509

ble 4. As expected, the M1 alone outperforms510

the R+F baseline across the board, indicating that511

the PLM has some rule induction capability. Aug-512

menting the M1 with some filtering mechanism513

can reliably improve the generated rule quality fur-514

ther. Lastly, our full model, CoLM, outperforms515

all baselines justifying the effectiveness of our pro-516

posed framework for natural language inductive517

reasoning. Due to page limit, DEERLET results518

are analyzed in § A.2.519

6 Analysis520

In this section, we investigate the question of “how521

well can pretrained language models perform induc-522

tive reasoning?”. Specifically, we provide analyses523

in terms of rule types, topics, variations of input524

fact, and scales of language models. Except for525

Table 7, the input used is short fact, 3 fact, full fact.526

Except for Table 2, the model used is GPT-J. All ex-527

periments in this section are based on the in-context528

learning setting, each averaged by 5 runs. Similar529

trends are also observed in other settings (analysis530

for finetuning setting can be found in §A.15). We531

report METEOR and GREEN as metrics in this532

section. In addition to analyses with automatic533

evaluation results in this section, we also manu-534

ally analyze the failure cases of CoLM in §A.3, by535

classifying error types and give a statistics on the536

percentage of the identified error types.537

6.1 Different Rule Types538

Table 5 shows the breakdown evaluation of CoLM539

based on four basic rule types in logic lan-540

guage (Russell and Norvig, 2020). The mapping541

between the logic forms and corresponding natural542

language templates can be found in Table 2. The543

table shows that “there exists _, which _” achieves544

the best performance. It is reasonable, as simply545

Models If __,
then __.

There exists __,
which __.

If __ and __,
then __.

If __ or __,
then __.

R+F 9.87 / 2.22 17.45 / 2.95 10.63 / 2.30 12.53/ 2.50
M1 22.65 / 3.37 31.92 / 4.00 26.25 / 3.62 28.75 / 3.79

M1+M2 22.90 / 3.44 33.04 / 4.38 26.44 / 3.66 28.61 / 3.72
M1+M3 23.01 / 3.48 32.16 / 3.99 25.69 / 3.44 29.03 / 3.87
M1+M4 22.43 / 3.26 32.44 / 4.18 27.15 / 3.75 29.21 / 3.94
M1+M5 22.70 / 3.38 32.47 / 4.14 26.27 / 3.63 28.72 / 3.79
CoLM 23.23 / 3.51 33.46 / 4.38 27.06 / 3.73 29.20 / 3.92

Table 5: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with different rule
templates.

Models Zoology Botany Astronomy Geology History Physics

R+F 9.65 / 2.20 10.24 / 2.26 13.09 / 2.56 13.28 / 2.58 11.07 / 2.35 11.44 / 2.39
M1 29.29 / 3.83 30.47 / 3.90 34.01 / 4.12 28.28 / 3.83 23.61 / 3.44 18.69 / 3.06

M1+M2 30.01 / 4.04 30.34 / 3.84 34.34 / 4.21 28.40 / 3.79 23.79 / 3.49 19.04 / 3.18
M1+M3 29.06 / 3.70 30.40 / 3.88 33.37 / 3.90 28.55 / 3.84 23.83 / 3.49 19.00 / 3.19
M1+M4 29.95 / 3.94 31.02 / 4.03 34.26 / 4.19 28.81 / 3.96 24.47 / 3.63 18.76 / 3.10
M1+M5 29.34 / 3.84 30.47 / 3.91 34.12 / 4.15 28.40 / 3.79 23.53 / 3.39 18.77 / 3.07
CoLM 29.92 / 3.88 30.93 / 4.00 34.06 / 4.11 28.95 / 3.94 24.94 / 3.71 19.54 / 3.35

Table 6: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in under different topics.

copying the contents of facts to compose a rule will 546

be acceptable for ∃ quantifier in logic. 547

6.2 Different Topics 548

Table 6 shows the performance of CoLM over dif- 549

ferent topics. CoLM performs much worse on His- 550

tory and Physics than the other topics. We attribute 551

it to that the rules in history and physics have high 552

variance, demand a higher level of abstraction, and 553

are not very similar to the input facts. For exam- 554

ple, in physics, many rules are natural language 555

descriptions of physical laws such as Newton’s law 556

of universal gravitation, while the input facts might 557

be the values of gravitational force and mass of 558

specific objects. In contrast, CoLM achieves better 559

performance in Botany. One possible reason is that 560

many rules in botany can be very similar to the 561

input facts (an example is shown in Table 1). 562
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Models Long facts
1 full facts

Short facts
1 full facts

Short facts
2 full facts

Short facts
3 full facts

Short facts
3 missing facts

R+F 9.35 / 2.16 10.87 / 2.33 11.16 / 2.36 11.20 / 2.37 11.52 / 2.40
M1 23.79 / 3.45 25.13 / 3.54 25.65 / 3.58 25.49 / 3.57 25.11 / 3.54

M1+M2 24.00 / 3.50 25.36 / 3.63 25.89 / 3.64 25.77 / 3.64 25.30 / 3.59
M1+M3 23.94 / 3.49 25.39 / 3.61 25.87 / 3.63 25.57 / 3.59 25.33 / 3.62
M1+M4 23.92 / 3.44 25.27 / 3.55 25.93 / 3.62 25.84 / 3.62 25.35 / 3.55
M1+M5 23.80 / 3.46 25.30 / 3.61 25.74 / 3.61 25.54 / 3.58 25.15 / 3.56
CoLM 24.15 / 3.50 25.79 / 3.68 26.48 / 3.76 26.30 / 3.74 25.73 / 3.66

Table 7: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) with different input
lengths and whether fact contains enough information.

GPT-Neo 
125M

GPT-Neo 
1.3B

GPT-Neo 
2.7B

GPT-J 6B
GPT-NeoX
20B

Number of parameters

M
ET

EO
R

Figure 2: Influence of the scale of PLM on inductive
reasoning task with DEER (measured with METEOR).

6.3 Variations of Input Facts563

In table 7, long facts mean the paragraph-level facts564

in DEER, and short facts mean the core sentence-565

level facts selected from corresponding paragraph-566

level facts. The different number of facts indicates567

the different number of facts given as input that ex-568

hibit similar rule patterns (e.g. Lemon tree / orange569

tree / apple tree can conduct photosynthesis). We570

consider the number of facts as an important factor571

because psychological research shows that more572

facts with similar patterns can help with inductive573

reasoning (Heit, 2000). Missing fact experiments574

are also conducted, where for each fact we ran-575

domly throw the former half or the latter half of576

the sentences. It is an important setting as it is577

hard for the input facts to cover all the elements of578

the desired rule in a realistic scenario. As a result,579

it might be common that some required pieces of580

fact are missing. The results indicate that larger581

number of concise but full facts are beneficial for582

rule induction, while too many facts with similar583

patterns might not be helpful.584

6.4 Different Scales of PLMs585

Figure 2 shows the influence of the scale of pre-586

trained language models (under in-context learn-587

ing setting) on induction. Here, we consider GPT-588

Neo 125M, GPT-Neo 1.3B, GPT-Neo 2.7B, GPT-J589

Conflict with Facts
4% Not Fits 

Commonsense
15%

Not General
9%

Trivial
11%

Correct
35%

Correct but less 
informative

10%

Correct but not 
very related

5%

Correct but not 
completely

6%

Meaningless
5%

Figure 3: Error Analysis of CoLM with finetuned Mod-
ule 2/3/4/5. In total 100 rules are manually checked.

6B and GPT-NeoX 20B (Wang and Komatsuzaki, 590

2021). The figure shows that generally perfor- 591

mance of M1 steadily improves as the scale being 592

larger, and M2/3/4/5 are only helpful since 6B pa- 593

rameters. The only exception is that both M1 and 594

M2/3/4/5 might reach a plateau in 20B parameters. 595

6.5 Error Analysis 596

We sampled 100 rules from CoLM (rules that gen- 597

erated by M1 and pass all M2/3/4/5), and have 598

conducted an error analysis of the samples. Fig- 599

ure 3 shows the results. Among them, “Conflict 600

with Facts”, “Not Fits Commonsense”, “Not Gen- 601

eral”, and “Trivial” corresponds to the rules that 602

should be filtered by CoLM but not. We find that 603

beyond “Correct” and errors made by classifica- 604

tion modules, there are also some other classes that 605

worth mentioning, but they could be seen as other 606

kinds of “Trivial”. This figure shows that the four 607

criteria we proposed are important for verification. 608

7 Conclusion 609

To overcome the systematic problems of using 610

logic language for inductive reasoning, we pro- 611

pose a new paradigm (task) of inducing natural 612

language rules from natural language facts, and 613

correspondingly propose a dataset DEER and new 614

evaluation metrics for this task. We provide the 615

first and comprehensive analysis of pretrained lan- 616

guage models’ ability to induce natural language 617

rules from natural language facts. We also propose 618

a new framework drawing insights from philosophy 619

literature, which show in the experiment section 620

that surpasses baselines in both automatic and hu- 621

man evaluations. 622
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8 Limitations623

In this work, the size of dataset (DEER) con-624

tains 1.2k fact-rule pairs, which is relatively625

smaller to a relevant deductive reasoning dataset626

RaraRules (Clark et al., 2020), which contains 40k627

data. However, RaraRules is an automatically gen-628

erated synthetic dataset, which is not consistent629

with the real world (e.g., Tom is blue, blue people630

are smart), while DEER requires the annotator to631

(1) acquire deep and broad understanding of scien-632

tific knowledge (to write rules, which mostly are633

scientific knowledge from zoology, botany, geom-634

etry, astronomy, history, and physics), and (2) be635

enough familiar with inductive reasoning. There-636

fore, only expert should be considered for the an-637

notation of inductive reasoning dataset like DEER638

and DEERLET (here DEER and DEERLET are639

all collected by the first author, who has enough640

scientific knowledge and is familiar enough with641

inductive reasoning).642

Instead, DEER should be compared to643

FOLIO (Han et al., 2022) (1.4k), Entail-644

mentBank (Dalvi et al., 2021) (1.8k), and645

ENWN (Sprague et al., 2022) (100). The reason is646

that, similar to DEER and DEERLET, these deduc-647

tive reasoning datasets are also consistent with the648

real world, and are also collected by expert.649

9 Ethics Statement650

This article follows the ACL Code of Ethics. To our651

best knowledge, there are no foreseeable potential652

risks to use the datasets and methods in this paper.653
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A Appendix891

A.1 Hyperparameters892

For finetuning experiments, we use learning rate893

1e-5; weight decay 0.1; adam epsilon 1e-8; batch894

Metrics Accuracy (%) F1 Averaged Precision

Deductive Consistency Evaluator (M2)

Majority class 62.5 0.77 0.63
TF-IDF 62.5 0.77 0.69

GPT-J 61.5 / 74.0 0.71 / 0.83 0.75 / 0.83
Indiscriminate Conformation Handler (M3)

Majority class 60.0 0.75 0.60
TF-IDF 60.0 0.75 0.64

GPT-J 56.0 / 70.5 0.57 / 0.77 0.66 / 0.79
Generalization Checker (M4)

Majority class 83.0 0.91 0.83
TF-IDF 83.0 0.91 0.86

GPT-J 71.0 / 86.0 0.82 / 0.92 0.87 / 0.97
Triviality Detector (M5)

Majority class 86.0 0.93 0.86
TF-IDF 86.0 0.93 0.90

GPT-J 78.5 / 89.5 0.87 / 0.94 0.89 / 0.94

Table 8: Results on DEERLET for different modules
under in-context learning / finetuning settings.

size 4; and early stopping with accuracy as the 895

metric. We perform our experiments on RTXA6K 896

GPU. We use nltk package to calculate BLEU and 897

METEOR. 898

For more specific details, we will release our 899

code and data after publication. 900

A.2 DEERLET Results 901

The results on DEERLET are summarized in Ta- 902

ble 8. In this experiment, we investigate the classifi- 903

cation performance of language models in terms of 904

different aspects required by inductive reasoning, 905

which includes deductive consistency, indiscrim- 906

inate confirmation, and generalization / triviality 907

classification. It shows that TF-IDF achieves the 908

same performance with majority class baseline in 909

accuracy and f1 metrics. The reason is that the best 910

thresholds obtained for TF-IDF are all zero, which 911

means that TF-IDF value is not effective for the 912

four tasks. It also shows that with in-context learn- 913

ing GPTJ performs worse than the majority class 914

baseline, while finetuned GPTJ steadily performs 915

better. 916

A.3 Failure Analysis 917

We sampled 100 rules from CoLM (rules that gen- 918

erated by M1 and pass all M2/3/4/5), and have con- 919

ducted an error analysis of the samples. Figure 3 920

shows the results. 921

Among them, “Conflict with Facts”, “Not Fits 922

Commonsense”, “Not General”, and “Trivial” cor- 923

responds to the rules that should be filtered by 924
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CoLM but not. However, we find that beyond “Cor-925

rect” and errors made by classification modules,926

there are also some other classes that worth men-927

tioning.928

“Correct but less informative” means some facts929

that is not trivial (by our former description of trivi-930

ality – incomplete sentences or the conclusion sim-931

ply repeats some part of premises.), not incorrect,932

but not very informative. Examples include “if a933

bird can help a plant to reproduce, then it is prob-934

ably a good thing for the plant”, and “if a land is935

green, then it probably contains forests”.936

“Correct but not very related” means although937

the rule is correct, but it is not very related to the938

facts given. For example, the facts are only about939

the depth and shape of Marianas Trench, while940

the rule is “if there exists a place with a greater941

depth, then it is possible to find something strange942

and interesting” (the “find something strange and943

interesting” aspect is not mentioned in facts).944

“Correct but not completely” means the rule is945

somewhat to mostly correct, such as “if a fruit has946

a strong smell, then it probably tastes good” (while947

facts are about durian, champedek, and morinda948

citrifolia); “if an economy is based on textiles, then949

it might experience an industrial revolution” (this950

rule is only true during a specific period of time951

in history); “if a wire moves, then it might induce952

voltage in the conductor” (this rule is only true if953

given magnetic fields).954

“Meaningless” means the rule is from a strange955

angle and it’s hard to justify whether it is correct or956

not, such as “if an event has a positive impact on957

an individual and on family, then the impact on the958

family is greater”, and “if a man has experienced959

hardships and life has been tough, then he might960

be able to understand and change his ways in the961

future”.962

A.4 More Details on Difference with Other963

Reasoning Tasks964

In this paper, we strictly follows the definition and965

categorization of logical reasoning (including de-966

ductive, inductive, and abductive reasoning) in a967

survey of logical reasoning (Yang et al., 2023b).968

A.5 Annotation Details for DEERLET969

In DEERLET, given fact(s) and a rule, the anno-970

tation targets are whether the rule satisfies four971

requirements.972

Specifically, the requirements are “if the rule is973

deductively consistent with the fact”, “if the rule974

fits commonsense”, “if the rule is more general 975

than the fact”, and “if the rule is not trivial”. 976

The first three requirements are annotated on a 977

3-point scale (true / partially true / false), and the 978

last is annotated on a 2-point scale (true / false). 979

Here we explain the standards of annotation on 980

the four requirements. 981

For “if the rule is deductively consistent with the 982

fact”, a 2-point will be assigned if the rule is totally 983

relevant and consistent with the facts; a 1-point will 984

be assigned if the rule introduces new information 985

that does not show in facts but is consistent with the 986

given fact as well as some limited amount of com- 987

monsense knowledge related to the facts; a 0-point 988

will be assigned if the rule is (1) in conflict with 989

given facts or (2) totally irrelevant to given facts 990

or (3) introduces new information that is obviously 991

wrong. 992

For “if the rule fits commonsense”, a 2-point will 993

be assigned if the rule totally fits commonsense; a 1- 994

point will be assigned if the rule fits commonsense 995

at most of the time; a 0-point will be assigned if (1) 996

the rule is totally incorrect or (2) the rule is only 997

occasionally correct. 998

For “if the rule is more general than the fact”, a 2- 999

point will be assigned if (1) the rule is more general 1000

than the facts or (2) it is obvious that the rule is 1001

trying to be more general than the facts; a 1-point 1002

will be assigned if (1) it is even hard for humans 1003

to induce a more general rule from the given facts 1004

or (2) the rule copies part of the given facts that 1005

are already containing very general information; a 1006

0-point will be assigned if (1) from the facts it’s 1007

easy for humans to induce a more general rule but 1008

the rule is not more general or (2) the rule is totally 1009

irrelevant to the facts. 1010

For “if the rule is not trivial”, a 0-point will be 1011

assigned if (1) the rule is an incomplete sentence or 1012

(2) the latter sub-sentence of the rule only repeats 1013

the information in the former sub-sentence of the 1014

rule; otherwise, a 1-point will be assigned. 1015

A.6 METEOR or GREEN? 1016

Since inductive reasoning over natural language 1017

is a new task, and new metrics are designed (e.g., 1018

WRecall, GREEN), it is important to understand 1019

which aspects each metric focus on and which met- 1020

ric should we pay more attention to. 1021

As mentioned in §3.3, METEOR can be seen as 1022

evaluating the “precision” of the final rules, while 1023

GREEN evaluates “precision” and “recall” at the 1024

same time. 1025
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However, it should be aware that the “recall”1026

here is not as important as the “recall” in other1027

tasks. More specifically, here “recall” measures1028

how many good rules generated by M1 are filtered1029

by M2/3/4/5. However, we can use M1 to generate1030

a large number of rules, and as long as CoLM has1031

good precision, it is easy to obtain a large number1032

of high-quality rules, especially considering that1033

the computational cost of only inference of M1 is1034

relatively very low.1035

Based on this observation, we argue that “pre-1036

cision” should be a much more important aspect1037

of evaluation compared to “recall” (measured by1038

WRecall) or even “f1” (measured by GREEN) for1039

this task. More specifically, “recall” can be used to1040

mainly measure at what efficiency can the system1041

obtain rules with high precision.1042

This viewpoint of evaluation metrics, of course,1043

can raise the question of whether some typical1044

kinds of rules are mostly filtered when pursuing1045

rules with high precision, and in the end inductive1046

reasoning system with high precision might only1047

be able to obtain some other typical kinds of rules.1048

We leave this question as an open question for this1049

task to solve in the future.1050

A.7 Why METEOR not BLEU1051

We choose METEOR since METEOR has a higher1052

correlation coefficient with human evaluation than1053

BLEU.1054

More specifically, on DEERLET, we calculate1055

the METEOR and BLEU for each generated rule1056

with its golden rule in DEER and collect the human1057

evaluation for the generated rule from label0/1/2/31058

annotations in DEERLET (we normalize each label1059

to [0,1] and use the product of label0/1/2/3 as the1060

overall human evaluation score for the generated1061

rule). Then, we can calculate the correlation coef-1062

ficient between METEOR / BLEU and the overall1063

human evaluation score.1064

On DEERLET, the correlation coefficient be-1065

tween METEOR and human evaluation is 0.29, it is1066

statistically significant as its p-value is 4.48 ∗ 10−6,1067

smaller than the significance level (0.05). Similarly,1068

the correlation coefficient between BLEU and hu-1069

man evaluation is 0.24, with p-value of 1.17∗10−72,1070

which is also significant.1071

We called 0.29 relatively high since in other1072

open-ended NLP tasks such as dialogue systems,1073

the Pearson correlation is typically only around1074

0.14 0.19 (shown in Table 3 in (Liu et al., 2016),1075

BLEU’s Pearson correlation is lower than ME-1076

TEOR’s in most of the time). However recent 1077

papers published in ACL 2023 on dialogue sys- 1078

tems still adopt METEOR or BLEU as automatic 1079

evaluation metrics (Li and Zhao, 2023; Zhao et al., 1080

2023; Li et al., 2023). 1081

Developing better metrics for measuring the sim- 1082

ilarity between sentences is a challenging topic in 1083

NLP. Of course, METEOR is not a “perfect” au- 1084

tomatic evaluation metric for inductive reasoning. 1085

We leave the question of “what is a better metric 1086

for inductive reasoning over natural language” as 1087

an open question for future works in the field. 1088

One good thing is that WRecall and GREEN 1089

can be applied with many metrics measuring sen- 1090

tence similarity such as METEOR and BLEU, so 1091

the evaluation of “recall” should be able to also 1092

benefit from the advance of metrics that evaluate 1093

“precision”. 1094

A.8 Difficulty in Designing Automatic 1095

Evaluation Metrics for Inductive 1096

Reasoning Tasks and How Should We 1097

Interpret the Results of Automatic 1098

Metrics 1099

Designing automatic evaluation methods for induc- 1100

tive reasoning is fundamentally difficult, mainly 1101

because of two reasons. Firstly, generalizing over 1102

existing facts is not restricted in a single way. Given 1103

existing facts, multiple rules that are very diverse 1104

from each other could all be true. Secondly, when 1105

it comes to more difficult inductive reasoning data, 1106

it is nearly inevitable to use long sentences for facts 1107

and rule, which make it even harder for common 1108

evaluation metrics such as BLEU or METEOR. 1109

However, we argue that although we don’t have 1110

perfect automatic evaluation metrics for inductive 1111

reasoning now, it is not a reason to stop explor- 1112

ing research on inductive reasoning. In fact, with 1113

the fast development of LLMs, more difficult tasks 1114

are needed to further explore the scientific bound- 1115

ary in NLP, and many recently proposed tasks are 1116

so difficult to be evaluated with automatic evalu- 1117

ation metrics that they fully rely on human evalu- 1118

ation (Zhong et al., 2023; Wang et al., 2023). In 1119

terms of human evaluation metrics, we also have 1120

proposed meaningful human evaluation metrics for 1121

inductive reasoning tasks shown in the last four 1122

columns in Table 4, which are derived from philos- 1123

ophy literature (the four requirements for induced 1124

rules, and the four requirements are also used to 1125

develop the CoLM framework). 1126

The reason we try to propose suitable automatic 1127
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evaluation metrics is that we hope to simplify1128

the evaluation process for the inductive reason-1129

ing task (at least for preliminary evaluations). We1130

have illustrated why these metrics should be rea-1131

sonable in §A.6 and §A.7. Similar to inductive1132

reasoning, abductive reasoning also have multi-1133

ple diverse correct generations, however abductive1134

reasoning generation task also utilizes METEOR1135

or BLEU (Bhagavatula et al., 2020) as automatic1136

metrics. In the future, the automatic metrics are1137

possible to be further improved with the help of1138

the community. While for now, just like other re-1139

cent difficult tasks (Zhong et al., 2023; Wang et al.,1140

2023), human evaluations are always preferred, but1141

automatic evaluation metrics, though not perfect,1142

can still be used as a fast evaluation metrics that1143

can provide some insights for experiments.1144

A.9 Results on Other LLMs1145

Table 9 shows the results of CoLM using LLaMA,1146

under in-context learning setting. Overall, CoLM1147

outperforms all baselines, but the gap between1148

M1 and CoLM are smaller. The reason is that1149

LLaMA tends to generate very sound rules, thus the1150

M2/3/4/5 of CoLM barely filter any rules. There-1151

fore the results of CoLM and M1 are closer. We1152

think there are two reasons: (1) with the fast de-1153

velopment of LLMs, our proposed dataset is less1154

challenging for more recent LLMs such as LLaMA;1155

(2) M2/3/4/5 instantiating with LLaMA have not1156

been finetuned, but just in-context learning setting.1157

Given that finetuned GPT-J largely improves GPT-1158

J under in-context learning setting in Table 4, a1159

finetuned LLaMA should be able to filer more un-1160

reasonable generations.1161

While our work takes the first step to inductive1162

reasoning in NLP and provide the first analysis,1163

introducing more challenging inductive reasoning1164

benchmarks would be beneficial to the the further1165

development of the inductive reasoning field in1166

NLP.1167

A.10 Meaning of “More General” Required1168

by Inductive Reasoning1169

Given an argument consisting of a premise and a1170

conclusion, if the conclusion involves new infor-1171

mation that is not covered by the premise and can1172

not be conclusively entailed by the premise, the1173

argument is an inductive argument (Salmon, 1989).1174

When the conclusion has a larger scope of infor-1175

mation coverage than the premise, and can entail1176

the premise, it can be said that the conclusion is1177

Model LLaMA-7B

R+F 11.20 / 2.37
M1 24.94 / 3.53

M1+M2 25.12 / 3.54
M1+M3 24.77 / 3.49
M1+M4 25.42 / 3.60
M1+M5 25.74 / 3.68
CoLM 29.37 / 3.95

Table 9: In context learning results of LLaMA, mea-
sured in METEOR and GREEN.

“more general” to the premise. In this case, we 1178

termed the premise as a “fact”, and the conclu- 1179

sion as a “rule”; When the conclusion contains new 1180

pieces of information and cannot entail the premise, 1181

as defined by Salmon (1989), the argument is still 1182

an inductive argument. But in this case, we termed 1183

the premise as a “fact”, and the conclusion as an- 1184

other “fact”. 1185

For instance, if facts that are about cats and dogs 1186

are good accompaniment of humans, then some 1187

examples of a “more general” rule can be (1) mam- 1188

mals are good accompaniment of humans, or (2) 1189

domesticated animals are good accompaniment of 1190

humans, or (3) animals with four legs are good 1191

accompaniment of human. 1192

In these examples, the rules cover a larger scope 1193

than the facts (e.g., mammals compared to cats; 1194

domesticated animals compared to cats), and there- 1195

fore the rules are “more general” than the facts. 1196

“More general” means not only about finding 1197

higher taxonomic rank, but can be in unlimited 1198

forms. For instance, if the fact is about the Sun 1199

rises and falls every day, then some examples of a 1200

“more general” rule can be (1) the Earth is the king 1201

of the universe or (2) the Earth is rotating itself. 1202

Both rule examples are “more general” than the 1203

given fact, since the rule can entail not only the 1204

given fact, but also other not mentioned facts such 1205

as the observable movements of the other stars in 1206

the Milky Way. 1207

A.11 Set up Thresholds for M2/3/4/5 1208

Setting up thresholds is an important step for our 1209

framework, since different thresholds can lead to 1210

different inductive reasoning results. We discuss 1211

the details of setting up thresholds in the section. 1212

We design the standard for setting up thresholds 1213

based on heuristics that the thresholds should be 1214

set up that each module (in M2/3/4/5) should filter 1215

some rules but a single module should not filter 1216

too many rules (in this case, since we have many 1217

14



modules, there might not remain a reasonable pro-1218

portion of rules left).1219

More specifically, given a rule (and facts),1220

M2/3/4/5 can produce a score on evaluating the1221

validity of the rule from a specific aspect. The1222

score is the ratio of the probability of the “yes” to-1223

ken and “no” token obtained from the last layer of1224

PLM. The score is in the range of [0,1].1225

We find that getting a specific threshold for each1226

module is more beneficial than using the default1227

0.5 threshold. We obtain the thresholds on the1228

DEERLET validation set.1229

More concretely, on the validation set, if there1230

exists a global optimal threshold that (1) achieves1231

the best f1 or accuracy and (2) the threshold should1232

not be very close to 0 or 1 and (3) recall is not1233

very close to 0 (when close to 1, it should not be in1234

the case that the threshold accepts nearly all gener-1235

ated rules but should be that the threshold already1236

rejects some rules), then the global optimal thresh-1237

old is adopted; if there is no such global optimal1238

threshold, then find a local optimal threshold that1239

(1) achieves the best f1 or accuracy compared to its1240

neighboring thresholds and (2) the threshold should1241

not be very close to 0 or 1, and (3) the recall range1242

is in [0.7, 0.9], then the local optimal threshold is1243

adopted.1244

A.12 More Details to Prevent Collection of1245

Generated Trivial Rules1246

We use a simple heuristic method to prevent col-1247

lection of generated trivial rules. Specifically, only1248

rules generated from Module 1 that is with more1249

than 45 tokens (not 45 words) do we pass to it1250

Module 2/3/4/5, otherwise we directly filter it.1251

The reason that we set it up is that we find gen-1252

erated rules with less than 45 tokens are mostly (if1253

not all) incomplete sentences. If we collect and1254

label these incomplete sentences to finetune Mod-1255

ule 2/3/4/5, then Module 2/3/4/5 mostly learn to1256

classify whether the rules are complete or not, but1257

not to learn the designed patterns (since the la-1258

bel0/1/2/3 in DEERLET for incomplete sentences1259

are all false).1260

For this reason, all annotated data in DEERLET1261

only use rules that contain at least 45 tokens.1262

A.13 Related Works on Inductive Logic1263

Programming1264

Inductive Logic Programming (ILP) is a subfield1265

of machine learning that uses FOL to represent1266

hypotheses and data. It relies on logic language1267

Models Specific facts General facts

R+F 10.15 / 2.25 12.79 / 2.53
M1 26.37 / 3.63 24.18 / 3.48

M1+M2 26.76 / 3.75 24.42 / 3.53
M1+M3 26.54 / 3.68 24.15 / 3.45
M1+M4 26.74 / 3.70 24.64 / 3.57
M1+M5 26.39 / 3.63 24.28 / 3.51
CoLM 27.39 / 3.86 24.89 / 3.63

Table 10: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with specific or general
input facts (Under in-context learning setting).

for knowledge representation and reasoning pur- 1268

poses (De Raedt, 2010). We propose a new 1269

paradigm that can naturally avoid three systematic 1270

disadvantages of ILP (Cropper et al., 2022). 1271

A.14 Induce Rules from General Facts and 1272

Specific Facts 1273

Sixty percent of the rules in DEER are more gen- 1274

eral than any of their facts alone at least in one 1275

dimension. We describe this process as “inducing 1276

general rules from specific facts”. However, we 1277

find that there are many general statements (also 1278

referred to as general fact) of a rule on the web. 1279

Therefore, for rule induction systems to be able 1280

to utilize both “specific facts” and “general facts”, 1281

forty percent of the rules in DEER are equipped 1282

with general facts. We describe this process as 1283

“inducing general rules from general facts”. 1284

Table 10 and table 11 shows the result from spe- 1285

cific vs general facts under in-context learning and 1286

finetuning settings correspondingly. We have dis- 1287

cussed that a rule induction system would be more 1288

widely applicable if it can utilize both specific fact 1289

and general fact. In table 10, general facts cases 1290

result in lower performance. We think one of the 1291

most possible reasons is that in DEER many gen- 1292

eral facts do not directly contain the content of 1293

the corresponding gold rules. For example, gen- 1294

eral facts can be mottos from philosophers such 1295

as Socrates, and rules can be an understandable 1296

description of such mottos in natural language rule 1297

format. 1298

A.15 Analysis under Finetuning Setting 1299

Table 12 and table 13 shows the analysis for topics 1300

and rule templates for finetuning setting. 1301

A.16 GPT3’s Performance as Rule Proposer 1302

Table 14 shows the result to use GPT-3 and GPT-J 1303

as rule proposer (M1). It is measured in BLEU 1304
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Models Specific facts General facts

R+F 10.15 / 2.25 12.79 / 2.53
M1 26.37 / 3.63 24.18 / 3.48

M1+M2 27.57 / 3.91 27.90 / 4.23
M1+M3 27.43 / 3.92 27.44 / 4.17
M1+M4 27.33 / 3.95 26.17 / 3.98
M1+M5 26.74 / 3.73 24.84 / 3.70
CoLM 28.62 / 3.98 29.81 / 4.22

Table 11: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with specific or general
input facts (Under finetuning setting).

Models If __,
then __.

There exists __,
which __.

If __ and __,
then __.

If __ or __,
then __.

R+F 9.87 / 2.22 17.45 / 2.95 10.63 / 2.30 12.53 / 2.50
M1 22.65 / 3.37 31.92 / 4.00 26.25 / 3.62 28.75 / 3.79

M1+M2 25.23 / 3.90 34.32 / 4.52 27.37 / 3.90 28.83 / 3.81
M1+M3 26.01 / 4.11 32.29 / 4.06 25.74 / 3.51 28.96 / 3.86
M1+M4 24.80 / 3.96 33.58 / 4.47 25.61 / 3.50 29.83 / 4.11
M1+M5 23.16 / 3.55 32.79 / 4.26 26.40 / 3.65 29.18 / 3.92
CoLM 27.03 / 3.97 36.27 / 4.84 26.23 / 3.61 29.92 / 3.96

Table 12: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with different rule tem-
plates (Under finetuning setting).

Models Zoology Botany Astronomy Geology History Physics

R+F 9.65 / 2.20 10.24 / 2.26 13.09 / 2.56 13.28 / 2.58 11.07 / 2.35 11.44 / 2.39
M1 29.29 / 3.83 30.47 / 3.90 34.01 / 4.12 28.28 / 3.83 23.61 / 3.44 18.69 / 3.06

M1+M2 29.46 / 3.90 30.44 / 3.90 38.30 / 4.88 29.31 / 4.03 25.18 / 3.78 22.46 / 3.75
M1+M3 28.67 / 3.65 30.28 / 3.88 42.63 / 5.13 30.04 / 4.29 24.55 / 3.66 22.36 / 3.66
M1+M4 26.75 / 3.18 31.90 / 4.35 34.97 / 4.43 29.27 / 4.11 24.12 / 3.57 21.20 / 3.66
M1+M5 29.34 / 3.80 31.14 / 4.13 34.57 / 4.28 29.15 / 4.06 23.60 / 3.41 19.34 / 3.28
CoLM 28.85 / 3.68 32.97 / 4.29 45.70 / 5.25 30.38 / 4.18 25.36 / 3.70 27.72 / 4.01

Table 13: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in under different top-
ics (Under finetuning setting).

Models Ada Babbage Curie GPTJ Davinci

R+F 1.21 1.81 1.88 1.86 1.86
M1 5.41 4.29 5.76 4.00 7.52

Table 14: GPT-3’s performance as well as GPT-J’s per-
formance as Rule Proposer (Measured in BLEU).

because it’s a very early result, and we haven’t 1305

adopted METEOR yet. If use METEOR as met- 1306

ric, the trend should be similar (the trend of BLEU 1307

and METEOR are very similar in our other experi- 1308

ments). The reason we do not test the scale perfor- 1309

mance of CoLM compared to M1 is that OpenAI’s 1310

API does not support return full embeddings, and 1311

our current code relies on embedding to implement 1312

M2/3/4/5 of CoLM. We will modify our code and 1313

try it on GPT-3 in the next version of our paper. 1314

A.17 Future Work and Challenges 1315

The new paradigm of using natural language as the 1316

representation of knowledge and using PLMs as the 1317

inductive reasoner for inductive reasoning opens 1318

the possibility of automatically inducing rules on 1319

the countless web corpus. On the other hand, there 1320

are still remaining challenges in this direction as 1321

not all facts can be used to induce rules. Many 1322

fact pieces in DEER for a single rule are collected 1323

from different places on the web, so that the input 1324

contains enough and proper information to induce 1325

rules. However, when using the web corpus, it is 1326

hard to ensure that input facts contain such informa- 1327

tion. As a result, it is challenging to reliably obtain 1328

high-quality facts that can be utilized to induce 1329

rules. 1330

Yang et al. (2023a) tries to address this challenge. 1331

They not only expand inductive reasoning setting 1332

to web corpus, but also not limited to common- 1333

sense rules but novel scientific findings (to assist 1334

scientists). 1335

A.18 Method for Prevention of Personal 1336

Information 1337

The first author collected the datasets. During col- 1338

lection, (1) most of the data are collected from 1339

Wikipedia, where personal information is nearly 1340

none; (2) the first author checks the data first before 1341

collects them. 1342

A.19 Prompt for ALL Modules 1343

We have uploaded the full code to GitHub, con- 1344

taining the full prompts. The full prompts can be 1345

also found in the uploaded supplementary materials 1346

along with this submission in utils.py. 1347

A.20 License of the New Datasets (DEER, 1348

DEERLET) 1349

The license is CC-BY 4.0. It should be used for 1350

research purposes. 1351
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A.21 Dataset Split of DEER and DEERLET1352

Out of the 1,200 examples of DEER, 420 / 1801353

/ 600 are designed for train / val / test. Out of1354

846 examples of DEERLET, 546 / 100 / 200 are1355

designed for train / val / test.1356

A.22 More Illustration on Human Evaluation1357

Here the human annotations for human evaluation1358

in Table 4 are from the DEERLET annotations.1359

DEERLET is annotated by an expert (the first au-1360

thor). The dataset (DEERLET) is annotated before1361

M2/3/4/5 (full CoLM) or any baseline experiments,1362

so that the human evaluation is not influenced by1363

the performance of any specific method.1364

More details about the DEERLET annotation are1365

illustrated in §A.5.1366
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