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ABSTRACT

Diffusion Transformer, the backbone of Sora for video generation, successfully
scales the capacity of diffusion models, pioneering new avenues for high-fidelity
sequential data generation. Unlike static data such as images, sequential data
consists of consecutive data frames indexed by time, exhibiting rich spatial and
temporal dependencies. These dependencies represent the underlying dynamic
model and are critical to validate the generated data. In this paper, we make
the first theoretical step towards bridging diffusion transformers for capturing
spatial-temporal dependencies. Specifically, we establish score approximation and
distribution estimation guarantees of diffusion transformers for learning Gaussian
process data with covariance functions of various decay patterns. We highlight how
the spatial-temporal dependencies are captured and affect learning efficiency. Our
study proposes a novel transformer approximation theory, where the transformer
acts to unroll an algorithm. We support our theoretical results by numerical
experiments, providing strong evidence that spatial-temporal dependencies are
captured within attention layers, aligning with our approximation theory.

1 INTRODUCTION

Diffusion models have emerged as a powerful new technology for generative AI, which is widely
adopted in computer vision and audio generation (Song and Ermon, 2019; Song et al., 2020; Ho et al.,
2020; Zhang et al., 2023), sequential data modeling (Alcaraz and Strodthoff, 2022; Tashiro et al.,
2021; Tian et al., 2023), reinforcement learning and control (Pearce et al., 2023; Hansen-Estruch
et al., 2023; Zhu et al., 2023; Ding and Jin, 2023), as well as computational biology (Xu et al., 2022;
Guo et al., 2023). The basic functionality of diffusion models is to generate new samples replicating
essential characteristics in the training data.

Diffusion models generate new samples by sequentially transforming Gaussian white noise. Each
step of the transformation is driven by a so-called “score function”, which is parameterized by a
neural network. In order to train the score neural network, diffusion models utilize a forward process
to produce noise corrupted data and the score neural network attempts to remove the added noise.
In early implementations of diffusion models, the score neural network is typically chosen as the
U-Net (Ronneberger et al., 2015). Afterwards, a few works also demonstrate the capability of using
transformers as a score neural network (Peebles and Xie, 2023; Wu et al., 2024; Bao et al., 2023).
Throughout the paper, we adopt the terminology in (Peebles and Xie, 2023) to name diffusion models
with transformers as diffusion transformers.

Recently, the astounding success of applying diffusion models in dynamic (sequential) data, including
video generation (Gupta et al., 2023; Liu et al., 2024b) and financial data augmentation (Gao et al.,
2024), strengthens the seemingly unlimited potentiality of diffusion models . These models advocate
transformers over the traditional U-Net for parameterizing the score function. A high-level intuition is
that video data comprises rich spatial and temporal dependencies, induced by the underlying dynamics
of objects and background. For example, the movement of an object should be continuous along
the time. These dependencies resonate well with the self-attention mechanism in transformers for
capturing token-wise correlation, suggesting benefits for learning with sequential data. We illustrate
diffusion transformer accurately learning spatial-temporal dependencies in Figure 1.
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Figure 1: Diffusion transformer learns spatial-temporal dependencies. The diffusion transformer is
trained with data sampled from a stationary Gaussian process consisting of 128 time steps. At each
time step, the data dimension is 8. We obtain 1000 generated samples at each time step. The left
large heat map demonstrates the estimated temporal correlation (see Appendix F for the estimation
method) in the process between different time steps, which aligns well with the ground truth on the
right. The smaller heat maps are the estimated covariance matrix of data at a single time step, which
demonstrate the spatial dependencies in data. They also align well with the ground truth.

Despite the empirical success, there lacks a rigorous understanding of diffusion transformers for
sequential data modeling. Different from static data, sequential data consists of a series of dependent
data frames. The data sequence can be extensively long. For instance, a one-minute video would
contain over 1440 image frames, and intraday data in financial applications may be even longer.

Therefore, naïvely treating the entire sequential data solely as high-dimensional data without con-
sidering its inner spatial-temporal correlations will lead to a large dimensionality dependence and
inefficient learning. As a result, existing results of diffusion models for static data can provide few
insights on the following fundamental questions:

Can diffusion transformers efficiently capture spatial-temporal dependencies in sequential data?
If yes, how do spatial-temporal dependencies affect the learning efficiency?

We answer these questions for the first time by studying using diffusion transformers for learning
Gaussian process data. Besides its simplicity, Gaussian process exhibits intriguing and salient
properties. Firstly, Gaussian process data can be high-dimensional, highlighting the influence of data
dimensionality in diffusion transformer. Secondly, the spatial-temporal dependencies are the defining
quantities of a Gaussian process. This necessitates an effective learning of these dependencies. In fact,
Gaussian process can encode a wide variety of complicated correlations in real-world applications
(Seeger, 2004; Williams and Rasmussen, 2006). For instance, Brownian motion falls into the category
of Gaussian process for describing particle movements in a fluid. Gaussian process is also a powerful
statistical tool for regression, classification and forecasting problems (Banerjee et al., 2013; Deringer
et al., 2021; Chen et al., 2021; Borovitskiy et al., 2021).

Contributions Our results show that by construction, transformers can adapt to the spatial-temporal
dependencies so as to promote the learning efficiency. Furthermore, we show sample complexity
bounds of diffusion transformers, demonstrating the influence of the decay of correlation in the
sequential data. We summarize our contributions as follows.
• We propose a novel score function approximation scheme for Gaussian process data, which
represents the score function by a gradient descent algorithm (Lemma 1). Then we construct a
transformer architecture to unroll the gradient descent algorithm in Theorem 1. We particularly
highlight that the attention layer effectively captures the spatial-temporal dependencies. Meanwhile,
the decay pattern of those dependencies influences the approximation efficiency.
• Built upon our score function approximation theory, we establish the first sample complexity bound
for diffusion transformers in learning sequential data (Theorem 2). We show that the generalization
error scales with 1/

√
n, where n is the sample size. Our generalization error also demonstrates the

influence of dependency decay speed and the length of sequences.
• We provide numerical results to support our theory by showing the learning performance under var-
ious settings. More interestingly, we demonstrate that a well-trained diffusion transformer reproduces
the ground-truth spatial-temporal dependencies accurately within an attention layer, emphasizing the
applicability of our theoretical insights.
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Our theories are the first to explain how diffusion transformers model sequential data, while most
existing theories of diffusion models focus on static data. Due to space limit, we provide a discussion
about related works and our technical novelty to Appendix B.

Notation We use bold letters to denote vectors and matrices. For a vector v, we denote its
Euclidean norm as ∥v∥2. For a matrix A, we denote its operator, Frobenius norm as ∥A∥2 and
∥A∥F, respectively. Moreover, we denote ∥A∥∞ = maxi,j |Ai,j |. We denote the condition number
of a positive definite matrix A by κ(A) = λmax(A)/λmin(A), where λmax and λmin denote the
maximum and minimum eigenvalues. We denote f ≲ g if f ≤ Cg holds for a constant C > 0.

2 GAUSSIAN PROCESS AND DIFFUSION TRANSFORMER

In this section, we formalize our data modeling and sampling problem with Gaussian process data.
Meanwhile, we briefly introduce diffusion processes and transformer architectures.

Gaussian Process We denote {Xh}h∈[0,H] as a continuous-time Gaussian process in the time
interval [0, H]. The process lives in the d-dimensional Euclidean space, i.e., Xh ∈ Rd for any
h ∈ [0, H]. A defining property of Gaussian process is that for any finite collection of time indices
h1, . . . , hN with N ∈ N+, the joint distribution of {Xh1 , . . . ,XhN

} is still Gaussian. As a particular
example, for a fixed time h, the marginal distribution of Xh is Gaussian.

To fully describe a Gaussian process, we need the concept of mean and covariance functions. Roughly
speaking, a mean function µ(h) = E[Xh] characterizes the expected evolution trend of the process.
A covariance function Γ(h1, h2) = E[(Xh1

− µ(h1))(Xh2
− µ(h2))

⊤] captures the correlation
between two time indices in the process. Note that, when h1 = h2 = h, the covariance function
computes the covariance matrix of Xh. Remarkably, the covariance function determines many
basic properties of the continuous-time process, such as its stationarity, periodicity, and smoothness
(Williams and Rasmussen, 2006). In our later study, we reveal an intimate connection between the
behavior of the covariance function to the learning efficiency of diffusion transformer.

Throughout the paper, we focus on Gaussian processes whose covariance functions only depend on
the gap between time indices. Accordingly, we reparameterize the covariance function as Γ(h1, h2) =
γ(h1, h2)Σ, where γ(·, ·) is a scalar-output function and Σ = Cov[Xh] (identical for any h).

Sequential Data Sampled from Gaussian Process In real-world scenarios, an underlying
continuous-time process is often perceived by a sequence of data sampled at discrete times. For
example, a video typically consists of 24 to 30 image frames per second. When played back, these
frames appear seamless to the human eye, which cannot distinguish between individual frames as
if the video is continuous. Following the same spirit, we denote h1, . . . , hN for a sufficiently large
N ∈ N+ as a uniform grid on the interval [0, H] and form a discrete sequence {Xh1

, . . . ,XhN
}

observed at those time indices from an underlying Gaussian process. By the definition of Gaussian
process, if we stack Xh1

, . . . ,XhN
consecutively as a vector in RdN , it follows a Gaussian distribu-

tion. The mean is µ = [µ⊤1 , . . . ,µ
⊤
N ]⊤ with µi = µ(hi) and the covariance is a block-wise matrix

represented as Γ⊗Σ, where

Γ =



γ(h1, h1) · · · γ(h1, hN )

...
. . .

...
γ(hN , h1) · · · γ(hN , hN )


 and Γ⊗Σ =



Γ11Σ · · · Γ1NΣ

...
. . .

...
ΓN1Σ · · · ΓNNΣ


 .

Here, ⊗ is the matrix Kronecker product. Notably, Γ captures the temporal dependency between time
indices and Σ captures the spatial dependency of entries in Xh. Since h1, . . . , hN form a uniform
grid, Γ is a symmetric Toeplitz matrix with entries taking at most N different values.

Gaussian process data provides explicit description of the spatial-temporal dependencies, but still
remains highly relevant to real-world diffusion models. These models utilize a pre-trained Variational
AutoEncoder (VAE) to map data into a low-dimensional latent representation (Wang et al., 2023;
Blattmann et al., 2023). The typical prior distribution of the low-dimensional representation in VAEs
is assumed to be Gaussian. Empirical results have demonstrated the effectiveness of Gaussian latent
prior for sequential data modeling in some variants of VAEs (Casale et al., 2018; Fortuin et al., 2020).
Our study aligns well with these empirical observations.
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In a learning setting, we collect n i.i.d. realizations of the discrete sequence {Xh1
, . . . ,XhN

},
denoted as D = {x1,j , . . . ,xN,j}nj=1. We aim to use a diffusion transformer for learning and
generating new samples mimicking the distribution of the discrete sequence. The subtlety here is that
naïvely learning the joint distribution of {Xh1

, . . . ,XhN
} is subject to a large dimension factor N ,

heavily exaggerating the problem dimension and jeopardizing the learning efficiency. Fortunately, we
will show that the behavior of the covariance function may induce benign temporal dependencies and
largely promote the sample complexity.

Diffusion Processes A diffusion model generates new data by progressively removing noise using
the so-called “score function”. We adopt a continuous-time perspective for a brief review of diffusion
models. Interested readers may refer to recent surveys for a comprehensive exposure (Chen et al.,
2024; Tang and Zhao, 2024; Chan, 2024). A diffusion model utilizes a forward and a backward
process for training and sample generation, respectively:

dXt = −1

2
Xtdt+ dWt, for t ∈ [0, T ] and X0 ∼ P0, (Forward)

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t )

]
dt+ dWt, for t ∈ [0, T ] and X←0 ∼ N(0, I). (Backward)

Here, Wt and Wt are independent Wiener processes and T is a finite terminal diffusion timestep.
The initial distribution of X0 is P0, which is also the clean data distribution, and we denote Pt as the
marginal distribution of Xt. Since we are corrupting P0 by Gaussian noise, Pt has a density function
pt. Thus, ∇ log pt in the backward process is recognized as the score function, which is unknown
and requires learning. Typically, the score function will be parameterized by a neural network and
trained by optimizing a loss function, which we will introduce in Section 5. When generating new
samples, we simulate a discretized version of the backward process using the learned score function.

For Gaussian process data, we interpret Xt as a vector in RdN by stacking N observations. We term
each observation as a patch. Equivalently, the forward process is to add independent Gaussian noise
to each patch simultaneously. However, the backward process cannot be decomposed according to
patches, as the score function encodes their correlation; see Section 3 for a detailed discussion on the
structure of ∇ log pt.

Transformer Architecture A transformer comprises a series of blocks and each block encompasses
a multi-head attention layer and a feedforward layer. Let Y = [y1, . . . ,yN ] ∈ RD×N be the (column)
stacking matrix of N patches. In a transformer block, multi-head attention computes

Attn(Y) = Y +
∑M

m=1 V
mY · σ

(
(QmY)⊤KmY

)
, (1)

where Vm,Qm, and Km are weight matrices of corresponding sizes in the m-th attention head, and
σ is an activation function. The attention layer is followed by a feedforward layer, which computes

FFN(Y) = Y +W1 · ReLU(W2Y + b21
⊤) + b11

⊤.
Here, W1,W2 are weight matrices, b1 and b2 are offset vectors, 1 denotes a vector of ones, and
the ReLU activation function is applied entrywise. For our study, the raw input to a transformer is
N patches of d-dimensional vectors and diffusion timestep t in the backward process. We refer to
T (D,L,M,B,R) as a transformer architecture defined by

T (D,L,M,B,R) = {f : f = fout ◦ (FFNL ◦ AttnL) ◦ · · · ◦ (FFN1 ◦ Attn1) ◦ fin,
Attni uses entrywise ReLU activation for i = 1, . . . , L,

number of heads in each Attn is bounded by M,

the Frobenius norm of each weight matrix is bounded by B,
the output range ∥f∥2 is bounded by R}.

See Figure 2 for an illustration of fin and fout. For attention layers, we consider ReLU activation for
technical convenience and postpone a discussion with softmax activation to Appendix D.5.

3 REPRESENT SCORE FUNCTION AS THE LAST ITERATE OF GRADIENT
DESCENT

Diffusion transformer learns the sequential data distribution through estimating the score function. In
this section, we study how can transformers effectively represent the score function of our Gaussian
process data. We are particularly interested in understanding how can transformers capture the
spatial-temporal dependencies via multi-head attention.
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RD⇥N

Figure 2: Transformer architecture. Here fin is a linear layer to lift input patch to RD, which appends
the input raw data with time index embedding and other useful information. After passing through L
transformer blocks, fout projects each patch into the data original dimension Rd and clip the output
range by R. We allow the output range to be diffusion timestep t dependent (denoted as Rt).

3.1 SCORE FUNCTION FOR GAUSSIAN PROCESS DATA

Recall from Section 2 that the joint distribution of ourN -patch Gaussian process data is still Gaussian.
We can show that at diffusion timestep t ∈ (0, T ], given vt = [x⊤1,t, . . . ,x

⊤
N,t]
⊤ in the backward

process, the score function is
∇ log pt(vt) = −(α2

tΓ⊗Σ+ σ2
t I)
−1(vt − αtµ) for αt = e−t/2 and σt =

√
1− e−t, (2)

where µ is the mean vector, and αt and σt are determined by the diffusion forward process. We
defer the derivation to Appendix C.1. Observe that the score function for the i-th patch depends
on the evolution of all patches, reflecting temporal dependencies in sequential data. Moreover, the
influence of each patch is determined by the covariance function Γij = γ(hi, hj). In the extreme
case of Γij = 1{i = j}, i.e., there is no correlation between patches, the score function reduces
to (α2

t I⊗Σ+ σ2
t I)
−1(vt − αtµ), which isolates patches and reproduces the score function of the

Gaussian distribution N(µi,Σ) for each patch.

Although the score function assumes the closed-form expression in (2), effectively representing it
may suffer from difficulties. In fact, there are dependencies among N patches and the correlation
is encoded by the inverse covariance matrix (α2

tΓ⊗Σ+ σ2
t I)
−1. Directly representing it using a

transformer is subject to high complexity and a large dimension depending on N . To overcome the
challenge, we resort to an algorithm unrolling perspective and leveraging the attention mechanism in
transformers. The key insight is to approximate the score function as the last iterate of a gradient
descent algorithm, where the algorithm can be efficiently implemented by a transformer.

3.2 SCORE FUNCTION IS THE OPTIMIZER OF A CONVEX FUNCTION AND GRADIENT
DESCENT FINDS IT

We consider a fixed diffusion timestep t ∈ (0, T ]. It is straightforward to check by the first-order
optimality that ∇ log pt(vt) is the minimizer of the following quadratic objective function,

∇ log pt(vt) = argmin
s∈RdN

Lt(s) :=
1

2
s⊤
(
α2
t (Γ⊗Σ) + σ2

t I
)
s+ (vt − αtµ)

⊤s. (3)

Examining (3) reveals that the objective function is strongly convex as long as t > 0. Moreover
importantly, the formulation (3) is free of matrix inverse and the optimal solution can be found by a
gradient descent algorithm. Specifically, in the k-th iteration, gradient descent for Lt computes

s(k+1) = s(k) − ηt ·
((
α2
t (Γ⊗Σ) + σ2

t I
)
s(k) + (vt − αtµ)

)
, (4)

where ηt is a proper step size. Comparing to (2), the gradient descent iteration avoids the matrix
inverse, and we can further decompose the update (4) according to each patch. With well-conditioned
covariance matrix Γ⊗Σ, the gradient descent algorithm converges exponentially fast for approx-
imating the ground-truth score function. Moreover, we could substitute Γ in (4) by any of its
approximation Γ̄. We quantify the representation error after sufficient gradient descent iterations.
Lemma 1 (Gradient Descent Iterate Approximates the Score Function). For an arbitrarily fixed
t ∈ [0, T ] and vt, given an error tolerance ϵ > 0 and any integer J < N , if Γ̄ with Γ̄ij =
Γij1{|i− j| < J} is positive semidefinite, then running gradient descent in (4) with a suitable step
size ηt for K = O(κt log (1/ϵ)) iterations gives rise to

∥∥∥s(K)(vt)−∇ log pt(vt)
∥∥∥
2
≤ 1

σ2
t

∥vt − αtµ∥2 ϵ
︸ ︷︷ ︸
E1:GD representation error

+
∥Σ∥F ∥vt − αtµ∥2

σ4
t

√ ∑

|i−j|≥J
Γ2
ij

︸ ︷︷ ︸
E2:correlation truncation error

,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where κt = κ
(
α2
t (Γ̄⊗Σ) + σ2

t I
)

is the condition number of α2
t (Γ̄⊗Σ) + σ2

t I.

The proof is deferred to Appendix C.2. To interpret the lemma, we first consider J = N , which
implies E2 = 0 and E1 recovers the typical convergence guarantee of gradient descent algorithm: for
a strongly convex and smooth function, gradient descent algorithm converges exponentially fast.

Controlling the Length of Dependencies The special treatment in Lemma 1 concentrates on the
truncation length J . On the high level, J defines the maximum length of temporal dependencies we
aim to model in the score function. In particular, instead of working with (4), we consider a surrogate
gradient descent iteration driven by replacing Γ by Γ̄, which neglects correlations beyond length
J . We discuss sufficient conditions for ensuring Γ̄ being positive semidefinite after Assumption 1.
Introducing Γ̄ incurs the truncation error E2, whose magnitude depends on the pattern of temporal
dependencies. Apparently, with long-horizon dependencies, the truncation error E2 tends to be large.
However, advantage appears in the presence of decaying dependencies, since we can neglect faint
correlation to promote the representation and learning efficiency.

3.3 BOUNDING CORRELATION TRUNCATION ERROR E2
In many dynamical systems, temporal dependencies decay rather fast as a function of the time gap.
The decay pattern may lead to a well controlled truncation error E2. As the decay is determined by
the covariance function in a Gaussian process, we impose the following assumption.

Assumption 1. Let e1, . . . , eN ∈ Rde be de-dimensional time embedding of h1, . . . , hN with
∥ei∥2 = r for each i such that there exists a positive and increasing function f with ∥ei − ej∥2 =
f(|i− j|) ≥ c|i− j| for an absolute constant c > 0. Further, the covariance function γ satisfies

γ(hi, hj) = exp
(
−∥ei − ej∥ν2 /ℓ

)
for ν ∈ [1, 2] and ℓ > 0.

Firstly, Assumption 1 says that the time embedding (a.k.a. position embedding) preserves the gap be-
tween real times. For example, a common time embedding used in sequential data modeling (Vaswani
et al., 2017) is sinusoidal transformations, where ei = [r sin(2iπ/C), r cos(2iπ/C)]⊤ ∈ R2 for a
positive radius r and a large constant C > 0. We can check that ∥ei − ej∥2 = 2r sin(|i− j|π/C) ≥
4r|i− j|/C is positive and approximately linearly increasing for a sufficiently large C.

Secondly, the covariance function decays exponentially fast and the speed is controlled by the
exponent ν and the bandwidth ℓ. Large ℓ or small ν indicates that the correlation between different
time indices decays relatively slowly. Thus, the sequential data has some long-horizon dependencies.
The range of ν includes the well-known quadratic-exponential (Gaussian) covariance function (ν = 2).
Moreover, when ν = 1, the covariance function coincides with the correlation in a Brownian motion.
Varying ν ∈ [1, 2] can capture abundant temporal dependency patterns.

Besides, under Assumption 1, we can provide a sufficient condition for ensuring Γ̄ being positive
semidefinite for any J . Specifically, when ℓ ≤ cν , Γ is symmetric diagonally dominant, i.e., the
diagonal entry has a larger magnitude than the sum of the magnitudes of off diagonal entries. This
implies that for any truncation length J , Γ̄ is always positive semidefinite. See Remark 1 in Appendix
C.3 for a formal justification. Apparently, requiring ℓ ≤ cν is not necessary and as long as the
covariance function decays sufficiently fast, Γ̄ can be positive semidefinite. We now establish the
following corollary to demonstrate a reasonable choice of J .

Corollary 1 (Correlation Truncation with Decay). Suppose Assumption 1 holds with ℓ ≤ cν . For
any ϵ < λmin(Γ), under the setup of Lemma 1, by setting J = O

(
(ℓ log(N/(ϵσt)))

1/ν
)
, it holds that

∥∥∥s(K)(vt)−∇ log pt(vt)
∥∥∥
2
≤ 2σ−2t ∥vt − αtµ∥2 ϵ.

The proof is deferred to Appendix C.3, where we keep the ℓ ≤ cν condition for technical convenience.
This should not be considered restrictive, as our theory holds as long as the truncation of Γ at length
J is positive semidefinite. Corollary 1 shows that the truncation error E2 can be controlled at the
same order of E1. The truncation length J is logarithmically dependent on the full length of the
sequence, indicating that we can focus on relatively short-horizon dependencies proportional to the
bandwidth ℓ. This observation is the key to promote the representation and learning efficiency of
diffusion transformer.
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4 APPROXIMATION THEORY OF SCORE FUNCTION USING TRANSFORMERS

This section devotes to establishing a transformer approximation theory of the score function. Differ-
ent from the existing universal approximation theories (Cybenko, 1989; Yarotsky, 2018), we construct
a transformer to unroll the gradient descent algorithm for representing the score function. We show
this perspective leads to an efficient approximation in the following theorem.

Theorem 1 (Score Approximation by Transformers). Suppose Assumption 1 holds with ℓ ≤
cν . Given any t0 ∈ (0, T ] and a small ϵ < λmin(Γ), there exists a transformer architecture
T (D,L,M,B,Rt) such that with proper weight parameters, it yields an approximation s̃ to the
score function ∇ log pt with

∫
∥s̃(vt)−∇ log pt(vt)∥22 pt(vt)dvt ≤ σ−2t ϵ for all t ∈ [t0, T ].

The transformer architecture satisfies

D = O(d+ de), L = O
(
κt0 log

2(Nd/(ϵσt0))
)
, M = O

(
(ℓ log(Nd ∥Σ∥F /(ϵσt0)))

1/ν
)
,

B = O
(
log(Nd/(ϵσt0))σ

−2
t0 Nd(r

2 + ∥Σ∥∞)
)
, Rt = O

(
log(Nd/(ϵσt0))

√
Nd/σt

)
.

The proof is deferred to Appendix D.1. Here we observe that the approximation error depends on
σt, which matches existing results for studying score approximation using neural networks (Oko
et al., 2023; Chen et al., 2023a; Tang and Yang, 2024). Yet we remark that our algorithm unrolling
approach is very different from these existing works. Our results also hold for softmax activated
transformer architectures, which is discussed in Appendix D.5. We remark on other interpretations.
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r log pt(vt) = arg min
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s>
�
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t I
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Linear Offset

Lemma 1

Theorem 1

Figure 3: Construction of score function approximation using a transformer. By rewriting the score
function as the optimizer of a quadratic objective function, we use gradient descent algorithm to
approximate the optimizer. We allow correlation truncation to manipulate the maximum length of
temporal dependencies to model in Lemma 1. Then we construct a transformer architecture to unroll
the gradient descent algorithm for score approximation in Theorem 1. Each gradient descent iteration
is realized by a multiplication module followed by two transformer blocks. In the first transformer
block, its attention layer calculates correlation Γij utilizing time embedding. The second transformer
block calculates the linear offset −ηtσ2

t s− ηt(vt − αtµ) in (4).

A Glimpse of Transformer Architecture The constructed transformer architecture is demonstrated
in Figure 3. To achieve an approximation, the transformer unrolls the gradient descent algorithm.
For realizing a single step, a multiplication module calculates time dependent rescaling parameters,
e.g., αt and σt. Then two transformer blocks implement the iteration in (4). As can be seen, the
raw input is lifted into a higher dimensional vector, containing time embedding and other useful
information. It is worth mentioning that the total number of transformer blocks is proportional to
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the condition number κt0 . For sharply decaying covariance functions, κt0 is a constant. However,
for slowly decaying covariance functions, κt0 can be large, indicating the fundamental difficulty of
capturing long-horizon dependencies. While explicitly bounding κt0 for a finite N goes beyond the
current technical limit, we discuss its asymptotic behavior in Appendix G.4.

What Is Represented in Self-Attention We zoom into our constructed transformer architecture
in Figure 3 to understand the role of multi-head attention layer in Transformer Block 1. Here
the attention layer is constructed with proper Q and K matrices, so that it finds the correlation
between a pair of time embedding ei and ej . Specifically, it calculates the inner product e⊤i ej for
approximating the correlation coefficient γ(hi, hj). Interestingly, our numerical results in Section 6
support this construction, providing evidence that a well-trained diffusion transformer puts large
weight corresponding to time embedding. We suspect that our construction provides practical insights
on how correlation is learned in attention layers.

5 SAMPLE COMPLEXITY OF DIFFUSION TRANSFORMER

Given a properly transformer architecture, this section studies the sample complexity of diffusion
transformer for learning Gaussian process data. As mentioned in Section 2, the training of diffusion
transformer is to estimate the score function. Conceptually, we can use a quadratic loss,

argmins∈T
∫ T

0
Evt∼Pt ∥s(vt, t)−∇ log pt(vt)∥22 dt, (5)

However, this loss function is not directly implementable due to ∇ log pt being unknown and
numerical instability when t approaches zero. Therefore, we consider the following loss,

argmins∈T
∫ T

t0
Ev0

Evt∼N(αtv0,σ2
t I)

∥∥∥s(vt, t)− αtv0−vt

σ2
t

∥∥∥
2

2
dt. (6)

Here, t0 is an early-stopping time and αtv0−vt

σ2
t

substitutes the unknown score function ∇ log pt. The
equivalence of (6) to (5) is established in the seminal works (Vincent, 2011; Hyvärinen and Dayan,
2005). When given the collected data set D = {x1,j , . . . ,xN,j}nj=1, we replace the population
expectation Ev0

in (6) by a sample empirical distribution. We denote vi
0 = [x⊤i,1, . . . ,x

⊤
i,N ]⊤ as the

stacking vector of a data sequence. Then the estimated score function ŝ can be written as an empirical
risk minimizer,

ŝ ∈ argmins∈T
1
n

∑n
i=1

∫ T

t0
Evt∼N(αtvi

0,σ
2
t I)

∥∥∥s(vt, t)− αtv
i
0−vt

σ2
t

∥∥∥
2

2
dt.

To generate new samples, diffusion transformer uses ŝn in the backward process. Correspondingly,
we denote the distribution learned by such a diffusion transformer as P̂ . We bound the divergence of
P̂ to our ground-truth data distribution P0 in the following theorem.

Theorem 2 (Sample Complexity of Diffusion Transformer). Suppose Assumption 1 holds with
ℓ ≤ cν . Assume there exists a constant C > 1 such that C−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C and
∥µ∥∞ ≤ C. We choose the transformer architecture T (D,L,M,B,Rt) as in Theorem 1 with
ϵ = 1/n. By setting the terminal diffusion timestep T = log(n), considering P̂ generated by the
empirical risk minimizer ŝ, we have

ED
[
TV(P̃0, P̂ )

]
≲

√
ℓ1/νκ2t0Nd

3

n
· log 5ν+1

2ν
(
κt0ndNt

−1
0

)
, (7)

where P̃0 is a perturbed data distribution satisfying W2(P0, P̃0) ≲ ℓ
√
t0Nd.

The proof is deferred to Appendix E. We remark that the emergence of P̃0 owes to the early-stopping
in score estimation, which is obtained by evolving P0 along the forward process for timestep t0. The
optimal choice on t0 depends on the condition number κt0 . For fast decay covariance functions,
κt0 = O(1) and we can choose t0 = 1/n and the generalization error is in the order of Õ(

√
ℓNd3/n).

In this case, we have a relatively weak dependence on N , demonstrating the efficiency of diffusion
transformers in sequential data modeling. On the other hand, when κt0 is large, i.e., with the presence
of long-horizon dependencies, the learning efficiency suffers from heavier dependence on N . We
experiment with various decaying patterns in Section 6 and show the corresponding performance.
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6 NUMERICAL RESULTS

6.1 EXPERIMENTS ON GAUSSIAN PROCESS DATA

In this section, we conduct experiments on diffusion transformer for learning synthetic Gaussian
process data. We test various aspects of our theory, including learning efficiency and the capture of
spatial-temporal dependencies.

Experiment Setup We consider synthetic Gaussian process data with d = 8 andN = 128. We stick
to the setting where the covariance matrix is generated by Σ = A⊤A ∈ R8×8 for a Gaussian random
matrix A ∈ R8×8. We set the mean vector µ = 0 for simplicity. The covariance function is chosen
as in Assumption 1 with γ(hi, hj) = exp (−|hi − hj |ν/ℓ) . We set ℓ and ν as hyperparameters
and report their influences on the learning. We generate n ∈ {1000, 3200, 10000, 32000, 100000}
sequences from the Gaussian process as our training data in different settings. The diffusion trans-
former is implemented based on the DiT (Peebles and Xie, 2023) code base. We set the number of
transformer blocks to be 12 throughout all the experiments. We modify the patchify module in DiT to
cope with our Gaussian process data. Additional implementation details can be found in Appendix F.

Influence of Covariance Function Decay on Capturing Spatial-Temporal Dependencies We
study the influence of covariance functions on the performance of diffusion transformers. We vary the
exponent ν and bandwidth ℓ as follows: 1) we keep ℓ = 64, while ν varies in {1, 21/4, 21/2, 23/4, 2};
2) we keep ν = 2, while ℓ varies in {4,16,64,256,1024}. After training, we generate 1000 samples at
each time step for performance evaluation. The metric is a relative error ϵ of the estimated sample
covariance matrix to its ground-truth (see a definition in Appendix F), which is reported in Figure 4(a).
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Figure 4: In panel (a), we observe that the relative error decreases as the sample size increases.
Meanwhile, larger ν or smaller ℓ leads to better performance, supporting our generalization bound
in Theorem 2. In panel (b), we split Q to Q = [Qx,Qe] where Qx ∈ R16×32 and Qe ∈ R16×32

corresponds to time embedding ei. We also split the key matrix K as [Kx,Ke]. The sub-block Q⊤e Ke

has dominant weights compared to other sub-blocks.

Transformer’s Query-Key Matrices Coincides with Our Approximation Theory We dive into
transformer blocks to understand how attention layer captures dependencies. Inside a transformer
block, the input is a concatenation of a data vector and a corresponding time embedding written
as [z⊤i,t, e

⊤
i ]
⊤ ∈ R32, where ei ∈ R16 is the time embedding and zi,t ∈ R16 is the output of the

patchify module in DiT, obtained by a linear transformation on raw data at diffusion timestep t.
We plot the heat map of query and key matrices in the 5th transformer block in Figure 4(b). Plots
for other transformer blocks are provided in Appendix F. As can be seen, the interaction between
time embedding (bottom-right block) is dominant, which aligns with our approximation theory for
constructing the transformer architecture.

Backward Diffusion Process Unveils the Kernel Matrix in Attention Scores To further under-
stand how DiT captures the temporal dependencies, i.e., matrix Γ for Gaussian process data, we plot
the evolution of score matrices (QY)⊤KY in the attention layers at different steps in the backward
diffusion process. Besides, we demonstrate the gradual change of score matrices in different attention
layers. Specifically, Figure 5 presents that with progressive denoising in the backward process, the
attention score matrix becomes more and more similar to the ground truth Γ. In addition, in the first
few attention layers, e.g., the first and the second layers, the dependencies are not well-structured
and as predicted by our theory, these layers are still realizing some transformations on their inputs.
Starting from the 3rd layer, the attention score matrices gradually exhibit the pattern of the ground
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truth temporal dependencies. In further subsequent layers, we observe that the learned pattern of
temporal dependencies is kept. We refer readers to Figure 12 in Appendix F for a complete plot of
score matrices in each attention layer.

Figure 5: We demonstrate score matrices in different attention layers and at different backward
denoising steps. The learned temporal dependencies gain more and more clarity as the denoising
in the backward process proceeds. Meanwhile, we observe that the temporal dependencies are well
captured starting from the 3rd layer.

6.2 EXPERIMENTS ON SEMI-SYNTHETIC VIDEO DATA

To further demonstrate the capability of diffusion transformers in capturing spatial-temporal de-
pendencies, we consider learning 2D motions of a ball. The motion is described by a sequence of
gray-scale image frames of resolution 64× 64, which characterizes the ball that starts moving toward
a random direction in a cube and bounces back when hitting a wall. Because of the bouncing-back
mechanism, the dynamic of the ball goes beyond the class of Gaussian process and exemplifies
more complex dependencies with abrupt changes. We train a latent diffusion model (Rombach et al.,
2022), where we first generate 20000 image frames for training a 2D Variational Autoencoder (VAE).
The 2D VAE sets the latent representation in R2. Once the VAE is trained, we fix it and generate
independently 10000 motion videos, each consisting of 240 image frames. The diffusion transformer
is trained on the latent representations of the generated videos. As shown in Figure 6, we observe that
spatial-temporal dependencies are well captured. We provide generated video frames in Appendix F,
which features appealing time-consistency and satisfies the bouncing-back mechanism.
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(a) Learned spatial-temporal dependencies (left) compared with the
ground truth (right).

(b) The query-key matrix of the first
diffusion transformer block.

Figure 6: In panel (a), we observe that the spatial-temporal dependencies (represented by the
covariance matrix) have been well captured by diffusion transformers. We collect 1000 generated
samples to calculate the dependencies. In panel (b), similar to Panel (b) in Figure 4, the learned
query-key matrix demonstrates dominant scores between time embedding (bottom-right block).

7 CONCLUSION AND DISCUSSION

We have studied diffusion transformers for learning Gaussian process data. We have developed
a score function approximation theory, by leveraging transformers to unroll a gradient descent
algorithm. Further, we have established sample complexities of diffusion transformer and discussed
the influence of spatial-temporal dependencies on learning efficiency. While Gaussian process data
enjoys mathematical simplicity and is relatively preliminary, our theoretical insights and experimental
findings can provide invaluable intuition to analyze and design sequential data modeling using
diffusion processes. An interesting future direction is to consider generic dynamic models. We
expect broad and positive societal impact on advancing diffusion models for sequential data synthesis,
forecasting and editing, including video and audio snippets.
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A ADDITIONAL EXPERIMENTS

We provide additional numerical results to support and validate our theory: 1) We present comparisons
between diffusion transformers and vanilla diffusion models with UNet, and 2) We vary the size of the
diffusion transformers and demonstrate the training dynamic of gradually capturing spatial-temporal
dependencies.

Comparison of DiT to diffusion with UNet To conduct a comparison between DiT and diffusion
with UNet, we choose one instance of our Gaussian process data with d = 8 and N = 128. The
covariance function is Gaussian kernel with ν = 2 and ℓ = 64. We collect n = 10000 sequences
for training a DiT with 12 transformer blocks and a UNet-based diffusion model with 4 down/up
sampling procedures. Each of the down/up sampling in UNet consists of 3 residual and convolution
layers so that the DiT and Unet have approximately the same model size.

Each model is sufficiently trained for 400 epochs, when the training error has converged for a long
time. In the testing stage, we collect 10000 samples generated separately from each model and
estimate the spatial-temporal dependencies for comparison. As shown in the first column of Figure
7, both DiT and UNet-based diffusion model capture the decay pattern in the temporal correlation.
However, DiT exhibits a much better learning result, matching the ground truth. The temporal
correlation of the samples generated by UNet-based diffusion model presents a “piecewise” pattern,
not as smooth as the ground truth. We conjecture that it is caused by the size of the filter in convolution
layers that prevents UNets from learning complete temporal correlation.

Moreover, DiT exhibits significant strength in learning the spatial correlation. As shown in the
remaining columns of Figure 7, DiT successfully captures the spatial correlation between two tokens
even sufficiently separated, i.e., the correlation is rather weak. In contrast, UNet-based diffusion
struggles in learning spatial correlation. We find clear inconsistent patterns of the estimated spatial
correlation in the third row, not to mention that the pattern deviates from the ground truth. This result
not only demonstrates the surprising learning and generalization capabilities of DiT in sequential
data, but also indicates some advantage of DiT over UNet-based diffusion models.

Performance of DiT with varying network size and sequence length We study the influence of
the sequence length N and the number of transformer blocks L on the performance. We choose the
sequence length N and the number of transformer blocks L as follows:

1) we fix L = 16, while change N in {24, 25, 26, 27, 28};

2) we fix N = 128, while change L in {1, 2, 4, 8, 16}.

We adopt a uniform Gaussian process setting of d = 8, ν = 2 and ℓ = 64 as considered in the
experiments shown in Figure 7. After training, we independently generate 10000 sequences for
performance evaluation. The metric is the relative error ϵ of the estimated sample covariance matrix
to its ground truth (see a definition in Appendix F), which is plotted in Figure 8. As shown in
the left panel of the figure, the relative error increases mildly as the sequence length increases,
which aligns with our

√
N -dependence in Theorem 2, demonstrating DiT’s strength in handling long

sequences. The right panel of the figure shows that the performance of DiT improves as the number
of transformer blocks increases, yet at a marginally diminishing speed when L is sufficiently large.
Using 8 transformer blocks suffices for an efficient learning in this case, which approximately verifies
our construction of a transformer with O(logN) blocks.

Training dynamic of DiT To further examine how DiT captures spatial-temporal dependencies,
we present the training dynamic of DiT. As shown in Figure 9, the spatial correlation is captured
relatively accurately at an early stage of the training (after the first few epochs), while the temporal
correlation is learned slower (after epoch 50). We observe the gradual change in the temporal pattern
to match eventually the ground truth. In particular, large temporal dependencies are easier to learn,
while weak temporal dependencies require more epochs to learn.
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Figure 7: Visualization of ground truth spatial-temporal dependencies (the first row), spatial-temporal
dependencies of the DiT-generated samples (the second row), and the UNet-generated samples (the
third row). We visualize the temporal dependencies in the first column, while visualize the spatial
dependencies of three pairs (i, j) ∈ {(10, 11), (20, 30), (30, 50)} of tokens respectively, representing
short-horizon, medium-horizon, and long-horizon spatial dependencies. For each pair (i, j), we
compute the (empirical) covariance matrix between the i-th token and the j-token and visualize the
matrix in a normalized version γ̂i,j × Σ̂, where we set ∥Σ̂∥F = ∥Σ∥F for a better comparison with
the true spatial covariance Σ.
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Figure 8: Relative error with different sequence lengths and numbers of transformer blocks. We
observe a mild error increase when increasing the length of the sequence. Meanwhile, increasing the
number of blocks in transformer leads to an initial gain of the performance. However, the performance
gain saturated when the number of transformer blocks is sufficiently large. These observations support
our theoretical results.
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Figure 9: Spatial-temporal correlations of samples generated by DiT trained with different number of
epochs. We train DiT with 10000 samples and use Adam optimizer with a mini-batch size of 128.
We visualize the temporal correlation in the first row, and in the second row, we plot the estimated
spatial correlation between the 40-th token and the 60-token using generated sequences.

B RELATED WORK

Our work establishes score approximation and distribution estimation theories of diffusion transformer
with sequential data. Prior works focus on static data and provide sampling and learning guarantees
of diffusion models. In particular, assuming access to a relatively accurate estimated score function,
Benton et al. (2022; 2023; 2024); Li et al. (2024a; 2023); Chen et al. (2022b); Lee et al. (2022a;b);
Chen et al. (2023c;b) show that the generated distribution of diffusion models stays close to the ground-
truth distribution. Towards an end-to-end analysis, i.e., involving the score estimation procedure,
Chen et al. (2023a); Oko et al. (2023); Li et al. (2024b); Mei and Wu (2023); Tang and Yang (2024);
Jiao et al. (2024) all provide sample complexity bounds of diffusion models for various types of
data, including manifold data and graphical models. Yet these results are not directly applicable to
understanding how spatial-temporal dependencies are captured by diffusion transformers in sequential
data.

For score approximation using transformers, we adopt an algorithm unrolling approach (Monga et al.,
2021). In particular, we view the score function as the last iterate of a gradient descent algorithm and
utilize transformers to implement gradient descent iterations. We are aware of Mei and Wu (2023);
Mei (2024) showing U-Net performing algorithm unrolling in diffusion models.

On the empirical side, Diffusion Transformer (DiT) (Peebles and Xie, 2023) challenges the common
choice of U-Net for image generation, providing state-of-the-art performance. Moreover, diffusion
transformer exhibits appealing scalability towards better generation qualities with larger model sizes.
More recently, diffusion transformers are leveraged in video generation (Gupta et al., 2023; Liu et al.,
2024b), where the video data is patchified and rearranged into a long sequence. Besides, diffusion
transformers are also used for other sequential data (Sun et al., 2022; Austin et al., 2021; Campbell
et al., 2022; Gao et al., 2024), such as language, music and financial data.

C OMITTED PROOFS IN SECTION 3
Before diving into detailed proofs of our results (Theorem 1 and Theorem 2), we list our assumptions
for a quick reference.

• Data assumption. We consider Gaussian process data in Rd within interval [0, H], which is defined
in Section 2. The covariance function of the underlying Gaussian process verifies Assumption 1.
For technical convenience, we also assume the mean function µ(·) of the Gaussian process can be
efficiently represented by neural networks in Assumption 2.

• Transformer architecture. We denote a transformer architecture by T (D,L,M,B,R), where
D,L,M,B,R are hyperparameters defining the size of the transformer. In Theorem 1, we will
choose these hyperparameters depending on the desired approximation accuracy. In Theorem 2, we
will further choose these hyperparameters depending on the training sample size n.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.1 DERIVING SCORE FUNCTION FOR GAUSSIAN PROCESS DATA

By the definition of Gaussian process, we know that the stacking vector [x⊤1 , . . . ,x
⊤
N ]⊤ ∈ RdN

follows a Gaussian distribution N(µ,Γ ⊗ Σ). Along the forward process, we progressively add
Gaussian noise to the initial data distribution and hence, for any vt, we have

pt(vt) =

∫
1

(2πσ2
t )

dN/2
exp

(
− 1

2σ2
t

∥vt − αtv0∥22
)

︸ ︷︷ ︸
(A)

· 1

(2π)dN/2
√

det(Γ⊗Σ)
exp

(
−1

2
(v0 − µ)⊤(Γ⊗Σ)−1(v0 − µ)

)

︸ ︷︷ ︸
(B)

dv0.

Note that (A) is the Gaussian transition kernel corresponding to the forward process and (B) is the
clean data density function. It is clear that pt(vt) is again a Gaussian distribution. By completing the
squares and some algebraic manipulation, we have

pt(vt) ∝
∫

exp

(
−1

2
(vt − αtµ)

⊤(σ2
t I+ α2

tΓ⊗Σ)−1(vt − αtµ)

)
.

As a sanity check, pt is now a Gaussian density function of N(αtµ, σ
2
t I+ α2

tΓ⊗Σ), matching the
marginal distribution of the forward process. Therefore, the score function is

∇ log pt(vt) = −
(
α2
tΓ⊗Σ+ σ2

t I
)−1

(vt − αtµ).

C.2 PROOF OF LEMMA 1

To prove the Lemma, we first state a standard result in convex optimization.

Lemma 2 (Theorem 3.12 in Bubeck (2015)). Let f be β-smooth and α-strongly convex on Rd and
x⋆ is the global minimizer. Then gradient descent with η = 2

α+β satisfies
∥∥∥x(k+1) − x⋆

∥∥∥
2
≤
(
κ− 1

κ+ 1

)∥∥∥x(k) − x⋆
∥∥∥
2
, k = 0, 1, . . . .

Here x(k+1) = x(k) − η∇f(x(k)) is the outcome in (k + 1)−th iteration of GD and κ = β/α.

With the lemma above, the proof of Lemma 1 is quite straightworward.

Proof of Lemma 1. Denote the truncated score function by

s̄(vt) = −
(
α2
t (Γ̄⊗Σ) + σ2

t I
)−1

(vt − αtµ).

Let’s consider the following quadratic target function

L̄t(s) =
1

2
s⊤
(
α2
t (Γ̄⊗Σ) + σ2

t I
)
s+ (vt − αtµ)

⊤s,

And we iterate s(k) by gradient descent on this target function with s(0) = 0. Since L̄t is
λmax

(
α2
t (Γ̄⊗Σ) + σ2

t I
)
-smooth and λmin

(
α2
t (Γ̄⊗Σ) + σ2

t I
)
-strongly convex, by the approxi-

mate GD formula (4) and Lemma 1, for any k ≥ 0, we have
∥∥∥s(k+1)(vt)− s̄(vt)

∥∥∥
2
≤
(
κ̄t − 1

κ̄t + 1

)∥∥∥s(k)(vt)− s̄(vt)
∥∥∥
2
≤ exp

(
−2(k + 1)

κ̄t + 1

)
∥s̄(vt)∥2 .

Here κ̄t is the condition number of α2
t (Γ̄⊗Σ) + σ2

t I. Moreover, we have

∥s̄(vt)∥2 ≤
∥∥∥
(
α2
t (Γ̄⊗Σ) + σ2

t I
)−1∥∥∥

2
∥vt − αtµ∥2

= λ−1min

(
α2
t (Γ̄⊗Σ) + σ2

t I
)
∥vt − αtµ∥2

≤ ∥vt − αtµ∥2
σ2
t
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Thus, by taking the number of iterations K = ⌈ κ̄t+1
2 log(1/ϵ)⌉, we have

∥∥∥s(K)(vt)− s̄(vt)
∥∥∥
2
≤ ∥vt − αtµ∥2 ϵ

σ2
t

.

Besides, denote Φt = α2
t (Γ⊗Σ) + σ2

t I and Φ̄t = α2
t (Γ̄⊗Σ) + σ2

t I. The difference between the
truth score function and the truncated score function is

∥s̄(vt)− s(vt)∥2 =
∥∥∥
((
α2
t (Γ̄⊗Σ) + σ2

t I
)−1 −

(
α2
t (Γ⊗Σ) + σ2

t I
)−1)

(vt − αtµ)
∥∥∥
2

=
∥∥(Φ̄−1t −Φ−1t

)
(vt − αtµ)

∥∥
2

≤
∥∥Φ̄−1t −Φ−1t

∥∥
2
∥vt − αtµ∥2

=
∥∥Φ−1t

(
Φt − Φ̄t

)
Φ̄−1t

∥∥
2
∥vt − αtµ∥2

≤
∥∥Φ−1t

∥∥
2

∥∥Φ̄−1t

∥∥
2

∥∥Φt − Φ̄t

∥∥
2
∥vt − αtµ∥2

≤ σ−4t

∥∥Φt − Φ̄t

∥∥
2
∥vt − αtµ∥2 .

Let’s focus on bounding
∥∥Φt − Φ̄t

∥∥
2
. Without any assumptions on Φt, a natural bound is

∥∥Φt − Φ̄t

∥∥
2
≤
∥∥Φt − Φ̄t

∥∥
F
= α2

t ∥Σ∥F
√ ∑

|i−j|>J

Γ2
ij . (8)

Altogether, we have
∥∥∥s(K)(vt)−∇ log pt(vt)

∥∥∥
2
≤ ∥vt − αtµ∥2 ϵ

σ2
t

+ σ−4t α2
t ∥Σ∥F

√ ∑

|i−j|>J

Γ2
ij ∥vt − αtµ∥2

≤


ϵ+ ∥Σ∥F

σ2
t

√ ∑

|i−j|>J

Γ2
ij


σ−2t ∥vt − αtµ∥2 . (9)

In the last inequality, we invoke α2
t ≤ 1 for any t ≥ 0. The proof is complete.

GD with Approximation Error In the process of using transformers to express GD, additional
approximation error will be induced, i.e., the update formula becomes

s(k+1) = s(k) − η∇Lt(s
(k+1)) + ξ(k).

Here ξ(k) represents the approximation error. Then we have the following convergence analysis:

Lemma 3. Given ϵ > 0, if the approximation error in each step satisfies
∥∥ξ(k)

∥∥
2
≤ ϵ, then after

K = ⌈κt+1
2 log (1/ϵ)⌉ steps of GD on minimizing the truncated target function L̄t, we have

∥∥∥s(K)(vt)−∇ log pt(vt)
∥∥∥
2
≤ (κt + 1)ϵ

2
+


ϵ+ ∥Σ∥F

σ2
t

√ ∑

|i−j|>J

Γ2
ij


σ−2t ∥vt − αtµ∥2 .

Proof of Lemma 3. By a similar deduction in the proof of Lemma 1, for any k ≥ 0, we have
∥∥∥s(k+1) − s̄

∥∥∥
2
=
∥∥∥s(k) − η∇Lt(s

(k+1)) + ξ(k) − s̄
∥∥∥
2

≤
∥∥∥s(k) − η∇Lt(s

(k+1))− s̄
∥∥∥
2
+
∥∥∥ξ(k)

∥∥∥
2

≤
(
κt − 1

κt + 1

)∥∥∥s(k) − s̄
∥∥∥
2
+ ϵ.

Thus, we have
∥∥∥s(k+1) − s̄

∥∥∥
2
− (κt + 1)ϵ

2
≤
(
κt − 1

κt + 1

)(∥∥∥s(k) − s̄
∥∥∥
2
− (κt + 1)ϵ

2

)
.
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Note that if there exists k ≤ K such that
∥∥s(k) − s̄

∥∥
2
≤ (κt + 1)ϵ/2, we have for any k1 ≥ k,∥∥s(k1) − s̄

∥∥
2
≤ (κt + 1)ϵ/2, so

∥∥s(K) − s̄
∥∥
2
≤ (κt + 1)ϵ/2, which finishes the proof. Now we

assume for any 0 ≤ k ≤ K,
∥∥s(K) − s̄

∥∥
2
≥ (κt + 1)ϵ/2. Then we have

∥∥∥s(k) − s̄
∥∥∥
2
− (κt + 1)ϵ

2
≤
(
κt − 1

κt + 1

)k(∥∥∥s(0) − s̄
∥∥∥
2
− (κt + 1)ϵ

2

)

≤
(
κt − 1

κt + 1

)k ∥∥∥s(0) − s̄
∥∥∥
2

≤ exp

(
− 2k

κt + 1

)∥∥∥s(0) − s̄
∥∥∥
2
. (10)

Substituting k = K = ⌈κt+1
2 log (1/ϵ)⌉ into the inequality, we have

∥∥∥s(K) − s̄
∥∥∥
2
− (κt + 1)ϵ

2
≤ ϵ ∥s̄(vt)∥2 ≤ σ−2t ∥vt − αtµ∥2 ϵ.

Combining the result with (8), we complete our proof.

C.3 PROOF OF COROLLARY 1

Let’s first analyse the approximation error by truncating Γ. For simplicity, we denote ∆Γ = Γ− Γ̄.

Lemma 4. Suppose Assumption 1 holds. Then for any ϵ > 0, by taking J =
⌈(

ℓ
2 log(Nℓ/ϵ

2)
)1/ν⌉

+

1, we have ∥∆Γ∥F ≤ ϵ.

Proof of Lemma 4. By Assumption 1, we have f(m) ≥ cm. According to the definition of ∆Γ, we
have

∥∆Γ∥2F =
∑

|i−j|≥J
γ(hi, hj)

2

=

N−1∑

k=J

(2N − 2k) exp

(
−2f(k)ν

ℓ

)

≤
N−1∑

k=J

(2N − 2k) exp

(
−2(ck)ν

ℓ

)

≤ 2N

N−1∑

k=J

exp

(
−2cνkν

ℓ

)

≤ 2N

∫ ∞

J−1
exp

(
−2cνtν

ℓ

)
dt

≤ c−νNℓ exp

(
−2cν(J − 1)ν

ℓ

)
.

by taking J =
⌈(

ℓ
2cν log

(
Nℓ/ϵ2cν

))1/ν⌉
+ 1 = O(ℓ log(N/ϵ)1/ν), we ensure that ∥∆Γ∥2F ≤ ϵ2.

The proof is complete.

Remark 1. From the proof of Lemma 4, we also observe that Γ is diagonally dominant, i.e.,
Γii ≥

∑
j ̸=i |Γij |, when we have 2

∑N−1
k=1 exp

(
− 2f(k)ν

ℓ

)
≤ 1. According to the proof above, a

sufficient condition for this to hold is c−νℓ ≤ 1, i.e., ℓ ≤ cν . When truncating Γ by any length J , Γ̄
remians diagonally dominant, therefore, Γ̄ is positive semidefinite.

Now we turn back to the proof of Corollary 1. By taking

J =

⌈(
ℓ

2cν
log
(
Nℓ/(σ4

t ϵ
2cν)

))1/ν
⌉
= O

(
(ℓ log(N/(ϵσt)))

1/ν
)
,
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we ensure that ∥∆Γ∥2F ≤ σ4
t ϵ

2. Then plugging the approximation error into (9) concludes our proof.

Moreover, we could bound the operator norm of Γ in the same way. For any v ∈ RN such that
∥v∥2 = 1, we have

∣∣v⊤Γv
∣∣ =

∑

i,j

Γi,jvivj

= 1 +

N−1∑

k=1

2 exp(−2cνkν/ℓ)

N−k∑

i=1

vivi+k

≤ 1 + 2

N−1∑

k=1

exp(−2cνkν/ℓ)

√√√√
N−k∑

i=1

v2i

N−k∑

i=1

v2i+k

≤ 1 + 2

N−1∑

k=1

exp(−2cνkν/ℓ)

≤ 1 + c−νℓ.

Thus, we have

∥Γ∥2 ≤ 1 + c−νℓ ≲ 1 + ℓ. (11)

We will apply this bound in Lemma 12.

D OMITTED PROOFS IN SECTION 4

D.1 PROOF OF THEOREM 1

By the previous derivation, we know the truth score function is written as

∇ log pt(vt) = −
(
α2
t (Γ⊗Σ) + σ2

t I
)−1

(vt − αtµ). (12)

Due to the fast decay of Γ, we consider a truncated score function

s̄(vt) = −
(
α2
t (Γ̄⊗Σ) + σ2

t I
)−1

(vt − αtµ)

with Γ̄ij = Γij if |i− j| < J and Γ̄ij = 0 otherwise. Denoting Γ = Γ̄ + ∆Γ (see the formal
statement in Lemma 4), by appropriately choosing M = O((log(1/ϵ))1/v), we could guarantee
∥∆Γ∥ ≤ ϵ for any ϵ > 0. Now we decompose the L2 error into the following two items:

∥s̃−∇ log pt∥L2(Pt)
≤ ∥s̃− s̄∥L2(Pt)︸ ︷︷ ︸

Proposition 1

+ ∥s̄−∇ log pt∥L2(Pt)︸ ︷︷ ︸
Lemma 5

.

Here ∥s∥2L2(Pt)
=
∫
∥s(vt)∥22 pt(vt)dt is the squared L2 norm w.r.t. a density function pt of

distribution Pt. We provide the error analysis for the two items in Proposition 1 and Lemma 5
separately. Under these two supporting statements, the proof of Theorem 1 is quite straightforward.

Now we state Proposition 1 and Lemma 5 with their detailed proof deferred to next sections.
Proposition 1 provides an approximation guarantee on the difference between s̃ and s̄ in L2(Pt),
which is our main result throughout the proof of Theorem 1.

Proposition 1. Suppose Assumption 1 holds. Given t0 ∈ (0, T ], there exists a transformer architec-
ture s̃ ∈ T (D,L,M,B,Rt) such that with proper weight parameters, it yields an approximation s̃ to
the truncated score function s̄ with

∥s̃− s̄∥2L2(Pt)
≤ ϵ2

σ2
t

, t ≥ t0.

The transformer architecture satisfies

D = 9d+ dt + de + 1, L = O
(
κt0 log(Nd/(ϵσt0))

2
)
,M = O

(
(ℓ log(Nd ∥Σ∥F /(ϵσt0)))

1/ν
)
,

B = O
(
log(Nd/(ϵσt0))σ

−2
t0 Nd(r

2 + ∥Σ∥∞)
)
, Rt = O

(
log(Nd/(ϵσt0))

√
Nd/σt

)
.
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The proof is provided in Appendix D.2.

Moreover, Lemma 5 bounds the difference between the truncated score function s̄ and the ground
truth in L2(Pt) distance.

Lemma 5. Given any ϵ > 0 and t > 0, by choosing

J = O
(
(ℓ log(N ∥Σ∥F /(ϵσt)))

1/ν
)
,

it holds that for any t > 0,

∥s̄−∇ log pt∥L2(Pt)
≤ ϵ

σt
.

The proof is provided in Appendix D.4.

Now back to the proof of Theorem 1, recall that we can decompose the score error as in (12). Thus,
combining Proposition 1 and Lemma 5 and adjusting the constants to bound the error by ϵ/σt, we
finish the proof of Theorem 1.

D.2 PROOF OF PROPOSITION 1

To prove Proposition 1, we first need a uniform approximation theory of s̄ on a bounded region,
which is the backbone of the proof.

Lemma 6. Given any radius R0 ≥ 1, error level 0 ≤ ϵ < 1 and t0 > 0, there exists a transformer
architecture T (D,L,M,B,R) that gives rise to s̃ satisfying

∥s̃(vt)− s̄(vt)∥2 ≤ ϵ, for any ∥s(vt)∥2 ≤ R0σ
−1
t , t ≥ t0.

The transformer architecture satisfies

D = 9d+ dt + de + 1, L = O
(
κt0 log(R0Nd/(ϵσt0))

2
)
, M = 4J,

B = O
(
log(R0Nd/(ϵσt0))

√
NR0dσ

−2
t0 (r2 + ∥Σ∥∞)

)
, Rt = O

(
R0σ

−1
t

)
.

The proof is provided in Appendix D.3. Then we could upper bound the second moments of the
truncated score function s̄ in Pt.

Lemma 7. For any 0 ≤ ϵ < 1, by setting

J >

⌈(
1

2
ℓ log(Nℓ ∥Σ∥2F /σ2

t )

)1/ν
⌉
,

we have the second moment of the truncated score function bounded by ∥s̄∥L2(Pt)
≤
√
2Nd
σt

.

Moreover, we need to derive a uniform upper bound of the true score function for convenience of
truncation arguments.

Lemma 8. Suppose Assumption 1 holds, then with probability 1− 2 exp(−Cδ), the range of truth
score function can be bounded by ∥∇ log pt(vt)∥22 ≤ σ−2t

(
N + δ

√
Nd
)

. Here C is an absolute
constant.

The proofs of the lemmas are provided in Appendix D.4. Now we are ready to prove Proposition 1.

Proof of Proposition 1. By Lemma 6, we obtain a transformers such that ∥s̃(vt)− s(vt)∥2 ≤ ϵ for
any ∥s(vt)∥2 ≤ R0σ

−1
t and t ≥ t0. Moreover, we have ∥s̃(vt)∥2 ≤ CR0σ

−1
t for some absolute

22
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constant C. Now we can decompose the L2 error as

∥s̃− s̄∥2L2(Pt)
= Evt

[
∥s̃(vt)− s̄(vt)∥22

]

≤ Evt

[
∥s̃(vt)− s̄(vt)∥22 1

{
∥s(vt)∥2 ≤ R0σ

−1
t

}]

+ Evt

[
∥s̃(vt)− s̄(vt)∥22 1

{
∥s(vt)∥2 > R0σ

−1
t

}]

≤ ϵ2 + 2Evt

[
C2R2

0

σ2
t

1
{
∥s(vt)∥2 > R0σ

−1
t

}]

+ 2Evt

[
∥s̄(vt)∥221

{
∥s(vt)∥2 > R0σ

−1
t

}]

≤ ϵ2 +
2C2R2

0

σ2
t

Pr
[
∥s(vt)∥2 > R0σ

−1
t

]

+ 2Evt

[
∥s̄(vt)∥42

]1/2
Pr
[
∥s(vt)∥2 > R0σ

−1
t

]1/2

≤ ϵ2 +
1

σ2
t

2C2R2
0 Pr

[
∥s(vt)∥2 > R0σ

−1
t

]

+ C2,4Evt

[
∥s̄(vt)∥22

]
Pr
[
∥s(vt)∥2 > R0σ

−1
t

]1/2

≤ ϵ2 +
1

σ2
t

(
2C2(R0 + ∥µ∥22) + C2,42Nd

)
Pr
[
∥s(vt)∥2 > R0σ

−1
t

]1/2
.

Here we invoke Lemma 25 in the second-to-last inequality and invoke Lemma 7 in the last inequality.

By Lemma 8, choosing R0 = C1

√
Nd log(∥µ∥2 CNdϵ−1σ−1t0 ) for some absolute constant C1, we

can bound Pr
[
∥s(vt)∥2 > R0σ

−1
t

]
by

Pr
[
∥s(vt)∥2 > R0σ

−1
t

]
≤ ϵ2

4(R0 + ∥µ∥22)C2Nd
,

thus bounding the L2 error by O(ϵ2/σ2
t ). By adjusting the constant, we can ensure that there exists a

transformer architecture T (D,L,M,B,Rt) that gives rise to s̃ with

D = 9d+ dt + de + 1, L = O
(
κt0 log(R0Nd/(ϵσt0))

2
)
= O

(
κt0 log(Nd/(ϵσt0))

2
)
,

M = O
(
(ℓ log(dN ∥Σ∥F /(ϵσt0)))

1/ν
)
, B = O

(
log(Nd/(ϵσt0))σ

−2
t0 Nd(r

2 + ∥Σ∥∞)
)
,

Rt = O
(
log(Nd/(ϵσt0))

√
Nd/σt

)

such that
∥s̃− s̄∥2L2(Pt)

≤ ϵ2/σ2
t .

The proof is complete.

D.3 PROOF OF LEMMA 6

D.3.1 TRANSFORMER ARCHITECTURE

Following Figure 3, we construct our targeted transformer architecture as

f = fout ◦ fGD ◦ · · · ◦ fGD ◦ fpre ◦ fin.

Encoder For simplicity, we suppose the encoder converts the initial input into Y =
fin([x1,x2, . . . ,xN ]) = [y⊤1 , . . . ,y

⊤
N ] ∈ RD×N satisfies

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t),0⊤5d, 1,0
⊤
3d]
⊤,

where ϕ(t) = [ηt, αt, σ
2
t , α

2
t ]
⊤ ∈ Rdt with dt = 4. Here 0⊤5d and 0⊤3d serve as the buffer space for

storing the components necessary for expressing gradient descent algorithm.
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Transformer Components Besides the encoder and decoder, fpre represents a multi-layer trans-
formers that prepare the necessary components for the gradient descent block, such as the mean µi for
each input token xi. fGD represents a multi-layer transformers that approximately express one step
of gradient descent, which is the key component of our network. We elaborate on the construction of
these subnetworks in D.3.2.

Decoder Suppose the output tokens from past layers has produced a score approximator in matrix
shape, we design the decoder as follows:

fout = fnorm ◦ flinear,
where flinear : RD×N → RdN extracts a d×N block from the input and flattens it into a vector to
align with the dimension of the score function. fnorm : RdN → RdN controls the output range of the
network by Rt, which can be mathematically written as

fnorm(s) =





s, if ∥s∥2 ≤ Rt,

Rt

∥s∥2
s, otherwise.

We remark that such clipping strategy is also applied in other theoretical works Oko et al. (2023)
to better adapt to the magnitude of the score function at different diffusion time t, since the score
function of a degenerate Gaussian distribution could blow up as t → 0. Moreover, such clipping
layer can be easily expressed by finite layers of feed-forward networks if we take both s and Rt as
the input. See Equation 5 in Lemma 2 of Chen et al. (2022a) for an example of the construction.

Raw Transformer Network In the proof of Lemma 6, we mainly focus on the transformer blocks
instead of the encoders and decoders. We denote the raw transformer network as

T (D,L,M,B) = {f : f = (FFNL ◦ AttnL) ◦ · · · ◦ (FFN1 ◦ Attn1),
The input and out dimension is D,
Attni uses entrywise ReLU activation for i = 1, . . . , L,

number of heads in each Attn is bounded by M,

the Frobenius norm of each weight matrix is bounded by B}.

D.3.2 APPROXIMATE EACH TRANSFORMER SUBNETWORKS

For simplicity, for the subnetwork fpre, we assume that the mean vectors µi can be directly expressed
by a constant number of transformer blocks:
Assumption 2. There exists a raw transformer fµ ∈ Traw(D,Lµ,Mµ,O(d)) such that for any input
token yi = [x⊤i , e

⊤
i ,ϕ

⊤(t),0⊤5d, 1,0
⊤
3d]
⊤, we have

fµ(yi) = [x⊤i , e
⊤
i ,ϕ

⊤(t),0⊤4d,µ
⊤
i , 1,0

⊤
3d]
⊤.

Here Lµ and Mµ are all constants. This assumption is mild, given the approximation ability of
transformers.

After applying fµ, we begin to implement gradient descent algorithm using transformer blocks.
Starting at s(0)i = 0d for i ∈ [N ], the first iteration can be written as

s
(1)
i = s

(0)
i − η1




N∑

j=1

(α2
t Γ̄ijΣ)s

(0)
j + σ2

t s
(0)
i + (xi − αtµi)


 = −η1(xi − αtµi).

Thus, we only need apply a multiplication module fmult(αt,µi) ≈ αtµi that approximately re-
alizes the product operation. We defer the detailed construction of the multiplication module to
Appendix G.3, which utilizes O(log(maxi ∥µi∥2 /ϵmult)) transformer blocks to reach the accuracy
∥fmult(αt,µi)− αtµi∥∞ ≤ ϵmult for any i ∈ [N ].

Lemma 9 (Construct the first step of GD). Suppose the input is Y = [y⊤1 , . . . ,y
⊤
N ] ∈ RD×N , where

each token is

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t),0⊤4d,µ
⊤
i , 1,0

⊤
3d]
⊤ ∈ R9d+de+dt+1.
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Given error level ϵ < 1 and learning rate ηt > 0, there exists a transformer fGD,1 ∈ Traw(D,L,M,B)
such that

fGD,1(yi) =

[
x⊤i ,e

⊤
i ,ϕ

⊤(t), fmult(ηt,xi − fmult(αt,µi))
⊤,0⊤d ,0

⊤
d ,0

⊤
d ,

fmult(αt,µi)
⊤, 1,0⊤3d

]⊤
.

Here µ0 = ∥µ∥∞, and the two multiplication modules satisfy
∥∥fmult(αt,µi)

⊤ − αtµi

∥∥
2
≤ ϵ/

√
N

and also ∥fmult(ηt,xi − fmult(αt,µi))− ηt(xi − αtµi)∥2 ≤ ϵ/
√
N for i ∈ [N ], and the parame-

ters of the networks satisfy

D = 9d+ de + dt + 1, L = O(log (∥x∥∞ ∥s∥∞Nd/ϵ)),

M = 1, B = O(d(∥x∥∞ + ∥s∥∞)).

Proof of Lemma 9. To prove the lemma, we apply Corollary 3 and use the last 3d dimensions 03d as
the buffer space to approximate the product operation fmult : RD → RD such that

fmult(Y) =




x1 · · · xN

e1 · · · eN
ϕ(t) · · · ϕ(t)
04d · · · 04d

fmult(αt,µ1) · · · fmult(αt,µN )
1 · · · 1
03d · · · 03d



,

where fmult(αt,µi) = αtµi + ϵµ,i with ∥ϵµ,i∥2 ≤ ϵ/
√
N . After obtaining fmult, we use one

transformer block T B = FFN ◦ Attn with the attention block being trivial, i.e., all weight parameters
being zero so that Attn(y) = y. We then choose FFN(y) = y +W2ReLU(W1y) with

W1 =

[
−Id 0d×(4d+de+dt) Id 0d×(3d+1)

Id 0d×(4d+de+dt) −Id 0d×(3d+1)

]
∈ R(2d)×D

and

W2 =



0(d+de+dt)×(d) 0(d+de+dt)×(d)

Id −Id
0(7d+1)×(d) 0(7d+1)×(d)


 ∈ RD×(2d).

We further apply another multiplication module fmult,1 to rescale the gradient computed by the
transformer block by the learning rate η1. We can check that the first-step GD is represented by
fGD,1 = fmult,1 ◦ T B ◦ fmult.

Size of Transformer Blocks for Approximating The First GD Iteration We summarize in the
following table the resulting network size of transformer blocks for implementing the first GD
iteration when initialized with si = 0.

Table 1: Transformer size for approximating the first GD iteration

Input dimension D ×N with D = 9d+ de + dt + 1
# of blocks L 1 + 2Lmult with Lmult = O(log (∥x∥∞ ∥s∥∞Nd/ϵ))

# of attention heads M 1
Parameter bound B O(d(∥x∥∞ + ∥s∥∞))

Here the parameter bound B is obtained by noting that the magnitude of weight parameters in the
multiplication module is at most O(∥x∥∞ + ∥s∥∞) and there are at most O(d) nonzero weight
parameters in each weight matrix. The proof is complete.

The next lemma presents the construction of next K − 1 steps of GD.
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Lemma 10 (Construct next steps of GD). Suppose the input token is

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t), s⊤i ,0
⊤
d ,0

⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d]
⊤,

then there exists a transformer fGD,2 ∈ Traw(D,L,M,B) that approximately iterates si by following
the GD update formula, i.e.,

fGD,2(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), s⊤i − ηt




N∑

j=1

(α2
t Γ̄ijΣ+ σ2

t I)s
⊤
j + (xi − αtµi)

⊤


+ ϵ⊤i ,

0⊤d ,0
⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d

]⊤
.

Here ∥ϵ′i∥2 ≤ ϵ/
√
N for i ∈ [N ]. Moreover, the parameters of the networks satisfy

D = 9d+ de + dt + 1, L = O(log (∥x∥∞ ∥s∥∞Nd/ϵ)),

M = 4J, B = O
(
d(∥Σ∥∞ + r2)) + ∥x∥∞ + ∥s∥∞

)
.

Proof of Lemma 10. It suffices to construct several transformer blocks to represent one gradient
descent iteration with truncated matrix Γ̄, which takes the form

s
(k+1)
i = s

(k)
i − ηt




N∑

j=1

(α2
t Γ̄ijΣ)s

(k)
j + σ2

t s
(k)
i + (xi,t − αtµi)




= s
(k)
i − ηt

N∑

j=1

α2
t Γ̄ijΣs

(k)
j

︸ ︷︷ ︸
(A)

−
(
ηtσ

2
t s

(k)
i + ηt(xi,t − αtµi)

)

︸ ︷︷ ︸
(B)

. (13)

To ease the presentation, we consider a fixed time t and drop the subscript t. We also drop the
superscript (k). In the following, we will use two transformer blocks to approximate (A) and (B)
separately. The input to those transformer blocks is Y = [y1, . . . ,yN ] ∈ RD×N , where D is a larger
dimension and will be specified shortly. For each column vector yi, it stores copies of si and other
relevant information. Recall each token yi is

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t), s⊤i ,0
⊤
d ,0

⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d]
⊤ ∈ R9d+de+dt+1.

Here we reserve 0⊤3d as the buffer space for the multiplication module (the additional hidden width).

Multiplication Module Before diving into approximating terms (A) and (B), we use a multi-
plication module consisting of a series of transformer blocks to transform each column vector yi

into

yi =
[
x⊤i , e

⊤
i ,ϕ

⊤(t), s⊤i , fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),0
⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d
]⊤
,

where fmult denotes an approximation to the entrywise multiplication realized by the multiplication
module. We defer the detailed construction of the multiplication module to Appendix G.3, which
utilizes O(log(∥s∥∞ /ϵmult)) transformer blocks to reach the accuracy

∥∥fmult(α
2, s)− α2s

∥∥
∞ ≤

ϵmult.

Compared to the raw input before the multiplication module, we have an easy access to the useful
quantities α2si, σ2si and αµi, which simplifies our next step.

The First Attention Block for Approximating (A) Here we will construct a transformer block
T B1 = FFN1 ◦ Attn1 for approximating (A). Despite the huge dimension of matrix Γ̄, it is Toeplitz
due to the uniform time grid {h1, . . . , hN}. There are at most N different entries in Γ̄ and the
(i, j)-th entry only depends on the gap |i− j|. As a result, we denote γm = Γ̄ij1{|i− j| = m} and
rewrite term (A) as

(A) = η

N−1∑

m=0

N∑

j=1

α2γm1{|i− j| = m}Σsj .
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The display above suggests a construction of a multi-head attention layer. Formally, for an arbitrary
value of m, we construct four attention heads with ReLU activation. By Assumption 1, the indicator
function 1{|i− j| = m} can be realized by calculating the inner product e⊤i ej of time embedding.
To see this, we observe

e⊤i ej =
1

2
(2r2 − ∥ei − ej∥22) =

1

2
(2r2 − f2(|i− j|)).

Therefore, it holds that

1{|i− j| = m} = 1

{
e⊤i ej = r2 − 1

2
f2(m)

}
,

since f is strictly increasing. Directly approximating an indicator function using ReLU network
can be difficult. Yet we note that |i − j| can only take integer values. Therefore, we can slightly
widen the decision band for the indicator function. Specifically, we denote a minimum gap ∆ =
mini=1,...,N−1{f2(i+ 1)− f2(i)}. Thus, we deduce

1{|i− j| = m} = 1

{
e⊤i ej ∈

[
r2 − 1

2
f2(m)− 1

4
∆, r2 − 1

2
f2(m) +

1

4
∆

]}
.

We can use four ReLU functions to approximate the right-hand side of the last display. In specific,
we construct a trapezoid function as follows,

ψ(e⊤i ej) =
8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m) +

1

4
∆

)
− 8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m) +

1

8
∆

)

− 8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m)− 1

8
∆

)
+

8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m)− 1

4
∆

)
.

It is straightforward to check that ψ = 1 in a 4
∆ -width interval centered at r2 − 1

2f
2(m). To this end,

we can use four attention heads to realize the function ψ. In particular, for the first attention head, we
choose

(Q1)⊤K1 = diag

([
0d×d, Ide

,0dt×dt
,0(5d)×(5d),−r2 +

1

2
f2(m) +

1

4
∆,0(3d)×(3d)

])
and

V1 =



0(4d+de+dt)×(2d+de+dt) 0(4d+de+dt)×d 0(4d+de+dt)×(6d+1)

0d×(2d+de+dt)
8
∆γmΣ 0d×(6d+1)

0(4d+1)×(2d+de+dt) 0(4d+1)×d 0(4d+1)×(6d+1)


 .

It is not difficult to check that this attention head calculates the first ReLU function in ψ. Analogously,
for the second attention head, we choose

(Q2)⊤K2 = diag

([
0d×d, Ide

,0dt×dt
,0(5d)×(5d),−r2 +

1

2
f2(m) +

1

8
∆,0(3d)×(3d)

])
and

V2 = −V1

for realizing the second ReLU function. The third and fourth attention heads have the following
parameters,

(Q3)⊤K3 = diag

([
0d×d, Ide

,0dt×dt
,0(5d)×(5d),−r2 +

1

2
f2(m)− 1

8
∆,0(3d)×(3d)

])
,

V3 = −V1

(Q4)⊤K4 = diag

([
0d×d, Ide

,0dt×dt
,0(5d)×(5d),−r2 +

1

2
f2(m)− 1

4
∆,0(3d)×(3d)

])
, and

V4 = V1.

By summing up the output of the four attention heads, we derive the output of such an attention layer.
For the i-th patch, the output is[

x⊤i , e
⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j ), fmult(α,µi)
⊤, 1,0⊤3d

]⊤
.
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Note that this output calculates for a fixed value of m. In order to summing over different values of
m, we utilize 4J attention heads. Here 4J attention heads are enough, since Γ̄ij = 0 if |i− j| ≥ J .
We have

Attn1(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j ), fmult(α,µi)
⊤, 1,0⊤3d

]⊤
.

For the feedforward layer FFN1, we set W1 = 0, W2 = 0, b1 = 0 and b2 = 0 such that the output
of the first attention block is

T B1(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j ), fmult(α,µi)
⊤, 1,0⊤3d

]⊤
.

The Second Transformer Block for Approximating (B) Similar to the first block, the goal here is
to construct T B2 = FFN2 ◦ Attn2 for realizing (B). This is much easier than approximating (A), we
only need the feed forward layer while set the attention layer trivial. In particular, we choose Q,K
and V being all zero matrices so as to maintain the input to the attention layer. For the feedforward
layer FFN2, we choose W1 as

W1 =




Id 0de×de
0dt×dt

Id 0d×d Id Id −Id 0d×(3d+1)

−Id 0de×de
0dt×dt

−Id 0d×d −Id −Id Id 0d×(3d+1)

−Id Id
Id −Id

Id
−Id

Id
−Id




∈ R(8d)×D,

where the missing values are all zero. Then we have W1 · Attn2 ◦ T B1(yi) as


si +
∑N−1

m=0

∑N
j=1 γmψ(e

⊤
i ej)Σ · fmult(α

2, sj) + fmult(σ
2, si) + (xi − fmult(α,µi))

−si −
∑N−1

m=0

∑N
j=1 γmψ(e

⊤
i ej)Σ · fmult(α

2, sj)− fmult(σ
2
t , si)− (xi − fmult(α,µi))

−si + fmult(α
2, si)

si − fmult(α
2, si)

fmult(σ
2, si)

−fmult(σ
2, si)∑N−1

m=0

∑N
j=1 γmψ(e

⊤
i ej)Σ · fmult(α

2, sj)

−∑N−1
m=0

∑N
j=1 γmψ(e

⊤
i ej)Σ · fmult(α

2, sj)




.

It suffices to choose b1 = b2 = 0 and W2 equal to

W2 =




0(d+de+dt)×(8d)
−Id Id

−Id Id
−Id Id

−Id Id
0(4d+1)×(8d)



∈ RD×(8d),

where missing values are all zero. Using the fact that ReLU(x)− ReLU(−x) = x, we have
W2 · ReLU(W1 · Attn2 ◦ T B1(yi))

=

[
0⊤d ,0

⊤
de
,0⊤dt

,−s⊤i −
N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j )− fmult(σ
2, s⊤i )− (x⊤i − fmult(α,µ

⊤
i )),

s⊤i −
N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j ),−fmult(α
2, s⊤i ),−fmult(σ

2, s⊤i ),0
⊤
d , 0,0

⊤
3d

]⊤
.
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Therefore, by concatenating the two transformer blocks, we have

T B2 ◦ T B1(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t),

−
N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j )− fmult(σ
2, s⊤i )− (x⊤i − fmult(α,µ

⊤
i )),

s⊤i ,0
⊤
d ,0

⊤
d , fmult(α,µi)

⊤, 1,0⊤3d

]⊤
.

Lastly, by implementing another multiplication module fmult that scales the gradient by the learning
rate ηt, we obtain

fmult ◦ T B2 ◦ T B1(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t),

fmult

(
ηt,−

N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, s⊤j )− fmult(σ
2, s⊤i ) + (x⊤i − fmult(α,µ

⊤
i ))

)
,

s⊤i ,0
⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d

]⊤
.

It is straightforward to implement a feedforward layer to sum up si with the gradient increment in
fmult ◦ T B2 ◦ T B1(yi). Clearly, the feedforward layer can be realized by a transformer block with a
trivial attention layer — similar to T B2 with much simpler weight matrices. As a result, we have
implemented one gradient descent iteration, where the output replaces si in the initial input vector.
We denote fGD,2 as our network implementation of one GD iteration.

We can repeat the multiplication module followed by the two transformer blocks to approximate the
gradient descent for K iterations as needed. Note that, we don’t need to calculate fmult(αt,µi)

⊤

after the first step of GD, which leads to the construction of fGD,2.

Bounding Approximation Error Examining the output of our approximation for one gradient
descent iteration, it is not difficult to observe that the approximation error is determined by the error
in the multiplication module. For the k-th iteration, we denote the approximation realized by the
transformer as

ŝ
(k+1)
i = ŝ

(k)
i + fmult

(
ηt,−

N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · fmult(α

2, ŝ
(k)
j )

− fmult(σ
2, ŝ

(k)
i )− (x⊤i − fmult(α,µi))

)
.

We compare the output with the exact GD update with last iteration at ŝ(k)i , which is

ŝ
(k+1)
i,⋆ = ŝ

(k)
i − ηt

N−1∑

m=0

N∑

j=1

γmψ(e
⊤
i ej)Σ · α2ŝ

(k)
j − σ2ŝ

(k)
i − (x⊤i − αµi).

For any index i ∈ {1, . . . , N}, we bound the difference
∥∥∥ŝ(k+1)

i,⋆ − ŝ
(k+1)
i

∥∥∥
2

(i)

≤ ϵmult + ηt

N−1∑

m=0

N∑

j=1

∥∥∥Σ(α2s
(k)
j − fmult(α

2, ŝ
(k)
j )
∥∥∥
2

+ ηt

∥∥∥σ2s
(k)
i − fmult(σ

2, ŝ
(k)
i )
∥∥∥
2
+ ηt ∥αµi − fmult(α,µi)∥2

(ii)

≤ ϵmult + ηt ∥Σ∥2N
√
dϵmult + 2ηt

√
dϵmult,

where in inequality (i), we use the fact that γmψ(e⊤i ej) ≤ 1, and in inequality (ii), we plug in the
approximation error of multiplication module. By setting ϵmult =

1
6η
−1
t ∥Σ∥−1F N−3/2d−1/2ϵ, we

ensure that
∥∥∥ŝ(k+1)

i,⋆ − ŝ
(k+1)
i

∥∥∥
2
≤ ϵ/

√
N .
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Size of Transformer Blocks for Approximating One GD Iteration Similar to the proof of
Lemma 9, we summarize the network size for implementing one GD iteration (except the first
iteration).

Table 2: Transformer size for approximating one GD iteration (except the first iteration)

Input dimension D ×N with D = 9d+ de + dt + 1
# of blocks L 2 + Lmult with Lmult = O(log (∥x∥∞ ∥s∥∞Nd/ϵ))

# of attention heads M 4J with J the covariance truncation length
Parameter bound B O

(
d(∥Σ∥∞ + r2)) + ∥x∥∞ + ∥s∥∞

)

To see the parameter bound B, we observe that the parameters in the constructed transformer are
bounded by max{1, 8

∆η ∥Σ∥∞ , r2}. Here, ∥Σ∥∞ = maxij |Σij | denotes the maximum magnitude
of entries. Since there are at most O(d) nonzero weights in each weight matrix, we have the norm of
the parameters bounded by

O
(
d(∆−1 ∥Σ∥∞ + r2)) + ∥x∥∞ + ∥s∥∞

)
= O

(
d(∥Σ∥∞ + r2)) + ∥x∥∞ + ∥s∥∞

)
.

The proof is complete.

D.3.3 FORMAL PROOF OF LEMMA 6

Recall that the score function is written as

s(vt) = −(α2
t (Γ⊗Σ) + σ2

t I)
−1(vt − αtµ).

Thus, if ∥s(vt)∥2 ≤ R0σ
−1
t , we have ∥vt − αtµ∥2 ≤

∥∥α2
t (Γ⊗Σ) + σ2

t I
∥∥
2
∥s(vt)∥2 ≤ CR0σ

−1
t ,

where

C =
∥∥(α2

t (Γ⊗Σ) + σ2
t I)
∥∥
2

≤
∥∥α2

t (Γ⊗Σ)
∥∥
2
+
∥∥σ2

t I
∥∥
2

≤ ∥Γ∥F ∥Σ∥2 + 1

≤
√
N(ℓ+ 1) ∥Σ∥2 + 1.

The last inequality follows from Lemma 4. Thus, the infinity norm of vt can be bounded by
∥vt∥∞ ≤ ∥vt − αtµ∥∞ + ∥αtµ∥∞ ≤ CR0σ

−1
t + µ0. Moreover, by the proof of lemma 5, we can

also bound the norm of the truncated score function by

∥s̄(vt)∥ ≤ ∥s̄(vt)− s(vt)∥2 + ∥s(vt)∥2
≤ σ−4t ∥∆Γ∥F ∥vt − αtµ∥2 + ∥s(vt)∥2
≤ σ−4t ∥∆Γ∥F (CR0σ

−1
t + µ0) +R0σ

−1
t .

Thus, according to Lemma 4, by choosing J = O((ℓ log(Nℓ ∥Σ∥F /σt))
1/ν

), we can ensure that
∥s̄(vt)∥ ≤ 2R0σ

−1
t .

Now we construct the transformers as follows:

s̃(x) = fnorm ◦ flinear ◦ fGD,2 ◦ fGD,2 ◦ · · · ◦ fGD,2︸ ︷︷ ︸
(K−1)×fGD,2

◦fGD,1 ◦ fµ ◦ fin.

Here fout extracts the (d + de + dt + 1)-th to (2d + de + dt)-th rows of the output as the score
approximator, and we choose the clipping range as R = 2R0σ

−1
t .

Moreover, let
s̃0 = flinear ◦ fGD,2 ◦ fGD,2 ◦ · · · ◦ fGD,2 ◦ fGD,1 ◦ fµ ◦ fin

to be the score approximator without clipping, then under the condition that ∥s(vt)∥2 ≤ R0σ
−1
t , we

have ∥s̃(vt)− s̄(vt)∥2 ≤ ∥s̃(vt)0 − s̄(vt)∥2.

Now let’s bound the difference between s̃0(vt) and s̄. By Lemma 9 and Lemma 10, s̃0(vt) expresses
the output after K steps of GD with error level

√
N · ϵ/

√
N = ϵ. Here we multiply

√
N because we
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are considering the entire score function instead of each patch. Then by Lemma 2 and following the
proof of Lemma 3, we have

∥s̃0(vt)− s̄(vt)∥2 ≤ (κt + 1)ϵ

2
+ exp

(
− 2K

κt + 1

)
∥s̄(vt)∥2

=
(κt + 1)ϵ

2
+ exp

(
− 2K

κt + 1

)
2R0σ

−1
t .

Thus, by replacing the error level ϵ by 2ϵ/(Cσ−2t0 + 1) ≤ 2ϵ/(κt + 1) for sufficiently large constant
C and K = ⌈κt0

+1

2 log(4R0/(σtϵ))⌉, we have ∥s̃0(vt)− s̄(vt)∥2 ≤ ϵ for any t ≥ t0. Moreover, we
remark that each patch of the score approximator lies in the euclidean ball with radius∥∥∥s̃(k)i (vt)

∥∥∥
2
≤ ϵ+ 2 ∥s̄(vt)∥2 ≤ 1 + 4R0σ

−1
t

throughout the network. Here s̃(k)i (vt) represents the i-th patch of the score approximator after k GD
blocks.

The Overall Size of Transformer Architecture for Approximating The Score Function We
combine the network sizes in Table 1 and Table 2, which gives rise to a characterization of the overall
network size for approximating the score function of Gaussian process data. The result is summarized
in the following table.

Table 3: Overall transformer network size for approximating the score function

Input dimension D ×N with D = 9d+ de + dt + 1
# of blocks L Lµ + (2 + Lmult)K = O(κt0 log(R0Nd/ϵ)

2)

# of attention heads M 4J = O
(
(ℓ log(Nℓ ∥Σ∥F /σt0))

1/v
)

Parameter bound B O
(
log(R0Nd/(ϵσt0))

√
NR0σ

−2
t0 (r2 + ∥Σ∥∞)

)

Output range Rt 2R0σ
−1
t

Note that to obtain the bound on L and M , we substitute the choice of J and K into the network
sizes in Tables 1 and 2. The parameter bound is obtained by explicitly evaluating the magnitude
∥s∥∞ of the score function in Table 2. The proof is complete.

D.4 OMITTED PROOFS OF LEMMAS ABOUT THE SCORE FUNCTION

Proof of Lemma 5. Suppose vt ∼ Pt = N (αtµ, α
2
t (Γ⊗Σ)+σ2

t I)). Denote Φt = α2
t (Γ⊗Σ)+σ2

t I
and Φ̄t = α2

t (Γ̄ ⊗ Σ) + σ2
t I. Then we have Γt = Φ̄t + α2

t (∆Γ ⊗ Σ). Moreover, by Lemma 4,
choosing J = O((log(N ∥Σ∥F /(ϵσt))) ensures that ∥∆Γ∥F ≤ ϵ ∥Σ∥−2F σ2

t . Thus, we have

∥s̄−∇ log pt∥2L2(Pt)
= Evt

[
∥s̄(vt)−∇ log pt(vt)∥22

]

= Evt

[∥∥(Φ̄−1t − Γ−1t

)
(vt − αtµ)

∥∥2
2

]

=
∥∥∥
(
Φ̄−1t − Γ−1t

)
Γ
1/2
t

∥∥∥
2

F

= tr
((
Φ̄−1t − Γ−1t

)
Γt

(
Φ̄−1t − Γ−1t

))

≤
∥∥(Φ̄−1t − Γ−1t

)
Γt

∥∥
F

∥∥Φ̄−1t − Γ−1t

∥∥
F

≤
∥∥(Φ̄−1t − Γ−1t

)
Γt

∥∥
F

∥∥(Φ̄−1t − Γ−1t

)
Γt

∥∥
F

∥∥Γ−1t

∥∥
2

=
∥∥α2

t Φ̄
−1
t (∆Γ⊗Σ)

∥∥2
F

∥∥(α2
t (Γ⊗Σ) + σ2

t I)
−1∥∥

2

≤
∥∥(α2

t (Γ̄⊗Σ) + σ2
t I)
−1∥∥2

2

∥∥α2
t (∆Γ⊗Σ)

∥∥2
F

∥∥(α2
t (Γ⊗Σ) + σ2

t I)
−1∥∥

2

≤ α4
t ∥∆Γ∥2F ∥Σ∥2F

∥∥σ2
t I
∥∥−3
2

≤ ϵ2

σ2
t

.
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In the last inequality, we invoke ∥∆Γ∥F ≤ ϵ ∥Σ∥−2F σ2
t . The proof is complete.

Proof of Lemma 7. Suppose vt ∼ Pt = N (αtµ, α
2
t (Γ⊗Σ)+σ2

t I). Denote Φt = α2
t (Γ⊗Σ)+σ2

t I
and Φ̄t = α2

t (Γ̄⊗Σ) + σ2
t I. Then we have

∥s̄∥2L2(Pt)
= Evt

[
∥s̄(vt)−∇ log pt(vt)∥22

]

= Evt

[∥∥Φ̄−1t

∥∥2
2

]

=
∥∥∥Φ̄−1t Γ

1/2
t

∥∥∥
2

F

= tr
(
Φ̄−1t ΓtΦ̄

−1
t

)

≤
∥∥Φ̄−1t Γt

∥∥
F

∥∥Φ̄−1t

∥∥
F

≤
∥∥Φ̄−1t α2

t (∆Γ⊗Σ) + I
∥∥
F

∥∥Φ̄−1t

∥∥
F

≤
(∥∥Φ̄−1t

∥∥
2

∥∥α2
t (∆Γ⊗Σ)

∥∥
F
+

√
Nd
)√

Nd
∥∥Φ̄−1t

∥∥
2

≤
(
α2
t ∥∆Γ∥F ∥Σ∥F

σ2
t

+
√
Nd

)√
Nd

σ2
t

≤
(
ϵ+

√
Nd
)√Nd

σ2
t

≤ 2Nd

σ2
t

.

Here we invoke ∥∆Γ∥F ≤ ∥Σ∥−1F σ2
t by Lemma 4 in the second last inequality.

Proof of Lemma 8. Note that if vt ∼ Pt we can write vt = αtµ−Φ
1/2
t z, where Φt = α2

tΓ⊗Σ+σ2
t I

and z ∼ N (0, I). Thus, the score function can be written as

∇ log pt(vt) = −Φ−1t (vt − αtµ) = Φ
−1/2
t z.

Thus, we have ∥∇ log pt(vt)∥22 = z⊤Φ−1t z, which is a quadratic form of the standard Gaussian. By
taking g(z) = ∥∇ log pt(vt)∥22 in Lemma 24, we have

P
[
| ∥∇ log pt(vt)∥22 − E[∥∇ log pt(vt)∥22]| ≥ δ

√
Var(∥∇ log pt(vt)∥22)

]
≤ 2 exp (−C2δ) .

Since we have

E[∥∇ log pt(vt)∥22] = tr
(
Φ−1t

)
≤ Ndσ−2t and Var(∥∇ log pt(vt)∥22) ≤

∥∥Φ−1t

∥∥2
F
≤ Ndσ−4t ,

we have ∥∇ log pt(vt)∥22 ≤ σ−2t

(
N + δ

√
Nd
)

with probability 1− 2 exp (−C2δ).

D.5 RESULTS ON TRANSFORMERS WITH SOFTMAX ACTIVATION

In this section, we showcase the capability of softmax transformers in unrolling gradient descent
algorithm. In this section, we consider the quadratic kernel function, i.e.,

γ(hi, hj) = exp
(
−∥ei − ej∥22 /ℓ

)
.

In the following lemma, we reproduce our results in Lemma 10 with softmax activation. Moreover,
due to the exponential scaling strategy of softmax, we show that one head of attention layer is enough
to express the GD with the target function without truncation on Γ.

Lemma 11 (Unroll GD in softmax transformers). Suppose the input token is

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t), s⊤i ,0
⊤
d ,0

⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d−1, i]
⊤,
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then there exists a softmax transformer fGD,softmax ∈ Traw(D,O(log (∥x∥∞ ∥s∥∞Nd/ϵ)),
1,O(N2 + d+ ∥Σ∥F + r2); softmax) that approximately iterates si by following the GD update
formula, i.e.,

fGD,softmax(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), s⊤i − ηt




N∑

j=1

(α2
tΓijΣ+ σ2

t I)s
⊤
j − (xi − αtµi)

⊤


+ ϵi,

0⊤d ,0
⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d−1, i

]⊤
.

Here ∥ϵ′i∥2 ≤ ϵ/
√
N for i ∈ [N ]. Compared with Lemma 10, we add an additional time embedding

i at the end of the input for technical convenience.

Proof of Lemma 11. The proof is similar to that of Lemma 10 but with different construction on the
attention layer. We also decompose the gradient descent iteration as

s
(k+1)
i = s

(k)
i − ηt




N∑

j=1

(α2
tΓijΣ)s

(k)
j + σ2

t s
(k)
i + (xi,t − αtµi)




= s
(k)
i − ηt

N∑

j=1

α2
tΓijΣs

(k)
j

︸ ︷︷ ︸
(A)

−
(
ηtσ

2
t s

(k)
i + ηt(xi,t − αtµi)

)

︸ ︷︷ ︸
(B)

. (14)

By the proof of Lemma 10, part (B) only utilizes feed-forward networks, thus no changes need
to be made. We will elaborate on approximating (A) using softmax attention layers. To ease the
presentation, we consider a fixed time t and drop the subscript t. We also drop the superscript (k).
Recall each token yi is

yi = [x⊤i , e
⊤
i ,ϕ

⊤(t), s⊤i ,0
⊤
d ,0

⊤
d ,0

⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d−1, i]
⊤ ∈ R9d+de+dt+1.

Here we reserve 0⊤3d as the buffer space for the multiplication module (the additional hidden width).
Before diving into approximating terms (A), we follow the proof of Lemma 10 to use a multiplication
module consisting of a series of transformer blocks to transform each column vector yi into

yi =
[
x⊤i , e

⊤
i ,ϕ

⊤(t), s⊤i , fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),0
⊤
d , fmult(αt,µi)

⊤, 1,0⊤3d−1, i
]⊤
,

where fmult denotes an approximation to the entrywise multiplication realized by the multiplication
module. We defer the detailed construction of the multiplication module to Appendix G.3, which
utilizes O(log(1/ϵmult)) transformer blocks to reach the accuracy

∥∥fmult(α
2, s)− α2s

∥∥
∞ ≤ ϵmult.

Here we could still utilize the multiplication module after changing the activation function in attention
layer to softmax because its construction only relies on feed-forward networks, so we can simply set
the attention layers trivial throughout the network in multiplication module. See Appendix G.3 for
more discussions. Now we begin to approximate (A).

Comparison with ReLU activation In softmax transformers, we leverage the exponential scaling
mechanism of the softmax activation to directly construct the entire kernel matrix Γ without truncation,
so only one head of attention layer is needed. On the contrary, in ReLU transformers, we only
construct the main diagonals of Γ with multiple attention heads. See Lemma 10 for more details.

Approximate (A) Here we will construct a transformer block T B1 = FFN1 ◦ Attn1 for approxi-
mating (A). Our construction depends on the following fact:

(A) = ηα2
N∑

j=1

exp(−∥ei − ej∥2 /ℓ)Σsj

= ηα2
N∑

j=1

exp((2r2 − 2e⊤i ej)/ℓ)Σsj

= ηα2Di · softmax
(
[(2r2 − 2e⊤i e1)/ℓ, · · · , (2r2 − 2e⊤i eN )/ℓ]

)
· [Σs1, . . . ,ΣsN ],
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where Di =
∑N

j=1 exp((2r
2 − 2e⊤i ej)/ℓ) is the normalizing constant in the softmax activation.

Thus, we can use one attention head to first realize the unnormalized version:
(A′) = α2 · softmax

(
[(2r2 − 2e⊤i e1)/ℓ, · · · , (2r2 − 2e⊤i eN )/ℓ]

)
· [Σs1, . . . ,ΣsN ].

Use Attn to approximate (A′) In particular, for the first attention head, we choose
(Q)⊤K = diag

([
0d×d,−2ℓ−1Ide

,0dt×dt
,0(5d)×(5d), 2r

2ℓ−1,0(3d)×(3d)
])

and

V =



0(4d+de+dt)×(2d+de+dt) 0(4d+de+dt)×d 0(4d+de+dt)×(6d+1)

0d×(2d+de+dt) Σ 0d×(6d+1)

0(4d+1)×(2d+de+dt) 0(4d+1)×d 0(4d+1)×(6d+1)


 .

Thus, we have

Attn1(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

D−1i

N∑

j=1

exp((2r2 − 2eiej)/ℓ)Σ · fmult(α
2, s⊤j ), fmult(αt,µi)

⊤, 1,0⊤3d−1, i

]⊤
.

To multiply our constructed value by the normalizing constant Di, we will construct a feed-forward
layer FFN1 such that the output of the first attention block is

T B(yi) =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

D−1i

N∑

j=1

exp((2r2 − 2eiej)/ℓ)Σ · fmult(α
2, s⊤j ), fmult(αt,µi)

⊤, 1, D̂i,0
⊤
3d−2, i

]⊤
.

(15)

Here D̂i is an approximation to Di. Now we show the approximation strategy to approximate Di.

Use FFN to approximate Di Note that we can rewrite Di as

Di = 1 +

N−1∑

k=1

(1{i ≥ k + 1}+ 1{i ≤ N − k})g(k).

Where g(k) = exp(−f(k)ν/ℓ) is the correlation function. Let D̂i

(m)
= 1 +

∑m
k=1(1{i ≥ k + 1}+

1{i ≤ N − k})g(k) to be an approximation of Di, we know by the proof of Lemma 4, for any
i ∈ [N ],

|D(i)−Dm(i)| ≤ 2

N−1∑

k=m+1

g(k) ≤ c−νℓ exp

(
−2cνmν

ℓ

)
.

Thus, to derive an ϵ error bound, we only need m to be in the order of m = O
(
(ℓ log (1/ϵ))

1/ν
)

.
For each k, we have

(1{i ≥ k + 1}+ 1{i ≤ N − k})g(k)
= g(k)(ReLU(i− k)− ReLU(i− k − 1) + ReLU(N − k + 1− i)− ReLU(N − k − i))

holds for any integer i . Thus, the entire function D̂
(m)
i can be expressed by 4m =

O
(
(ℓ log (1/ϵ))

1/ν
)

ReLU neurons in the feed-forward network. Specifically, we take FFN(y) =

W2RelU(W1y) +W1 and choose W1 as

W1 =




0⊤D−3d−1 −1 0⊤3d−1 1
0⊤D−3d−1 −2 0⊤3d−1 1

...
...

...
...

0⊤D−3d−1 −m− 1 0⊤3d−1 1
0⊤D−3d−1 n 0⊤3d−1 −1

...
...

...
...

0⊤D−3d−1 N −m 0⊤3d−1 −1




∈ R(2m+2)×D.
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Then we have W1 · Attn ◦ T B1(yi) as 


i− 1
i− 2

i−m− 1
N − i

N − i− 1
N − i−m



.

We choose b1 = 0, b2 = [0⊤D−3d−1, 1,0
⊤
3d]. Denote

wg = [g(1), g(2)− g(1), g(3)− g(2), · · · , g(m)− g(m− 1),−g(m)]

and let

W2 =



0(D−3d−1)×(2m+2)

wg wg

0(3d)×(2m+2)


 ,

we can check that this exactly express D̂(m)
i and store it in the correpsonding location according to

the equation (15). Taking T B = FFN ◦ Attn, we reach our target in equation (15). After that, we
could apply another multiplication module fmult to multiply the gradient component by D̂i, which
gives rise to

fmult ◦ T B =

[
x⊤i , e

⊤
i ,ϕ

⊤(t), si, fmult(α
2, s⊤i ), fmult(σ

2, s⊤i ),

fmult


D̂i, D

−1
i

N∑

j=1

exp((2r2 − 2eiej)/ℓ)Σ · fmult(α
2, s⊤j )


,

fmult(αt,µi)
⊤, 1, D̂i,0

⊤
3d−2, i

]⊤
.

Then, we can completely follow the proof of Lemma 10 to constuct the gradient and scale the gradient
by the learning rate ηt, and the approximation error of the gradient only adds an additional term
induced by approximating Di, which has been well controlled by setting m = O

(
(ℓ log (1/ϵ))

1/ν
)

to reach a error level of ϵ. We remark that D̂i can be approximated for only once throughout the
transformer networks and we can reuse it in each GD block.

Size of Transformer Architecture with Softmax Activation We list here the size of transformer
architecture equipped with the softmax activation. Readers may draw a quick comparison with the
size of ReLU transformer in Table 3.

Table 4: Size of transformer with Softmax activation for approximating score function (with Gaussian
covariance function)

Input dimension D ×N with D = 9d+ de + dt + 1
# of blocks L 2 + Lmult

# of attention heads M 1
Parameter bound B O(N2 + d+ ∥Σ∥F + r2))

Output range Rt 2R0σ
−1
t

It is observed that using Softmax activation leads to a reduced number of transformer blocks. The
reason behind is that the Gaussian covariance function can be approximately represented by one
attention block. The proof is complete.

With Lemma 11 and following the proof in Appendix D while omitting the part of truncating Γ, i.e.,
setting J = N , we could similarly construct a softmax-transformers as

s̃softmax = fout ◦ fGD,softmax ◦ · · · ◦ fGD,softmax ◦ fµ ◦ fin.
such that ∥s̃softmax −∇ log pt∥L2(Pt)

≤ σ−2t ϵ for any t ≥ t0.
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E OMITTED PROOFS IN SECTION 5

E.1 PROOF OF THEOREM 2

Throughout this section, we assume Assumption 1 holds, and there exists an absolute constant C as
in the statement of Theorem 2 such that C−1 ≤ λ(Σ) ≤ C and ∥µ∥∞ ≤ C, which means

∥Σ∥∞ = O(1), ∥Σ∥op = O(1), ∥Σ∥F = O(
√
d) and ∥µ∥2 ≤

√
Nd.

Let’s first analyse the effect of early-stopping time t0 on the accuracy of distribution estimation.
The following lemma presents the distance between the truth distribution P and the early-stopped
distribution Pt0 in W2 distance.
Lemma 12. Suppose P ∼ N (µ,Γ⊗Σ), taking the early stopping time t0 = o(1), we have

W 2
2 (P, Pt0) ≤ (1− αt0)

2 ∥µ∥22 + C2
νNdσ

2
t0 .

Here Cν = λmax(Γ⊗Σ) ∨ 1 ≤ 1 + ∥Σ∥op ℓ ≲ 1 + ℓ by (11).

This means that W2(P, Pt0) ≲ Cν

√
t0Nd. We defer the proof to Appendix E.1.1.

Then we state our theory on score estimation error. Our score estimator ŝt is chosen to minimize the
objective function as

ŝt = arg min
st∈F

1

n

n∑

i=1

E
vt|v(i)

0

∥∥∥st(vt)−∇ log pt(vt | v(i)
0 )
∥∥∥
2

2
.

for each time step t ∈ [0, T ]. The next proposition provides guarantee on the score estimation error,
which we will transfer into the distribution estimation error later.
Proposition 2. By taking ϵ = 1

ndN in Theorem 1, we have the expected score estimation error
bounded by

ED[ℓ(ŝ)] ≲ (T + log(1/t0)) log (κtndN/t0)
4+1/ν · ℓ

1/νκt0Nd
3

n
.

The proof is provided in Appendix E.2. Although our assumption does not ensure the Novikov’s
condition to hold for sure, according to Chen et al. (2022b), as long as we have bounded second
moment for the score estimation error and finite KL divergence w.r.t. the standard Gaussian, we
could still adopt Girsanov’s Theorem and bound the KL divergence between the two distribution. We
restate the lemma as follows:
Lemma 13 (Proposition D.1 in Oko et al. (2023), see also Theorem 2 in Chen et al. (2022b)). Let
p0 be a probability distribution, and let Y = {Yt}t∈[0,T ] and Y ′ = {Y ′t }t∈[0,T ] be two stochastic
processes that satisfy the following SDEs:

dYt = s(Yt, t)dt+ dWt, Y0 ∼ p0

dY ′t = s′(Y ′t , t)dt+ dWt, Y ′0 ∼ p0

We further define the distributions of Yt and Y ′t by pt and pt. Suppose that
∫

x

pt(x) ∥(s− s′)(x, t)∥22 dvt ≤ C (16)

for any t ∈ [0, T ]. Then we have

KL (pT ∥p′T ) ≤
∫ T

0

1

2

∫

x

pt(x) ∥(s− s′)(x, t)∥22 dxdt.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Now we transfer the score estimation error to a TV-distance bound using
Lemma 13. Note that under our assumptions and for any s ∈ F , we have

∫

vt

pt(vt) ∥st(vt)−∇ log pt(vt)∥22 dvt ≲
∫

vt

pt(vt)

(
∥vt − αtµ∥22

σ4
t

+
C

σ2
t

)
dvt ≲

1

σ2
t

.
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Thus, the condition (16) holds for t0 ≤ t ≤ T , which means that we could apply Girsanov’s theorem
in this time range. Remember that the backward process is written as

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t )

]
dt+ dWt, with X←0 ∼ N(0, I).

We denote the distribution of X←t as P←T−t. In real setting, we replace ∇ log pt by its score estimator
ŝt, which gives rise to the following backward process:

dX̂←t =

[
1

2
X̂←t + ŝT−t(X̂

←
t )

]
dt+ dWt, with X←0 ∼ N(0, I).

We denote the generated distribution of X̂←t as P̂T−t. Besides, we consider the truth backward
process as the inverse process of the forward one, which is defined as

dX′←t =

[
1

2
X′←t +∇ log pT−t(X

′←
t )

]
dt+ dWt with X′←0 ∼ PT .

We denote the distribution of X′←t by P ′T−t, then we have P ′t ∼ Pt for any t ≤ T .

Since X′← and X← are obtained through the same backward SDE but with different initial distribu-
tions, by Data Processing Inequality and Pinsker’s Inequality (see e.g., Lemma 2 in Canonne (2023)),
we have

TV(Pt0 , P
←
t0 ) = TV(P ′t0 , P

←
t0 )

≲
√
KL(P ′t0 ||P←t0 )

≲
√

KL(PT ||N(0, I))
≲
√
KL(P ||N(0, I)) exp(−T ).

Thus, we could decompose the TV bound into

TV(Pt0 , P̂t0) ≲ TV(Pt0 , P
←
t0 ) + TV(P←t0 , P̂t0)

≲ exp(−T ) +
√∫ T

t0

1

2

∫

vt

pt(vt) ∥ŝ(vt,y, t)−∇ log pt(vt)∥22 dvtdt. (17)

Thus, by taking expectation over the dataset D and invoking Jensen inequality, we have

ED
[
TV(Pt0 , P̂t0)

]
≲ EDTV(Pt0 , P

←
t0 ) + EDTV(P←t0 , P̂t0)

≲ exp(−T ) +
√

(T + log(1/t0))κ2t ℓ
1/ν log

(
κtndNt

−1
0

)4+1/νNd3

n
.

By taking T = O(log n) and combining the results in Lemma 12, we have completed our proof.

E.1.1 PROOF OF LEMMA 12

Proof. Since P ∼ N (µ,Γ ⊗ Σ) and Pt ∼ N (αtµ, α
2
tΓ ⊗ Σ + σtI), by the formula of the W2

distance between two multivariate Gaussian distributions, we have

W 2
2 (P, Pt0) = ∥µ− αtµ∥22 +

∥∥∥(Γ⊗Σ)1/2 − (α2
tΓ⊗Σ+ σtI)

1/2
∥∥∥
2

F
.

Suppose Γ ⊗ Σ = P⊤DP , where P ∈ RdN×dN is an orthogonal matrix and D =
diag(λ1, . . . , λdN ) is a diagonal matrix with λi ≥ 0. Then we have

∥∥∥(Γ⊗Σ)1/2 − (α2
tΓ⊗Σ+ σtI)

1/2
∥∥∥
2

F
=
∥∥∥P⊤D1/2P⊤ − P⊤(α2

tD + σ2
t I)

1/2P
∥∥∥
2

F

=
∥∥∥D1/2 − (α2

tD + σ2
t I)

1/2
∥∥∥
2

F

=

Nd∑

i=1

σ4
t (λi − 1)2

(
√
λt +

√
α2
tλi + σ2

t )
2

≤
Nd∑

i=1

σ4
tC

2
ν

σ2
t

≤ NdCνσ
2
t .
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By taking t = t0 and plugging the inequality above into the expression of W 2
2 (P, Pt0), we complete

our proof.

E.2 PROOF OF PROPOSITION 2

E.2.1 ADDITIONAL NOTATIONS

For any score estimator ŝt, we denote its population loss ℓ as:

ℓ(ŝt) :=

∫ T

t0

dt · Evt∼pt
∥ŝt(vt)−∇ log pt(vt)∥22

and we define the empirical loss ℓ̂ as

ℓ̂(ŝt) =
1

n

n∑

i=1

∫ T

t0

dt · E
vt|v(i)

0

∥∥∥∥∥ŝt(vt) +
vt − αtv

(i)
0

σ2
t

∥∥∥∥∥

2

2

.

Here, D =
{
v
(i)
0

}
i∈[n]

are n i.i.d samples from true distribution P (= P0). When taken expectation

over the choice of samples, we have ED[ℓ̂(ŝt)] = ℓ(ŝt) + C according to Vincent (2011) for any
score estimator ŝ. Here C is a constant independent with ŝt. Our score estimator ŝt is chosen to
minimize the objective function as

ŝt = arg min
st∈F

1

n

n∑

i=1

E
vt|v(i)

0

∥∥∥st(vt)−∇ log pt(vt | v(i)
0 )
∥∥∥
2

2
.

for each time step t ∈ [0, T ].

E.2.2 PROOF OF PROPOSITION 2

The proof follows that of Theorem 4.1 in Fu et al. (2024) by neglecting the conditional information.
Specifically, we replace Lemma D.1 in Fu et al. (2024) by Lemma 14, which provides an 2Nd(T +
log(1/t0))(R

2
s + 1) uniform upper bound on the magnitude of the empirical loss function.

Lemma 14 (Counterpart of Lemma D.1 in Fu et al. (2024)). Then for any score estimator ŝ ∈
T (D,L,M,B,Rs

√
Ndσ−1t ) and data point v0, we have single-point score loss bounded by

h(ŝ,v0) :=

∫ T

t0

dt · Evt|v0

∥∥∥∥ŝt(vt) +
vt − αtv0

σ2
t

∥∥∥∥
2

2

≤ 2Nd(T + log(1/t0))(R
2
s + 1). (18)

The proof is provided in Appendix E.2.3. Besides, to implement covering number techniques, we
also introduce a truncated loss ℓ̂trunc as in Fu et al. (2024) and bound its difference with the truth loss
with small error. We define the truncated loss as

ℓ̂trunc(ŝt) :=
1

n

n∑

i=1

∫ T

t0

dt · E
vt|v(i)

0



∥∥∥∥∥ŝt(vt) +

vt − αtv
(i)
0

σ2
t

∥∥∥∥∥

2

2

1
{∥∥∥v(i)0

∥∥∥
2
≤ R0

}

.

The follow Lemma aligns with equation (D.12) in Fu et al. (2024).
Lemma 15 (Truncation error of the truncated loss function). There exists a constant CR such that for
any ϵ < 1, by choosing R0 =

√
Nγ0 tr(Σ) + CR log(Nd/ϵ) ∥Γ∥F ∥Σ∥F = O(log(Nd/ϵ)

√
Nd),

we have for any ŝ ∈ F ,∣∣∣∣∣Ev0

[∫ T

t0

dt · E
vt|v(i)

0

∥∥∥∥ŝt(vt) +
vt − αtv0

σ2
t

∥∥∥∥
2

2

1 {∥v0∥ ≥ R0}
]∣∣∣∣∣ ≲ (T + log(1/t0))ϵ.

Moreover, based on the truncated loss function, we have the following results on bounding the
difference between the losses of two score estimators that are close to each other, which enables us to
apply the results in Appendix E.3.
Lemma 16. Given the truncation radius R0 > 0. Suppose ŝ(1), ŝ(2) ∈ F such that∥∥∥ŝ(1)t (v)− ŝ

(2)
t (v)

∥∥∥
2
≤ ϵ for any ∥v∥2 ≤ R0 + σtC

√
Nd log(dN/ϵ) and t ≥ t0, where C is

an absolute constant. Then we have∣∣∣ℓ̂trunc(ŝ(1))− ℓ̂trunc(ŝ(2))
∣∣∣ ≤ 2ϵ(T + log(1/t0))

(√
Nd(Rs + C log(dN/ϵ)) + 2R0 + 1

)
.
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Besides, combining the results of Lemmas 23 and 16, we direcly have the following results on
bounding the covering number of the truncated loss function class, which aligns with Lemma D.3 in
Fu et al. (2024).

Lemma 17 (Counterpart of Lemma D.3 in Fu et al. (2024)). We consider the truncated loss function
class defined as

S(R0) =

{
htrunc(s, ·) : Rd → R

∣∣∣∣s ∈ F
}
. (19)

Here htrunc(s,v) = h(s,v)1 {∥v∥2 ≤ R0}. Then the log-covering number of this loss truncated
function class with output range lying in the Euclidean ball with radius R0 can be bounded by

logN (δ;S(R0), ∥·∥∞) ≤ 8D2M ·
(
L2 logLFAF + log

24R2B
2MLN3/2

ϵδ

)
(20)

where R2 satisfies R2 ≤ (r + Cdiff)
√
N +R0 + σtC

√
Nd log(dN/ϵδ), and ϵδ satisfies

δ = 2ϵδ(T + log(1/t0))
(√

Nd(Rs + C log(dN/ϵδ)) + 2R0 + 1
)
. (21)

Note that if we take δ = (ndNt−10 )−C for some constant C, we have log ϵδ = O(log(ndNt−10 )).
The proofs of all the supporting lemmas above are provided in Appendix E.2.3.

With the lemmas and statements above, we can completely follow the main proof of Theorem 4.1 of
Fu et al. (2024) to prove Proposition 2.

Proof of Proposition 2. First we set dy = 0 in Fu et al. (2024) for our unconditioned setting. Then
by choosing the covering accuracy δ in Lemma 17 and taking the truncation range as in Lemma 15,
i.e., R0 = O(log(Nd/ϵδ)

√
Nd), we reproduce (D.17) in Fu et al. (2024) as

ED[ℓ(ŝ)] ≤ 2 inf
s∈F

∫ T

t0

Evt
∥s(vt)−∇ log pt(vt)∥22 dt

+
(T + log(1/t0))

n
· logN + 2(T + log(1/t0))ϵδ + 7δ.

≤ 2(T + log(1/t0))ϵ

+
2Nd(T + log(1/t0))(R

2
s + 1)

n
· 8D2M ·

(
L2 logLFAF + log

24R2B
2MLN3/2

ϵδ

)

+ 2(T + log(1/t0))ϵδ + 14ϵδ(T + log(1/t0))
(√

Nd(Rs + C log(dN/ϵδ)) + 2R0 + 1
)
.

In the inequality, we invoke (20) and substititue δ by its expression w.r.t. ϵδ according to (21).
Choosing the both the approximation error and the covering accuracy as ϵ = ϵδ = 1/n and plugging
the corresponding parameters about the size of the transformer classes according to Theorem 1 gives
rise to

ED[ℓ(ŝ)] ≲ (T + log(1/t0))κ
2
t ℓ

1/ν log
(
κtndNt

−1
0

)4+1/νNd3

n
.

The proof is complete.

E.2.3 PROOFS OF OTHER SUPPORTING LEMMAS FOR PROPOSITION 2

Proof of Lemma 14. Notice that when vt ∼ pt(· | v(i)
0 ), we have vt − αv

(i)
0 = σtz where z ∼

N (0, INd) is a standard Gaussian variable. Therefore,

E
vt|v(i)

0

∥∥∥∥∥ŝt(vt) +
vt − αtv

(i)
0

σ2
t

∥∥∥∥∥

2

2

≤ 2E
vt|v(i)

0
∥ŝt(vt)∥22 + 2Ez∼N (0,I)∥z/σt∥22

≤ 2R2
sNd/σ

2
t + 2Nd/σ2

t =
2Nd(R2

s + 1)

σ2
t

.
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Now we can take integral over t ∈ [t0, T ] and obtain that:

∫ T

t0

dt·E
vt|v(i)

0

∥∥∥∥∥ŝt(vt) +
vt − αtv

(i)
0

σ2
t

∥∥∥∥∥

2

2

≤ 2Nd(R2
s+1)·

∫ T

t0

etdt

et − 1
≤ 2Nd(T+log(1/t0))(R

2
s+1).

Here, we use the fact that
∫ T

t0

etdt

et − 1
= log(eT − 1)− log(et0 − 1) ≤ T + log(1/t0).

The proof is complete.

To prove Lemma 15, we first need to bound the range of the data with high probability.

Lemma 18 (Range of the data). Given δ > 0, with probability 1− 2n exp(−Cδ) over the dataset,
Here C is the absolute constant C2/

√
3 in Lemma 24.

Proof of Lemma 18. This statement is directly related to the concentration of high-dimensional
Gaussian distribution. For a random variable v ∼ N (0,Σ0) where Σ0 ∈ RNd×Nd is the covariance
matrix. Then, we use the polynomial concentration lemma (Lemma 24) and let g(·) = ∥ · ∥22 be the
2-degree polynomial applied on the Gaussian. Then, we have:

E[g(v)] = tr(Σ0), E[g(v)2] = 3

Nd∑

i=1

(Σ0)
2
ii + 2

∑

i<j

(
(Σ0)ij + (Σ0)ji

)2
≤ 3 ∥Σ0∥2F .

Therefore, we apply Lemma 24 and conclude that with probability at least 1− 2 exp(−Cδ) (where
C is the C2 in Lemma 24), we have:

∣∣∥v∥22 − E[∥v∥22]
∣∣ ≤ δ

√
Var(∥v∥22) ≤

√
3δ · ∥Σ0∥F .

For our case, Σ0 = Γ ⊗ Σ, and therefore we can conclude that: with probability at least 1 −
2n exp(−Cδ):

∥v(i)
0 ∥22 ≤ tr(Γ) · tr(Σ) +

√
3δ∥Γ∥F∥Σ∥F ≤ Nγ0tr(Σ) +

√
3δ∥Γ∥F∥Σ∥F.

holds for ∀i ∈ [n]. Finally, we replace δ with δ/
√
3 and it comes to our conclusion.

Now we are ready to prove Lemma 15.

Proof of Lemma 15. This conclusion can be made by combining the two lemmas above. By using
Cauchy-Schwarz inequality and Lemma 14, we have

∣∣∣∣∣∣
Ev0



∫ T

t0

dt · E
vt|v(i)

0

∥∥∥∥∥ŝt(vt) +
vt − αtv

(i)
0

σ2
t

∥∥∥∥∥

2

2

1 {∥v0∥ ≥ R0}



∣∣∣∣∣∣

≤ 2Nd(R2
s + 1)(T + log(1/t0)) ·

√
P[∥v0∥22 ≥ R2

0]

≤ 2Nd(R2
s + 1)(T + log(1/t0)) ·

√
2 exp (−CCR log(Nd/ε)/2) .

Let CR = 2/C, then we have:
∣∣∣∣∣∣
Ev0



∫ T

t0

dt · E
vt|v(i)

0

∥∥∥∥∥ŝt(vt) +
vt − αtv

(i)
0

σ2
t

∥∥∥∥∥

2

2

1 {∥v0∥2 ≥ R0}



∣∣∣∣∣∣
≲ ε(T + log(1/t0)),

which comes to our conclusion.
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Proof of Lemma 16. For any datapoint v0 such that ∥v0∥ ≤ R0 and diffusion time t ≥ t0, we have
∣∣∣∣∣Evt|v0

∥∥∥∥ŝ
(1)
t (vt) +

vt − αtv0

σ2
t

∥∥∥∥
2

2

− E
vt|v(i)

0

∥∥∥∥ŝ
(2)
t (vt) +

vt − αtv0

σt

∥∥∥∥
2

2

∣∣∣∣∣

=

∣∣∣∣∣Ez∈N (0,I)

[∥∥∥∥ŝ
(1)
t (αtv0 + σtz) +

z

σt

∥∥∥∥
2

2

−
∥∥∥∥ŝ

(2)
t (αtv0 + σtz) +

z

σt

∥∥∥∥
2

2

]∣∣∣∣∣

=

∣∣∣∣Ez∈N (0,I)

[
σ−1t

(
(ŝ

(1)
t − ŝ

(2)
t )(αtv0 + σtz)

)⊤(
σt(ŝ

(1)
t + ŝ

(2)
t )(αtv0 + σtz) + 2z

)]∣∣∣∣
≤ σ−1t Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2],

where ϕ1(z) = (ŝ
(1)
t − ŝ

(2)
t )(αtv0 + σtz) and ϕ2(z) = σt(ŝ

(1)
t + ŝ

(2)
t )(αtv0 + σtz) + 2z. By the

upper bound of s(i), we know that

∥ϕ1(z)∥2 ≤ 2Rs

√
Ndσ−1t , and ∥ϕ2(z)∥2 ≤ 2Rs

√
Nd+ 2 ∥z∥2 .

Thus, they both have sub-linear growth with respect to ∥z∥2. Now we can decompose
Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2] by

Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2] = Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2 1 {∥αtv0 + σtz∥2 ≤ R1}]
+ Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2 1 {∥αtv0 + σtz∥2 ≥ R1}]

≤ 2ϵ(Rs

√
Nd+ σ−1t (R0 +R1))

+ 4Rs

√
Ndσ−1t Ez

[
(Rs

√
Nd+ ∥z∥2)1 {∥αtv0 + σtz∥2 ≥ R1}

]

︸ ︷︷ ︸
A

.

In the inequality, we invoke ∥ϕ1(z)∥2 ≤ ϵ and ∥z∥2 ≤ σ−1t (R0 + R1) for ∥αtv0 + σtz∥2 ≤ R1.
By Cauchy inequality, we can bound A by

A ≤ Ez

[
(Rs

√
Nd+ ∥z∥2)2

]1/2
Pr [∥αtv0 + σtz∥2 ≥ R1]

1/2

≤
√

(2R2
s + 2)Nd · Pr

[
∥z∥2 ≥ σ−1t (R1 − αtR0)

]
.

Since z is standard Gaussian, we can setR1 = R0+σtC
√
Nd log(dN/ϵ) for some absolute constant

C so that A ≤ ϵ/(4
√
Nd). Altogether, we have

Ez∼N (0,I)[∥ϕ1(z)∥2 ∥ϕ2(z)∥2] ≤ 2ϵ
(
Rs

√
Nd+ σ−1t (2R0 + 1) + C

√
Nd log(dN/ϵ)

)
.

Plugging the inequality into the expression of
∣∣∣ℓ̂trunc(ŝ(1))− ℓ̂trunc(ŝ(2))

∣∣∣, we have

∣∣∣ℓ̂trunc(ŝ(1))− ℓ̂trunc(ŝ(2))
∣∣∣ ≤

∫ T

t0

σ−1t 2ϵ
(
Rs

√
Nd+ σ−1t (2R0 + 1) + C

√
Nd log(dN/ϵ)

)

≤
∫ T

t0

σ−2t 2ϵ
(
Rs

√
Nd+ (2R0 + 1) + C

√
Nd log(dN/ϵ)

)

≤ 2ϵ(T + log(1/t0))
(√

Nd(Rs + C log(dN/ϵ)) + 2R0 + 1
)
.

The proof is complete.

E.3 COVERING NUMBER OF THE MULTI-LAYER TRANSFORMERS

The score network we apply satisfies the following form:

f = fl ◦ fl−1 ◦ . . . ◦ f1
where the total layer number l = 2L (which consists of L feed-forward layers and L Transformer
layers) and f1, f2, . . . , fl are either attention layers or feed-forward networks whose input and output
lies in RD×N . Denote B(R) = {X ∈ RD×N : ∥X∥F ≤ R} is a d-dimensional ball with radius
R. Assume there exists a sequence of radius R0, R1, . . . , Rl > 0 (which will be determined later)
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such that fi : B(Ri−1) → B(Ri) holds for ∀i = 0, 1, . . . , l. Then, we need to compute the covering
number with respect to the l∞ norm of the function space constructed by f : B(R0) → B(Rl) with
the form above.

Notice that for two such functions f = fl ◦ fl−1 ◦ . . . ◦ f1 and f ′ = f ′l ◦ f ′l−1 ◦ . . . ◦ f ′1, the l∞ norm
of their difference can be upper bounded by the following lemma:
Lemma 19. For functions {fi : Rd×N → Rd×N}i∈[l] and {f ′i : Rd×N → Rd×N}i∈[l], we denote
their composition as f := fl◦fl−1◦. . .◦f1 and f ′ := f ′l ◦f ′l−1◦. . .◦f ′1, where f, f ′ : Rd×N → Rd×N .
For any matrix-to-matrix function g, we denote its ∥ · ∥F,∞ norm as:

∥g∥F,∞ := sup
X

∥g(X)∥F
and its Lipschitz continuity as

Lip(g) := sup
X,X′

∥g(X)− g(X′)∥F
∥X−X′∥F

,

which is a simple extension from the Lipschitz continuity with respect to l2 norm of vectors. Then, it
holds that:

∥f − f ′∥F,∞ ≤
l∑

i=1

∥fi − f ′i∥F,∞ ·
l∏

j=i+1

Lip(fj).

Proof. For any k = 2, 3, . . . , l and x ∈ B(R0), it holds that:
∥fk ◦ . . . f1(x)− f ′k ◦ . . . f ′1(x)∥F,∞

≤ ∥f ′k ◦ f ′k−1 ◦ . . . ◦ f ′1(X)− fk ◦ f ′k−1 ◦ . . . ◦ f ′1(X)∥F,∞
+ ∥fk ◦ f ′k−1 ◦ . . . ◦ f ′1(X)− fk ◦ fk−1 ◦ . . . ◦ f1(X)∥F,∞

≤ ∥f ′k − fk∥F,∞ + Lip(fk) · ∥f ′k−1 ◦ . . . ◦ f ′1 − fk−1 ◦ . . . ◦ f1∥F,∞.
After taking maximum over x ∈ B(R0), we conclude that
∥fk ◦ . . . f1 − f ′k ◦ . . . f ′1∥F,∞ ≤ ∥fk − f ′k∥F,∞ + Lip(fk) · ∥fk−1 ◦ . . . f1 − f ′k−1 ◦ . . . f ′1∥F,∞.

By using the method of induction, we can easily derive our conclusion.

Now, in order to compute the covering number of the function space constructed by functions f with
the form f = fl ◦ fl−1 ◦ . . . ◦ f1 where fi ∈ Fi, we firstly need to bound the Lipschitz constants for
the function classes Fi. Also, we need to estimate the covering number of each Fi.
Lemma 20. For the function space of feed-forward network

FFFN =
{
FFN : RD×N → RD×N , Y 7→ Y +W2 · ReLU(W1Y + b21

⊤) + b11
⊤ :

∥W1∥F, ∥W2∥F, ∥b1∥2, ∥b2∥2 < B,Y ∈ B(R)
}
,

then all functions in the class FFFN are (1 +B2)-Lipschitz. The covering number can be bounded as:

logN (δ;FFFN, ∥ · ∥F,∞) ≤ 4D2 log
12B2(R+

√
N)

δ
.

Proof. For ∀f ∈ FFFN with f(Y) = Y 7→ Y+W2 ·ReLU(W1Y +b21
⊤)+b11

⊤, by the additivity
of Lipschitz constant and the fact that ReLU is 1-Lipschitz continuous, we can conclude that the
Lipschitz constant of function f is no larger than 1+∥W2∥2 ·∥W1∥2 ≤ 1+∥W1∥F∥W2∥F < 1+c2,
which means f is (1 + c2)-Lipschitz continuous. On the other hand, for two functions f, g ∈ FFFN

where f(Y) = Y +W2 ·ReLU(W1Y + b21
⊤) + b11

⊤ and g(Y) = Y +W′
2 ·ReLU(W′

1Y +
b′21

⊤) + b′11
⊤. Then for ∀Y ∈ B(R), we have:

∥f(Y)− g(Y)∥F ≤
√
N · ∥b1 − b′1∥2 + ∥W′

2 ·
(
ReLU(W1Y + b21

⊤)− ReLU(W′
1Y + b′21

⊤)
)
∥F

+ ∥(W2 −W′
2) · ReLU(W1Y + b21

⊤)∥F
≤

√
N · ∥b1 − b′1∥2 + ∥W2∥F ·

(√
N∥b2 − b′2∥2 +R∥W1 −W′

1∥F
)

+ ∥W2 −W′
2∥F · (R∥W1∥F +

√
N∥b2∥2)

≤
√
N · ∥b1 − b′1∥2 +B

√
N · ∥b2 − b′2∥2 +BR · ∥W1 −W′

1∥F +B(R+
√
N) · ∥W2 −W′

2∥F.
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Therefore, it holds that:

∥f−g∥F,∞ ≤
√
N ·∥b1−b′1∥2+B

√
N ·∥b2−b′2∥2+BR·∥W1−W′

1∥F+B(R+
√
N)·∥W2−W′

2∥F,
which leads to the upper bound of covering number:

N (δ;FFFN, ∥ · ∥F,∞) ≤ N (δ/4
√
N ;M1, ∥ · ∥2) ·N(δ/4B

√
N ;M1, ∥ · ∥2)·

N (δ/4BR;M2, ∥ · ∥F) · N (δ/4B(R+
√
N);M2, ∥ · ∥F)

where M1 = {v ∈ RD : ∥v∥2 ≤ B},M2 = {M ∈ RD×D : ∥M∥F < B}. It is well-known that
for ∀ε > 0, we have N (ε;M1, ∥ · ∥2) ≤ (3B/ε)D and N (ε;M2, ∥ · ∥F) ≤ (3B/ε)D

2

. To sum up,
we finally conclude that

logN (δ;FFFN, ∥ · ∥F,∞) ≤ 4D2 log
12B2(R+

√
N)

δ
.

The proof is complete.

Lemma 21. For the function space of attention network

FAttn =
{
Attn : RD×N → RD×N , Y 7→ Y +

M∑

m=1

VmY · σ
(
(QmY)⊤KmY

)
:

∥Vm∥F, ∥Qm∥F, ∥Km∥F < B for ∀m ∈ [M ],Y ∈ B(R)
}
,

then all functions in the class FAttn are (1 + BM
√
N + 2B3MR2N)-Lipschitz. The covering

number can be bounded as:

logN (δ;FAttn, ∥ · ∥F,∞) ≤ D2M · log 6B2MR3N3/2

δ
.

Here, the metric ∥f∥F,∞ := supY∈B(R) ∥f(Y)∥F.

Proof. Notice that for any two functions f1, f2 and Y,Y′, we have:

∥f1(Y)f2(Y)−f1(Y′)f2(Y′)∥F ≤ ∥f1(Y′)∥F·∥f2(Y)−f2(Y′)∥F+∥f2(Y)∥F·∥f1(Y)−f1(Y′)∥F.

It means that the Lipschitz constant of VmY · σ
(
(QmY)⊤KmY

)
is no larger than ∥Vm∥2 ·

√
N +

R
√
N∥Vm∥2 · 2∥Qm⊤Km∥F ·R

√
N . Here, we use the fact that both ReLU and softmax activation

function over vectors is 1-Lipschitz under l2 norm and that over matrices is 1-Lipschitz under
Frobenius norm. See Appendix G.2. Also, (QmY)⊤KmY is 2∥Qm⊤Km∥F · R

√
N -Lipschitz

under Frobenius norm when Y ∈ B(R). Therefore, in the function class FAttn, all functions included
are (1 + BM

√
N + 2B3MR2N)-Lipschitz continuous, which comes to our conclusion. For the

covering number, given any two functions f, g ∈ FAttn with their corresponding parameter sets
{Vm

1 ,Q
m
1 ,K

m
1 : m ∈ [M ]} and {Vm

2 ,Q
m
2 ,K

m
2 : m ∈ [M ]}, then:

∥f(Y)− g(Y)∥F ≤
M∑

m=1

∥∥(Vm
1 −Vm

2 )Y · σ
(
Y⊤Qm⊤

1 Km
1 Y

)∥∥
F

+

M∑

m=1

∥∥Vm
2 Y ·

(
σ
(
Y⊤Qm⊤

1 Km
1 Y

)
− σ

(
Y⊤Qm⊤

2 Km
2 Y

))∥∥
F

≤
M∑

m=1

∥Vm
1 −Vm

2 ∥F ·R
√
N ·

√
N +

M∑

m=1

BR
√
N · ∥Y⊤(Bm

2 −Bm
1 )Y∥F

≤
M∑

m=1

∥Vm
1 −Vm

2 ∥F ·RN +

M∑

m=1

BR3N3/2 · ∥Bm
2 −Bm

1 ∥F.
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Here, Bm
1 := Qm⊤

1 Km
1 and Bm

2 := Qm⊤
2 Km

2 . Then, ∥Bm
1 ∥F, ∥Bm

2 ∥F ≤ B2 holds for ∀m ∈ [M ].
It leads to the following upper bound of the covering number of FAttn.

N (δ;FAttn, ∥ · ∥F,∞) ≤
M∏

m=1

N (δ/2MRN ;M1, ∥ · ∥F) ·
M∏

m=1

N (δ/2BMR3N3/2;M2, ∥ · ∥F)

where matrix set M1 = {V ∈ RD×D : ∥V∥F ≤ B} and M2 = {B ∈ RD×D : ∥B∥F ≤ B2}. To
sum up, we conclude that:

logN (δ;FAttn, ∥ · ∥F,∞) ≤ D2M · log 6BMRN

δ
+D2M · log 6B2MR3N3/2

δ
,

which comes to our conclusion.

Now, we are ready to combine these results together.
Lemma 22. Consider the multi-layer transformers class Traw(D,L,M,B) without encoders and
decoders. Then the log-covering number with input range bounded by R0 (∥Y∥F ≤ R0) can be
bounded by

logN (δ; Traw, R0, ∥ · ∥F,∞) ≤ 4D2M ·
(
L2 logLFAF + log

12R0B
2MLN3/2

δ

)
.

Here LF = 1 + c2 ∨ (BM
√
N + 2B3MR2N) and AF = (1 +B2 + 2B

√
N) ∨ (1 +MB

√
N).

Proof. For the score network class F = Traw(D,L,M,B), we have:

F = {f2L ◦ f2L−1 ◦ . . . ◦ f1 : fi ∈ Fi for ∀i ∈ [2L], each Fi is either FFFN or FAttn}.
Denote LF := 1 + B2 ∨ (BM

√
N + 2B3MR2N) as the upper bound of Lipschitz constant for

both FFFN and FAttn. Notice that for any input Y ∈ RD×N such that ∥Y ∥F ≤ R0, then the output of
feed-forward network f ∈ FFFN holds

∥f(Y )∥F ≤ ∥Y ∥F +B(B∥Y ∥F +
√
N) +B

√
N = (1 +B2 + 2B

√
N) · (R0 ∨ 1).

The output of attention network f ∈ FAttn holds that

∥f(Y )∥F ≤ ∥Y ∥F +MB∥Y ∥F ·
√
N ≤ (1 +MB

√
N)R0.

Here we use the fact that ∥P∥F ≤
√
N holds for all probability matrix P ∈ RD×N . Denote

AF := (1 +B2 + 2B
√
N) ∨ (1 +MB

√
N) > 1 as the signal amplifier of each layer, then we can

set the sequence of radius as Ri = (AF )
i ·R0 with R0 > 1 and fi : B(Ri−1) → B(Ri). According

to Lemma 19, we have:

N (δ;F , ∥ · ∥F,∞) ≤
2L∏

i=1

N (δ/2LL2L−i
F ;Fi, ∥ · ∥F,∞),

which leads to

logN (δ;F , ∥ · ∥F,∞)

≤
2L∑

i=1

logN (δ/2LLl−i
F ;Fi, ∥ · ∥F,∞)

≤
2L∑

i=1

(
4D2 log

12B2(Ri−1 +
√
N) · 2LL2L−i

F

δ
∨ D2M · log 6B2MR3

i−1N
3/2 · 2LL2L−i

F

δ

)

≤ 8D2M ·
(
L2 logLFAF + log

24R0B
2MLN3/2

δ

)
.

The proof is complete.

Moreover, if we consider the entire transformers architecture with the encoder and decoder layers,
we directly have the following results:
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Lemma 23 (Covering number of transformers). Consider the entire transformer architecture F =
T (D,L,M,B,R) in which the encoder that takes vt ∈ RNd as the input and embeds it with the time
embedding e and the diffusion time-step embedding ϕ(t), where ∥e∥2 = r and ∥ϕ(t)∥2 ≤ Cdiff for
some absolute constant Cdiff > 0. Then the log-covering number with initial input range ∥vt∥2 ≤ R0

is bounded by

logN (δ;F , R0, ∥ · ∥F,∞) ≤ 8D2M ·
(
L2 logLFAF + log

24R1B
2MLN3/2

δ

)
.

Here R1 = R0 +
√
N(r + Cdiff). This is because the encoder maps vt to Y ∈ RD×N with

∥Y∥F ≤ ∥vt∥2 + r
√
N + Cdiff

√
N , and our decoder (defined in Appendix D.3.1) only extracts part

of the entries from the output and impose a clipping function with range being R on it, both of which
lead to no increase in the covering number.

F EXPERIMENTAL DETAILS IN SECTION 6
Patch Embedding Modification To implement our simulation experiments on Gaussian Process
data, we slightly adapt the original DiT designed for image generation (Peebles and Xie, 2023). In
the original DiT, a pre-trained VAE encoder is deployed to convert image in the training dataset to
feature representations and patch embedding is applied by splitting the image into subblocks(patches)
and flattening and projecting each subblock to a feature. But in our numeric experiments, we dropped
the VAE encoder and split the data at time dimension, with each time step being a patch, and project
the patch into feature of higher dimension.

Kernel Estimation Method In our experiment, each sample generated by DiT in is denoted as
S = [s1, ..., sN ] ∈ RN×d, where si = S[i] ∈ Rd denotes the data patch at i-th time index. In our
experiment we take N = 128 and d = 8 and with n ∈ {103, 3200, 104, 32000, 105} samples in total.
To evaluate the quality of generated data, we calculate the mean of data patch at i-th time step and
covariance matrix between data patch at i-th and j-th time step as follows and compare them with the
theoretical ones.

µ̂i =
1

n

n∑

k=1

Sk[i], Σ̂i,j =
1

n

n∑

k=1

(Sk[i]− µ̂i)(Sk[j]− µ̂j)
⊤.

Here µ̂i ∈ Rd is the empirical mean of the i-th patch and Σ̂i,j is the empirical covariance matrix
between the i-th and the j-th patch. With Σ̂i,j , we could estimate the empirical kernel value γ̂(i, j)
as

γ̂(i, j) = argmin
α

∥∥∥Σ̂i,j − αΣ
∥∥∥
F
.

where Σ ∈ Rd×d is the true covariance matrix. After running on each pair of (i, j) ∈ {1, 2, ..., N}2,
we can get the empirical kernel Γ̂ = [γ̂(i, j)]ij ∈ RN×N .

Relative Error In the experiments where we compare sample efficiency across different training
data size n and kernel setting ν, ℓ, the metric is a relative error of the estimated sample covariance
matrix to its ground-truth:

ϵ =

∥∥∥Γ̂⊗ Σ̂− Γ⊗Σ
∥∥∥
2

F∥∥∥(Γ̂⊗ Σ̂)truth − Γ⊗Σ
∥∥∥
2

F

.

Here (Γ̂⊗ Σ̂)truth is the estimated covariance matrix through the same method but under an equal
amount of training data, instead of generated data. This relative error eliminates the influence of
different scaling of Γ⊗Σ and the concentration error caused by finite samples.
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Query-Key Matrices and Value Matrices From Figure 10, we can see that the weights of
the query-key matrix Q⊤K emphasize the time embedding part of the input across different layers.
Interestingly, Figure 11 shows that the weight emphasis on the value matrix V is on the data patch
part instead. This observation aligns with our theoretical construction of the score function using
the DiT structure. Specifically, the score matrix (determined by the query-key matrix) captures the
kernel Γ, representing temporal dependency, while the value matrix determines the covariance Σ,
representing spatial dependency.
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Figure 10: Query-Key matrices in different transformer attention layers(1~12).

Attention Score in Different Attention Layers To further demonstrate our theory, we visualize
the attention score Y⊤t Q

⊤KYt ∈ RN×N averaged over n = 105 data points at different backward
diffusion times t ∈ {0, 50, 100, 200, 400, 800, 1000} to observe if it gradually unveils the kernel Γ as
the backward process progresses. According to Figure 12, in the initial few layers (1~2), we observe
the early stages of kernel construction. In the subsequent layers (3~12), the attention score matrix
increasingly resembles the kernel, becoming clearer as the backward diffusion process advances.
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Figure 11: Value weight matrices V in different transformer attention layers(1~12).

Generated Motions of 2D Balls We collect a latent sample from the diffusion transformer and
map it to the original 2D space through the pretrained decoder of the VAE, forming a 240-frame
video. We present 36 frames in Figure 13 from the video, which are chosen uniformly out of the 240
frames. As shown in the figure, the motion of the ball shows great time consistency and accurately
captures the bouncing-back mechanism as expected.
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Figure 12: Attention score matrices in different attention layers and at different steps of the backward
process.

Figure 13: Consecutive frames of a video generated by a trained diffusion transformer with a 2D
VAE.
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G SUPPORTING TECHNICAL RESULTS

G.1 GAUSSIAN LEMMAS

In this subsection, we will introduce several Lemmas to control the deviation of random variables
which polynomially depend on some Gaussian random variables. We will use a slightly modified
version of Lemma 30 from Damian et al. (2022).
Lemma 24. Let g be a polynomial of degree p and x ∼ N (0, Id). Then there exists an absolute
positive constant Cp depending only on p such that for any δ > 1,

P
[
|g(x)− E[g(x)]| ≥ δ

√
Var(g(x))

]
≤ 2 exp

(
−Cpδ

2/p
)
.

The next Lemma orginates from Theorem 4.3, Prato and Tubaro (2007).
Lemma 25. For any ℓ ∈ N and f ∈ L2(N (0, Id)) to be a degree ℓ polynomial, for any q ≥ 2, we
have

Ez∼γ [f(z)
q] ≤ Cq,ℓ

(
Ez∼γ

[
f(z)2

])q/2
.

where we use Cq,ℓ to denote some universal constant that only depends on q, ℓ.

G.2 LIPSCHITZ CONTINUITY OF ACTIVATION FUNCTIONS

Lemma 26 (1-Lipschitz continuity of softmax function). For the softmax function σ : Rd → Rd, it
is 1-Lipschitz continuous under l2 norm.

Proof. For any x ∈ Rd, denote J(x) as the Jacobian matrix of softmax function at x. Then, the
Lipschitz continuity of σ(·) under l2 norm can be upper bound by supx∈Rd ∥J(x)∥F. By calculation,
we have

J(x) = Diag (σ(x))− σ(x)σ(x)⊤.
Let σ(x) = (p1, p2, . . . , pd)

⊤ which is a probability vector, then

∥J(x)∥2F ≤
d∑

i=1

p2i (1− pi)
2 +

∑

i̸=j

(pipj)
2 ≤

(
d∑

i=1

p2i

)2

≤
(

d∑

i=1

pi

)4

= 1.

Therefore supx∈Rd ∥J(x)∥F ≤ 1, which comes to our conclusion. A direct extension is that the
column-wise softmax over matrices is 1-Lipschitz continuous under ∥ · ∥F norm.

G.3 BASICS ON RESNET UNIVERSAL APPROXIMATION THEORY

In this section, we briefly introduce universal approximation theory of ResNet. An L-layer ResNet
R(x) : Rd → Rdo can be defined as

R(x) = B ◦ FFNL ◦ FFNL−1 ◦ · · · ◦ FFN1 ◦ A(x). (22)

Here A : Rd → Rd′
and B : Rd′ → Rdo are two linear transformations, and FFNi : Rd′ → Rd′

are
basic residual blocks defined as FFNi(y) = y +W2,i · ReLU(W1,iy + b2,i) + b1,i with W1,i ∈
Rdi×d′

, W2,i ∈ Rd′×di , b1,i ∈ Rd′
and b2,i ∈ Rdi . We denote by RN (d, do, d

′,W,L, S, C) the
set of ResNet functions from Rd to Rdo with L layers, d′ neurons in each identity layer, maximum
width W = maxi∈[L]{di} and nonzero weights S. Moreover, the Frobenius norm of the weight
matrices Wj,i and the Euclidean norm of the bias vectors bj,i are uniformly bounded by C > 0.

The next lemma shows that we can approximate product operation with ResNet.
Lemma 27 (Proposition 12 in Liu et al. (2024a)). Let x, y ∈ [−B,B] with B ≥ 1. Then there exists
a ResNet R ∈ RN (2, 1, 3, 4,O(log(B/ϵ),O(log(B/ϵ),O(B)) such that

|R(x, y)− xy| ≤ ϵ, x, y ∈ [−B,B]d (23)
holds.

The construction process follows the standard techniques proposed by Yarotsky (2018), which first
use feed-forward networks to approximate the square function fsq(x) ≈ x2 and transfer it into a
product operator ×(x, y) = (fsq(x+ y)− fsq(x− y))/4 ≈ xy.

Furthermore, for x ∈ Rd and y ∈ R, we can approxiamtely construct the following mapping:

f([x⊤, y]⊤) = yx. (24)
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Corollary 2. Given ϵ > 0, there exists a ResNet fmult ∈ RN (d + 1, d, 3d, 4d,
O(log(B/ϵ)), dO(log(B/ϵ)),O(Bd)) such that fmult(y,x) = yx+ ϵ, where ∥ϵ∥∞ ≤ ϵ.

Proof. By Lemma 27, we know there exists a ResNet R : R2 → R satisfies

R ∈ RN (2, 1, 3, 4,O(log(B/ϵ)),O(log(B/ϵ)),O(1))

and

|R(x, y)− xy| ≤ ϵ, x, y ∈ [−B,B].

Then let’s consider the following two steps of mapping:

A([x⊤, y]⊤) = [x1, y, x2, y, · · · , xd, y]⊤,
B([x1, y, x2, y, · · · , xd, y]⊤) = [R(x1, y), R(x1, y), · · · , R(xd, y)]⊤.

Here we could choose A to be a (d+ 1)× 2d matrix

A =




1 0 · · · 0 0
0 0 · · · 0 1
0 1 · · · 0 0
0 0 · · · 0 1
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1




,

and take B as parallelization of d homogeneous networks R. Let fmult = B ◦ A, we know fmult ∈
RN (d+1, d, 3d, 4d,O(log(B/ϵ)), dO(log(B/ϵ)),O(d)), and it approximately realizes the mapping
(24) with L∞ approximation error being ϵ for the first d entries and no error for the last entry.

More generally, if we consider the input to be [x⊤, y, z]⊤ and want to construct a (FFN-only)
transformers that approximately maps the input to [yx⊤, y, z]⊤, we have the following results:

Corollary 3. Suppose the input to be Y = [y1,y2, . . . ,yN ] ∈ RD×N with yi = [x⊤i ,0
⊤
2d, wi, z

⊤
i ],

where xi ∈ [−B,B]d, wi ∈ [−B,B] and zi ∈ Rdz . Given any ϵ > 0, there exists a (FFN-only)
transformers

fmult = FFNL ◦ FFNL−1 ◦ · · · ◦ FFN1
with L = O(log(B/ϵ)) layers that approximately multiplies each component xi with the weight wi,
which keeping other dimensions the same. This can be formally written as

fmult(Y) =



fmult(w1,x1) · · · fmult(wN ,xN )

02d · · · 02d

w1 · · · wN

z1 · · · zN


 , where ∥fmult(wi,xi)− wixi∥∞ ≤ ϵ.

The inner dimension of the FFNs is at most 8d. Moreover, the number of nonzero coefficients in
each weight matrices or bias vectors is at most O(d), and the norm of the matrices and bias are all
bounded by O(Bd).

Here we require the buffer variables 02d in the input because Corollary 2 needs 3d neurons in each
dimension to store the calculation results that are necessary for constructing the product function.
Thus, we add 02d so that [x⊤,0⊤2d] ∈ R3d for construction convenience.

Proof of Corollary 3. By Corollary 2, there exists a ResNet fmult : Rd+1 → Rd such that

fmult(y,x) = B ◦ FFNL ◦ FFNL−1 ◦ · · · ◦ FFN1 ◦ A(x, y)

with fmult(y,x) = yx+ ϵ, where ∥ϵ∥∞ ≤ ϵ. Since the FFNs in the transformers are position-wise,
we only need to consider the mapping of one token while others are completely the same. For each i,
suppose FFNi : R3d → R3d satisfies

FFNi(v) = v +W2,i · ReLU(W1,iv + b2,i) + b1,i
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with W1,i ∈ Rdi×3d, W2,i ∈ R3d×di , b1,i ∈ R3d and b2,i ∈ Rdi . Here di ≤ 4d for all 1 ≤ i ≤ L.
For the first FFN, let

FFN′1







x
02d

w
z





 =




x
02d

w
z


+

[
W2,1

0dz×di

]
· ReLU



[
W1,1A,0di×(dz+2d+1)

]



x
w
02d

z


+ b2,1


+

[
b1,1

0dz

]

=

[
FFN1 ◦ A(x, y)

w
z

]
.

For 2 ≤ i ≤ L, suppose the input is [v⊤, w, z⊤]⊤ = [v⊤, w, z⊤]⊤ with v ∈ R3d and z ∈ Rdz , let

FFN′i

([
v
w
z

])
=

[
v
w
z

]
+

[
W2,i

0d′
z×di

]
· ReLU

(
[
W1,i,0di×d′

z

]
[
v
w
z

]
+ b2,i

)
+

[
b1,i

0d′
z

]
=

[
FFNi(v)

z

]
.

Here d′z = dz + 1. For the final layer, let

FFN′L+1

([
v
w
z

])
=

[
v
w
z

]
+W2,L+1 · ReLU







B 0d×d′
z−B 0d×d′
z

I3d 0d×d′
z−I3d 0d×d′
z



[
v
w
z

]
 =



Bv
02d

w
z


 .

Here

W2,L+1 =

[
diag(1d,02d) −diag(1d,02d) −I3d I3d
0(2d+d′

z)×d 0(2d+d′
z)×d 0(2d+d′

z)×3d 0(2d+d′
z)×3d

]
.

Thus, we have finished constructing the (FFN-only) transformers we want by taking

fmult = FFN′L+1 ◦ FFNL−1 ◦ · · · ◦ FFN′1,
and the hidden dimension of the FFNs is at most 8d. Moreover, by the definition of the original FFNi
and the new FFN′i, the number of nonzero coefficients in each weight matrix or bias vector is at most
O(d), and the norm of the matrices and bias are all bounded by O(d). The proof is complete.

G.4 ASYMPTOTIC RESULTS ON THE SPECTRUM OF TOEPLITZ MATRICES

In this section, we provide some existing results on the spectrum of Toeplitz matrix when both its size
and bandwidth go to infinity. For a Toeplitz matrix T ∈ RN×N , its (i, j)-th component Tij = a|i−j|
only depends on its distance to diagonal. When k > M , we have ak = 0 where M is known as
the bandwidth. Denote λ1, λ2, . . . , λN to be the eigenvalues of T, with multiplicities counted and
let µN := 1

N

∑N
i=1 δλi

be the empirical distribution of the spectrum. In the asymptotic case where
M,N → ∞, we focus on the behavior of µN . Denote FN (x) to be the cumulative distribution
function of µN , Kargin (2009) proposes the result that FN (x) converges to the standard Gaussian
distribution when the Toeplitz matrix follows that Eak = 0,Ea2k = 1

M , supk,N E|
√
Mak|4 < C <

∞ and most importantly, the band-to-size ratio M
N → 0. While the band-to-size ratio M

N → c ∈ (0, 1),
the spectrum distribution FN (x) converges to some non-Gaussian distribution Ψc. Some other
statistical works such as Hartman and Wintner (1950); Tilli (1998); Delsarte and Genin (2005) study
the spectrum of generalized Toeplitz matrices by using Fourier expansion.

In our case, the condition number κt0 will keep in a constant range if the sequence {ak} introduced
above sharply decays, while grow as N goes larger if {ak} slowly decays. In the former case, we can
treat κt0 as a constant, which does not affect our analysis. In the latter case, since we have a natural
upper bound of

κt0 ≤ σ−2t0 λmax(Γ⊗Σ) ≲ ℓσ−2t0 ≲ t−10 ,

by taking t0 = n−1/3 in Theorem 2, we can still obtain a n−1/6-convergence rate in bothW2 distance
and TV distance.
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