

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTIMODAL CLASSIFICATION VIA TOTAL CORRELATION MAXIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal learning integrates data from diverse sensors to effectively harness information from different modalities. However, recent studies reveal that joint learning often overfits certain modalities while neglecting others, leading to performance inferior to that of unimodal learning. Although previous efforts have sought to balance modal contributions or combine joint and unimodal learning—thereby mitigating the degradation of weaker modalities with promising outcomes—few have examined the relationship between joint and unimodal learning from an information-theoretic perspective. In this paper, we theoretically analyze modality competition and propose a method for multimodal classification by maximizing the total correlation between multimodal features and labels. By maximizing this objective, our approach alleviates modality competition while capturing inter-modal interactions via feature alignment. Building on Mutual Information Neural Estimation (MINE), we introduce Total Correlation Neural Estimation (TCNE) to derive a lower bound for total correlation. Subsequently, we present TCMax, a hyperparameter-free loss function that maximizes total correlation through variational bound optimization. Extensive experiments demonstrate that TCMax outperforms state-of-the-art joint and unimodal learning approaches. Our code is available at https://anonymous.4open.science/r/TCMax_Experiments.

1 INTRODUCTION

Humans better perceive the world through diverse sensory inputs, *i.e.*, text, audio, and vision. Likewise, multimodal fusion models Yang et al. (2021); Yao & Mihalcea (2022); Li et al. (2023b); Zhang et al. (2024); Wei et al. (2024); Zong et al. (2024), which integrate different modalities, are expected to learn more robust and generalized representations than unimodal counterparts. However, recent studies Wang et al. (2020); Huang et al. (2022); Peng et al. (2022) uncover an intriguing phenomenon in multimodal classification: the best-performing unimodal network surpasses the joint learning network, which can be attributed to the differences in convergence and generalization rates among modalities. In such inconsistent convergence states cases, some dominant modalities are adequately overfitted to the training data, causing the multimodal model to overly rely on dominant modalities while neglecting others, ultimately resulting in suboptimal performance.

To address it, several studies Peng et al. (2022); Xu et al. (2023); Li et al. (2023a); Fan et al. (2023); Wei et al. (2024) are committed to balancing multimodal joint learning. Representatively, OGM-GE Peng et al. (2022) modulates the gradient of modality-specific encoders according to their contribution to prediction, inhibiting modalities that converge faster. AGM Li et al. (2023a) dynamically adjusts the gradient contributions from different modalities. However, modality competition Huang et al. (2022) points out that despite joint learning allowing for modality interaction, it easily causes the model to saturate dominant modalities prematurely, neglecting unimodal features that are difficult to learn but conducive to generalization. Followed by some works are proposed to harness the benefits of the unimodal learning strategy, *e.g.*, QMF Zhang et al. (2023) explicitly incorporates a unimodal loss and a regularization term, evaluating the quality of the truncated samples into the loss function. MLA Zhang et al. (2024) decomposes joint learning into alternating unimodal learning, with a lightweight shared head for modality interaction. MMPareto Wei & Hu (2024) considers both the direction and magnitude of gradients, ensuring that unimodal gradients do not interfere with multimodal training.

054
 055
 056
 057
 058
 059
 060
 061
 062
 Despite significant progress in existing methods, current approaches still primarily rely on joint learning or a combination of joint learning and unimodal learning, with little consideration given to the inherent alignment properties of multimodal data. However, directly integrating joint learning loss, unimodal loss, and alignment loss (e.g., contrastive learning loss) with inherently conflicting optimization objectives requires introducing extra hyperparameters, additional structures, and algorithmic procedures to balance their contributions during training. In this paper, through an information-theoretic analysis, we demonstrate that maximizing the total correlation between the features encoded by each modal encoder in the multimodal model and the labels avoids modality competition while learning inter-modal interactions and incorporating alignment between modalities.

063
 064
 065
 066
 067
 068
 069
 070
 Inspired by Mutual Information Neural Estimation Belghazi et al. (2018), we propose the TCMax loss, which employs total correlation Neural Estimation to estimate the lower bound of total correlation. By maximizing this lower bound, we enhance the total correlation between features and labels. We theoretically demonstrate that the output of the model optimized by the TCMax loss possesses the same mathematical significance as that of a model trained using joint learning. Consequently, our method does not require the introduction of additional hyperparameter or structural modifications. Merely employing the TCMax loss during the training phase suffices to achieve favorable results. In summary, our contributions are as follows:

- 071
 072
 073
 074
 • From an information-theoretic perspective, we elucidate the underlying causes of modality competition and propose that maximizing the total correlation between multimodal features and labels can amalgamate the advantages of joint learning and unimodal learning while incorporating inter-modal alignment
- 075
 076
 077
 078
 • We introduce Total Correlation Neural Estimation and, based on this, propose the TCMax loss. Theoretically, we prove that optimizing the TCMax loss can increase total correlation and demonstrate that models utilizing TCMax are capable of estimating the joint distribution of multimodal data and the label.
- 079
 080
 081
 • Comprehensive experiments showcase the considerable improvement over previous joint and unimodal learning methods on various multimodal datasets.

082 083 2 RELATED WORKS

084
085 Modality Imbalance Integrating information from multimodal data is essential for comprehensively
 086 addressing and solving real-world problems. However, training a multimodal model using a joint
 087 learning strategy is challenging because different modalities often exhibit varying data distributions,
 088 require distinct network architectures, and have different convergence rates Wang et al. (2020).
 089 Simultaneously, joint learning makes all modalities contribute to one learning objective, causing weak
 090 modalities to be suppressed after strong modalities converge, resulting in modality competition Huang
 091 et al. (2022). Several works Peng et al. (2022); Zong et al. (2024); Wei et al. (2024); Xu et al. (2023);
 092 Li et al. (2023a) have recently been suggested to balance modalities. Representatively, OGM-GE Peng
 093 et al. (2022) and AGM Li et al. (2023a) propose balanced multimodal learning methods that correct
 094 the contribution imbalance of different modalities by encouraging intensive gradient updating from
 095 suboptimal modalities. However, rebalance methods are not able to overcome modality laziness Du
 096 et al. (2023) and fail to exploit uni-modal features efficiently. Some works Zhang et al. (2023);
 097 Wei et al. (2024); Zhang et al. (2024); Wei & Hu (2024) explicitly or implicitly incorporate uni-
 098 modal loss into their loss functions to avoid modality laziness. Specifically, MLA Zhang et al.
 099 (2024) decomposes the conventional multimodal joint optimization scenario into an alternating
 100 unimodal learning scenario and exchanges information using a shared head for different modalities.
 101 ReconBoost Hua et al. (2024) alternates between different modalities during the learning process,
 102 mitigating the issue of synchronous optimization limitations. MMPareto Wei & Hu (2024) balances
 103 the objectives of joint learning and uni-modal learning using the Pareto method. By preventing
 104 modality laziness in multimodal learning, they achieve performance slightly higher than that of
 105 uni-modal learning.

106
107 Information Theory with Multimodal Learning In information theory, mutual information
 quantifies the correlation between two variables in terms of their distribution. Recent works Belghazi
 et al. (2018); Hu et al. (2024) have leveraged neural networks to estimate mutual information, bridging
 the gap between deep learning and information theory. In contrastive learning, the InfoNCE Oord

108 et al. (2018) loss serves as a lower bound estimate of mutual information, providing a solid theoretical
 109 foundation for its use. As more applications Chen et al. (2020b); Radford et al. (2021) demonstrate
 110 the effectiveness of the InfoNCE loss, the validity of the underlying mutual information theory has
 111 been further validated. For more than two variables, total correlation Watanabe (1960) extends mutual
 112 information and serves as a measure of the interdependence among multiple variables. In Hwang et al.
 113 (2021), the authors applied total correlation in the Multi-View Representation Learning problem and
 114 achieved promising results, demonstrating the utility of total correlation in multi-variable scenarios.
 115

116 3 METHOD

118 3.1 MOTIVATION AND PRELIMINARY

119 **Problem Formulation.** Consider a multimodal data distribution $(x^{(1)}, \dots, x^{(M)}, y) \sim \mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}$, where $\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}$ denotes the joint probability distribution over the modalities
 120 and labels of the train set, $\mathcal{X}^{(m)}$ represents the sample space of the m -th modality, \mathcal{Y} corresponds to
 121 the label space. For each modality m , a modality-specific encoder $\psi_{\Theta_m}^{(m)} : \mathcal{X}^{(m)} \rightarrow \mathcal{Z}^{(m)}$ maps the in-
 122 put space $\mathcal{X}^{(m)}$ to its corresponding embedding space $\mathcal{Z}^{(m)} = \{\psi_{\Theta_m}^{(m)}(x^{(m)}) \mid x^{(m)} \in \mathcal{X}^{(m)}\}$. The
 123 embeddings from all modalities are subsequently fed into a prediction head $f_{\theta} : \mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \rightarrow$
 124 $\mathbb{R}^{|\mathcal{Y}|}$ to integrate information across different modalities and predict the probability distribution of
 125 labels $\hat{p}(\hat{y}|Z) = \text{Softmax}(f_{\theta}(z^{(1)}, \dots, z^{(M)}))_{\hat{y}}$, where \hat{y} denotes the predicted label and θ represents
 126 the parameters of the prediction head.
 127

128 **Joint Learning.** The objective of multimodal joint learning is to minimize the distance cross-
 129 entropy between the predicted distribution and the ground truth distribution:
 130

$$133 \mathcal{L}_{\text{joint}} = \mathbb{E}_{(x^{(1)}, \dots, x^{(M)}, y) \sim \mathbb{P}_{\mathcal{D}}} [\ell(y, \hat{y})] = \mathbb{E}_{(x^{(1)}, \dots, x^{(M)}, y) \sim \mathbb{P}_{\mathcal{D}}} [-\log \hat{p}(y|Z)], \quad (1)$$

134 where $\ell(\cdot, \cdot)$ is the cross-entropy loss and $Z = (z^{(1)}, \dots, z^{(M)})$ is the multimodal feature. As the
 135 distribution of \hat{y} is calculated by Z , $\ell(y, \hat{y})$ in Equation 1 can be seen as the conditional cross-
 136 entropy under Z , denoted as $\ell(y, \hat{p}|Z)$. Boudiaf et al. (2020) shows minimizing the conditional
 137 cross-entropy $\ell(y, \hat{p}|Z)$ is equivalent to maximizing the mutual information $I(y; Z)$. This implies,
 138 with joint learning strategies Peng et al. (2022); Li et al. (2023a), the multimodal model is trained by
 139 maximizing the mutual information between the multimodal feature Z and the label y .
 140

141 To explain the cause of modality imbalance from an information-theoretic perspective, we analyze
 142 the scenario involving two modalities (audio and visual) without loss of generality, where $Z =$
 143 $(z^{(a)}, z^{(v)})$. Specifically, the multimodal model trained via joint learning aims to maximize the
 144 mutual information:
 145

$$I(y; Z) = I(y; z^{(a)}, z^{(v)}) = I(y; z^{(a)}) + I(y; z^{(v)}|z^{(a)}). \quad (2)$$

146 The mutual information between any two variables
 147 is bounded by the entropy of either variable. Moreover,
 148 since $I(y; z^{(v)}|z^{(a)}) \geq 0$, it follows $H(y) \geq$
 149 $I(y; z^{(a)}, z^{(v)}) \geq I(y; z^{(a)})$. When the encoder
 150 of one modality learns faster than the other, as-
 151 suming $z^{(a)}$ contains sufficient information to pre-
 152 dict the label accurately on the train set, then
 153 $I(y; z^{(a)})$ in Equation 2 becomes close to $H(y)$.
 154 As $I(y; z^{(v)}|z^{(a)}) = I(y; z^{(a)}, z^{(v)}) - I(y; z^{(a)}) \leq$
 155 $H(y) - I(y; z^{(a)})$ and $I(y; z^{(a)}) \approx H(y)$, the up-
 156 per bound of $I(y; z^{(v)}|z^{(a)})$ tends to be quite small,
 157 making it challenging for the visual encoder to learn
 158 adequate features though maximizing $I(y; z^{(v)}|z^{(a)})$
 159 as it shows in Figure 1. This phenomenon of resource
 160 contention between modalities is termed modality
 161 competition Huang et al. (2022).

162 Figure 1: Venn graph of an extreme case where
 163 the audio encoder has already been well-fitted.
 164 The visual component (blue) only needs to cover
 165 $I(y; z^{(v)}|z^{(a)})$ to achieve the training objective
 166 ($\mathcal{L}_{\text{joint}} \approx 0$), therefore ends up being unfitted.
 167

Figure 2: An illustration of the relationship between joint learning, unimodal learning, and learning through maximizing the total correlation.

Unimodal Learning. In unimodal learning, each modality-specific model is trained independently and later combined into an ensemble model. Specifically, the logits of the unimodal ensemble model during prediction are equal to the sum of all modality-specific models. For mathematical consistency, we treat the unimodal ensemble model as a single entity during training. However, its prediction head can be decomposed into the sum of modality-specific prediction heads, i.e., $f_\theta(Z) = \sum_m f_{\theta_m}^{(m)}(z^{(m)})$. The optimization objective of unimodal learning is:

$$\mathcal{L}_{\text{unimodal}} = \mathbb{E}_{(x^{(1)}, \dots, x^{(M)}, y) \sim \mathbb{P}_D} \left[- \sum_{m=1}^M \log \hat{p}^{(m)}(y|z^{(m)}) \right], \quad (3)$$

where $\hat{p}^{(m)}(y|z^{(m)}) = \text{Softmax}(f_\theta^{(m)}(z^{(m)}))_y$ is the predicted distribution of the label of the unimodal model of the m -th modality. During training, the unimodal ensemble model maximizes the mutual information $I(y; z^{(m)})$ separately for each modality m . For multimodal learning with two modalities, it maximizes:

$$I(y; z^{(a)}) + I(y; z^{(v)}). \quad (4)$$

As mentioned before, we assume the audio modality encoder converges faster, i.e., $z^{(a)}$ captures sufficient information earlier than $z^{(v)}$. Since $I(y; z^{(v)})$ is independent of $z^{(a)}$, it ensures that during the learning process of the visual modality, sufficient mutual information between features and labels can be learned. Although unimodal learning avoids modality competition, its independent training paradigm prevents the model from capturing cross-modal interactions.

While joint learning and unimodal learning focus on modality-label relationships ($\mathcal{X}^{(m)} \leftrightarrow \mathcal{Y}$), multimodal datasets additionally encode cross-modal relationships ($\mathcal{X}^{(i)} \leftrightarrow \mathcal{X}^{(j)}$). To this end, we aim to fully utilize the prior information embedded in $\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}$. While mutual information $I(\xi_1; \xi_2)$ effectively measures pairwise dependencies, its multivariate extension $I(\xi_1; \dots; \xi_n)$ has a limitation: it yields negative values for synergistic interactions. In contrast, total correlation (TC) Watanabe (1960) is non-negative by definition, making it more suitable for measuring multivariate dependencies. Formally:

$$\begin{aligned} \text{TC}(\xi^{(1)}, \xi^{(2)}, \dots, \xi^{(M)}) &\equiv D_{\text{KL}}(\mathbb{P}_{\Xi^{(1)}, \dots, \Xi^{(M)}} \parallel \mathbb{P}_{\Xi^{(1)}} \times \dots \times \mathbb{P}_{\Xi^{(M)}}) \\ &= \left(\sum_{i=1}^M H(\xi^{(i)}) \right) - H(\xi^{(1)}, \xi^{(2)}, \dots, \xi^{(M)}), \end{aligned} \quad (5)$$

where H is the entropy. To leverage the strengths of both joint and unimodal learning, we propose maximizing the TC across all modalities and the label. As Figure 2 shows, in the case of two

216 modalities, TC can be decomposed as:
 217

$$218 \quad 219 \quad 220 \quad 221 \quad 222 \quad \text{TC}(z^{(a)}, z^{(v)}, y) = \begin{cases} \underbrace{I(y; z^{(a)}, z^{(v)}) + I(z^{(a)}; z^{(v)})}_{\substack{\text{Joint learning} \\ \text{Alignment}}} \\ \underbrace{I(y; z^{(a)}) + I(y; z^{(v)}) + I(z^{(a)}; z^{(v)}|y)}_{\substack{\text{Unimodal learning} \\ \text{Alignment}}} \end{cases} \quad (6)$$

223 This decomposition reveals that TC simultaneously captures: (1) joint modality-label dependencies
 224 (joint learning), (2) modality-modality alignment, and (3) unimodal label dependencies (unimodal
 225 learning). This ensures that the model leverages more prior information during training, thereby
 226 making the model more robust. In the following sections, we first propose a lower bound estimator
 227 for TC, then indirectly maximize TC by optimizing the TCMax loss, which is based on the estimator.
 228

229 3.2 TOTAL CORRELATION NEURAL ESTIMATION

230 To maximize TC, we propose maximizing its lower bound. This requires a reliable estimator for
 231 the TC lower bound. We start from the lower-bound estimator for mutual information. Mutual
 232 Information Neural Estimation (MINE) Belghazi et al. (2018) provides a viable approach to estimate
 233 a lower bound of mutual information.
 234

235 **Theorem 1 (MINE Belghazi et al. (2018))** *The mutual information between $Z \in \mathcal{Z}$ and $y \in \mathcal{Y}$
 236 admits the following dual representation:*

$$237 \quad 238 \quad I(Z; y) = \sup_{T: \mathcal{Z} \times \mathcal{Y} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{Z, Y}} [T] - \log (\mathbb{E}_{\mathbb{P}_Z \times \mathbb{P}_Y} [e^T]), \quad (7)$$

239 where the supremum is taken over all functions T such that the two expectations are finite. As neural
 240 networks T_θ with parameter $\theta \in \Theta$ compose a family of functions which is a subset of $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathbb{R}$,
 241 we have:

$$242 \quad 243 \quad I(Z; y) \geq \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{Z, Y}} [T_\theta] - \log (\mathbb{E}_{\mathbb{P}_Z \times \mathbb{P}_Y} [e^{T_\theta}]). \quad (8)$$

244 Fortunately, MINE can be directly extended to Total Correlation Neural Estimation (TCNE). Note
 245 that for two variables, TC reduces to mutual information, making MINE a special case of TCNE.
 246

247 **Corollary 1 (TCNE)** *The total correlation among $M + 1$ variables $z^{(1)} \in \mathcal{Z}^{(1)}, \dots, z^{(M)} \in \mathcal{Z}^{(M)}$
 248 and $y \in \mathcal{Y}$, admits the following dual representation:*

$$249 \quad 250 \quad \text{TC}(z^{(1)}, \dots, z^{(M)}, y) = \sup_{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{Z^{(1)}, \dots, Z^{(M)}, Y}} [T] - \log (\mathbb{E}_{\mathbb{P}_{Z^{(1)}} \times \dots \times \mathbb{P}_{Z^{(M)}} \times \mathbb{P}_Y} [e^T]), \quad (9)$$

252 where the supremum is taken over all functions T such that the two expectations are finite and
 253 $\Omega = \mathcal{Z}_1 \times \dots \times \mathcal{Z}_M \times \mathcal{Y}$. As neural networks T_θ with parameter $\theta \in \Theta$ compose a family of
 254 functions which is a subset of $\Omega \rightarrow \mathbb{R}$, we have:

$$255 \quad 256 \quad \text{TC}(z^{(1)}, \dots, z^{(M)}, y) \geq \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{Z^{(1)}, \dots, Z^{(M)}, Y}} [T_\theta] - \log (\mathbb{E}_{\mathbb{P}_{Z^{(1)}} \times \dots \times \mathbb{P}_{Z^{(M)}} \times \mathbb{P}_Y} [e^{T_\theta}]). \quad (10)$$

257 See the supplement material for all proofs of corollaries and propositions.
 258

259 3.3 TCMax LOSS

261 To align with the form in Corollary 1, we set $T_\theta(z^{(1)}, \dots, z^{(M)}, y) = f_\theta(z^{(1)}, \dots, z^{(M)})_y$, decom-
 262 posing f_θ into $|\mathcal{Y}|$ functions of the form $Z^{(1)} \times \dots \times Z^{(M)} \rightarrow \mathbb{R}$. Based on Equation 10, we propose
 263 the TCMax loss:

$$264 \quad 265 \quad \mathcal{L}_{\text{TCMax}} = -\mathbb{E}_{\mathbb{P}_{Z^{(1)}, \dots, Z^{(M)}, Y}} [f_\theta] + \log (\mathbb{E}_{\mathbb{P}_{Z^{(1)}} \times \dots \times \mathbb{P}_{Z^{(M)}} \times \mathbb{P}_Y} [e^{f_\theta}]) \\ 266 \quad 267 \quad = -\mathbb{E}_{\mathbb{P}_{X^{(1)}, \dots, X^{(M)}, Y}} [F_\Theta] + \log (\mathbb{E}_{\mathbb{P}_{X^{(1)}} \times \dots \times \mathbb{P}_{X^{(M)}} \times \mathbb{P}_Y} [e^{F_\Theta}]), \quad (11)$$

268 where $F_\Theta(x^{(1)}, \dots, x^{(M)}, y) = f_\theta(\psi_{\Theta_1}^{(1)}(x^{(1)}), \dots, \psi_{\Theta_M}^{(M)}(x^{(M)}))_y$ is the multimodal model, $\Theta =$
 269 $\{\Theta_1, \dots, \Theta_M, \theta\}$ denotes all parameters of the multimodal model. From the above derivation, we

270 consider the prediction head as a TC estimator on $\mathcal{Z}_1 \times \dots \times \mathcal{Z}_M \times \mathcal{Y}$. Similarly, the multimodal
 271 model can be regarded as an estimator on $\mathcal{X}_1 \times \dots \times \mathcal{X}_M \times \mathcal{Y}$. Combine with Equation 10, we have
 272 following proposition:

273 **Proposition 1** *The TC between the input data and labels, the TC between features and labels, and
 274 our proposed TCMax loss satisfy the following inequality:*

$$275 \quad \text{TC}(x^{(1)}, \dots, x^{(M)}, y) \geq \text{TC}(z^{(1)}, \dots, z^{(M)}, y) \geq -\mathcal{L}_{\text{TCMax}}. \quad (12)$$

276 Since $\mathcal{L}_{\text{TCMax}} \geq -\text{TC}(z^{(1)}, \dots, z^{(M)}, y)$, minimizing $\mathcal{L}_{\text{TCMax}}$ pushes $-\mathcal{L}_{\text{TCMax}}$ upward, thereby in-
 277 creasing the lower bound of $\text{TC}(z^{(1)}, \dots, z^{(M)}, y)$. Since the distribution of the dataset is determined,
 278 $\text{TC}(x^{(1)}, \dots, x^{(M)}, y)$ is a fixed value and does not vary with model parameters. So far, we have not
 279 addressed the mathematical interpretation of the TCMax-trained model’s output. Next, we prove that
 280 the output of this model possesses the same capability to predict the label distribution as a multimodal
 281 model trained with joint learning.

282 **Proposition 2** *The supremum in in Equation 9 reaches its upper bound if and only if
 283 $\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}} = \mathbb{G}$, where \mathbb{G} is the Gibbs distribution defined as $d\mathbb{G} = \frac{e^T}{\mathbb{E}_{\mathbb{Q}}[e^T]} d\mathbb{Q}$ and
 284 $\mathbb{Q} = \mathbb{P}_{\mathcal{Z}^{(1)}} \times \dots \times \mathbb{P}_{\mathcal{Z}^{(M)}} \times \mathbb{P}_{\mathcal{Y}}$.*

285 Proposition 2 indicates that when the TC estimator in TCNE is accurate, the estimator can also
 286 accurately estimate the joint probability distribution of all variables.

287 **Proposition 3** *The two inequalities in Equation 12 simultaneously hold as equalities if and only
 288 if $\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}} = \hat{\mathbb{G}}$, where $\hat{\mathbb{G}}$ is the Gibbs distribution defined as $d\hat{\mathbb{G}} = \frac{e^{F_{\Theta}}}{\mathbb{E}_{\mathbb{Q}}[e^{F_{\Theta}}]} d\mathbb{Q}$ and $\mathbb{Q} =$
 289 $\mathbb{P}_{\mathcal{X}^{(1)}} \times \dots \times \mathbb{P}_{\mathcal{X}^{(M)}} \times \mathbb{P}_{\mathcal{Y}}$.*

290 **No Modifications when Predicting.** Proposition 3 demonstrates that the lower bound of $\mathcal{L}_{\text{TCMax}}$ is
 291 $-\text{TC}(x^{(1)}, \dots, x^{(M)}, y)$, and when this lower bound is achieved, we have

$$292 \quad p(y|x^{(1)}, \dots, x^{(M)}) = \frac{p(y, x^{(1)}, \dots, x^{(M)})}{\sum_{k \in \mathcal{Y}} p(k, x^{(1)}, \dots, x^{(M)})} = \frac{e^{F_{\Theta}(x^{(1)}, \dots, x^{(M)}, y)}}{\sum_{k \in \mathcal{Y}} e^{F_{\Theta}(x^{(1)}, \dots, x^{(M)}, k)}} = \hat{p}_y, \quad (13)$$

293 where p is the probability mass function of data distribution $\mathbb{P}_{\mathcal{D}}$. Equation 13 indicates that the model
 294 trained using the TCMax loss does not require additional operations or modifications to the model
 295 structure during prediction. The only difference between our proposed method and joint learning in
 296 practice is replacing $\mathcal{L}_{\text{joint}}$ with $\mathcal{L}_{\text{TCMax}}$ during training, yet it yields more robust results.

3.4 COMPUTATIONAL COST

297 When training a multimodal model that includes both audio and visual modalities, a direct implemen-
 298 tation of $\mathcal{L}_{\text{TCMax}}$ in a mini-batch \mathcal{B} is:

$$300 \quad \mathcal{L}_{\text{TCMax}} = -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp f_{\theta} \left(\psi_{\Theta_a}^{(a)}(x_i^{(a)}), \psi_{\Theta_v}^{(v)}(x_i^{(v)}) \right)_{y_i}}{\sum_{(j, k, y') \in \mathcal{B} \times \mathcal{B} \times \mathcal{Y}} \exp f_{\theta} \left(\psi_{\Theta_a}^{(a)}(x_j^{(a)}), \psi_{\Theta_v}^{(v)}(x_k^{(v)}) \right)_{y'}} - \log |\mathcal{B}|^2 |\mathcal{Y}|, \quad (14)$$

301 where $x_i^{(m)}$ denotes the i -th sample of m -th modality. Notice that using $\mathcal{L}_{\text{TCMax}}$ requires forwarding
 302 the prediction head $|\mathcal{B}|^M$ times. Although the parameter count of the prediction head is generally
 303 much smaller compared to the encoders, for a large number of modalities M and a large batch size,
 304 this can still introduce significant additional computational overhead. To mitigate this overhead, the
 305 computation can be optimized by sampling only a certain number of negative samples (denominator)
 306 in the feature space, i.e., randomly sampling $\mathcal{N} \subset \mathcal{B} \times \mathcal{B}$, where each $(i, j) \in \mathcal{N}$ is sampled uniformly
 307 without replacement from $\mathcal{B} \times \mathcal{B}$. $\mathcal{L}_{\text{TCMax}}$ with sampling is:

$$308 \quad \mathcal{L}_{\text{TCMax}} = -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp f_{\theta} \left(\psi_{\Theta_a}^{(a)}(x_i^{(a)}), \psi_{\Theta_v}^{(v)}(x_i^{(v)}) \right)_{y_i}}{\sum_{(j, k) \in \mathcal{N}} \sum_{y' \in \mathcal{Y}} \exp f_{\theta} \left(\psi_{\Theta_a}^{(a)}(x_j^{(a)}), \psi_{\Theta_v}^{(v)}(x_k^{(v)}) \right)_{y'}} - \log |\mathcal{N}| |\mathcal{Y}|. \quad (15)$$

324 For linear fusion $f_\theta(z^{(a)}, z^{(v)}) = f_{\theta_a}^{(a)}(z^{(a)}) + f_{\theta_v}^{(v)}(z^{(v)})$, the denominator decouples into separate
 325 sums over modalities due to the identity $\exp(a + b) = \exp(a) \exp(b)$. $\mathcal{L}_{\text{TCMax}}$ becomes:
 326

$$\mathcal{L}_{\text{TCMax}} = -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp f_{\theta_a}^{(a)}(\psi_{\Theta_a}^{(a)}(x_i^{(a)}))_{y_i} \exp f_{\theta_v}^{(v)}(\psi_{\Theta_v}^{(v)}(x_i^{(v)}))_{y_i}}{\sum_{y' \in \mathcal{Y}} \left(\sum_{j \in \mathcal{B}} \exp f_{\theta_a}^{(a)}(\psi_{\Theta_a}^{(a)}(x_j^{(a)}))_{y'} \right) \left(\sum_{k \in \mathcal{B}} \exp f_{\theta_v}^{(v)}(\psi_{\Theta_v}^{(v)}(x_k^{(v)}))_{y'} \right)} - \log |\mathcal{B}|^2 |\mathcal{Y}|. \quad (16)$$

333 In this way, only $|\mathcal{B}|$ forward passes of the prediction head are required, introducing almost no
 334 additional computational overhead with $\mathcal{L}_{\text{TCMax}}$.
 335

336 4 EXPERIMENTS

337 4.1 DATASETS

339 **CREMA-D** Cao et al. (2014) encompasses 7,442 audio-visual clips from 91 actors expressing
 340 six emotions, with emotion labels determined by 2,443 crowd-sourced raters. **Kinetics-
 341 Sounds (KS)** Arandjelovic & Zisserman (2017), a subset of Kinetics Kay et al. (2017) dataset,
 342 includes 19,000 10s videos across 31 human action labels, annotated manually through Mechanical
 343 Turk. **AVE** Tian et al. (2018) focuses on localizing audio-visual events in 4,143 10s videos
 344 across 28 labels, sourced from YouTube with frame-level labeling for both audio and visual com-
 345 ponents. **VGGSound** Chen et al. (2020a) is a large dataset of 309 labels, with 10s videos that
 346 exhibit clear audio-visual correlations. It contains 152,638 training videos and 13,294 testing videos.
 347 **UCF101** Soomro (2012) comprises 13,320 videos from 101 action labels. The clips, ranging from
 348 3s to 10s, are split into a training set with 9,537 clips and a testing set with 3,783 clips, utilizing the
 349 official train-test split. **MVSA** Niu et al. (2016) (MVSA-Single) is a multimodal sentiment analysis
 350 dataset that jointly leverages text and image data for classification.
 351

352 4.2 IMPLEMENTATION DETAILS

353 **Backbone and Hyperparameter** For all audio-visual datasets, we follow the same setting as in
 354 the previous study Peng et al. (2022), selecting ResNet-18 He et al. (2016) as the encoder for both
 355 audio and visual modalities, and training it from scratch. For the audio modality, inputs are converted
 356 into spectrograms McFee et al. (2015) of size 129×862 for the CREMA-D, AVE, and VGGSound
 357 datasets, and fbank Davis & Mermelstein (1980) acoustic features for the Kinetics-Sounds dataset.
 358 For the visual modality, we extract images from videos at 1 fps and use one image as input for the
 359 CREMA-D dataset, and four images as input for the AVE, Kinetics-Sounds, and VGGSound datasets.
 360 For the UCF101 dataset, we extract frames and optical flow data from the videos at 1 fps, using 3
 361 RGB frames and 3 optical flow frames for each sample. We use ResNet-18 as the backbone for both
 362 RGB and optical flow modalities and train ResNet-18 from scratch as their backbone. We utilize
 363 SGD Robbins & Monro (1951) with 0.9 momentum and $1e-4$ weight decay as the optimizer for all
 364 experiments. We set (learning rate, mini-batch size, epochs) to $(1e-3, 64, 200)$ for CREMA-D and
 365 KS, $(1e-3, 32, 200)$ for AVE, $(1e-3, 64, 100)$ for VGGSound, and $(1e-3, 32, 400)$ for UCF101.
 366 All of our experiments were performed on one NVIDIA Tesla V100 GPU.
 367

368 4.3 COMPARISON WITH STATE-OF-THE-ARTS

369 **Compared methods** We conduct comprehensive comparisons of TCMax with several baselines and
 370 recent studies. (1) Baselines: concatenation (Concat), share predicted head (Share Head), unimodal
 371 fusion (Unimodal); (2) Recent studies: FiLM Perez et al. (2018), BiGated Kiela et al. (2018), OGM-
 372 GE Peng et al. (2022), OPM Wei et al. (2024), QMF Zhang et al. (2023), AGM Li et al. (2023a),
 373 MLA Zhang et al. (2024), MMPareto Wei & Hu (2024).
 374

375 4.3.1 RESULTS OF TEST ACCURACY

376 Table 1 presents testing accuracy of using a single modality and combining modalities (*i.e.*, Multi).
 377 *First*, joint learning shows severe modality imbalance, with one modality significantly underper-
 378 forming, and generally yields worse results than alternatives. *Second*, balanced joint learning methods

378
 379 Table 1: Results of the average test accuracy(%) of three random seeds on CREMA-D, Kinetics-
 380 Sounds, AVE, VGGSound, and UCF101 datasets. Both the results of only using a single modality
 381 ("Audio" and "Visual") and the results of combining all modalities ("Multi") are listed. The best
 382 results and second best results are **bold** and underlined, respectively.

383 Methods	384 CREMA-D			385 Kinetics-Sounds			386 AVE			387 VGGSound			388 UCF101		
	389 Audio	390 Visual	391 Multi	392 Audio	393 Visual	394 Multi	395 Audio	396 Visual	397 Multi	398 Audio	399 Visual	400 Multi	401 RGB	402 OF	403 Multi
Concat	59.3	27.1	66.2	36.8	22.2	53.5	48.9	17.2	60.4	33.0	10.3	43.5	27.5	15.8	46.1
Share Head	60.4	23.6	63.6	38.7	29.1	53.7	49.7	22.4	61.4	33.6	13.0	43.6	31.2	20.2	46.0
FiLM Perez et al. (2018)	-	-	63.1	-	-	52.6	-	-	58.8	-	-	42.5	-	-	44.7
BiGated Kiela et al. (2018)	-	-	61.6	-	-	49.1	-	-	59.3	-	-	41.5	-	-	46.7
OGM-GE Peng et al. (2022)	51.5	35.5	69.3	35.7	25.6	55.4	39.5	19.3	61.3	32.2	12.5	43.9	23.3	16.6	44.2
AGM Li et al. (2023a)	59.3	27.2	66.2	36.4	29.4	57.7	44.2	19.3	61.4	34.1	13.4	45.4	27.2	17.6	46.0
Unimodal Ensemble	61.8	61.6	75.0	43.0	45.8	62.3	54.1	36.7	62.9	37.1	25.3	47.0	39.2	29.2	51.6
QMF Zhang et al. (2023)	63.1	60.8	72.2	44.6	44.2	62.1	55.1	37.0	65.1	37.0	24.9	46.8	39.2	31.2	52.1
OPM Wei et al. (2024)	59.9	55.7	71.4	39.1	41.1	61.7	48.8	36.2	63.1	34.1	23.9	47.0	38.6	26.6	50.8
OGM-GE + OPM Wei et al. (2024)	59.1	57.5	75.7	37.6	44.1	62.5	48.2	35.3	63.3	35.1	23.4	46.3	38.6	26.9	48.3
MLA Zhang et al. (2024)	60.9	61.8	72.5	41.6	44.9	61.1	53.2	37.9	62.6	37.0	24.8	47.3	40.1	31.0	51.2
MMPareto Wei & Hu (2024)	64.4	65.8	70.3	44.8	49.4	62.7	54.0	41.1	63.1	37.9	26.6	47.5	42.4	33.0	55.9
Ours Concat	61.7	59.0	77.6	41.0	41.4	62.4	53.8	33.5	63.2	34.7	21.6	48.3	37.7	32.5	55.4
Ours Share Head	61.6	59.1	<u>77.5</u>	43.4	43.3	63.5	<u>54.2</u>	36.7	<u>64.5</u>	38.6	24.4	<u>48.2</u>	<u>41.0</u>	37.2	<u>56.0</u>

394
 395 Table 2: Results of Jensen–Shannon divergence between predictions of two modalities on CREMA-D,
 396 Kinetics-Sounds, AVE, VGGSound, and UCF101 datasets. The minima and second minima results
 397 are **bold** and underlined, respectively.

398 Dataset	399 Concat	400 Share Head	401 OGM-GE	402 AGM	403 Unimodal	404 QMF	405 OPM	406 MLA	407 MMPareto	408 Ours	409 Concat	410 Ours	411 Share Head
CREMA-D	0.478	0.490	0.518	0.400	0.312	0.293	0.337	0.306	0.314	<u>0.284</u>	0.271		
Kinetics-Sounds	0.543	0.560	0.551	0.499	0.459	0.455	0.448	0.466	0.440	<u>0.423</u>	0.390		
AVE	0.562	0.568	0.560	0.540	0.462	0.471	0.470	0.468	0.465	<u>0.452</u>	0.406		
VGGSound	0.620	0.631	0.610	0.594	0.526	0.528	0.513	0.528	0.539	<u>0.513</u>	0.473		
UCF101	0.584	0.579	0.589	0.586	0.463	0.531	0.473	0.457	0.485	<u>0.427</u>	0.366		

404 (e.g., OGM-GE, AGM) improve the weaker modality but slightly degrade the stronger one, failing to
 405 consistently surpass unimodal-loss methods. *Third*, unimodal-based methods prevent overfitting and
 406 sometimes outperform pure unimodal learning, while achieving the highest single-modal accuracy.
 407 *Finally*, TCMax achieves the best multimodal scores, but its single-modality performance matches
 408 other unimodal-based methods—suggesting its gains stem from cross-modal synergy rather than
 409 individual improvements.

4.3.2 RESULTS OF JENSEN–SHANNON DIVERGENCE

412 To investigate the correlation of prediction outcomes across modalities, we calculate the average
 413 Jensen–Shannon divergence (JS-divergence) between the prediction results of two separate modalities
 414 in Table 2. This metric quantifies the degree of correlation in predictions between the two modalities,
 415 with a lower JS-divergence signifying a stronger correlation. As shown in the table, our TCMax
 416 consistently achieves the smallest JS-divergence for the single-modal predictions across all datasets,
 417 indicating that TCMax which is rooted in contrastive learning, facilitates the model to learn cross-
 418 modal representations, thereby enhancing the correlation of predictions.

4.4 FURTHER ANALYSIS

Number of Sampled Negative Pairs.

422 We first explore the effect of sampling different numbers of negative pairs, as mentioned
 423 in Equation 15. Figure 3a shows that, for the CREMA-D dataset, the
 424 accuracy of TCMax rises with an increase
 425 in the number of negative pair samplings,
 426 achieving optimal performance at 1024. In
 427 contrast, on the UCF101 dataset, the best
 428 performance is observed at the maximum
 429 sampling number (1024), indicating that a larger number of samplings sustains consistent per-
 430 formance.

431 Figure 3: Accuracy on different numbers of sampled negative pairs.

Figure 4: Train loss and test accuracy of joint learning, unimodal learning, and TCMax on CREMA-D and UCF101 datasets.

TCMax Prevents Overfitting. Here, we visualize how TCMax effectively mitigates the risk of overfitting. As depicted in Figure 4, on both the CREMA-D and UCF101 datasets, TCMax loss remains consistently higher than that for joint and unimodal learning, which prevents the model parameters from updating at all. Although TCMax exhibits inferior performance compared to unimodal learning in the early stages of training, as the training progresses into the middle stage, TCMax begins to gradually presents its strengths and ultimately converges to a stable performance level.

Average Entropy of Predictions. In Table 3, we compute the average entropy predictions by single modality and the ratio between strong and weak modalities. This reflects the model’s ability to balance predictions across different modalities. Typically, a lower ratio indicates a more equitable contribution from both modalities. The table reveals that our method successfully achieves a balanced representation of the various modalities.

Analysis with Pretrained Encoders As shown in Table 4, we adopt CLIP Radford et al. (2021) as the frozen feature encoder for both image and text modalities on the MVSA dataset. During training, only the multimodal classifier is optimized while keeping the encoder parameters fixed. Our results show that: (1) Joint learning outperforms unimodal learning because the limited parameter space prevents overfitting; (2) TCMax maintains competitive performance by effectively modeling cross-modal interactions, similar to joint learning.

5 DISCUSSION

Conclusion This study investigates the causes of modality imbalance in multimodal classification tasks from an information-theoretic perspective and proposes a learning objective to maximize total correlation to fully utilize cross-modal information in multimodal datasets. We propose the Total Correlation Neural Estimation(TCNE), which employs neural networks to estimate the lower bound of total correlation. Building on this theoretical foundation, we introduce a parameter-free loss function, TCMax, for multimodal classification tasks. By maximizing total correlation, our approach enables more comprehensive utilization of prior information in multimodal datasets, thereby achieving enhanced robustness. Comparative experiments with state-of-the-art methods demonstrate the effectiveness of our approach across multiple multimodal classification benchmarks.

Limitation The current TCMax framework is primarily designed for classification tasks and cannot be directly extended to other multimodal applications such as multimodal object detection or generative tasks. Successful adaptation to these domains would require explicit definitions of input-output probability distributions. Furthermore, while TCMax establishes a foundational multimodal learning paradigm, its full potential depends on developing model architectures specifically optimized for this framework.

	Concat	Share	Head	Unimodal	Ours	Concat
CREMA-D	$H_{(A)}$	0.369	0.184	0.320	0.575	
	$H_{(V)}$	1.076	1.229	0.746	0.890	
	ρ	2.913	6.674	<u>2.331</u>	1.549	
UCF101	$H_{(RGB)}$	1.245	0.630	0.921	2.000	
	$H_{(OF)}$	2.244	1.170	1.259	2.265	
	ρ	1.802	1.856	<u>1.368</u>	1.132	

Table 3: Results of average entropy of predictions by single modality on test sets of CREMA-D and UCF101 datasets. $H_{(M)}$ denotes the entropy of predictions of the ‘M’ modality, and ρ represents the ratio of the entropy of the weak modality to the entropy of the strong modality. For CREMA-D and UCF101 datasets, $\rho = H_{(V)}/H_{(A)}$ and $\rho = H_{(OF)}/H_{(RGB)}$, respectively.

Table 4: Result of the average test accuracy(%) of 10 random seeds on MVSA with frozen CLIP pretrained encoders.

Methods	RN50			ViT-B/32		
	Image	Text	Multi	Image	Text	Multi
Joint	75.76	73.60	81.23	76.88	74.27	82.83
Unimodal	76.74	77.16	80.02	78.54	76.97	81.77
TCMax	75.38	74.97	81.75	78.03	76.55	84.05

486 REFERENCES
487

488 Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In *Proceedings of the IEEE*
489 *international conference on computer vision*, pp. 609–617, 2017.

490 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
491 Courville, and Devon Hjelm. Mutual information neural estimation. In *International conference*
492 *on machine learning*, pp. 531–540, 2018.

493 Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo Piantanida,
494 and Ismail Ben Ayed. A unifying mutual information view of metric learning: cross-entropy vs.
495 pairwise losses. In *European conference on computer vision*, pp. 548–564. Springer, 2020.

496

497 Huawei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
498 Crema-d: Crowd-sourced emotional multimodal actors dataset. *IEEE transactions on affective*
499 *computing*, 5(4):377–390, 2014.

500

501 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
502 visual dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and*
503 *Signal Processing (ICASSP)*, pp. 721–725, 2020a.

504

505 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
506 contrastive learning of visual representations. In *International conference on machine learning*, pp.
507 1597–1607. PMLR, 2020b.

508

509 Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic
510 word recognition in continuously spoken sentences. *IEEE transactions on acoustics, speech, and*
511 *signal processing*, 28(4):357–366, 1980.

512

513 Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
514 expectations for large time. iv. *Communications on pure and applied mathematics*, 36(2):183–212,
515 1983.

516

517 Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu, Tianyuan Yuan, Yue Wang, Yang Yuan, and
518 Hang Zhao. On uni-modal feature learning in supervised multi-modal learning. In *International*
519 *Conference on Machine Learning*, pp. 8632–8656, 2023.

520

521 Yunfeng Fan, Wenchao Xu, Haozhao Wang, Junxiao Wang, and Song Guo. Pmr: Prototypical modal
522 rebalance for multimodal learning. In *Proceedings of the IEEE/CVF Conference on Computer*
523 *Vision and Pattern Recognition*, pp. 20029–20038, 2023.

524

525 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
526 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
527 pp. 770–778, 2016.

528

529 Zhengyang Hu, Song Kang, Qunsong Zeng, Kaibin Huang, and Yanchao Yang. Infonet: Neural
530 estimation of mutual information without test-time optimization. *arXiv preprint arXiv:2402.10158*,
531 2024.

532

533 Cong Hua, Qianqian Xu, Shilong Bao, Zhiyong Yang, and Qingming Huang. Reconboost: Boosting
534 can achieve modality reconciliation. In *Forty-first International Conference on Machine Learning*,
535 *ICML 2024, Vienna, Austria, July 21-27, 2024*, 2024.

536

537 Yu Huang, Junyang Lin, Chang Zhou, Hongxia Yang, and Longbo Huang. Modality competition:
538 What makes joint training of multi-modal network fail in deep learning?(provably). In *International*
539 *Conference on Machine Learning*, pp. 9226–9259, 2022.

540

541 HyeongJoo Hwang, Geon-Hyeong Kim, Seunghoon Hong, and Kee-Eung Kim. Multi-view represen-
542 tation learning via total correlation objective. *Advances in Neural Information Processing Systems*,
543 34:12194–12207, 2021.

544

545 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
546 Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
547 *arXiv preprint arXiv:1705.06950*, 2017.

540 Douwe Kiela, Edouard Grave, Armand Joulin, and Tomas Mikolov. Efficient large-scale multi-modal
 541 classification. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
 542

543 Hong Li, Xingyu Li, Pengbo Hu, Yinuo Lei, Chunxiao Li, and Yi Zhou. Boosting multi-modal model
 544 performance with adaptive gradient modulation. In *Proceedings of the IEEE/CVF International
 545 Conference on Computer Vision*, pp. 22214–22224, 2023a.

546 Yaowei Li, Ruijie Quan, Linchao Zhu, and Yi Yang. Efficient multimodal fusion via interactive
 547 prompting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023,
 548 Vancouver, BC, Canada, June 17-24, 2023*, pp. 2604–2613, 2023b.

549

550 Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
 551 Oriol Nieto. librosa: Audio and music signal analysis in python. In *SciPy*, pp. 18–24, 2015.

552 Teng Niu, Shuai Zhu, Lei Pang, and Abdulmotaleb El Saddik. Sentiment analysis on multi-view
 553 social data. In *MultiMedia Modeling: 22nd International Conference, MMM 2016, Miami, FL,
 554 USA, January 4-6, 2016, Proceedings, Part II* 22, pp. 15–27. Springer, 2016.

555

556 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 557 coding. *arXiv preprint arXiv:1807.03748*, 2018.

558

559 Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu. Balanced multimodal learning
 560 via on-the-fly gradient modulation. In *Proceedings of the IEEE/CVF Conference on Computer
 561 Vision and Pattern Recognition (CVPR)*, pp. 8238–8247, June 2022.

562 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 563 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial
 564 intelligence*, volume 32, 2018.

565

566 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 567 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 568 models from natural language supervision. In *International conference on machine learning*, pp.
 569 8748–8763, 2021.

570 Wasifur Rahman, Md Kamrul Hasan, Sangwu Lee, Amir Zadeh, Chengfeng Mao, Louis-Philippe
 571 Morency, and Ehsan Hoque. Integrating multimodal information in large pretrained transformers.
 572 In *Proceedings of the conference. Association for computational linguistics. Meeting*, volume 2020,
 573 pp. 2359, 2020.

574

575 Herbert Robbins and Sutton Monro. A stochastic approximation method. *Ann Inst Stat Math*, pp.
 576 400–407, 1951.

577

578 K Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint
 579 arXiv:1212.0402*, 2012.

580

581 Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization
 582 in unconstrained videos. In *Proceedings of the European conference on computer vision (ECCV)*,
 pp. 247–263, 2018.

583

584 Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks
 585 hard? In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
 586 Seattle, WA, USA, June 13-19, 2020*, pp. 12692–12702, 2020.

587

588 Satosi Watanabe. Information theoretical analysis of multivariate correlation. *IBM Journal of research
 589 and development*, 4(1):66–82, 1960.

590

591 Yake Wei and Di Hu. Mmpareto: Boosting multimodal learning with innocent unimodal assistance.
 592 In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July
 593 21-27, 2024*, 2024.

594

595 Yake Wei, Di Hu, Henghui Du, and Ji-Rong Wen. On-the-fly modulation for balanced multimodal
 596 learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–16, 2024.

594 Ruize Xu, Ruoxuan Feng, Shi-Xiong Zhang, and Di Hu. Mmcosine: Multi-modal cosine loss towards
 595 balanced audio-visual fine-grained learning. In *ICASSP 2023-2023 IEEE International Conference*
 596 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023.

597

598 Karren Yang, Wan-Yi Lin, Manash Barman, Filipe Condessa, and J. Zico Kolter. Defending multi-
 599 modal fusion models against single-source adversaries. In *IEEE Conference on Computer Vision*
 600 *and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 3340–3349, 2021.

601

602 Yiqun Yao and Rada Mihalcea. Modality-specific learning rates for effective multimodal additive
 603 late-fusion. In *Findings of the Association for Computational Linguistics: ACL 2022, Dublin,*
 604 *Ireland, May 22-27, 2022*, pp. 1824–1834, 2022.

605

606 Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou, and
 607 Xi Peng. Provable dynamic fusion for low-quality multimodal data. In *International Conference*
 608 *on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202, pp.
 609 41753–41769, 2023.

610

611 Xiaohui Zhang, Jaehong Yoon, Mohit Bansal, and Huaxiu Yao. Multimodal representation learning
 612 by alternating unimodal adaptation. In *Proceedings of the IEEE/CVF Conference on Computer*
 613 *Vision and Pattern Recognition*, pp. 27456–27466, 2024.

614

615 Daoming Zong, Chaoyue Ding, Baoxiang Li, Jiakui Li, and Ken Zheng. Balancing multimodal
 616 learning via online logit modulation. In *Proceedings of the Thirty-Third International Joint*
 617 *Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024*, pp. 5753–
 618 5761, 2024.

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOFS

649 A.1 PROOF OF COROLLARY 1

650 **Corollary 2 (Corollary 1 restated, TCNE)** *The total correlation between $M + 1$ variables $z^{(1)} \in$*
651 *$\mathcal{Z}^{(1)}, \dots, z^{(M)} \in \mathcal{Z}^{(M)}$ and $y \in \mathcal{Y}$, admits the following dual representation:*

652
$$\text{TC}(z^{(1)}, \dots, z^{(M)}, y) = \sup_{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^T] \right) \quad (17)$$

653 where the supremum is taken over all functions T such that the two expectations are finite and
654 $\Omega = \mathcal{Z}_1 \times \dots \times \mathcal{Z}_M \times \mathcal{Y}$. As neural networks T_θ with parameter $\theta \in \Theta$ composed a family of
655 functions which is a subset of $\Omega \rightarrow \mathbb{R}$, we have:

656
$$\text{TC}(z^{(1)}, \dots, z^{(M)}, y) \geq \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T_\theta] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{T_\theta}] \right) \quad (18)$$

657 We follow the proof in the paper of MINE Belghazi et al. (2018) to prove TCNE. First, we begin with
658 the Donsker-Varadhan representation theorem.659 **Theorem 2** *(The Donsker-Varadhan representation Donsker & Varadhan (1983)) The KL divergence*
660 *admits the following dual representation:*

661
$$D_{\text{KL}}(\mathbb{P} \parallel \mathbb{Q}) = \sup_{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}} [T] - \log \left(\mathbb{E}_{\mathbb{Q}} [e^T] \right), \quad (19)$$

662 where the supremum is taken over all functions T such that the two expectations are finite.663 For a given function T , consider the Gibbs distribution defined by $d\mathbb{G} = \frac{1}{Z} e^T d\mathbb{Q}$, where $Z = \mathbb{E}_{\mathbb{Q}} [e^T]$
664 is the partition function and T serves as the energy function in the Gibbs distribution. The right hand
665 of Equation 19 can be written as:

666
$$\mathbb{E}_{\mathbb{P}} [T] - \log \left(\mathbb{E}_{\mathbb{Q}} [e^T] \right) = \mathbb{E}_{\mathbb{P}} [T] - \log Z = \mathbb{E}_{\mathbb{P}} \left[\log \frac{e^T}{Z} \right] = \mathbb{E}_{\mathbb{P}} \left[\log \frac{d\mathbb{G}}{d\mathbb{Q}} \right]. \quad (20)$$

667 Let Δ be the gap:

668
$$\Delta \equiv D_{\text{KL}}(\mathbb{P} \parallel \mathbb{Q}) - \mathbb{E}_{\mathbb{P}} [T] - \log \left(\mathbb{E}_{\mathbb{Q}} [e^T] \right), \quad (21)$$

669 with Equation 20, we can write Δ as KL-divergence:

670
$$\Delta = \mathbb{E}_{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{Q}} - \log \frac{d\mathbb{G}}{d\mathbb{Q}} \right] = \mathbb{E}_{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{G}} \right] = D_{\text{KL}}(\mathbb{P} \parallel \mathbb{G}). \quad (22)$$

671 The positivity of the KL-divergence gives $\Delta \geq 0$. We have thus shown that for any T ,

672
$$D_{\text{KL}}(\mathbb{P} \parallel \mathbb{Q}) \geq \mathbb{E}_{\mathbb{P}} [T] - \log \left(\mathbb{E}_{\mathbb{Q}} [e^T] \right), \quad (23)$$

673 The inequality is preserved upon taking the supremum over the right-hand side. The bound is tight
674 when $\mathbb{G} = \mathbb{P}$, namely for optimal functions T^* taking over the form $T^* = \log \frac{d\mathbb{P}}{d\mathbb{Q}} + \text{Const}$ for some
675 constant $\text{Const} \in \mathbb{R}$.676 To prove Equation 17 in Corollary 2, we replace \mathbb{P} and \mathbb{Q} with $\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}$ and $\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}$ in Equation 19 so we have:

677
$$\begin{aligned} D_{\text{KL}}(\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}} \parallel \mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}) &= \\ 678 &\sup_{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^T] \right). \end{aligned} \quad (24)$$

679 With the KL-divergence form of total correlation:

680
$$\text{TC}(z^{(1)}, \dots, z^{(M)}, y) = D_{\text{KL}}(\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}} \parallel \mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}), \quad (25)$$

681 we can proof the Equation 17 in Corollary 2. As neural networks T_θ with parameter $\theta \in \Theta$ belongs
682 to $\{T | T: \Omega \rightarrow \mathbb{R}\}$, the supremum taken over all networks T_θ is less than or equal to the supremum
683 taken over all functions T ,

684
$$\begin{aligned} \text{TC}(z^{(1)}, \dots, z^{(M)}, y) &= \sup_{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^T] \right) \\ 685 &\geq \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T_\theta] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{T_\theta}] \right). \end{aligned} \quad (26)$$

686 Thus we prove Corollary 2.

702 A.2 PROOF OF PROPOSITION 1
703704 **Proposition 4 (Proposition 1 restated)** *The TC between the input data and labels, the TC between
705 features and labels, and our proposed TCMax loss satisfy the following inequality:*

706
$$\text{TC}(x^{(1)}, \dots, x^{(M)}, y) \geq \text{TC}(z^{(1)}, \dots, z^{(M)}, y) \geq -\mathcal{L}_{\text{TCMax}} \quad (27)$$

707

708 We first consider the TCNE form of $\text{TC}(x^{(1)}, \dots, x^{(M)}, y)$ and $\text{TC}(z^{(1)}, \dots, z^{(M)}, y)$:
709

710
$$\text{TC}(x^{(1)}, \dots, x^{(M)}, y) = \sup_{T_{\mathcal{X}}: \Omega_{\mathcal{X}} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}} [T_{\mathcal{X}}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)} \times \dots \times \mathcal{X}^{(M)} \times \mathcal{Y}}} [e^{T_{\mathcal{X}}}] \right), \quad (28)$$

711
712

713
$$\text{TC}(z^{(1)}, \dots, z^{(M)}, y) = \sup_{T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T_{\mathcal{Z}}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{T_{\mathcal{Z}}}] \right), \quad (29)$$

714
715

716 where $\Omega_{\mathcal{X}}$ and $\Omega_{\mathcal{Z}}$ are the input space (including the label) and the embedding space, respectively.
717 As modality-specific encoders are used to extract the embedding $z^{(1, \dots, M)}$ from the input $x^{(1, \dots, M)}$,
718 a fix function $\Psi: \Omega_{\mathcal{X}} \rightarrow \Omega_{\mathcal{Z}}$ is defined here. So we can rewrite Equation 29:

719
$$\text{TC}(z^{(1)}, \dots, z^{(M)}, y) = \sup_{T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [\Psi \circ T_{\mathcal{Z}}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{\Psi \circ T_{\mathcal{Z}}}] \right). \quad (30)$$

720
721

722 Since $\{\Psi \circ T_{\mathcal{Z}} | T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}\}$ is a subset of $\{T_{\mathcal{Z}} | T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}\}$, the supremum in Equation 30 is not surpass
723 than the supremum in Equation 28. Thus, we prove the first inequality in the proposition.

724 We first consider the form of TCMax loss to prove the second inequality:

725
$$\mathcal{L}_{\text{TCMax}} = -\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [f_{\theta}] + \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{f_{\theta}}] \right). \quad (31)$$

726

727 As the predicted head f_{θ} is a special case in $T_{\mathcal{Z}} | T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}$, therefore:
728

729
$$\begin{aligned} \text{TC}(z^{(1)}, \dots, z^{(M)}, y) &= \sup_{T_{\mathcal{Z}}: \Omega_{\mathcal{Z}} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [T_{\mathcal{Z}}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{T_{\mathcal{Z}}}] \right) \\ &\geq \mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}} [f_{\theta}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}} [e^{f_{\theta}}] \right) = -\mathcal{L}_{\text{TCMax}}, \end{aligned} \quad (32)$$

730
731

732 thus, we prove the second inequality in the proposition.
733734 A.3 PROOF OF PROPOSITION 2
735736 **Proposition 5 (Proposition 2 restated)** *The supremum in Equation 17 reaches its upper bound if and only if
737 $\mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}} = \mathbb{G}$, where \mathbb{G} is the Gibbs distribution defined as $d\mathbb{G} = \frac{e^T}{\mathbb{E}_{\mathbb{Q}}[e^T]} d\mathbb{Q}$ and $\mathbb{Q} = \mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}$.*
738739 The supremum in Equation 17 reaches its upper bound when the gap is equal to 0,
740

741
$$\Delta \equiv D_{\text{KL}}(\mathbb{P} \| \mathbb{Q}) - \mathbb{E}_{\mathbb{P}}[T] - \log \left(\mathbb{E}_{\mathbb{Q}}[e^T] \right) = 0, \quad (33)$$

742

743 where $\mathbb{P} = \mathbb{P}_{\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(M)}, \mathcal{Y}}$, $\mathbb{Q} = \mathbb{P}_{\mathcal{Z}^{(1)} \times \dots \times \mathcal{Z}^{(M)} \times \mathcal{Y}}$. With the Gibbs distribution defined as
744 $d\mathbb{G} = \frac{e^T}{Z} d\mathbb{Q}$, we have:
745

746
$$0 = D_{\text{KL}}(\mathbb{P} \| \mathbb{Q}) - \mathbb{E}_{\mathbb{P}}[T] - \log \left(\mathbb{E}_{\mathbb{Q}}[e^T] \right) = D_{\text{KL}}(\mathbb{P} \| \mathbb{G}), \quad (34)$$

747

748 where the second equality uses Equation 22. With Gibbs' inequality, we know $D_{\text{KL}}(\mathbb{P} \| \mathbb{G})$ equals 0 if and only
749 if $\mathbb{P} = \mathbb{G}$. Thus, we prove Proposition 5.
750751 A.4 PROOF OF PROPOSITION 3
752753 **Proposition 6 (Proposition 3 restated)** *The two inequalities in Equation 27 simultaneously hold as equalities
754 if and only if $\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}} = \hat{\mathbb{G}}$, where $\hat{\mathbb{G}}$ is the Gibbs distribution defined as $d\hat{\mathbb{G}} = \frac{e^{F_{\Theta}}}{\mathbb{E}_{\mathbb{Q}}[e^{F_{\Theta}}]} d\mathbb{Q}$ and
755 $\mathbb{Q} = \mathbb{P}_{\mathcal{X}^{(1)} \times \dots \times \mathcal{X}^{(M)} \times \mathcal{Y}}$.*

756 Consider the TCMMax loss:

$$758 \quad \mathcal{L}_{\text{TCMax}} = -\mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}} [F_\Theta] + \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)} \times \dots \times \mathcal{X}^{(M)} \times \mathbb{P}_{\mathcal{Y}}}} \left[e^{F_\Theta} \right] \right). \quad (35)$$

760 When two inequalities in Equation 27 simultaneously hold, we have:

$$\begin{aligned} 761 \quad \text{TC}(x^{(1)}, \dots, x^{(M)}, y) &= \sup_{T_{\mathcal{X}}: \Omega_{\mathcal{X}} \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}} [T_{\mathcal{X}}] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)} \times \dots \times \mathcal{X}^{(M)} \times \mathbb{P}_{\mathcal{Y}}}} \left[e^{T_{\mathcal{X}}} \right] \right) \\ 762 \quad &= -\mathcal{L}_{\text{TCMax}} \\ 763 \quad &= \mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}}} [F_\Theta] - \log \left(\mathbb{E}_{\mathbb{P}_{\mathcal{X}^{(1)} \times \dots \times \mathcal{X}^{(M)} \times \mathbb{P}_{\mathcal{Y}}}} \left[e^{F_\Theta} \right] \right). \end{aligned} \quad (36)$$

766 Hence, F_Θ reaches the upper bound of the supremum. With Proposition 5, we know Equation 36 holds if and
767 only if $\mathbb{P}_{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(M)}, \mathcal{Y}} = \hat{\mathbb{G}}$. Thus, we prove the proposition.

769 A.5 DERIVATION OF EQUATION 14

771 Since batch \mathcal{B} is sampled according to the overall data distribution, we can consider the samples $(x_i^{(a)}, x_i^{(v)}, y_i)$,
772 $\forall i \in \mathcal{B}$ as drawn from $\mathbb{P}_{\mathcal{A}, \mathcal{V}, \mathcal{Y}}$, where $x_i^{(a)}$, $x_i^{(v)}$, and y_i follow the marginal distributions $\mathbb{P}_{\mathcal{A}}$, $\mathbb{P}_{\mathcal{V}}$, and $\mathbb{P}_{\mathcal{Y}}$,
773 respectively. Since label distributions are generally assumed to be relatively uniform, we hypothesize $\mathbb{P}_{\mathcal{Y}}$ to be a
774 uniform distribution over \mathcal{Y} . Thus, in calculations, $\mathbb{P}_{\mathcal{Y}}$ is directly treated as uniform without relying on batch
775 sampling results. Substituting the assumptions into Equation 11 yields:

$$\begin{aligned} 777 \quad \mathcal{L}_{\text{TCMax}} &= -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(f_\theta \left(\psi_{\Theta_a}^{(a)}(x_i^{(a)}), \psi_{\Theta_v}^{(v)}(x_i^{(v)}) \right)_{y_i} \right) \\ 778 \quad &+ \log \left\{ \frac{1}{|\mathcal{B} \times \mathcal{B} \times \mathcal{Y}|} \sum_{(j, k, y') \in \mathcal{B} \times \mathcal{B} \times \mathcal{Y}} \exp f_\theta \left(\psi_{\Theta_a}^{(a)}(x_j^{(a)}), \psi_{\Theta_v}^{(v)}(x_k^{(v)}) \right)_{y'} \right\} \\ 783 \quad &= -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp f_\theta \left(\psi_{\Theta_a}^{(a)}(x_i^{(a)}), \psi_{\Theta_v}^{(v)}(x_i^{(v)}) \right)_{y_i}}{\sum_{(j, k, y') \in \mathcal{B} \times \mathcal{B} \times \mathcal{Y}} \exp f_\theta \left(\psi_{\Theta_a}^{(a)}(x_j^{(a)}), \psi_{\Theta_v}^{(v)}(x_k^{(v)}) \right)_{y'}} - \log |\mathcal{B} \times \mathcal{B} \times \mathcal{Y}| \\ 786 \quad &= -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp f_\theta \left(\psi_{\Theta_a}^{(a)}(x_i^{(a)}), \psi_{\Theta_v}^{(v)}(x_i^{(v)}) \right)_{y_i}}{\sum_{(j, k, y') \in \mathcal{B} \times \mathcal{B} \times \mathcal{Y}} \exp f_\theta \left(\psi_{\Theta_a}^{(a)}(x_j^{(a)}), \psi_{\Theta_v}^{(v)}(x_k^{(v)}) \right)_{y'}} - \log |\mathcal{B}|^2 |\mathcal{Y}|, \end{aligned} \quad (37)$$

789 Thus, Equation 14 is obtained.

791 B DETAILS OF EXPERIMENT

794 B.1 DETAILS OF BASELINES

796 **Concatenation** Concatenation is a straightforward approach to multimodal fusion where the features from
797 different modalities are combined by concatenating them into a single feature vector. In our experiments, we
798 feed the combining vector into a single fully connected layer to get the prediction, which can be denoted as
799 $f(X_i) = W [h_1(x_{i,1}), \dots, h_M(x_{i,M})] + b$. It can be decomposed as $f(X_i) = \sum_{m=1}^M \{W_m h_m(x_{i,m}) + b/M\}$
800 so can be simplified during training and define the output of modality m is $f_m = W_m h_m(x_{i,m}) + b/M$ following
801 Peng et al. (2022).

802 **Share Prediction Head** This method uses a shared prediction head to calculate the output of every modality,
803 then sums up all outputs from all modalities as the final output. Same as concatenation, we use a single fully
804 connected layer as the shared head, and output can be denoted as $f(X_i) = \sum_{m=1}^M \{W h_m(x_{i,m}) + b/M\}$.
805 Output of modality m is defined as $f_m = W h_m(x_{i,m}) + b/M$.

806 **FiLM Perez et al. (2018)** FiLM modulates the feature from a modality using the feature from the other
807 modality. Specifically, a FiLM layer performs a straightforward affine transformation on each feature of a neural
808 network's intermediate representations, modulated by an arbitrary input. The output by FiLM is denoted as
809 $f(X_i) = g(\gamma(h_2(x_{i,2})) \circ h_1(x_{i,1}) + \beta(h_2(x_{i,2})))$, where g , γ and β are fully connected layers and \circ here is
the Hadamard product.

810 **Gated Kiela et al. (2018)** Similar to FiLM, Gated uses the feature from one modality to modulate the
 811 other. The output of Gated is denoted as $f(X_i) = g(\gamma(h_1(x_{i,1})) \circ \sigma(\beta(h_2(x_{i,2}))))$, where g , γ and β are
 812 fully connected layers and σ is the sigmoid function. Notice the form of output by FiLM and Gated can not be
 813 decomposed into parts of modalities, so in our experiment, we deactivate a modality by inputting a zero tensor to
 814 get the single modality performance. In our experiment, audio modality is modality 1 and visual modality is
 815 modality 2 in the formula.

816 **Unimodal Learning** Naive Unimodal Learning trains each modality separately and combines them during
 817 the prediction phase. Training separately helps the encoder of each modality efficiently learn modality-specific
 818 information. However, the model is unable to tell whether inputs from different modalities come from the same
 819 sample as modalities are inputted independently during training.

821 B.2 DETAILS OF THE EXPERIMENT ON MVSA (TABLE 3)

823 In the experiment, to align with CLIP’s prediction paradigm, we define class-specific features $c_y^{(i)}$ and $c_y^{(t)}$ for
 824 each class. For each label y , the model’s output logit is computed as:

$$825 \quad 826 \quad 827 \quad f_\theta(f_i, f_t) = \frac{s(c_y^{(i)}, f_i)}{\tau} + \frac{s(c_y^{(t)}, f_t)}{\tau} \quad (38)$$

828 where:

- 829 • $\theta = \{c_y^{(i)} | y \in \mathcal{Y}\} \cup \{c_y^{(t)} | y \in \mathcal{Y}\}$ is the trainable class-specific features
- 830 • f_i and f_t are CLIP’s output features
- 831 • τ is CLIP’s temperature coefficient
- 832 • $s(\cdot, \cdot)$ denotes cosine similarity

835 Training configuration:

- 836 • Total epochs: 100
- 837 • Batch size: 32
- 838 • Learning rate: 0.01 (decayed to 0.001 after epoch 70)

841 Due to the relatively small accuracy differences observed in the experiment, we include error bounds with 95%
 842 confidence intervals in Table 5. The results show that although the performance is very close, there is no overlap
 843 between the confidence intervals of multimodal accuracy (Multi) of TCMax and the second-best method (Joint
 844 Learning). This statistically significant difference ($p > 0.975^2 > 0.95$) confirms that the performance gap is
 845 not caused by experimental variance.

846 Table 5: Result of the average test accuracy(%) of 10 random seeds on MVSA with frozen CLIP
 847 pretrained encoders. We report the 95% confidence intervals.

849 Methods	RN50			ViT-B/32		
	850 Image	Text	Multi	851 Image	Text	Multi
851 Joint	75.76 ± 0.20	73.60 ± 0.16	81.23 ± 0.27	76.88 ± 0.09	74.27 ± 0.27	82.83 ± 0.15
852 Unimodal	76.74 ± 0.07	77.16 ± 0.22	80.02 ± 0.13	78.54 ± 0.09	76.97 ± 0.07	81.77 ± 0.15
853 TCMax	75.38 ± 0.12	74.97 ± 0.54	81.75 ± 0.23	78.03 ± 0.16	76.55 ± 0.22	84.05 ± 0.15

854 855 856 C POTENTIAL IN REGRESSION TASKS

857
 858 Although this paper primarily focuses on the task of multimodal image classification, TCMax may also be
 859 applied to other tasks, such as regression. Here, we use a simple regression task as an example to explore the
 860 potential of TCMax in regression scenarios.

861 We employ two sentiment analysis datasets: CMU-MOSI and CMU-MOSEI. We use MAG-BERT Rahman et al.
 862 (2020) as the baseline, which takes multimodal inputs from audio (\mathcal{A}), visual (\mathcal{V}), and text (\mathcal{L}) modalities and
 863 outputs a continuous value (\mathcal{Y}) representing the degree of positive sentiment. To train with TCMax we first
 864 define the mapping $F_\Theta : \mathcal{A} \times \mathcal{V} \times \mathcal{L} \times \mathcal{Y} \rightarrow \mathbb{R}$ in Equation 11.

864 We modified the prediction head to output both the predicted value and its confidence: $y_{pred} = y_{pred}(a, v, l)$
 865 and $c_{pred}(a, v, l)$. We define F_Θ in our paper's Equation 11 as:

$$867 \quad F_\Theta(a, v, l, y) = -\frac{(y_{pred}(a, v, l) - y)^2}{\sigma^2} + \lambda c_{pred}(a, v, l), \quad (39)$$

868 where σ represents the standard deviation in the predicted Gaussian distribution, and λ is a multiplicative
 869 coefficient to facilitate analysis. Let \mathcal{B} and \mathcal{B}_{ns} denote the batch and sampled negative set, respectively.
 870 Substituting this into Equation 11 yields:

$$871 \quad \mathcal{L}_{TCMax} = -\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} \left[-\frac{(y_{pred}(a, v, l) - y)^2}{\sigma^2} + \lambda c_{pred}(a, v, l) \right] \\ 872 \quad + \log \mathbb{E}_{(a, v, l, y) \in \mathcal{B}_{ns}} \left[\exp \left(-\frac{(y_{pred}(a, v, l) - y)^2}{\sigma^2} + \lambda c_{pred}(a, v, l) \right) \right]. \quad (40)$$

876 For classification tasks where y takes discrete values, we conventionally assume a uniform distribution \mathbb{P}_Y since
 877 labels typically occur with roughly equal frequency. However, in this continuous y case, we must explicitly
 878 define y 's probability distribution in \mathcal{B}_{ns} . For the derivation, we assume y follows a uniform distribution over
 879 interval $[a, b]$, yielding the following loss function:

$$880 \quad \mathcal{L}_{TCMax} = \frac{1}{\sigma^2} \underbrace{\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [(y_{pred}(a, v, l) - y)^2]}_{MSE} \\ 881 \quad + \lambda \underbrace{\left\{ -\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [c_{pred}(a, v, l)] + \log \mathbb{E}_{(a, v, l, y) \in \mathcal{B}_{ns}} [\exp (c_{pred}(a, v, l))] \right\}}_{TCMax} \\ 882 \quad + \log \int_a^b \exp \left(-\frac{(y_{pred}(a, v, l) - y)^2}{\sigma^2} \right) dy - \log(b - a). \quad (41)$$

887 By taking the limits as $a \rightarrow -\infty$ and $b \rightarrow +\infty$ (i.e., extending to \mathbb{R}), while observing that the $-\log(b - a)$
 888 term becomes divergent yet vanishes during differentiation (being a constant), we obtain the final form:

$$889 \quad \mathcal{L}_{TCMax} = \frac{1}{\sigma^2} \underbrace{\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [(y_{pred}(a, v, l) - y)^2]}_{MSE} \\ 890 \quad + \lambda \underbrace{\left\{ -\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [c_{pred}(a, v, l)] + \log \mathbb{E}_{(a, v, l, y) \in \mathcal{B}_{ns}} [\exp (c_{pred}(a, v, l))] \right\}}_{TCMax} \\ 891 \quad + \lim_{a \rightarrow -\infty} \lim_{b \rightarrow +\infty} \log \int_a^b \exp \left(-\frac{(y_{pred}(a, v, l) - y)^2}{\sigma^2} \right) dy \quad (42) \\ 892 \quad = \frac{1}{\sigma^2} \underbrace{\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [(y_{pred}(a, v, l) - y)^2]}_{MSE} \\ 893 \quad + \lambda \underbrace{\left\{ -\mathbb{E}_{(a, v, l, y) \in \mathcal{B}} [c_{pred}(a, v, l)] + \log \mathbb{E}_{(a, v, l, y) \in \mathcal{B}_{ns}} [\exp (c_{pred}(a, v, l))] \right\}}_{TCMax} + \log \sqrt{\pi} \sigma.$$

902 The resulting loss function naturally decomposes into two components: (1) The first term constrains regression
 903 accuracy (MSE); (2) The second term enforces TCMax's cross-modal alignment constraint on (a, v, l) triplets.
 904 When $\lambda = 0$ (eliminating c_{pred}), the loss reduces to conventional MSE as the second term is eliminated.

905 Table 6 presents the experimental results on the CMU-MOSI and CMU-MOSEI datasets. After training with
 906 TCMax, the model achieves modest improvements on both datasets. This suggests that TCMax may hold
 907 potential research value for such regression tasks, and further in-depth studies will be conducted in the future.

909 Table 6: Result on CMU-MOSI and CMU-MOSEI datasets. For CMU-MOSI, we set $\sigma = 0.5$, while for
 910 CMU-MOSEI, $\sigma = 0.75$. In all experiments, $\lambda = 1$, and all results represent averages across three random
 911 seeds.

913 Dataset	914 Method	915 Binary Acc \uparrow	916 F1 \uparrow	917 MAE \downarrow	Corr \uparrow
CMU-MOSI	Baseline (MAG-BERT)	83.36	83.21	0.7938	0.7644
	TCMax	84.27	84.13	0.7775	0.7753
CMU-MOSEI	Baseline (MAG-BERT)	85.14	85.10	0.5903	0.7867
	TCMax	85.61	85.52	0.5889	0.7887