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Abstract

Neural Processes (NPs) are appealing due to their
ability to perform fast adaptation based on a con-
text set. This set is encoded by a latent variable,
which is often assumed to follow a simple distri-
bution. However, in real-word settings, the con-
text set may be drawn from richer distributions
having multiple modes, heavy tails, etc. In this
work, we provide a framework that allows NPs’
latent variable to be given a rich prior defined by a
graphical model. These distributional assumptions
directly translate into an appropriate aggregation
strategy for the context set. Moreover, we describe
a message-passing procedure that still allows for
end-to-end optimization with stochastic gradients.
We demonstrate the generality of our framework by
using mixture and Student-t assumptions that yield
improvements in function modelling and test-time
robustness.

1 INTRODUCTION

Many real-world tasks require models to make predictions
in new scenarios on short notice. For example, climate mod-
els are often asked to make predictions at novel locations
[Vaughan et al., 2022]. Data is collected in well-populated
regions but predictions for remote regions (e.g. mountain
ranges, forests etc.) are desirable as well. Neural processes
(NPs) Garnelo et al. [2018b] are models designed for situ-
ations such as this. At test time, the model is seeded with
a context data set from the target setting that (hopefully)
allows the NP to make accurate predictions despite the pos-
sibly novel conditions. This behavior is implemented using
an efficient encoder architecture that scales linearly with
respect to the size of the context set and is permutation-
invariant to its order (see Fig. 1a). Unfortunately, NPs still
have shortcomings that make them brittle for this ambi-

tious use case. For example, NPs commonly underfit [Kim
et al., 2019] and suffer from limited representation power
[Wagstaff et al., 2019]. Previous work has attempted to
fix these problems by enriching the encoder’s architecture,
e.g. attention [Kim et al., 2019], transformers [Nguyen and
Grover, 2022], and convolutions [Gordon et al., 2020, Foong
et al., 2020].

We consider an alternative approach that incorporates the
structure and assumptions of the data into NPs’ latent vari-
able. To accomplish this, we consider priors defined by a
probabilistic graphical model (PGM). While incorporating
rich PGMs may seem like it would hinder the scalability that
makes NPs an attractive model, we show it does not. Using
structured inference networks [Lin et al., 2018] (see Fig. 1b),
we can still train NPs end-to-end, using variational message
passing for the PGM [Winn et al., 2005] and stochastic
gradients for the neural networks. Within our framework,
encoding the context set becomes analogous to inference in
the PGM. This means that the aggregation operation over
the context set is completely and automatically determined
by the choice of PGM prior. We show that—under a simple
Gaussian PGM—our approach recovers Bayesian Aggrega-
tion (BA) [Volpp et al., 2020].

In this paper, we describe a general framework for placing
PGM priors on NPs with latent variables. We primarily focus
on cases that exhibit conditional conjugacy but provide some
discussion of the fully non-conjugate case as well. We show
the explicit updates for mixture priors and Student-t assump-
tions. In the experiments, we show NPs with these mixture
and heavy-tail assumptions—which we term mixture and
robust Bayesian Aggregation, respectively—demonstrate
improved performance in regression and image completion.

2 BACKGROUND

Problem setup NPs assume a partition of the data into
a context set and a target set. The former is used by the
model to seed adaptation. The latter is a set of points from
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Figure 1: A set of context points (xi,yi) can be aggregated using a sum-decomposition architecture, shown on the left.
A shared network encrϕ is used for all followed by a pre-specified aggregation operation that pools all embeddings. The
output is passed to a further network enczϕ. We propose an alternative, shown on the right, that does not require an additional
network and rather uses inference on a probabilistic graphical model (PGM) to automatically aggregate the embeddings.
Different types of exponential-family distributions and mixtures, denoted here by q(z|ηi), can be used resulting in different
aggregation mechanisms.

the same domain as the context set and for which we will
make predictions. Specifically, we denote the context set
for the lth task as D(l)

c = {x(l)
c,i,y

(l)
c,i}

Nl,c

i=1 , where x denotes
a feature vector and y the corresponding response vector.
The target set for the lth task is denoted similarly as D(l)

t =

{x(l)
t,i ,y

(l)
t,i}

Nl,t

i=1 . At test time, for a new task l∗, we observe

D(l∗)
c and {x(l∗)

t,i }
Nl∗,t

i=1 . The target responses {y(l∗)
t,i }

Nl∗,t

i=1

are unobserved, and our goal is to predict them.

Neural Processes Neural processes [Garnelo et al., 2018b]
frame few-shot learning as a multi-task learning problem
[Heskes, 2000], employing a conditional latent variable
model with context/target splits on task-specific datasets
as shown in Fig. 2. Training amounts to maximising the
following conditional marginal likelihood across L tasks:

L∑
l=1

log pθ(D(l)
t | D(l)

c )

⪆
L∑

l=1

E
qϕ(z|D(l)

c ∪D(l)
t )

[
log pθ(D(l)

t | z)
]

(1)

−DKL

[
qϕ(z|D(l)

c ∪ D(l)
t ) ∥ qϕ(z|D(l)

c )
]

where zl is the task-specific latent variable and θ is the
global parameter that is shared across tasks. The marginal-
ization over task-specific latent variables is typically in-
tractable hence approximate inference is used,

pθ(z | Dc) =
1

pθ(Dc)

∏Nc

i=1 pθ(yc,i |xc,i, z) pθ(z)

≈ qϕ(z | Dc). (2)

where we have dropped task indices for notational simplic-
ity. The variational approximation is amortised, meaning a

recognition network is used. For a Gaussian approximation,
the mean and variance are parameterized by neural networks
(NNs) that take as input sets of datapoints: qϕ(z | Dc) =

N (z | µ̃, Σ̃) with
(
µ̃, Σ̃

)
= encϕ(Dc). Throughout we as-

sume covariance matrices have diagonal structure, resulting
in fully-factorized Gaussian distributions.

Neural Process Extensions NPs come in two variants, the
aforementioned (latent) NP [Garnelo et al., 2018b] and the
conditional NP (CNP) [Garnelo et al., 2018a]. Instead of
a latent variable, CNPs directly learn the predictive condi-
tional distribution via a maximum likelihood meta-training
procedure. Consequently they lack the ability to produce
coherent function samples since each point is generated
independently. Most subsequent work has improved upon
NPs (and CNPs) through architectural modifications such
as attention [Kim et al., 2019, 2022], convolutions [Gor-
don et al., 2020, Foong et al., 2020], mixtures [Wang and
Van Hoof, 2022], equivariance [Kawano et al., 2021], and
adaptation [Requeima et al., 2019]. Comparatively fewer
works have attempted to improve the distributional assump-
tions of the latent variable. Two works have attempted to
employ hierarchical [Wang and Van Hoof, 2020] and non-
parametric [Flam-Shepherd et al., 2018] formulations to
solve this problem.

Sum-Decomposition Networks The inference networks
for NPs must have at least two properties. The first is that
they make no assumptions about the size of the context set.
The second is that the encoder be invariant to the ordering of
context points. A common way to satisfy these criteria is by
having the encoder take the form of a sum-decomposition
network [Edwards and Storkey, 2017, Zaheer et al., 2017]:
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Figure 2: Generative process for multi-task learning with
context/target splits along with the variational approxima-
tion ( ).

r̄ = 1
Nc

∑Nc

i=1 rc,i with rc,i = encrϕ(xc,i,yc,i), (3)

where ri are datapoint-wise encodings given by a NN which
are then aggregated. The aggregation operation is typically
taken to be a simple average in NPs but other operators are
valid as long as they are permutation-invariant. Thus the
amortisation goes one level further with parameter shar-
ing across context points. Finally, the aggregated repre-
sentation r̄ is passed to a further NN to give the varia-
tional parameters. In the case of Gaussian posterior we have(
µ̃, Σ̃

)
= enczϕ(r̄).

Bayesian Context Aggregation Volpp et al. [2020] pro-
pose a novel aggregation mechanism, derived by construct-
ing a surrogate conditional latent variable (CLV) model in
which the datapoint-wise encodings ri are interpreted as
noisy observations of the underlying Gaussian latent vari-
able. Another encoder network then evaluates the obser-
vation noise for each datapoint σ2

c,i = encsigma
ϕ (xc,i,yc,i).

By choosing a Gaussian prior with mean µ0 and variance
σ2
0 , Bayesian inference in this surrogate CLV results in the

following aggregation mechanism:

σ̃2 =
[
σ−2
0 +

∑Nc

i=1 σ
−2
c,i

]−1

µ̃ = µ0 + σ̃2 ◦
∑Nc

i=1 (rc,i − µ0) /σ
2
c,i

(4)

where a ◦ b and a/b denote element-wise product and di-
vision respectively between vector a and b. Aggregation
operates directly in the latent-space which forgoes the need
for a further NN. Bayesian aggregation is a strict general-
ization of mean aggregation since the latter is recovered
when a non-informative prior is used along with uniform
observation variances. Eq. 4 can be seen as re-weighting
context points, with the weights given by σ−2

c,i . This has
some resemblance to self-attention mechanisms that have
been adapted for neural processes [Kim et al., 2019] how-
ever the key difference is that the weights are computed
without consideration of other context points.

3 STRUCTURED INFERENCE
NETWORKS

We describe our approach that reframes individual context
embeddings of the sum-decomposition architecture as fac-
tors in a probabilistic graphical model. To motivate this,
let us consider the case where the likelihood and prior in
Eq. 2 are given by conjugate exponential-family distribu-
tions. The posterior can then be obtained analytically [Wain-
wright and Jordan, 2008]. The prior can be expressed as
p(z) = h(z) exp [⟨T(z),η0⟩ −A(η0)], where η0 is the nat-
ural parameters, T(z) is the sufficient statistics, h(z) is the
base measure and A(η0) is the log-partition function. Due
to conjugacy, the likelihood can be expressed in the same
form as the prior for some natural parameters ηy(z) and
sufficient statistics T(yc,i),

p(yc,i|z) = h(yc,i) exp [⟨T(yc,i),ηy(z)⟩ −A (ηy(z))]

∝ exp

([
ηy(z)

−A (ηy(z))

]
︸ ︷︷ ︸

=T(z)

⊤ [
T(yc,i)

1

]
︸ ︷︷ ︸
=ηc,i(yc,i)

)

where we have excluded the feature vector for simplicity.
Then the posterior distribution is,

p(z|D) ∝ h(z) exp
[〈

T(z),η0 +
∑N

i=1 ηc,i(yc,i)
〉]

(5)

where it is clear that the posterior natural parameters are
given by simply adding the sufficient statistics of {yc,i}Nc

i=1

to the prior natural parameters. The computation in Eq. 5
is strikingly similar to the sum-decomposition architecture
in Eq. 3. There, the encodings encrϕ(xc,i,yc,i) play a sim-
ilar role to the sufficient statistics ηc,i(yc,i) in that they
are aggregated to obtain the contextual representation; but
they are non-linear embeddings which could be much more
expressive.

3.1 NEURAL SUFFICIENT STATISTICS

Using the recipe for conjugacy in the exponential-family, we
aim to construct a variational distribution of the same form
but replacing the sufficient statistics by neural sufficient
statistics. While training the end-to-end NP still requires
variational inference (due to the NNs in the encoder and
decoder), having this form will allow for efficient, conjugate
updates to the distribution over the latent variables. This is
given as,

qϕ(z|Dc)

∝ exp
[〈

T(z),ηϕPGM +
∑Nc

i=1 fϕNN(xc,i,yc,i)
〉] (6)

where fϕNN(·) is a neural network for amortized and gradient-
based construction of neural sufficient statistics [Wu et al.,
2020] and ηϕPGM is the prior natural parameters. This is



an instance of a structured inference network (SIN) [Lin
et al., 2018] in which the variational distribution takes a
factorized form consisting of the prior and N factors which
are sometimes referred to as deep observational likelihoods
[Johnson et al., 2016]. This can be seen by rewriting Eq. 6
as,

qϕ(z | Dc)=
1

Zc(ϕ)

[
Nc∏
i=1

exp
(〈

T(z), fϕNN(xc,i,yc,i)
〉)]

︸ ︷︷ ︸
NN factors

×

[
q(z;ϕPGM)

]
︸ ︷︷ ︸

prior

(7)

where Zc(ϕ) is the normalization constant. The framework
is also flexible to allow for the prior parameters to be fitted,
ϕ := {ϕNN, ϕPGM}. The neural sufficient statistics give rise
to factors that can be conjugate to the prior by construction.
Whilst this may seem like an arbitrary construction, in the
specific case of Gaussianity, the optimal variational approxi-
mation decomposes into the prior and local Gaussian factors
that approximate the likelihood [Nickisch and Rasmussen,
2008, Opper and Archambeau, 2009].

Furthermore, the variational lower bound resulting from us-
ing the structured inference network (Eq. 7) in Eq. 1 contains
a term that resembles the entropy of the individual factors
(see App. A.1 for further details). This is further evidence
that the factors are approximating the sufficient statistics
of the likelihood; this is due to the link between statistical
sufficiency and information-maximizing representations of
the data [Chen et al., 2021].

The structured inference network improves several aspects
of the sum-decomposition network. The first improvement
is the variational parameters are now computed directly
from the context embeddings. This eliminates the need for
an additional neural network reducing the total number of
encoder parameters. The second improvement is the intro-
duction of an explicit prior distribution whose parameters
are aggregated along with the context embeddings. The
third improvement is the aggregation mechanism is deter-
mined directly from the exponential-family parameteriza-
tion. Natural parameterization, as shown in Eq. 6, leads to
sum-pooling which is equivalent to mean-pooling in Eq. 3
within a constant of proportionality. However, expectation
parameterization leads to weighted aggregation mechanisms
as we demonstrate below for two cases with Gaussian prior
and Mixture of Gaussian prior.

3.2 BAYESIAN CONTEXT AGGREGATION AS SIN
WITH GAUSSIAN ASSUMPTIONS

For a Gaussian prior, the resulting conjugate exponential-
family distribution is also Gaussian. By substituting this in

Eq. 7 with T(z) := {z, zz⊤} for the factors we obtain,

qϕ(z | Dc) =
1

Zc(ϕ)

[∏Nc

i=1N (z |mc,i,Vc,i)
]

×
[
N (z |µ0,Σ0)

]
where

(
mc,i,Vc,i

)
← fϕNN(xc,i,yc,i) are the moment

parameters of the factors (mean and variance) evaluated
by the recognition network and prior moments ϕPGM :=
{µ0,Σ0}. Then the variational distribution is also Gaussian
qϕ(z | Dc) = N (z; µ̃, Σ̃) with posterior moments given by,

Σ̃−1 =
∑Nc

i=1 V
−1
c,i +Σ−1

0

µ̃ = Σ̃
(∑Nc

i=1 V
−1
c,imc,i +Σ−1

0 µ0

)
.

(8)

The normalization constant Zc(ϕ) is also available in closed-
form. We also assume diagonal covariance matrices through-
out thereby ensuring no expensive matrix operations are
performed for aggregation. This Gaussian-based procedure
is equivalent to the previously proposed Bayesian aggrega-
tion mechanism [Volpp et al., 2020]. This can be seen by a
straightforward manipulation of Eq. 8 to give the incremen-
tal update form of Eq. 4 (see App. A.2 for proof).

3.3 MIXTURE BAYESIAN AGGREGATION

We now consider a more expressive prior distribution, the
mixture of Gaussian (MoG) prior, which despite being a
conditionally-conjugate exponential-family distribution, re-
sults in closed-form updates when the factors are chosen to
be Gaussian,

qϕ(z | Dc) =
1

Zc(ϕ)

[∏Nc

i=1N (z |mc,i,Vc,i)
]

×
[∑K

k=1 πkN (z |µk,Σk)
]
.

The factors’ moment parameters are evaluated in the same
way as Sec. 3.2 and the prior parameters are given by
ϕPGM := {πk,µk,Σk}Kk=1 where

∑K
k=1 πk = 1. Then the

variational distribution also takes a MoG form qϕ(z | Dc) =∑K
k=1 π̃kN (z | µ̃k, Σ̃k) with posterior parameters given by,

Σ̃−1
k =

∑Nc

i=1 V
−1
c,i +Σ−1

k

µ̃k = Σ̃k

(∑Nc

i=1 V
−1
c,imc,i +Σ−1

k µk

)
π̃k = πk Ck / Zc

(9)

for k = 1, . . . ,K where Zc =
∑K

k=1 π̃k. The updates for
the mean and variance of each component Gaussian takes
an identical form to Eq. 8. The update for the mixing propor-
tions requires evaluation of the normalization constant Ck

for each Gaussian component which is stated in App. A.3.
A MoG prior may be a beneficial modelling assumption if
we expect the data to arise from multiple sources. We refer
to this approach as mixture Bayesian Aggregation (mBA), a
generalization of BA that is recovered when the number of
mixture components K is set to 1.



4 BEYOND CONJUGACY

The conjugate case is attractive due to its analytic properties,
but it may be a poor modelling assumption for real-world
data. By relaxing the need for conjugacy between the factors
and the prior, we can allow for a wider range of distributional
assumptions. Yet non-conjugacy implies the posterior can
no longer be expressed analytically since the evidence Zc(ϕ)
is intractable. We can instead form a lower bound on the
evidence by introducing an approximating distribution q̃,

logZc(ϕ) ≥ Eq̃(z) [log qϕ(z,Dc)] +H (q̃(z)) (10)

with joint distribution qϕ(z,Dc) corresponding to Eq. 7 and
H(q) = Eq [− log q(z)] is the entropy. The variational pos-
terior now depends implicitly on the neural sufficient statis-
tics and prior parameters. Whilst this approach would be
generally applicable, without further assumptions every for-
ward pass through the NP would require solving the stochas-
tic optimization problem that is maximizing Eq. 10. This
closely resembles a recently proposed aggregation mech-
anism for set embedding termed equilibrium aggregation
[Bartunov et al., 2022] which also considers an optimization-
based formulation. They show that under certain conditions
(e.g. choice of initialization, regularization strength etc.),
convergent dynamics are observed with a small number of
gradient-descent steps.

These techniques could also be adapted here, but instead
we consider certain restrictions that lead to a more tractable
approach while still allowing for expressive PGMs. We
start by restricting q̃ to be a mean-field distribution [Jor-
dan et al., 1999]. Considering a certain partition of z
into M disjoint groups over which q̃ factorises, we have
q̃(z) =

∏M
j=1 q̃j(zj). Now the stationary point q̃∗(z) of

Eq. 10 satisfies (Bishop [2006], Eq. 10.9),

log q̃∗j (zj) = Eq̃∗
/j

(z/j) [log qϕ (z,Dc)] + cnst. (11)

where z/j indicates all variables excluding the jth group
using which the expectation of the log joint is taken with
respect to. We further suppose that the factors and prior spec-
ify a conditionally-conjugate exponential-family system and
that each factor in q̃(z) belongs to the same exponential-
family as the complete conditional distribution in qϕ(z,Dc).
Then the expectation in Eq. 11 takes a closed-form expres-
sion resulting in tractable updates for each factor of the
mean-field posterior. We can iteratively optimize each zj
whilst holding the others fixed using Eq. 11. This is often
referred to as coordinate ascent variational inference (CAVI)
[Blei et al., 2017] which is a special case of variational mes-
sage passing [Winn et al., 2005]. A closely related approach
is differentiable EM (DIEM) [Kim, 2021] that frames set
embedding as maximum-a-posteriori estimation. This per-
forms expectation-maximization (EM) updates and can be
viewed as a special case of our method.

4.1 ROBUST BAYESIAN AGGREGATION

We now consider a specific instance of a conditionally-
conjugate exponential-family system in which the
coordinate-ascent updates arising from Eq. 11 give rise to
a novel, weighted aggregation mechanism. This extends
the all-Gaussian assumptions of Sec. 3.2 by introducing a
Gamma prior over the precision of each Gaussian factor,
whose marginal form is a heavy-tailed Student-t distribution,
as well as a hierarchical prior. This is adapted from previ-
ous work on robust Bayesian interpolation [Tipping and
Lawrence, 2005] which demonstrated robustness to outliers
and corruptions in the targets with this model specification.
The probabilistic model is,

qϕ(z, α,β) =
[∏Nc

i=1N (z|mc,i, β
−1
i Vc,i)

]
×
[
q(z|α)q(α)

∏Nc

i=1 q(βi)
]

with q(z|α) = N (z|0, α−1I), q(α) = G(α|a0, b0) and
q(βi) = G(βi|c0, c0). The factors’ moment parameters are
evaluated as before and ϕPGM = {a0, b0, c0}. Each factor
and q(βi) together can be viewed as the hierarchical form
of the Student-t distribution,

T (z|mc,i,Vc,i, c0) =
∫
N (z |mc,i, β

−1
i Vc,i)

· G(βi|c0, c0) dβi.

The marginal form would render the updates arising from
Eq. 11 intractable hence we restrict ourselves to the joint
specification. Next we introduce a mean-field distribu-
tion with a corresponding factorization and functional
form to the prior, q̃(z, α,β) = q̃(z)q̃(α)q̃(β). where
q̃(z) = N (z|µ̃, Σ̃), q̃(α) = G(α|ã, b̃) and q̃(β) =∏Nc

i=1 G(βi|c̃, d̃i). Plugging this into Eq. 11, we can derive
the following updates for the parameters of the mean-field
posterior,

Σ̃−1 =
∑Nc

i=1 E[βi]V
−1
c,i + E[α]I (12)

µ̃ = Σ̃
∑Nc

i=1 E[βi]V
−1
c,imc,i, (13)

ã = a0 +
D
2 (14)

b̃ = b0 +
1
2E[z

⊤z] (15)

c̃ = c0 +
D
2 (16)

d̃i = c0 +
1
2

(
m⊤

c,iV
−1
c,imc,i − 2m⊤

c,iV
−1
c,i E[z] (17)

+ tr(V−1
c,i E[zz

⊤])
)

with expectations given by E[z] = µ̃, E[zz⊤] = µ̃µ̃⊤ + Σ̃,
E[α] = ã/̃b and E[βi] = c̃/d̃i. We iterate through the updates
in the order presented above. At convergence or after a fixed
number of iterations, we only keep the posterior over z
which is passed to the NP decoder.

The new procedure is an extension of BA. This can be seen
by initializing the Gamma parameters to ã = b̃ = c̃ = d̃i =



Table 1: mixture Bayesian Aggregation (mBA). We observe a boost in performance over BA with increasing number of
components (K). We also exceed the performance of NP with Self-Attention (NP+SA) on OOD data. This is demonstrated
on the task of 2D image completion (EMNIST).

Predictive Log-Likelihood ↑ RMSE ↓
Seen classes (0-9) Unseen classes (10-46) Seen classes (0-9) Unseen classes (10-46)

context target context target context target context target

NP 0.701±0.065 0.589±0.061 0.567±0.059 0.405±0.039 0.201±0.018 0.218±0.014 0.244±0.014 0.265±0.009

NP+SA 0.977±0.006 0.840±0.005 0.823±0.007 0.609±0.008 0.127±0.002 0.165±0.001 0.177±0.002 0.224±0.002

NP-BA 0.866±0.097 0.708±0.076 0.749±0.118 0.537±0.093 0.154±0.027 0.193±0.014 0.193±0.033 0.238±0.018

NP-mBA (K=2) 0.952±0.121 0.778±0.083 0.855±0.143 0.623±0.097 0.128±0.033 0.181±0.017 0.162±0.038 0.221±0.020

NP-mBA (K=3) 0.953±0.108 0.777±0.079 0.857±0.132 0.623±0.103 0.128±0.031 0.180±0.015 0.162±0.038 0.221±0.020

NP-mBA (K=5) 0.975±0.083 0.792±0.064 0.883±0.105 0.642±0.084 0.122±0.025 0.177±0.011 0.155±0.031 0.217±0.016

1 and running a single step of Eqs. 12 and 13, then BA is
recovered (when standard normal prior is used). However,
compared with BA, Eq. 12 presents an alternate approach
to updating the prior precision which now depends on the
aggregated contextual representation through Eq. 15. This
adaptive mechanism resembles that of a data-dependent
prior [Tipping, 2001].

Another crucial difference in Eqs. 12 and 13 is that the
neural sufficient statistics (in natural parameterization) are
now weighted by the 1st moment of the variational noise
distribution. The context-dependent variability in this term
is given by Eq. 17 which is evaluated by using the individ-
ual context embedding as well as the aggregated contextual
representation given by the moments of q̃(z). Viewed as a
weighted aggregation scheme, this has close resemblance
to self-attention which evaluates a similarity function (e.g.
Euclidean norm, dot-product etc.) between all pairs of con-
text points. In the case of corruptions to the context set,
such outliers can be downweighted, improving the robust-
ness of neural processes. We refer to our approach as robust
Bayesian aggregation (rBA).

We run the coordinate-wise updates for a fixed number of
steps and observe that in practice convergent dynamics ap-
pear within a few steps as shown in Fig. 5b. We note that all
operations are fully-differentiable and we backprop through
the unrolled steps for gradient-based learning. It may be
possible to incorporate implicit differentiation techniques,
for instance as used in Deep Equilibrium Models [Bai et al.,
2019], to improve the efficiency and reduce the memory of
the proposed method.

5 EXPERIMENTS

We conduct experiments to assess the performance of our
mixture and robust variants1 of Bayesian Aggregation (BA)
against vanilla BA [Volpp et al., 2020]. We also benchmark
against NPs with regular encoder architecture (NP) [Gar-

1For a reference implementation see: https://github.
com/dvtailor/np-structured-inference.

NP-BAOriginal Task

NP-mBA

K=2 K=3 K=5NP+SA

Figure 3: Completed images on EMNIST (0-9) from 100
context points (“task”).

nelo et al., 2018b] and an NP with self-attention module
(NP+SA) [Kim et al., 2019]. Similar to Volpp et al. [2020],
we only evaluate on NP-based models with a single latent
path (i.e. no deterministic path). We do not consider encoder
architectures that evaluate task-specific contextual represen-
tations such as Attentive NP [Kim et al., 2019] and leave the
combination of BA variants with cross-attention style mech-
anisms to future work. The decoder network architecture
is fixed across all models such that any performance differ-
ences can be attributed solely to the encoder architecture.
To reduce the effects of differences in network architecture
between BA and non-BA encoders, we keep the BA encoder
size close to but less that of the non-BA architectures. Each
model is trained with 5 different seeds and we report the
mean and standard deviations from these runs. Please refer
to App. B for further details on the model specification and
training configuration.

We consider the following tasks,

• 1-D Regression We train on functional samples drawn
from Gaussian Process (GP) priors with RBF and Matern-
5/2 kernel. The specification of the RBF kernel is taken
from Lee et al. [2020] where both the lengthscale and out-
put variance is varied (GP hyperparameters). The matern-
5/2 kernel is taken from Gordon et al. [2020] where the
hyperparameters are fixed.

• Image completion A subset of pixels for a given image
is presented with the task to predict the remaining pixels.

https://github.com/dvtailor/np-structured-inference
https://github.com/dvtailor/np-structured-inference
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Figure 4: robust Bayesian Aggregation (rBA). We demonstrate gains to test-time robustness in the presence of corruptions
to the context set as compared with BA. In (a), context set function values are perturbed by heavy-tail noise of varying
magnitude. In (b), we consider common image noise perturbations (left) and image pixelation (right), of varying intensity.

Therefore, we can understand the inputs to be coordinates
of each pixel and the pixel intensities representing the
targets (i.e. 2-D regression). We consider the EMNIST
dataset [Cohen et al., 2017] – a dataset of handwritten
digits and letters comprising of grayscale 28x28 images.
During training, we restrict images to the first 10 classes.
We evaluate on two settings: in-distribution data (held-out
images from the first 10 classes) and out-of-distribution
(OOD) data (images from the remaining 37 classes).

5.1 MIXTURE BAYESIAN AGGREGATION

We initialize the mixture prior in the PGM as follows: the
prior mixing proportions are set to uniform, the prior vari-
ance is set to 1 and the prior means are sampled from a
zero-mean Gaussian with standard deviation 0.1. The latter
setting is to encourage diversity in the posterior mixture
components and prevent collapse to a unimodal Gaussian.
The task of image completion on the EMNIST dataset is con-
sidered. Table 1 clearly demonstrates the utility of additional
mixing components with improved function modelling as
the number of components is increased from 2 to 5 (see
Fig. 3). This is also shown in dependence of the context
set size in Fig. 5a. The reconstruction error is also indi-
cated (“context”). On OOD data, NP-mBA even exceeds
the performance of NP with Self-Attention (NP+SA) for all

numbers of components considered. This is despite NP+SA
having a considerably larger number of parameters (see Ta-
ble 2). We also observe little change in the run-time when
the number of components is increased.

5.2 ROBUST BAYESIAN AGGREGATION

We demonstrate the improved robustness of our robust
Bayesian Aggregation (NP-rBA) to corruptions in the con-
text sets at test-time (see Fig. 6). For the 1D regression
task, we extend the model-data mismatch setting from Lee
et al. [2020] where the function values are corrupted by
Student-t noise of increasing magnitude, ε ∼ γ · T (2.1)
with γ ∈ [0.05, 0.08, 0.11, 0.13, 0.15]. For the image com-
pletion setting, we only consider the in-distribution data
and perform noise corruption and pixelation as specified
in [Hendrycks and Dietterich, 2019]. For the noise corrup-
tion, we average over four different types of noise, namely
Gaussian, Shot, Poisson and Impulse noise, of increasing
severity. Pixelation involves downsampling the image to
different reduced resolutions and then upsampling back to
the original resolution. For our NP-rBA, we run the message
passing algorithm for 5 steps (at both train and test time)
except for Matern where we run for 10 steps.

In Fig. 4, we observe a consistent gain over BA across
the different tasks and corruptions. With the exception of
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Figure 5: (a) Across a range of context set sizes, there is a gain in performance with increasing mixture components over BA.
This is demonstrated on the task of 2D image completion (error bars are omitted for visual clarity). (b) By increasing the
number of message-passing (VMP) steps, we observe a monotonic improvement in both the accuracy of the target function
and on the lower bound to the evidence of the PGM. With just 2 steps, there is a gain over vanilla BA ( ). This is shown for
test-time corruption to the context set of the highest intensity. During training, a fixed number of steps is used (10 and 5 for
Matern and EMNIST respectively).

Table 2: Number of model parameters and training time (s).
Run-time is measured on the image completion experiment
on a GTX 1080, for a single epoch (batch size 100). NP-
mBA is run with 5 components and NP-rBA with 5 message-
passing steps.

# Parameters Training (s)

NP 248,962 8.1
NP+SA 282114 11.2
NP-BA

166,914
10.0

NP-mBA 16.3 (*)
NP-rBA 16.1

(*) 10 latent samples

corruption by pixelation, NP-rBA also shows improvement
over NP with Self-Attention (NP+SA). Fig. 5b demonstrates
speed-accuracy trade-off where increasing the number of
steps at test-time leads to monotonic improvement in perfor-
mance.

6 CONCLUSION

We propose structured inference networks for context aggre-
gation in Neural Processes (NPs). This change is attractive
for several reasons: (i) the local encodings now have a clear
interpretation as neural sufficient statistics, (ii) the aggrega-
tion step is predetermined by and follows from the proba-
bilistic assumptions and inference routine, and (iii) struc-
tured priors are straightforward to incorporate. We show
that an existing context aggregation mechanism, Bayesian
Aggregation (BA), is recovered by imposing Gaussianity
assumptions in the PGM.

By imposing different modelling assumptions, we demon-
strate alternative context aggregation mechanisms can be
derived. In particular, we consider, (1) Mixture of Gaussian

NP-BAOriginal Task
NP-rBA

NP+SA Increasing steps

Figure 6: Completed images on EMNIST (0-9) from 100
context points (“task”) that have been corrupted by Gaussian
noise.

prior and (2) Student-t assumptions, which give rise to two
novel variants of BA, namely mixture and robust Bayesian
Aggregation. We demonstrate improvements to the func-
tional modelling and test-time robustness of NPs without
any increase in the parameterization of the encoder.

For future work, we look to consider more general PGM
structures, e.g. temporal transition structure for modelling
time-series data or even causal structure via directed acyclic
graphs (DAGs). It is worth reiterating that there is effectively
no systematic limitation to our framework since, if the user
deems there to be too much computational overhead in using
an expressive PGM, the assumptions can be simplified (e.g.
Gaussianity) thereby recovering existing strategies.
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