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ABSTRACT

Mutual information maximization provides an appealing formalism for learning
representations of data. In the context of reinforcement learning, such representa-
tions can accelerate learning by discarding irrelevant and redundant information,
while retaining the information necessary for control. Much of the prior work
on these methods has addressed the practical difficulties of estimating mutual
information from samples of high-dimensional observations, while comparatively
less is understood about which mutual information objectives are sufficient for re-
inforcement learning (RL) from a theoretical perspective. In this paper we identify
conditions under which representations that maximize specific mutual-information
objectives are theoretically sufficient for learning and representing the optimal
policy. Somewhat surprisingly, we find that several popular objectives can yield
insufficient representations given mild and common assumptions on the structure of
the MDP. We corroborate our theoretical results with empirical results experiments
on a simulated game environment with visual observations.

1 INTRODUCTION

While deep reinforcement learning (RL) algorithms are capable of learning policies from high-
dimensional observations, such as images (Mnih et al., 2013; Lee et al., 2019; Kalashnikov et al.,
2018), in practice policy learning faces a bottleneck in acquiring useful representations of the
observation space (Shelhamer et al., 2016). State representation learning approaches aim to remedy
this issue by learning structured and compact representations on which to perform RL. While a wide
range of representation learning objectives have been proposed (Lesort et al., 2018), a particularly
appealing class of methods that is amenable to rigorous analysis is based on maximizing mutual
information (MI) between variables. In the unsupervised learning setting, this is often realized
as the InfoMax principle (Linsker, 1988; Bell & Sejnowski, 1995), which maximizes the mutual
information between the input and its latent representation subject to domain-specific constraints.
This approach has been widely applied in unsupervised learning in the domains of image, audio, and
natural language understanding (Oord et al., 2018; Hjelm et al., 2018; Ravanelli & Bengio, 2019).
In RL, the variables of interest for MI maximization are sequential states, actions, and rewards (see
Figure 1). As we will discuss, several popular methods for representation learning in RL involve
mutual information maximization with different combinations of these variables (Anand et al., 2019;
Oord et al., 2018; Pathak et al., 2017; Shelhamer et al., 2016).

A useful representation should retain the factors of variation that are necessary to learn and represent
the optimal policy or the optimal value function, and discard irrelevant and redundant information.
While much prior work has focused on the problem of how to optimize various mutual information
objectives in high dimensions (Song & Ermon, 2019; Belghazi et al., 2018; Oord et al., 2018; Hjelm
et al., 2018), we focus instead on whether the representations that maximize these objectives are
actually theoretically sufficient for learning and representing the optimal policy or value function.
We find that some commonly used objectives are insufficient given relatively mild and common
assumptions on the structure of the MDP, and identify other objectives which are sufficient. We show
these results theoretically and illustrate the analysis empirically in didactic examples in which MI can
be computed exactly. Our results provide some guidance to the deep RL practitioner on when and
why objectives may be expected to work well or fail, and also provide a framework to analyze newly
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proposed representation learning objectives based on MI. To investigate how our theoretical results
pertain to deep RL, we compare the performance of RL agents in a simulated game trained with state
representations learned by maximizing the MI objective given visual inputs. The experimental results
corroborate our theoretical findings, and demonstrate that the sufficiency of a representation can have
a substantial impact on the performance of an RL agent that uses that representation.

2 RELATED WORK

In this paper, we analyze several widely used mutual information objectives for control. In this
section we first review MI-based unsupervised learning, then the application of these techniques to
the RL setting. Finally, we discuss alternative perspectives on representation learning in RL.

Mutual information-based unsupervised learning. Mutual information-based methods are par-
ticularly appealing for representation learning as they admit both rigorous analysis and intuitive
interpretation. Tracing its roots to the InfoMax principle (Linsker, 1988; Bell & Sejnowski, 1995), a
common technique is to maximize the MI between the input and its latent representation subject to
domain-specific constraints (Becker & Hinton, 1992). This technique has been applied to learn repre-
sentations for natural language (Devlin et al., 2019), video (Sun et al., 2019), and images (Bachman
et al., 2019; Hjelm et al., 2018). A major challenge to using MI maximization methods in practice is
the difficulty of estimating MI from samples (McAllester & Statos, 2018) and with high-dimensional
inputs (Song & Ermon, 2019). Much recent work has focused on improving MI estimation via
variational methods (Song & Ermon, 2019; Poole et al., 2019; Oord et al., 2018; Belghazi et al.,
2018). In this work we are concerned with analyzing the MI objectives, and not the estimation
method. In our experiments with image observations, we make use of noise contrastive estimation
methods (Gutmann & Hyvärinen, 2010), though other choices could also suffice.

Mutual information objectives in RL. Reinforcement learning adds aspects of temporal structure
and control to the standard unsupervised learning problem discussed above (see Figure 1). This
structure can be leveraged by maximizing MI between sequential states, actions, or combinations
thereof. Some works omit the action, maximizing the MI between current and future states (Anand
et al., 2019; Oord et al., 2018; Stooke et al., 2020). Much prior work learns latent forward dynamics
models (Watter et al., 2015; Karl et al., 2016; Zhang et al., 2018b; Hafner et al., 2019; Lee et al.,
2019), related to the forward information objective we introduce in Section 4. Multi-step inverse
models, closely related to the inverse information objective (Section 4), have been used to learn
control-centric representations (Yu et al., 2019; Gregor et al., 2016). Single-step inverse models have
been deployed as regularization of forward models (Zhang et al., 2018a; Agrawal et al., 2016) and
as an auxiliary loss for policy gradient RL Shelhamer et al. (2016); Pathak et al. (2017). The MI
objectives that we study have also been used as reward bonuses to improve exploration, without
impacting the representation, in the form of empowerment (Klyubin et al., 2008; 2005; Mohamed &
Rezende, 2015; Leibfried et al., 2019) and information-theoretic curiosity (Still & Precup, 2012).

Representation learning for reinforcement learning. In RL, the problem of finding a compact
state space has been studied as state aggregation or abstraction (Bean et al., 1987; Li et al., 2006).
Abstraction schemes include bisimulation (Givan et al., 2003), homomorphism (Ravindran & Barto,
2003), utile distinction (McCallum, 1996), and policy irrelevance (Jong & Stone, 2005). While
efficient algorithms exist for MDPs with known transition models for some abstraction schemes such
as bisimulation (Ferns et al., 2006; Givan et al., 2003), in general obtaining error-free abstractions
is highly impractical for most problems of interest. For approximate abstractions prior work has
bounded the sub-optimality of the policy (Bertsekas et al., 1988; Dean & Givan, 1997; Abel et al.,
2016) as well as the sample efficiency (Lattimore & Szepesvari, 2019; Van Roy & Dong, 2019;
Du et al., 2019), with some results extending to the deep learning setting (Gelada et al., 2019;
Nachum et al., 2018). In this paper, we focus on whether a representation can be used to learn the
optimal policy, and not the tractability of learning. Alternatively, priors based on the structure of
the physical world can be used to guide representation learning (Jonschkowski & Brock, 2015). In
deep RL, many auxiliary objectives distinct from the objectives that we study have been proposed,
including meta-learning general value functions (Veeriah et al., 2019), predicting multiple value
functions (Bellemare et al., 2019; Fedus et al., 2019; Jaderberg et al., 2016) and predicting domain-
specific measurements (Mirowski, 2019; Dosovitskiy & Koltun, 2016). We restrict our analysis to
objectives that can be expressed as MI-maximization.
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3 REPRESENTATION LEARNING FOR RL

The goal of representation learning for RL is to learn a compact representation of the state space
that discards irrelevant and redundant information. In this section we formalize each part of this
statement, starting with defining the RL problem and representation learning in the context of RL.
We then propose and define the metric of sufficiency to evaluate the usefulness of a representation.

3.1 PRELIMINARIES

We begin with brief preliminaries of reinforcement learning and mutual information.

Reinforcement learning. A Markov decision process (MDP) is defined by the tuple (S,A, T , r),
where S is the set of states,A the set of actions, T : S×A×S → [0, 1] the state transition distribution,
and r : S ×A× S → R the reward function. We will use capital letters to refer to random variables
and lower case letters to refer to values of those variables (e.g., S is the random variable for the state
and s is a specific state). Throughout our analysis we will often be interested in multiple reward
functions, and denote a set of reward functions as R. The objective of RL is to find a policy that
maximizes the sum of discounted returns R̄ for a given reward function r, and we denote this optimal
policy as π∗r = arg maxπ Eπ[

∑
t γ

tr(St, At)] for discount factor γ. We also define the optimal
Q-function as Q∗r(st,at) = Eπ∗ [

∑∞
t=1 γ

tr(St, At)|st,at]. The optimal Q-function satisfies the
recursive Bellman equation, Q∗r(st,at) = r(st,at) + γEp(st+1|st,at) arg maxat+1

Q∗r(st+1,at+1).
The optimal policy and the optimal Q-function are related according to π∗(s) = arg maxaQ

∗(s,a).

Mutual information. In information theory, the mutual information (MI) between two random
variables, X and Y , is defined as (Cover, 1999):

I(X;Y ) = Ep(x,y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ). (1)

The first definition indicates that MI can be understood as a relative entropy (or KL-divergence),
while the second underscores the intuitive notion that MI measures the reduction in the uncertainty of
one random variable from observing the value of the other.

Figure 1: Probabilistic graphi-
cal model illustrating the state
representation learning prob-
lem, estimating state represen-
tation Z from original state S.

Representation learning for RL. The goal of representation
learning for RL is to find a compact representation of the state space
that discards details in the state that are not relevant for representing
the policy or value function, while preserving task-relevant informa-
tion (see Figure 1). While state aggregation methods typically define
deterministic rules to group states in the representation (Bean et al.,
1987; Li et al., 2006), MI-based representation learning methods used
for deep RL treat the representation as a random variable (Nachum
et al., 2018; Oord et al., 2018; Pathak et al., 2017). Accordingly, we
formalize a representation as a stochastic mapping between original
state space and representation space.

Definition 1. A stochastic representation φZ(s) is a mapping from
states s ∈ S to a probability distribution p(Z|S = s) over elements
of a new representation space z ∈ Z .

In this work we consider learning state representations from data by maximizing an objective J.
Given an objective J, we define the set of representations that maximize this objective as ΦJ =
{φZ} s.t. φZ ∈ arg max J(φ).

Unlike problem formulations for partially observed settings (Watter et al., 2015; Hafner et al., 2019;
Lee et al., 2019), we assume that S is a Markovian state; therefore the representation for a given
state is conditionally independent of the past states, a common assumption in the state aggregation
literature (Bean et al., 1987; Li et al., 2006). See Figure 1 for a depiction of the graphical model.
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3.2 SUFFICIENT REPRESENTATIONS FOR REINFORCEMENT LEARNING

We now turn to the problem of evaluating stochastic representations for RL. Intuitively, we expect a
useful state representation to be capable of representing the optimal policy in the original state space.

Definition 2. A representation φZ is π∗-sufficient with respect to a set of reward functions R if
∀r ∈ R, φZ(s1) = φZ(s2) =⇒ π∗r (A|s1) = π∗r (A|s2).

When a stochastic representation φZ produces the same distribution over the representation space
for two different states s1 and s2 we say it aliases these states. Unfortunately, as already proven in
Theorem 4 of Li et al. (2006) for the more restrictive case of deterministic representations, being able
to represent the optimal policy does not guarantee that it can be learned via RL in the representation
space. Accordingly, we define a stricter notion of sufficiency that does guarantee the convergence of
Q-learning to the optimal policy in the original state space (refer to Theorem 4 of Li et al. (2006) for
the proof of this).

Definition 3. A representation φZ is Q∗-sufficient with respect to a set of reward functions R if
∀r ∈ R, φZ(s1) = φZ(s2) =⇒ ∀a,Q∗r(a, s1) = Q∗r(a, s2).

Note that Q∗-sufficiency implies π∗-sufficiency since the optimal policy and the optimal Q-function
are directly related via π∗r (s) = arg maxaQ

∗
r(s, a) (Sutton & Barto, 2018); however the converse

is not true. We emphasize that while Q∗-sufficiency guarantees convergence, it does not guarantee
tractability, which has been explored in prior work (Lattimore & Szepesvari, 2019; Du et al., 2019).

We will further say that an objective J is sufficient with respect to some set of reward functionsR if
all the representations that maximize that objective ΦJ are sufficient with respect to every element of
R according to the definition above. Surprisingly, we will demonstrate that not all commonly used
objectives satisfy this basic qualification even whenR contains a single known reward function.

4 MUTUAL INFORMATION FOR REPRESENTATION LEARNING IN RL

In our study, we consider several MI objectives proposed in the literature.

Forward information: A commonly sought characteristic of a state representation is to ensure it
retains maximum predictive power over future state representations. This property is satisfied by
representations maximizing the following MI objective,

Jfwd = I(Zt+k;Zt, At) = H(Zt+k)−H(Zt+k|Zt, At). (2)

We suggestively name this objective “forward information” due to the second term, which is the
entropy of the forward dynamics distribution. This objective is related to that proposed in Nachum
et al. (2018), where they consider a sequence of actions.

State-only transition information: Several popular methods (Oord et al., 2018; Anand et al.,
2019; Stooke et al., 2020) optimize a similar objective, but do not include the action 1:

Jstate = I(Zt+k;Zt) = H(Zt+k)−H(Zt+k|Zt). (3)

As we will show, the exclusion of the action can have a profound effect on the characteristics of the
resulting representations.

Inverse information: Another commonly sought characteristic of state representations is to retain
maximum predictive power of the action distribution that could have generated an observed transition
from st to st+1. Such representations can be learned by maximizing the following information
theoretic objective:

Jinv = I(At;Zt+k|Zt) = H(At|Zt)−H(At|Zt, Zt+k) (4)

We suggestively name this objective “inverse information” due to the second term, which is the
entropy of the inverse dynamics. A wide range of prior work learns representations by optimizing

1It is common to use a history of states, optimizing an objective like I(Zt+k;Z1, ..., Zt). In our setting we
assume the given state is Markovian, in which case the objectives are equivalent.
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closely related objectives (Gregor et al., 2016; Shelhamer et al., 2016; Agrawal et al., 2016; Pathak
et al., 2017; Yu et al., 2019; Zhang et al., 2018a). Intuitively, inverse models allow the representation
to capture only the elements of the state that are necessary to predict the action, allowing the discard
of potentially irrelevant information.

5 SUFFICIENCY ANALYSIS

In this section we analyze the sufficiency for control of representations obtained by maximizing each
objective presented in Section 4. To focus on the representation learning problem, we decouple it
from RL by assuming access to a dataset of transitions collected with a policy that reaches all states
with some probability, which can then be used to learn the desired representation. We also assume
that distributions, such as the dynamics or inverse dynamics, can be modeled with arbitrary accuracy,
and that the maximizing set of representations for a given objective can be computed. While these
assumptions might be relaxed in any practical RL algorithm, and exploration plays a confounding
role, studying these objectives under such simplifying assumptions allows us to compare them in
terms of sufficiency on an equal playing field, isolating the role of representation learning from other
confounding components of a complete RL algorithm.

5.1 FORWARD INFORMATION

In this section we show that a representation that maximizes Jfwd is sufficient for optimal control
under any reward function. This result aligns with intuition that a representation that captures forward
dynamics can represent everything predictable in the state space, and can thus be used to learn
the optimal policy for any task. Note that this strength can also be a weakness if there are many
predictable elements that are irrelevant for downstream tasks, since the representation retains more
information than is needed for the task.

Proposition 1. Jfwd is sufficient for all reward functions.

Proof. (Sketch) We first show that if Zt, At are maximally informative of Zt+k, they are also
maximally informative of the return R̄t. Due to the Markov structure, Ep(Zt|St=s)p(R̄t|Zt, At) =

p(R̄t|St = s, At). In other words, given φZ , additionally knowing S doesn’t change our belief about
the future return. The Q-value is the expectation of the return, so Z has as much information about
the Q-value as S does. The full proof can be found in Appendix 8.1.

5.2 STATE-ONLY TRANSITION INFORMATION

While Jstate is closely related to Jfwd, we now show that it is not sufficient.

Proposition 2. Jstate is not sufficient for all reward functions.

Proof. Consider the counter-example in Figure 2. Suppose that the two actions a0 and a1 are equally
likely under the policy distribution. Each state gives no information about which of the two possible
next states is more likely; this depends on the action. Therefore, a representation maximizing Jstate
is free to alias states with the same next-state distribution, such as s0 and s3. An alternative view
is that such a representation can maximize Jstate = H(Zt+k) − H(Zt+k|Zt) by reducing both
terms in equal amounts - aliasing s0 and s3 decreases the marginal entropy as well as the entropy of
predicting the next state starting from s1 or s2. However, this aliased representation is not capable
of representing the optimal policy which must distinguish s0 and s3 in order to choose the correct
action to reach s2, which yields reward.

5.3 INVERSE INFORMATION

Here we show that representations that maximize Jinv are not sufficient for control in all MDPs.
Intuitively, one way that the representation can be insufficient is by retaining only controllable state
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Figure 2: (left) A representation that aliases the states s0 and s3 into a single state maximizes Jstate
but is not sufficient to represent the optimal policy which must choose different actions in s0 and
s3 to reach s2 which yields reward. (right) Values of Jstate and Jfwd for a few representative state
representations, ordered by increasing I(Z;S). The representation that aliases s0 and s3 (plotted
with a diamond) maximizes Jstate, but the policy learned with this representation may not be optimal
(as shown here). The original state representation (plotted with a star) is sufficient.

elements, while the reward function depends on state elements outside the agent’s control. We then
show that additionally representing the immediate reward is not enough to resolve this issue.

Proposition 3. Jinv is not sufficient for all reward functions. Additionally, adding I(Rt;Zt) to the
objective does not make it sufficient.

Proof. Consider the MDP illustrated in Figure 3, and the representation that aliases the states s0

and s1. The same actions taken from these states lead to different next states which may have
different rewards (a0 leads to the reward from s0 while a1 leads to the reward from s1). However,
this representation maximizes Jinv because given each pair of states, the action is identifiable.
Interestingly, this problem cannot be remedied by simply requiring that the representation also be
capable of predicting immediate rewards. The same counterexample holds since we assumed s0 and
s1 have the same reward.

Figure 3: (left) In this MDP, a representation that aliases the states s0 and s1 into a single state
maximizes Jinv , yet is not sufficient to represent the optimal policy, which must distinguish between
s0 and s1 in order to take a different action (towards the high-reward states outlined in green). (right)
Values of Jinv and Jfwd for a few selected state representations, ordered by increasing I(Z;S). The
representation that aliases s0 and s1 (plotted with a diamond) maximizes Jinv , but is not sufficient to
learn the optimal policy. Note that this counterexample holds also for Jinv + I(R;Z).
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6 EXPERIMENTS

In this section, we present experiments studying MI-based representation learning with image
observations, to analyze whether the conclusions of our theoretical analysis hold in practice. Our
goal is not to show that any particular method is necessarily better or worse, but rather to illustrate
that the sufficiency arguments that we presented translate into quantifiable performance differences
in the deep RL setting.

6.1 EXPERIMENTAL SETUP

To separate representation learning from RL, we first optimize each representation learning objective
on a dataset of offline data consisting of 50k transitions collected from a uniform random policy. We
then freeze the weights of the state encoder learned in the first phase and train RL agents with the
representation as state input. To clearly illustrate the characteristics of each objective, we use the
simple pygame (Shinners, 2011) video game catcher, in which the agent controls a paddle that it can
move back and forth to catch fruit that falls from the top of the screen (see Figure 4). A positive
reward is given when the fruit is caught and a negative reward when the fruit is not caught. The
episode terminates after one piece of fruit falls. We optimize Jfwd and Jstate with noise contrastive
estimation (Gutmann & Hyvärinen, 2010), and Jinv by training an inverse model via maximum
likelihood. For the RL algorithm, we use the Soft Actor-Critic algorithm Haarnoja et al. (2018),
modified slightly for the discrete action distribution. Please see Appendix 8.2 for full experimental
details.

6.2 COMPUTATIONAL RESULTS

Figure 4: (left) Original catcher game in which
the agent (grey paddle) moves left or right to catch
fruit (yellow square) that falls from the top of the
screen. (right) Variation catcher-grip in which the
agent is instantiated as a gripper, and must open
the gripper to catch fruit.

In principle, we expect that a representation
learned with Jinv may not sufficient to solve the
catcher game. Because the agent does not con-
trol the fruit, a representation maximizing Jinv
might discard that information, thereby making
it impossible to represent the optimal policy. We
observe in Figure 5 (top left) that indeed rep-
resentations trained to maximize Jinv result in
RL agents that converge slower and to a lower
asymptotic expected return. Further, attempting
to learn a decoder from the learned representa-
tion to the position of the falling fruit incurs a
high error (Figure 5, bottom left), indicating that
the fruit is not precisely captured by the repre-
sentation. We argue that this type of problem
setting is not contrived, and is representative of
many situations in realistic tasks. Consider, for
instance, an autonomous vehicle that is stopped
at a stoplight. Because the agent does not control the color of the stoplight, it may not be captured in
the representation learned by Jinv and the resulting RL policy may choose to run the light.

In the second experiment, we consider a failure mode of Jstate. We augment the paddle with a gripper
that the agent controls and must be open in order to properly catch the fruit. Since the change in
the gripper is completely controlled by a single action, the current state contains no information
about the state of the gripper in the future. Therefore, a representation maximizing Jstate might
alias states where the gripper is open with states where the gripper is closed. In our experiment, we
see that the error in predicting the state of the gripper from the representation learned via Jstate is
chance (Figure 5, bottom right). This degrades the performance of an RL agent trained with this state
representation since the best the agent can do is move under the fruit and randomly open or close the
gripper (Figure 5, top right). In the driving example, suppose turning on the headlights incurs positive
reward if it’s raining but negative reward if it’s sunny. The representation could fail to distinguish the
state of the headlights, making it impossible to learn when to properly use the headlights.
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Figure 5: (top) Policy performance using learned representations as state inputs to RL, for the catcher
and catcher-grip environments. (bottom) Error in predicting the positions of ground truth state
elements from each learned representation. Representations maximizing Jinv need not represent
the fruit, while representations maximizing Jstate need not represent the gripper, leading these
representations to perform poorly in catcher and catcher-grip respectively.

Jfwd produces useful representations in all cases, and is equally or more effective than learning
representations purely from the RL objective alone (as in Figure 5). We experiment with more
visual complexity by adding background distractors; these results are presented in Appendix 8.4. We
find that in this setting representations learned with Jfwd to yield even larger gains over learning
representations end-to-end via RL. We also analyze the learned representations by evaluating how
well they predict the optimal Q∗ in Appendix 8.3.

7 DISCUSSION

In this work, we aimed to analyze mutual information representation learning objectives for control
from a theoretical perspective. In contrast to much prior work that studies how these objectives
can be effectively optimized given high-dimensional observations, we analyze which objectives
are guaranteed to yield representations that are actually sufficient for learning the optimal policy.
Surprisingly, we show that two common objectives yield representations that are theoretically
insufficient, and provide a proof of sufficiency for a third. We validate our theoretical results with an
empirical investigation on a simple video game environment, and show that the insufficiency of these
objectives can degrade the performance of deep RL agents.

We view this investigation as a step forward in understanding the theoretical characteristics of
representation learning techniques commonly used in deep RL. We see many exciting avenues for
future work. First, identifying more restrictive MDP classes in which insufficient objectives are in
fact sufficient, and relating these to realistic applications. Second, investigating if sample complexity
bounds can be established in the case of a sufficient objective. Third, extending our analysis to the
partially observed setting, which is more reflective of practical applications. We see these directions
as fruitful in providing a deeper understanding of the learning dynamics of deep RL, and potentially
yielding novel algorithms for provably accelerating RL with representation learning.
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8 APPENDIX

8.1 SUFFICIENCY OF Jfwd: PROOF OF PROPOSITION 1

We describe the proofs for the sufficiency results from Section 5 here. We begin by providing a set of
lemmas, before proving the sufficiency of Jfwd.

Figure 6: Graphical model for Lemma 1, depicting true states S, states in the representation Z,
actions A, rewards R, and the variable X (which we will interpret as the sum of future rewards in the
proof of Proposition 1).

Lemma 1. Let X be a random variable dependent on St+k, with the conditional independence
assumptions implied by the graphical model in Figure 6. (In the main proof of Proposition 1, we will
let X be the sum of rewards from time t+ k onwards.) If I(Zt+k;Zt, At) = I(St+k;St, At)∀k, then
I(X;Zt, At) = I(X;St, At)∀k.

Proof. For proof by contradiction, assume there is some φZ and some r such that I(X;Zt, At) <
I(X;St, At) and that I(Zt+k;Zt, At) = I(St+k;St, At). Now we know that because Zt → St →
St+k → Zt+k form a Markov chain, by the data processing inequality (DPI) I(Zt+k;Zt, At) ≤
I(St+k;Zt, At) ≤ I(St+k;St, At). We will proceed by showing that that I(X;Zt, At) <
I(X;St, At) =⇒ I(St+k;Zt, At) < I(St+k;St, At), which gives the needed contradiction.

Using chain rule, we can expand the following expression in two different ways.

I(X;Zt, St, At) = I(X;Zt|St, At) + I(X;St, At) = 0 + I(X;St, At) (5)

I(X;Zt, St, At) = I(X;St|Zt, At) + I(X;Zt, At) (6)

Note that the first term in Equation 5 is zero by the conditional independence assumptions in Figure 6.
Equating the expansions, we can see that to satisfy our assumption that I(X;Zt, At) < I(X;St, At),
we must have that I(X;St|Zt, At) > 0.

Now we follow a similar procedure to expand the following expression:

I(St+k;Zt, St, At) = I(St+k;Zt|St, At) + I(St+k;St, At) = 0 + I(St+k;St, At) (7)

I(St+k;Zt, St, At) = I(St+k;St|Zt, At) + I(St+k;Zt, At) (8)

The first term in Equation 7 is zero by the conditional independence assumptions in Figure 6.
Comparing the first term in Equation 8 with the first term in Equation 6, we see because St →
St+k → X form a Markov chain, by the DPI that I(St+k;St|Zt, At) ≥ I(X;St|Zt, At). Therefore
we must have I(St+k;St|Zt, At) > 0. Combining Equations 7 and 8:

I(St+k;St, At) = I(St+k;St|Zt, At) + I(St+k;Zt, At) (9)

Since I(St+k;St|Zt, At) > 0, I(St+k;Zt, At) < I(St+k;St, At), which is exactly the contradiction
we set out to show.

Lemma 2. If I(Y ;Z) = I(Y ;X) and Y ⊥ Z|X , then ∃p(Z|X) s.t. ∀x, p(Y |X = x) =∫
p(Y |Z)p(Z|X = x)dz.
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Proof. First note that the statement is not trivially true. Without any assumption regarding MI, we
can write,

p(Y |X = x) =

∫
p(Y, Z|X = x)dz =

∫
p(Y |Z,X = x)p(Z|X = x)dz (10)

Comparing this with the statement we’d like to prove, we can see that the key idea is to show that
the MI equivalence implies that p(Y |Z,X = x) = p(Y |Z). To begin, consider I(Y ;Z) = I(Y ;X).
We can re-write this equality using the entropy definition of MI.

H(Y )−H(Y |Z) = H(Y )−H(Y |X) (11)

Note that the H(Y ) cancel and substituting the definition of entropy we have:

Ep(Y,Z)[log p(Y |Z)] = Ep(Y,X)[log p(Y |X)] (12)

Note that on the right-hand side, we can use the Tower property to re-write the expectation as

Ep(Y,X)[log p(Y |X)] = Ep(Z)Ep(Y,X|Z)[log p(Y |X)] = Ep(Y |X)p(X,Z)[log p(Y |X)] (13)

Now we can use the Tower property again to re-write the expectation on both sides.

Ep(X)[Ep(Y,Z|X)[log p(Y |Z)]] = Ep(X)[Ep(Y |X)p(X,Z|X)[log p(Y |X)]]

Ep(X)[Ep(Y |X)p(Z|X)[log p(Y |Z)]] = Ep(X)[Ep(Y |X)p(Z|X)[log p(Y |X)]]

Ep(X)[Ep(Y |X)p(Z|X)[log p(Y |Z)]]− log p(Y |X)] = 0

Ep(X)[Ep(Y |X)[Ep(Z|X)[log p(Y |Z)]− log p(Y |X)]] = 0

(14)

Log probabilities are always ≤ 0, therefore for the sum to equal zero, each term must be zero.

log p(Y |X) = Ep(Z|X)[log p(Y |Z)] (15)

By Jensen’s inequality,
log p(Y |X) ≤ logEp(Z|X)[p(Y |Z)] (16)

By the monotonicity of the logarithm:

p(Y |X) ≤ Ep(Z|X)[p(Y |Z)] (17)

If there exists some x and some y such that p(Y = y|X = x) < Ep(Z|X=x)[p(Y = y|Z)], then there
must be some other y′ for the same x where p(Y = y′|X = x) > Ep(Z|X=x)[p(Y = y′|Z)] because
p(Y |X = x) must sum to 1.

p(Y |X) = Ep(Z|X)[p(Y |Z)] =

∫
p(Y |Z)p(Z|X = x)dz =

∫
p(Y, Z|X = x)dz (18)

Where the last equality follows by conditional independence of Y and Z given X .

Given the lemmas stated above, we can then use them to prove the sufficiency of Jfwd.

Proposition 1. (Sufficiency of Jfwd) Let (S,A, T , r) be an MDP with dynamics p(St+1|St, At). Let
the policy distribution p(A|S) and steady-state state occupancy p(S) have full support on the action
and state alphabets A and S respectively. See Figure 6 for a graphical depiction of the conditional
independence relationships between variables.

For a representation φZ and set of reward functionsR, if I(Zt+k;Zt, At) is maximized ∀k > 0, t > 0
then ∀r ∈ R and ∀s1, s2 ∈ S, φZ(s1) = φZ(s2) =⇒ ∀a,Q∗r(a, s1) = Q∗r(a, s2).

Proof. Note that (Zt+k;Zt, At) is maximized if the representation φZ is taken to be the identity. In
other words maxφ I(Zt+k;Zt, At) = I(St+k;St, At).

Define the random variable R̄t to be the discounted return starting from state st.

R̄t =

H−t∑
k=1

γkRt+k (19)
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Plug in R̄t for the random variable X in Lemma 1:

I(Zt+k;Zt, At) = I(St+k;St, At) =⇒ I(R̄t+k;Zt, At) = I(R̄t+k;St, At) (20)

Now let X = [St, At], Y = R̄t, and Z = Zt, and note that by the structure of the graphical model in
Figure 6, Y ⊥ Z|X . Plugging into Lemma 2:

Ep(zt|St=s)p(R̄t|Zt, At) = p(R̄t|St = s, At) (21)

Now the Q-function given a reward function r and a state-action pair (s,a) can be written as an
expectation of this random variable R̄t, given St = s and A = a. (Note that p(R̄t|St = s, At = a)
can be calculated from the dynamics, policy, and reward distributions.)

Qr(s,a) = Ep(R̄t|St=s,At=a)[R̄t] (22)

Since φZ(s1) = φZ(s2), p(zt|St = s1) = p(zt|St = s2). Therefore by Equation 21, p(R̄t|St =
s1, At) = p(R̄t|St = s2, At). Plugging this result into Equation 22,Qr(a, s1) = Qr(a, s2). Because
this reasoning holds for all Q-functions 2, it also holds for the optimal Q, therefore Q∗r(a, s1) =
Q∗r(a, s2).

8.2 EXPERIMENTAL DETAILS

8.2.1 DIDACTIC EXPERIMENTS

The didactic examples are computed as follows. Given the list of states in the MDP, we compute
the possible representations, restricting our focus to representations that group states into “blocks.”
We do this because there are infinite stochastic representations and the MI expressions we consider
are not convex in the parameters of p(Z|S), making searching over these representations difficult.
Given each state representation, we compute the value of the MI objective as well as the optimal
value function using exact value iteration. In these examples, we assume that the policy distribution is
uniform, and that the environment dynamics are deterministic. Since we consider the infinite horizon
setting, we use the steady-state state occupancy in our calculations.

8.2.2 DEEP RL EXPERIMENTS

The deep RL experiments with the catcher game are conducted as follows. First, we use a uniform
random policy to collect 50k transitions in the environment. In this simple environment, the uniform
random policy suffices to visit all states (the random agent is capable of accidentally catching the
fruit, for example). Next, each representation learning objective is maximized on this dataset. For all
objectives, the images are pre-processed in the same manner (resized to 64x64 pixels and normalized)
and embedded with a convolutional network. The convolutional encoder consists of five convolutional
layers with ReLU activations and produces a latent vector with dimension 256. We use the latent
vector to estimate each mutual information objective, as described below.

Inverse information: We interpret the latent embeddings of the images St and St+1 as the parameters
of Gaussian distributions p(Z|St) and p(Z|St+1). We obtain a single sample from each of these
two distributions, concatenate them and pass them through a single linear layer to predict the action.
The objective we maximize is the cross-entropy of the predicted actions with the true actions, as
in Agrawal et al. 2016 and Shelhamer et al. 2016. To prevent recovering the trivial solution
of preserving all the information in the image, we add an information bottleneck to the image
embeddings. We tune the Lagrange multiplier on this bottleneck such that the action prediction loss
remains the same value as when trained without the bottleneck. This approximates the objective
minφ I(Z;S)s.t.Iinv = max Iinv . To use the learned encoder for RL, we embed the image from the
current timestep and take the mean of the predicted distribution as the state for the RL agent.

2Note this result is stronger than what we needed: it means that representations that maximize Jfwd are
guaranteed to be able to represent even sub-optimal Q-functions. This makes sense in light of the fact that the
proof holds for all reward functions - the sub-optimal Q under one reward is the optimal Q under another.
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State-only information: We follow the Noise Contrastive Estimation (NCE) approach presented
in CPC (Oord et al. 2018). Denoting Zt and Zt+ 1 as the latent embedding vectors from the
convolutional encoders, we use a log-bilinear model as in CPC to compute the score: f(Zt, Zt+1) =
exp(ZTt WZt+1) for the cross-entropy loss. We also experimented with an information bottleneck as
described above, but found that it wasn’t needed to obtain insufficient representations. To use the
learned encoder for RL, we embed the image from the current timestep and use this latent vector as
the state for the RL agent.

Forward information: We follow the same NCE strategy as for state-only information, with the
difference that we concatenate the action to Zt before computing the contrastive loss.

We then freeze the state encoder learned via MI-maximization and use the representation as the state
input for RL. The RL agent is trained using the Soft Actor-Critic algorithm Haarnoja et al. (2018),
modified slightly for the discrete action distribution (the Q-function outputs Q-values for all actions
rather than taking action as input, the policy outputs the action distribution rather than parameters of
a distribution, and we can directly compute the expectation in the critic loss rather than sampling).
The policy and critic networks consist of two hidden linear layers of 200 units each. We use ReLU
activations.

8.3 ANALYSIS: PREDICTING Q∗ FROM THE REPRESENTATION

In Section 6, we evaluated the learned representations by running a temporal difference RL algorithm
with the representation as the state input. In this section, instead of using the bootstrap to learn the
Q-function, we instead regress the Q-function to the optimal Q∗. To do this, we first compute the
(roughly) optimal Q∗ by running RL with ground truth game state as input and taking the learned
Q as Q∗. Then, we instantiate a new RL agent and train it with the learned image representation
as input, regressing the Q-function directly onto the values of Q∗. We evaluate the policy derived
from this new Q-function, and plot the results for both the catcher and catcher-grip environments
in Figure 7. We find that similar to the result achieved using the bootstrap, the policy performs
poorly when using representations learned by insufficient objectives (Jinv in catcher and Jstate in
catcher-grip). Interestingly, we find that the error between the learned Q-values and the Q∗-values is
roughly the same for sufficient and insufficient representations. We hypothesize that this discrepancy
between Q-value error and policy performance is due to the fact that small differences in Q-values
on a small set of states can result in significant behavior differences in the policy.
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Figure 7: Performance of policies obtained from a Q-function trained to predict Q∗, given state
representations learned by each MI objective, in the (left) catcher environment and (right) catcher-
grip environment. Insufficient objectives Jinv and Jstate respectively perform worse than sufficient
objective Jfwd.

8.4 DEEP RL EXPERIMENTS WITH BACKGROUND DISTRACTORS

In this section we repeat the experiments from Section 6 with added visual complexity in the form of
background distractors. We randomly generate images of 10 circles of different colors and replace
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the black background of the game with these images. Examples of the agent’s observations are shown
in Figure 8.

fruit

agent

Figure 8: Example 64x64 pixel observations with
background distractors.

We plot the results for both the catcher and
catcher-grip games with distractors in Figure 9.
As in Section 6, we show both the result of per-
forming RL with the frozen representation as
input (top), as well as the error of decoding true
state elements from the representation (bottom).
In both environments, end-to-end RL from im-
ages performs poorly, demonstrating the need
for representation learning to aid in solving the
task. As predicted by the theory, the represen-
tation learned by Jinv fails in both games, and
the representation learned by Jstate fails in the
catcher-grip game. We find that the difference in
performance between sufficient and insufficient
objectives is even more pronounced in this setting than in the plain background setting.
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Figure 9: (top) Policy performance using learned representations as state inputs to RL, for the catcher
and catcher-grip environments with background distractors. (bottom) Error in predicting the positions
of ground truth state elements from each learned representation. Representations maximizing Jinv
need not represent the fruit, while representations maximizing Jstate need not represent the gripper,
leading these representations to perform poorly in catcher and catcher-grip respectively.
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