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ABSTRACT

Multimodal learning integrates data from diverse sensors to effectively harness
information from different modalities. However, recent studies reveal that joint
learning often overfits certain modalities while neglecting others, leading to perfor-
mance inferior to that of unimodal learning. Although previous efforts have sought
to balance modal contributions or combine joint and unimodal learning—thereby
mitigating the degradation of weaker modalities with promising outcomes—few
have examined the relationship between joint and unimodal learning from an
information-theoretic perspective. In this paper, we theoretically analyze modality
competition and propose a method for multimodal classification by maximizing the
total correlation between multimodal features and labels. By maximizing this ob-
jective, our approach alleviates modality competition while capturing inter-modal
interactions via feature alignment. Building on Mutual Information Neural Esti-
mation (MINE), we introduce Total Correlation Neural Estimation (TCNE) to
derive a lower bound for total correlation. Subsequently, we present TCMax, a
hyperparameter-free loss function that maximizes total correlation through varia-
tional bound optimization. Extensive experiments demonstrate that TCMax outper-
forms state-of-the-art joint and unimodal learning approaches. Our code is available
at https://anonymous.4open.science/r/TCMax_Experiments.

1 INTRODUCTION

Humans better perceive the world through diverse sensory inputs, i.e., text, audio, and vision.
Likewise, multimodal fusion models Yang et al. (2021); Yao & Mihalcea (2022); Li et al. (2023b);
Zhang et al. (2024); Wei et al. (2024); Zong et al. (2024), which integrate different modalities, are
expected to learn more robust and generalized representations than unimodal counterparts. However,
recent studies Wang et al. (2020); Huang et al. (2022); Peng et al. (2022) uncover an intriguing
phenomenon in multimodal classification: the best-performing unimodal network surpasses the joint
learning network, which can be attributed to the differences in convergence and generalization rates
among modalities. In such inconsistent convergence states cases, some dominant modalities are
adequately overfitted to the training data, causing the multimodal model to overly rely on dominant
modalities while neglecting others, ultimately resulting in suboptimal performance.

To address it, several studies Peng et al. (2022); Xu et al. (2023); Li et al. (2023a); Fan et al.
(2023); Wei et al. (2024) are committed to balancing multimodal joint learning. Representatively,
OGM-GE Peng et al. (2022) modulates the gradient of modality-specific encoders according to
their contribution to prediction, inhibiting modalities that converge faster. AGM Li et al. (2023a)
dynamically adjusts the gradient contributions from different modalities. However, modality competi-
tion Huang et al. (2022) points out that despite joint learning allowing for modality interaction, it
easily causes the model to saturate dominant modalities prematurely, neglecting unimodal features
that are difficult to learn but conducive to generalization. Followed by some works are proposed
to harness the benefits of the unimodal learning strategy, e.g., QMF Zhang et al. (2023) explicitly
incorporates a unimodal loss and a regularization term, evaluating the quality of the truncated samples
into the loss function. MLA Zhang et al. (2024) decomposes joint learning into alternating unimodal
learning, with a lightweight shared head for modality interaction. MMPareto Wei & Hu (2024)
considers both the direction and magnitude of gradients, ensuring that unimodal gradients do not
interfere with multimodal training.
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Despite significant progress in existing methods, current approaches still primarily rely on joint
learning or a combination of joint learning and unimodal learning, with little consideration given to
the inherent alignment properties of multimodal data. However, directly integrating joint learning
loss, unimodal loss, and alignment loss (e.g., contrastive learning loss) with inherently conflict-
ing optimization objectives requires introducing extra hyperparameters, additional structures, and
algorithmic procedures to balance their contributions during training. In this paper, through an
information-theoretic analysis, we demonstrate that maximizing the total correlation between the
features encoded by each modal encoder in the multimodal model and the labels avoids modality
competition while learning inter-modal interactions and incorporating alignment between modalities.

Inspired by Mutual Information Neural Estimation Belghazi et al. (2018), we propose the TCMax loss,
which employs total correlation Neural Estimation to estimate the lower bound of total correlation.
By maximizing this lower bound, we enhance the total correlation between features and labels. We
theoretically demonstrate that the output of the model optimized by the TCMax loss possesses the
same mathematical significance as that of a model trained using joint learning. Consequently, our
method does not require the introduction of additional hyperparameter or structural modifications.
Merely employing the TCMax loss during the training phase suffices to achieve favorable results. In
summary, our contributions are as follows:

• From an information-theoretic perspective, we elucidate the underlying causes of modality
competition and propose that maximizing the total correlation between multimodal features
and labels can amalgamate the advantages of joint learning and unimodal learning while
incorporating inter-modal alignment

• We introduce Total Correlation Neural Estimation and, based on this, propose the TCMax
loss. Theoretically, we prove that optimizing the TCMax loss can increase total correlation
and demonstrate that models utilizing TCMax are capable of estimating the joint distribution
of multimodal data and the label.

• Comprehensive experiments showcase the considerable improvement over previous joint
and unimodal learning methods on various multimodal datasets.

2 RELATED WORKS

Modality Imbalance Integrating information from multimodal data is essential for comprehensively
addressing and solving real-world problems. However, training a multimodal model using a joint
learning strategy is challenging because different modalities often exhibit varying data distributions,
require distinct network architectures, and have different convergence rates Wang et al. (2020).
Simultaneously, joint learning makes all modalities contribute to one learning objective, causing weak
modalities to be suppressed after strong modalities converge, resulting in modality competition Huang
et al. (2022). Several works Peng et al. (2022); Zong et al. (2024); Wei et al. (2024); Xu et al. (2023);
Li et al. (2023a) have recently been suggested to balance modalities. Representatively, OGM-GE Peng
et al. (2022) and AGM Li et al. (2023a) propose balanced multimodal learning methods that correct
the contribution imbalance of different modalities by encouraging intensive gradient updating from
suboptimal modalities. However, rebalance methods are not able to overcome modality laziness Du
et al. (2023) and fail to exploit uni-modal features efficiently. Some works Zhang et al. (2023);
Wei et al. (2024); Zhang et al. (2024); Wei & Hu (2024) explicitly or implicitly incorporate uni-
modal loss into their loss functions to avoid modality laziness. Specifically, MLA Zhang et al.
(2024) decomposes the conventional multimodal joint optimization scenario into an alternating
unimodal learning scenario and exchanges information using a shared head for different modalities.
ReconBoost Hua et al. (2024) alternates between different modalities during the learning process,
mitigating the issue of synchronous optimization limitations. MMPareto Wei & Hu (2024) balances
the objectives of joint learning and uni-modal learning using the Pareto method. By preventing
modality laziness in multimodal learning, they achieve performance slightly higher than that of
uni-modal learning.

Information Theory with Multimodal Learning In information theory, mutual information
quantifies the correlation between two variables in terms of their distribution. Recent works Belghazi
et al. (2018); Hu et al. (2024) have leveraged neural networks to estimate mutual information, bridging
the gap between deep learning and information theory. In contrastive learning, the InfoNCE Oord
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et al. (2018) loss serves as a lower bound estimate of mutual information, providing a solid theoretical
foundation for its use. As more applications Chen et al. (2020b); Radford et al. (2021) demonstrate
the effectiveness of the InfoNCE loss, the validity of the underlying mutual information theory has
been further validated. For more than two variables, total correlation Watanabe (1960) extends mutual
information and serves as a measure of the interdependence among multiple variables. In Hwang et al.
(2021), the authors applied total correlation in the Multi-View Representation Learning problem and
achieved promising results, demonstrating the utility of total correlation in multi-variable scenarios.

3 METHOD

3.1 MOTIVATION AND PRELIMINARY

Problem Formulation. Consider a multimodal data distribution
(
x(1), . . . , x(M), y

)
∼

PX (1),...,X (M),Y , where PX (1),...,X (M),Y denotes the joint probability distribution over the modalities
and labels of the train set, X (m) represents the sample space of the m-th modality, Y corresponds to
the label space. For each modality m, a modality-specific encoder ψ(m)

Θm
: X (m) → Z(m) maps the in-

put space X (m) to its corresponding embedding space Z(m) =
{
ψ
(m)
Θm

(
x(m)

)
| x(m) ∈ X (m)

}
. The

embeddings from all modalities are subsequently fed into a prediction head fθ : Z(1)×· · ·×Z(M) →
R|Y| to integrate information across different modalities and predict the probability distribution of
labels p̂(ŷ|Z) = Softmax(fθ(z(1), . . . , z(M)))ŷ , where ŷ denotes the predicted label and θ represents
the parameters of the prediction head.

Joint Learning. The objective of multimodal joint learning is to minimize the distance cross-
entropy between the predicted distribution and the ground truth distribution:

Ljoint = E(x(1),...,x(M),y)∼PD
[ℓ(y, ŷ)] = E(x(1),...,x(M),y)∼PD

[− log p̂(y|Z)] , (1)

where ℓ(·, ·) is the cross-entropy loss and Z = (z(1), . . . , z(M)) is the multimodal feature. As the
distribution of ŷ is calculated by Z, l(y, ŷ) in Equation 1 can be seen as the conditional cross-
entropy under Z, denoted as l(y, p̂|Z). Boudiaf et al. (2020) shows minimizing the conditional
cross-entropy l(y, p̂|Z) is equivalent to maximizing the mutual information I(y;Z). This implies,
with joint learning strategies Peng et al. (2022); Li et al. (2023a), the multimodal model is trained by
maximizing the mutual information between the multimodal feature Z and the label y.

To explain the cause of modality imbalance from an information-theoretic perspective, we analyze
the scenario involving two modalities (audio and visual) without loss of generality, where Z =
(z(a), z(v)). Specifically, the multimodal model trained via joint learning aims to maximize the
mutual information:

I(y;Z) = I(y; z(a), z(v)) = I(y; z(a)) + I(y; z(v)|z(a)). (2)

Move

Figure 1: Venn graph of an extreme case where
the audio encoder has already been well-fitted.
The visual component (blue) only needs to cover
I(y; z(v)]|z(a)) to achieve the training objective
(Ljoint ≈ 0), therefore ends up being unfitted.

The mutual information between any two variables
is bounded by the entropy of either variable. More-
over, since I(y; z(v)|z(a)) ≥ 0, it follows H(y) ≥
I(y; z(a), z(v)) ≥ I(y; z(a)). When the encoder
of one modality learns faster than the other, as-
suming z(a) contains sufficient information to pre-
dict the label accurately on the train set, then
I(y; z(a)) in Equation 2 becomes close to H(y).
As I(y; z(v)|z(a)) = I(y; z(a), z(v)) − I(y; z(a)) ≤
H(y) − I(y; z(a)) and I(y; z(a)) ≈ H(y), the up-
per bound of I(y; z(v)|z(a)) tends to be quite small,
making it challenging for the visual encoder to learn
adequate features though maximizing I(y; z(v)|z(a))
as it shows in Figure 1. This phenomenon of resource
contention between modalities is termed modality
competition Huang et al. (2022).
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Joint Learning

Uni-modal Learning

TCMaxAlignment

Figure 2: An illustration of the relationship between joint learning, unimodal learning, and learning through
maximizing the total correlation.

Unimodal Learning. In unimodal learning, each modality-specific model is trained independently
and later combined into an ensemble model. Specifically, the logits of the unimodal ensemble
model during prediction are equal to the sum of all modality-specific models. For mathematical
consistency, we treat the unimodal ensemble model as a single entity during training. However,
its prediction head can be decomposed into the sum of modality-specific prediction heads, i.e.,
fθ(Z) =

∑
m f

(m)
θm

(z(m)). The optimization objective of unimodal learning is:

Lunimodal = E(x(1),...,x(M),y)∼PD

[
−

M∑
m=1

log p̂(m)(y|z(m))

]
, (3)

where p̂(m)(y|z(m)) = Softmax(f (m)
θ (z(m)))y is the predicted distribution of the label of the uni-

modal model of the m-th modality. During training, the unimodal ensemble model maximizes the
mutual information I(y; z(m)) separately for each modality m. For multimodal learning with two
modalities, it maximizes:

I(y; z(a)) + I(y; z(v)). (4)

As mentioned before, we assume the audio modality encoder converges faster, i.e., z(a) captures
sufficient information earlier than z(v). Since I(y; z(v)) is independent of z(a), it ensures that during
the learning process of the visual modality, sufficient mutual information between features and labels
can be learned. Although unimodal learning avoids modality competition, its independent training
paradigm prevents the model from capturing cross-modal interactions.

While joint learning and unimodal learning focus on modality-label relationships (X (m) ↔ Y) , mul-
timodal datasets additionally encode cross-modal relationships (X (i) ↔ X (j)). To this end, we aim to
fully utilize the prior information embedded in PX (1),...,X (M),Y . While mutual information I(ξ1; ξ2)
effectively measures pairwise dependencies, its multivariate extension I(ξ1; . . . ; ξn) has a limitation:
it yields negative values for synergistic interactions. In contrast, total correlation (TC) Watanabe
(1960) is non-negative by definition, making it more suitable for measuring multivariate dependencies.
Formally:

TC(ξ(1), ξ(2), . . . , ξ(M)) ≡DKL
(
PΞ(1),...,Ξ(M)∥PΞ(1) × · · · × PΞ(M)

)
=

(
M∑
i=1

H(ξ(i))

)
−H(ξ(1), ξ(2), . . . , ξ(M)),

(5)

where H is the entropy. To leverage the strengths of both joint and unimodal learning, we propose
maximizing the TC across all modalities and the label. As Figure 2 shows, in the case of two
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modalities, TC can be decomposed as:

TC(z(a), z(v), y) =


I(y; z(a), z(v))︸ ︷︷ ︸

Joint learning

+ I(z(a); z(v))︸ ︷︷ ︸
Alignment

I(y; z(a)) + I(y; z(v))︸ ︷︷ ︸
Unimodal learning

+ I(z(a); z(v)|y)︸ ︷︷ ︸
Alignment

. (6)

This decomposition reveals that TC simultaneously captures: (1) joint modality-label dependencies
(joint learning), (2) modality-modality alignment, and (3) unimodal label dependencies (unimodal
learning). This ensures that the model leverages more prior information during training, thereby
making the model more robust. In the following sections, we first propose a lower bound estimator
for TC, then indirectly maximize TC by optimizing the TCMax loss, which is based on the estimator.

3.2 TOTAL CORRELATION NEURAL ESTIMATION

To maximize TC, we propose maximizing its lower bound. This requires a reliable estimator for
the TC lower bound. We start from the lower-bound estimator for mutual information. Mutual
Information Neural Estimation (MINE) Belghazi et al. (2018) provides a viable approach to estimate
a lower bound of mutual information.

Theorem 1 (MINE Belghazi et al. (2018)) The mutual information between Z ∈ Z and y ∈ Y
admits the following dual representation:

I(Z; y) = sup
T :Z×Y−→R

EPZ,Y [T ]− log
(
EPZ×PY

[
eT
])
, (7)

where the supremum is taken over all functions T such that the two expectations are finite. As neural
networks Tθ with parameter θ ∈ Θ compose a family of functions which is a subset of Z × Y −→ R,
we have:

I(Z; y) ≥ sup
θ∈Θ

EPZ,Y [Tθ]− log
(
EPZ×PY

[
eTθ
])
. (8)

Fortunately, MINE can be directly extended to Total Correlation Neural Estimation (TCNE). Note
that for two variables, TC reduces to mutual information, making MINE a special case of TCNE.

Corollary 1 (TCNE) The total correlation among M + 1 variables z(1) ∈ Z(1), . . . , z(M) ∈ Z(M)

and y ∈ Y , admits the following dual representation:

TC(z(1), . . . , z(M), y) = sup
T :Ω−→R

EPZ(1),...,Z(M),Y
[T ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eT
])
, (9)

where the supremum is taken over all functions T such that the two expectations are finite and
Ω = Z1 × · · · × ZM × Y . As neural networks Tθ with parameter θ ∈ Θ compose a family of
functions which is a subset of Ω −→ R, we have:

TC(z(1), . . . , z(M), y) ≥ sup
θ∈Θ

EPZ(1),...,Z(M),Y
[Tθ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eTθ
])
. (10)

See the supplement material for all proofs of corollaries and propositions.

3.3 TCMAX LOSS

To align with the form in Corollary 1, we set Tθ(z(1), . . . , z(M), y) = fθ(z
(1), . . . , z(M))y, decom-

posing fθ into |Y| functions of the form Z(1) × · · · ×Z(M) → R. Based on Equation 10, we propose
the TCMax loss:

LTCMax = −EPZ(1),...,Z(M),Y
[fθ] + log

(
EPZ(1)×···×PZ(M)×PY

[
efθ
])

= −EPX(1),...,X(M),Y
[FΘ] + log

(
EPX(1)×···×PX(M)×PY

[
eFΘ

])
,

(11)

where FΘ(x
(1), . . . , x(M), y) = fθ

(
ψ
(1)
Θ1

(x(1)), . . . , ψ
(M)
ΘM

(x(M))
)
y

is the multimodal model, Θ =

{Θ1, . . . ,ΘM , θ} denotes all parameters of the multimodal model. From the above derivation, we
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consider the prediction head as a TC estimator on Z1 × · · · × ZM × Y . Similarly, the multimodal
model can be regarded as an estimator on X1 × · · · × XM × Y . Combine with Equation 10, we have
following proposition:

Proposition 1 The TC between the input data and labels, the TC between features and labels, and
our proposed TCMax loss satisfy the following inequality:

TC(x(1), . . . , x(M), y) ≥ TC(z(1), . . . , z(M), y) ≥ −LTCMax. (12)

Since LTCMax ≥ −TC(z(1), . . . , z(M), y), minimizing LTCMax pushes −LTCMax upward, thereby in-
creasing the lower bound of TC(z(1), . . . , z(M), y). Since the distribution of the dataset is determined,
TC(x(1), . . . , x(M), y) is a fixed value and does not vary with model parameters. So far, we have not
addressed the mathematical interpretation of the TCMax-trained model’s output. Next, we prove that
the output of this model possesses the same capability to predict the label distribution as a multimodal
model trained with joint learning.

Proposition 2 The supremum in in Equation 9 reaches its upper bound if and only if
PZ(1),...,Z(M),Y = G, where G is the Gibbs distribution defined as dG = eT

EQ[eT ]
dQ and

Q = PZ(1) × · · · × PZ(M) × PY .

Proposition 2 indicates that when the TC estimator in TCNE is accurate, the estimator can also
accurately estimate the joint probability distribution of all variables.

Proposition 3 The two inequalities in Equation 12 simultaneously hold as equalities if and only
if PX (1),...,X (M),Y = Ĝ, where Ĝ is the Gibbs distribution defined as dĜ = eFΘ

EQ[eFΘ ]
dQ and Q =

PX (1) × · · · × PX (M) × PY .

No Modifications when Predicting. Proposition 3 demonstrates that the lower bound of LTCMax is
−TC(x(1), . . . , x(M), y), and when this lower bound is achieved, we have

p(y|x(1), . . . , x(M)) =
p(y, x(1), . . . , x(M))∑

k∈Y p(k, x
(1), . . . , x(M))

=
eFΘ(x(1),...,x(M),y)∑

k∈Y e
FΘ(x(1),...,x(M),k)

= p̂y, (13)

where p is the probability mass function of data distribution PD. Equation 13 indicates that the model
trained using the TCMax loss does not require additional operations or modifications to the model
structure during prediction. The only difference between our proposed method and joint learning in
practice is replacing Ljoint with LTCMax during training, yet it yields more robust results.

3.4 COMPUTATIONAL COST

When training a multimodal model that includes both audio and visual modalities, a direct implemen-
tation of LTCMax in a mini-batch B is:

LTCMax = − 1

|B|
∑
i∈B

log
exp fθ

(
ψ
(a)
Θa

(x
(a)
i ), ψ

(v)
Θv

(x
(v)
i )
)
yi∑

(j,k,y′ )∈B×B×Y exp fθ

(
ψ
(a)
Θa

(x
(a)
j ), ψ

(v)
Θv

(x
(v)
k )
)
y′

− log |B|2|Y|, (14)

where x(m)
i denotes the i-th sample of m-th modality. Notice that using LTCMax requires forwarding

the prediction head |B|M times. Although the parameter count of the prediction head is generally
much smaller compared to the encoders, for a large number of modalities M and a large batch size,
this can still introduce significant additional computational overhead. To mitigate this overhead, the
computation can be optimized by sampling only a certain number of negative samples (denominator)
in the feature space, i.e., randomly sampling N ⊂ B×B, where each (i, j) ∈ N is sampled uniformly
without replacement from B × B. LTCMax with sampling is:

LTCMax = − 1

|B|
∑
i∈B

log
exp fθ

(
ψ
(a)
Θa

(x
(a)
i ), ψ

(v)
Θv

(x
(v)
i )
)
yi∑

(j,k)∈N
∑

y′∈Y exp fθ

(
ψ
(a)
Θa

(x
(a)
j ), ψ

(v)
Θv

(x
(v)
k )
)
y′

− log |N ||Y|. (15)
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For linear fusion fθ(z(a), z(v)) = f
(a)
θa

(z(a)) + f
(v)
θv

(z(v)), the denominator decouples into separate
sums over modalities due to the identity exp(a+ b) = exp(a) exp(b). LTCMax becomes:

LTCMax = − 1

|B|
∑
i∈B

log
exp f

(a)
θa

(ψ
(a)
Θa

(x
(a)
i ))

yi
exp f

(v)
θv

(ψ
(v)
Θv

(x
(v)
i ))

yi∑
y′∈Y

(∑
j∈B exp f

(a)
θa

(ψ
(a)
Θa

(x
(a)
j ))

y′

)(∑
k∈B exp f

(v)
θv

(ψ
(v)
Θv

(x
(v)
k ))

y′

)
− log |B|2|Y|.

(16)

In this way, only |B| forward passes of the prediction head are required, introducing almost no
additional computational overhead with LTCMax.

4 EXPERIMENTS

4.1 DATASETS

CREMA-D Cao et al. (2014) encompasses 7, 442 audio-visual clips from 91 actors express-
ing six emotions, with emotion labels determined by 2, 443 crowd-sourced raters. Kinetics-
Sounds (KS) Arandjelovic & Zisserman (2017), a subset of Kinetics Kay et al. (2017) dataset,
includes 19, 000 10s videos across 31 human action labels, annotated manually through Mechan-
ical Turk. AVE Tian et al. (2018) focuses on localizing audio-visual events in 4, 143 10s videos
across 28 labels, sourced from YouTube with frame-level labeling for both audio and visual com-
ponents. VGGSound Chen et al. (2020a) is a large dataset of 309 labels, with 10s videos that
exhibit clear audio-visual correlations. It contains 152, 638 training videos and 13, 294 testing videos.
UCF101 Soomro (2012) comprises 13, 320 videos from 101 action labels. The clips, ranging from
3s to 10s, are split into a training set with 9, 537 clips and a testing set with 3, 783 clips, utilizing the
official train-test split. MVSA Niu et al. (2016) (MVSA-Single) is a multimodal sentiment analysis
dataset that jointly leverages text and image data for classification.

4.2 IMPLEMENTATION DETAILS

Backbone and Hyperparameter For all audio-visual datasets, we follow the same setting as in
the previous study Peng et al. (2022), selecting ResNet-18 He et al. (2016) as the encoder for both
audio and visual modalities, and training it from scratch. For the audio modality, inputs are converted
into spectrograms McFee et al. (2015) of size 129×862 for the CREMA-D, AVE, and VGGSound
datasets, and fbank Davis & Mermelstein (1980) acoustic features for the Kinetics-Sounds dataset.
For the visual modality, we extract images from videos at 1 fps and use one image as input for the
CREMA-D dataset, and four images as input for the AVE, Kinetics-Sounds, and VGGSound datasets.
For the UCF101 dataset, we extract frames and optical flow data from the videos at 1 fps, using 3
RGB frames and 3 optical flow frames for each sample. We use ResNet-18 as the backbone for both
RGB and optical flow modalities and train ResNet-18 from scratch as their backbone. We utilize
SGD Robbins & Monro (1951) with 0.9 momentum and 1e−4 weight decay as the optimizer for all
experiments. We set (learning rate, mini-batch size, epochs) to (1e−3, 64, 200) for CREMA-D and
KS, (1e−3, 32, 200) for AVE, (1e−3, 64, 100) for VGGSound, and (1e−3, 32, 400) for UCF101.
All of our experiments were performed on one NVIDIA Tesla V100 GPU.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

Compared methods We conduct comprehensive comparisons of TCMax with several baselines and
recent studies. (1) Baselines: concatenation (Concat), share predicted head (Share Head), unimodal
fusion (Unimodal); (2) Recent studies: FiLM Perez et al. (2018), BiGated Kiela et al. (2018), OGM-
GE Peng et al. (2022), OPM Wei et al. (2024), QMF Zhang et al. (2023), AGM Li et al. (2023a),
MLA Zhang et al. (2024), MMPareto Wei & Hu (2024).

4.3.1 RESULTS OF TEST ACCURACY

Table 1 presents testing accuracy of using a single modality and combining modalities (i.e., Multi).
First, joint learning shows severe modality imbalance, with one modality significantly underperform-
ing, and generally yields worse results than alternatives. Second, balanced joint learning methods
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Table 1: Results of the average test accuracy(%) of three random seeds on CREMA-D, Kinetics-
Sounds, AVE, VGGSound, and UCF101 datasets. Both the results of only using a single modality
("Audio" and "Visual") and the results of combining all modalities ("Multi") are listed. The best
results and second best results are bold and underlined, respectively.

Methods CREMA-D Kinetics-Sounds AVE VGGSound UCF101
Audio Visual Multi Audio Visual Multi Audio Visual Multi Audio Visual Multi RGB OF Multi

Concat 59.3 27.1 66.2 36.8 22.2 53.5 48.9 17.2 60.4 33.0 10.3 43.5 27.5 15.8 46.1
Share Head 60.4 23.6 63.6 38.7 29.1 53.7 49.7 22.4 61.4 33.6 13.0 43.6 31.2 20.2 46.0
FiLM Perez et al. (2018) - - 63.1 - - 52.6 - - 58.8 - - 42.5 - - 44.7
BiGated Kiela et al. (2018) - - 61.6 - - 49.1 - - 59.3 - - 41.5 - - 46.7

OGM-GE Peng et al. (2022) 51.5 35.5 69.3 35.7 25.6 55.4 39.5 19.3 61.3 32.2 12.5 43.9 23.3 16.6 44.2
AGM Li et al. (2023a) 59.3 27.2 66.2 36.4 29.4 57.7 44.2 19.3 61.4 34.1 13.4 45.4 27.2 17.6 46.0

Unimodal Ensemble 61.8 61.6 75.0 43.0 45.8 62.3 54.1 36.7 62.9 37.1 25.3 47.0 39.2 29.2 51.6
QMF Zhang et al. (2023) 63.1 60.8 72.2 44.6 44.2 62.1 55.1 37.0 65.1 37.0 24.9 46.8 39.2 31.2 52.1
OPM Wei et al. (2024) 59.9 55.7 71.4 39.1 44.1 61.7 48.8 36.2 63.1 34.1 23.9 47.0 38.6 26.6 50.8
OGM-GE + OPM Wei et al. (2024) 59.1 57.5 75.7 37.6 44.1 62.5 48.2 35.3 63.3 35.1 23.4 46.3 38.6 26.9 48.3
MLA Zhang et al. (2024) 60.9 61.8 72.5 41.6 44.9 61.1 53.2 37.9 62.6 37.0 24.8 47.3 40.1 31.0 51.2
MMPareto Wei & Hu (2024) 64.4 65.8 70.3 44.8 49.4 62.7 54.0 41.1 63.1 37.9 26.6 47.5 42.4 33.0 55.9

OursConcat 61.7 59.0 77.6 41.0 41.4 62.4 53.8 33.5 63.2 34.7 21.6 48.3 37.7 32.5 55.4
OursShare Head 61.6 59.1 77.5 43.4 43.3 63.5 54.2 36.7 64.5 38.6 24.4 48.2 41.0 37.2 56.0

Table 2: Results of Jensen–Shannon divergence between predictions of two modalities on CREMA-D,
Kinetics-Sounds, AVE, VGGSound, and UCF101 datasets. The minima and second minima results
are bold and underlined, respectively.

Dataset Concat Share Head OGM-GE AGM Unimodal QMF OPM MLA MMPareto OursConcat OursShare Head

CREMA-D 0.478 0.490 0.518 0.400 0.312 0.293 0.337 0.306 0.314 0.284 0.271
Kinetics-Sounds 0.543 0.560 0.551 0.499 0.459 0.455 0.448 0.466 0.440 0.423 0.390

AVE 0.562 0.568 0.560 0.540 0.462 0.471 0.470 0.468 0.465 0.452 0.406
VGGSound 0.620 0.631 0.610 0.594 0.526 0.528 0.513 0.528 0.539 0.513 0.473

UCF101 0.584 0.579 0.589 0.586 0.463 0.531 0.473 0.457 0.485 0.427 0.366

(e.g., OGM-GE, AGM) improve the weaker modality but slightly degrade the stronger one, failing to
consistently surpass unimodal-loss methods. Third, unimodal-based methods prevent overfitting and
sometimes outperform pure unimodal learning, while achieving the highest single-modal accuracy.
Finally, TCMax achieves the best multimodal scores, but its single-modality performance matches
other unimodal-based methods—suggesting its gains stem from cross-modal synergy rather than
individual improvements.

4.3.2 RESULTS OF JENSEN–SHANNON DIVERGENCE

To investigate the correlation of prediction outcomes across modalities, we calculate the average
Jensen–Shannon divergence (JS-divergence) between the prediction results of two separate modalities
in Table 2. This metric quantifies the degree of correlation in predictions between the two modalities,
with a lower JS-divergence signifying a stronger correlation. As shown in the table, our TCMax
consistently achieves the smallest JS-divergence for the single-modal predictions across all datasets,
indicating that TCMax which is rooted in contrastive learning, facilitates the model to learn cross-
modal representations, thereby enhancing the correlation of predictions.

4.4 FURTHER ANALYSIS
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Figure 3: Accuracy on different numbers of sampled negative
pairs.

Number of Sampled Negative Pairs.
We first explore the effect of sampling dif-
ferent numbers of negative pairs, as men-
tioned in Equation 15. Figure 3a shows
that, for the CREMA-D dataset, the ac-
curacy of TCMax rises with an increase
in the number of negative pair samplings,
achieving optimal performance at 1024. In
contrast, on the UCF101 dataset, the best
performance is observed at the maximum
sampling number (1024), indicating that a larger number of samplings sustains consistent perfor-
mance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

6

Tr
ai

n 
Lo

ss

joint learning
uni-modal learning
TCMax

(a) CREMA-D Loss

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

joint learning
uni-modal learning
TCMax

(b) CREMA-D Acc

0 50 100 150 200 250 300 350 400
Epoch

0

2

4

6

8

Tr
ai

n 
Lo

ss

joint learning
uni-modal learning
TCMax

(c) UCF101 Loss
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Figure 4: Train loss and test accuracy of joint
learning, unimodal learning, and TCMax on
CREMA-D and UCF101 datasets.

Concat Share Head Unimodal OursConcat

C
R

E
M

A
-D H(A) 0.369 0.184 0.320 0.575

H(V ) 1.076 1.229 0.746 0.890

ρ 2.913 6.674 2.331 1.549

U
C

F1
01H(RGB) 1.245 0.630 0.921 2.000

H(OF ) 2.244 1.170 1.259 2.265

ρ 1.802 1.856 1.368 1.132

Table 3: Results of average entropy of predictions by
single modality on test sets of CREMA-D and UCF101
datasets. H(M) denotes the entropy of predictions of the
‘M’ modality, and ρ represents the ratio of the entropy of
the weak modality to the entropy of the strong modality.
For CREMA-D and UCF101 datasets, ρ = H(V )/H(A)

and ρ = H(OF )/H(RGB), respectively.

TCMax Prevents Overfitting. Here, we visualize how TCMax effectively mitigates the risk of
overfitting. As depicted in Figure 4, on both the CREMA-D and UCF101 datasets, TCMax loss
remains consistently higher than that for joint and unimodal learning, which prevents the model
parameters from updating at all. Although TCMax exhibits inferior performance compared to
unimodal learning in the early stages of training, as the training progresses into the middle stage,
TCMax begins to gradually presents its strengths and ultimately converges to a stable performance
level.
Average Entropy of Predictions. In Table 3, we compute the average entropy predictions by single
modality and the ratio between strong and weak modalities. This reflects the model’s ability to
balance predictions across different modalities. Typically, a lower ratio indicates a more equitable
contribution from both modalities. The table reveals that our method successfully achieves a balanced
representation of the various modalities.

Table 4: Result of the average test accuracy(%)
of 10 random seeds on MVSA with frozen
CLIP pretrained encoders.

Methods RN50 ViT-B/32
Image Text Multi Image Text Multi

Joint 75.76 73.60 81.23 76.88 74.27 82.83
Unimodal 76.74 77.16 80.02 78.54 76.97 81.77
TCMax 75.38 74.97 81.75 78.03 76.55 84.05

Analysis with Pretrained Encoders As shown
in Table 4, we adopt CLIP Radford et al. (2021) as
the frozen feature encoder for both image and text
modalities on the MVSA dataset. During training,
only the multimodal classifier is optimized while
keeping the encoder parameters fixed. Our results
show that: (1) Joint learning outperforms unimodal
learning because the limited parameter space pre-
vents overfitting; (2) TCMax maintains competitive
performance by effectively modeling cross-modal
interactions, similar to joint learning.

5 DISCUSSION
Conclusion This study investigates the causes of modality imbalance in multimodal classification
tasks from an information-theoretic perspective and proposes a learning objective to maximize
total correlation to fully utilize cross-modal information in multimodal datasets. We propose the
Total Correlation Neural Estimation(TCNE), which employs neural networks to estimate the lower
bound of total correlation. Building on this theoretical foundation, we introduce a parameter-free
loss function, TCMax, for multimodal classification tasks. By maximizing total correlation, our
approach enables more comprehensive utilization of prior information in multimodal datasets, thereby
achieving enhanced robustness. Comparative experiments with state-of-the-art methods demonstrate
the effectiveness of our approach across multiple multimodal classification benchmarks.
Limitation The current TCMax framework is primarily designed for classification tasks and
cannot be directly extended to other multimodal applications such as multimodal object detection or
generative tasks. Successful adaptation to these domains would require explicit definitions of input-
output probability distributions. Furthermore, while TCMax establishes a foundational multimodal
learning paradigm, its full potential depends on developing model architectures specifically optimized
for this framework.
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A PROOFS

A.1 PROOF OF COROLLARY 1

Corollary 2 (Corollary 1 restated, TCNE) The total correlation between M + 1 variables z(1) ∈
Z(1), . . . , z(M) ∈ Z(M) and y ∈ Y , admits the following dual representation:

TC(z(1), . . . , z(M), y) = sup
T :Ω−→R

EPZ(1),...,Z(M),Y
[T ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eT
])

(17)

where the supremum is taken over all functions T such that the two expectations are finite and
Ω = Z1 × · · · × ZM × Y . As neural networks Tθ with parameter θ ∈ Θ composed a family of
functions which is a subset of Ω −→ R, we have:

TC(z(1), . . . , z(M), y) ≥ sup
θ∈Θ

EPZ(1),...,Z(M),Y
[Tθ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eTθ
])

(18)

We follow the proof in the paper of MINE Belghazi et al. (2018) to prove TCNE. First, we begin with
the Donsker-Varadhan representation theorem.

Theorem 2 (The Donsker-Varadhan representation Donsker & Varadhan (1983)) The KL divergence
admits the following dual representation:

DKL (P∥Q) = sup
T :Ω−→R

EP[T ]− log
(
EQ[e

T ]
)
, (19)

where the supremum is taken over all functions T such that the two expectations are finite.

For a given function T , consider the Gibbs distribution defined by dG = 1
Z e

TdQ, where Z = EQ[e
T ]

is he partition function and T servers as the energy function in the Gibbs distribution. The right hand
of Equation 19 can be written as:

EP[T ]− log
(
EQ[e

T ]
)
= EP [T ]− logZ = EP

[
log

eT

Z

]
= EP

[
log

dG
dQ

]
. (20)

Let ∆ be the gap:
∆ ≡ DKL (P∥Q)− EP[T ]− log

(
EQ[e

T ]
)
, (21)

with Equation 20, we can write ∆ as KL-divergence:

∆ = EP

[
log

dP
dQ

− log
dG
dQ

]
= EP

[
log

dP
dG

]
= DKL (P∥G) . (22)

The positivity of the KL-divergence gives ∆ ≥ 0. We have thus shown that for any T ,

DKL (P∥Q) ≥ EP[T ]− log
(
EQ[e

T ]
)
, (23)

The inequality is preserved upon taking the supremum over the right-hand side. The bound is tight
when G = P, namely for optimal functions T ∗ taking over the form T ∗ = log dP

dQ + Const for some
constant Const ∈ R.

To prove Equation 17 in Corollary 2, we replace P and Q with PZ(1),...,Z(M),Y and PZ(1) × · · · ×
PZ(M) × PY in Equation 19 so we have:

DKL
(
PZ(1),...,Z(M),Y∥PZ(1) × · · · × PZ(M) × PY

)
=

sup
T :Ω−→R

EPZ(1),...,Z(M),Y
[T ]− log

(
EPZ(1)×···×PZ(M)×PY [e

T ]
). (24)

With the KL-divergence form of total correlation:

TC(z(1), . . . , z(M), y) = DKL
(
PZ(1),...,Z(M),Y∥PZ(1) × · · · × PZ(M) × PY

)
, (25)

we can proof the Equation 17 in Corollary 2. As neural networks Tθ with parameter θ ∈ Θ belongs
to
{
T
∣∣T : Ω −→ R

}
, the supremum taken over all networks Tθ is less than or equal to the supremum

taken over all functions T ,

TC(z(1), . . . , z(M), y) = sup
T :Ω−→R

EPZ(1),...,Z(M),Y
[T ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eT
])

≥ sup
θ∈Θ

EPZ(1),...,Z(M),Y
[Tθ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eTθ
])
.

(26)

Thus we prove Corollary 2.

13
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A.2 PROOF OF PROPOSITION 1

Proposition 4 (Proposition 1 restated) The TC between the input data and labels, the TC between
features and labels, and our proposed TCMax loss satisfy the following inequality:

TC(x(1), . . . , x(M), y) ≥ TC(z(1), . . . , z(M), y) ≥ −LTCMax (27)

We first consider the TCNE form of TC(x(1), . . . , x(M), y) and TC(z(1), . . . , z(M), y):

TC(x(1), . . . , x(M), y) = sup
TX :ΩX−→R

EPX(1),...,X(M),Y
[TX ]− log

(
EPX(1)×···×PX(M)×PY

[
eTX

])
,

(28)

TC(z(1), . . . , z(M), y) = sup
TZ :ΩZ−→R

EPZ(1),...,Z(M),Y
[TZ ]− log

(
EPZ(1)×···×PZ(M)×PY

[
eTZ
])
,

(29)
where ΩX and ΩZ are the input space (including the label) and the embedding space, respectively.
As modality-specific encoders are used to extract the embedding z(1,··· ,M) from the input x(1,··· ,M),
a fix function Ψ : ΩX → ΩZ is defined here. So we can rewrite Equation 29:

TC(z(1), . . . , z(M), y) = sup
TZ :ΩZ−→R

EP
X(1),...,X(M),Y

[Ψ ◦ TZ ]− log
(
EP

X(1)×···×P
X(M)×PY

[
eΨ◦TX

])
.

(30)

Since {Ψ◦TZ |TZ : ΩZ −→ R} is a subset of {TX |TX : ΩX −→ R}, the supremum in Equation 30 is not surpass
than the supremum in Equation 28. Thus, we prove the first inequality in the proposition.

We first consider the form of TCMax loss to prove he second inequality:

LTCMax = −EP
Z(1),...,Z(M),Y

[fθ] + log
(
EP

Z(1)×···×P
Z(M)×PY

[
efθ

])
. (31)

As the predicted head fθ is a special case in TZ |TZ : ΩZ −→ R, therefore:

TC(z(1), . . . , z(M), y) = sup
TZ :ΩZ−→R

EP
Z(1),...,Z(M),Y

[TZ ]− log
(
EP

Z(1)×···×P
Z(M)×PY

[
eTZ

])
≥EP

Z(1),...,Z(M),Y
[fθ]− log

(
EP

Z(1)×···×P
Z(M)×PY

[
efθ

])
= −LTCMax,

(32)

thus, we prove the second inequality in the proposition.

A.3 PROOF OF PROPOSITION 2

Proposition 5 (Proposition 2 restated) The supremum in in Equation 17 reaches its upper bound if and only if
PZ(1),...,Z(M),Y = G, where G is the Gibbs distribution defined as dG = eT

EQ[eT ]
dQ and Q = PZ(1) × · · · ×

PZ(M) × PY .

The supremum in Equation 17 reaches its upper bound when the gap is equal to 0,

∆ ≡ DKL (P∥Q)− EP[T ]− log
(
EQ[e

T ]
)
= 0, (33)

where P = PZ(1),...,Z(M),Y , Q = PZ(1) × · · · × PZ(M) × PY . With the Gibbs distribution defined as

dG = eT

Z
dQ, we have:

0 = DKL (P∥Q)− EP [T ]− log
(
EQ

[
eT

])
= DKL (P∥G) , (34)

where the second equality uses Equation 22. With Gibbs’ inequality, we know DKL (P∥G) equals 0 if and only
if P = Q. Thus, we prove Proposition 5.

A.4 PROOF OF PROPOSITION 3

Proposition 6 (Proposition 3 restated) The two inequalities in Equation 27 simultaneously hold as equalities
if and only if PX (1),...,X (M),Y = Ĝ, where Ĝ is the Gibbs distribution defined as dĜ = eFΘ

EQ[eFΘ ]
dQ and

Q = PX (1) × · · · × PX (M) × PY .

14
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Consider the TCMax loss:

LTCMax = −EP
X(1),...,X(M),Y

[FΘ] + log
(
EP

X(1)×···×P
X(M)×PY

[
eFΘ

])
. (35)

When two inequalities in Equation 27 simultaneously hold, we have:

TC(x(1), . . . , x(M), y) = sup
TX :ΩX−→R

EP
X(1),...,X(M),Y

[TX ]− log
(
EP

X(1)×···×P
X(M)×PY

[
eTX

])
=− LTCMax

=EP
X(1),...,X(M),Y

[FΘ]− log
(
EP

X(1)×···×P
X(M)×PY

[
eFΘ

])
.

(36)

Hence, FΘ reaches the upper bound of the supremum. With Proposition 5, we know Equation 36 holds if and
only if PX (1),...,X (M),Y = Ĝ. Thus, we prove the proposition.

A.5 DERIVATION OF EQUATION 14

Since batch B is sampled according to the overall data distribution, we can consider the samples (x(a)i , x
(v)
i , yi),

∀i ∈ B as drawn from PA,V,Y , where x(a)i , x(v)i , and yi follow the marginal distributions PA, PV , and PY ,
respectively. Since label distributions are generally assumed to be relatively uniform, we hypothesize PY to be a
uniform distribution over Y . Thus, in calculations, PY is directly treated as uniform without relying on batch
sampling results. Substituting the assumptions into Equation 11 yields:

LTCMax =− 1

|B|
∑
i∈B

(
fθ

(
ψ

(a)
Θa

(x
(a)
i ), ψ

(v)
Θv

(x
(v)
i )

)
yi

)

+ log

 1

|B × B × Y|
∑

(j,k,y
′
)∈B×B×Y

exp fθ
(
ψ

(a)
Θa

(x
(a)
j ), ψ

(v)
Θv

(x
(v)
k )

)
y
′


=− 1

|B|
∑
i∈B

log
exp fθ

(
ψ

(a)
Θa

(x
(a)
i ), ψ

(v)
Θv

(x
(v)
i )

)
yi∑

(j,k,y
′
)∈B×B×Y exp fθ

(
ψ

(a)
Θa

(x
(a)
j ), ψ

(v)
Θv

(x
(v)
k )

)
y
′

− log |B × B × Y|

=− 1

|B|
∑
i∈B

log
exp fθ

(
ψ

(a)
Θa

(x
(a)
i ), ψ

(v)
Θv

(x
(v)
i )

)
yi∑

(j,k,y
′
)∈B×B×Y exp fθ

(
ψ

(a)
Θa

(x
(a)
j ), ψ

(v)
Θv

(x
(v)
k )

)
y
′

− log |B|2|Y|,

(37)

Thus, Equation 14 is obtained.

B DETAILS OF EXPERIMENT

B.1 DETAILS OF BASELINES

Concatenation Concatenation is a straightforward approach to multimodal fusion where the features from
different modalities are combined by concatenating them into a single feature vector. In our experiments, we
feed the combining vector into a single fully connected layer to get the prediction, which can be denoted as
f(Xi) =W [h1(xi,1), · · ·hM (xi,M )]+b. It can be decomposed as f (Xi) =

∑M
m=1 {Wmhm(xi,m) + b/M}

so can be simplified during training and define the output of modalitym is fm =Wmhm(xi,m)+b/M following
Peng et al. (2022).

Share Prediction Head This method uses a shared prediction head to calculate the output of every modality,
then sums up all outputs from all modalities as the final output. Same as concatenation, we use a single fully
connected layer as the shared head, and output can be denoted as f (Xi) =

∑M
m=1 {Whm(xi,m) + b/M}.

Output of modality m is defined as fm =Whm(xi,m) + b/M .

FiLM Perez et al. (2018) FiLM modulates the feature from a modality using the feature from the other
modality. Specifically, a FiLM layer performs a straightforward affine transformation on each feature of a neural
network’s intermediate representations, modulated by an arbitrary input. The output by FiLM is denoted as
f(Xi) = g (γ (h2(xi,2)) ◦ h1(xi,1) + β (h2(xi,2))), where g, γ and β are fully connected layers and ◦ here is
the Hadamard product.

15
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Gated Kiela et al. (2018) Similar to FiLM, Gated uses the feature from one modality to modulate the
other. The output of Gated is denoted as f(Xi) = g (γ (h1(xi,1)) ◦ σ (β (h2(xi,2)))), where g, γ and β are
fully connected layers and σ is the sigmoid function. Notice the form of output by FiLM and Gated can not be
decomposed into parts of modalities, so in our experiment, we deactivate a modality by inputting a zero tensor to
get the single modality performance. In our experiment, audio modality is modality 1 and visual modality is
modality 2 in the formula.

Unimodal Learning Naive Unimodal Learning trains each modality separately and combines them during
the prediction phase. Training separately helps the encoder of each modality efficiently learn modality-specific
information. However, the model is unable to tell whether inputs from different modalities come from the same
sample as modalities is inputted independently during training.

B.2 DETAILS OF THE EXPERIMENT ON MVSA (TABLE 3)

In the experiment, to align with CLIP’s prediction paradigm, we define class-specific features c(i)y and c(t)y for
each class. For each label y, the model’s output logit is computed as:

fθ(fi, ft) =
s(c

(i)
y , fi)

τ
+
s(c

(t)
y , ft)

τ
(38)

where:

• θ = {c(i)y |y ∈ Y} ∪ {c(t)y |y ∈ Y} is the trainable class-specific features

• fi and ft are CLIP’s output features

• τ is CLIP’s temperature coefficient

• s(·, ·) denotes cosine similarity

Training configuration:

• Total epochs: 100

• Batch size: 32

• Learning rate: 0.01 (decayed to 0.001 after epoch 70)

Due to the relatively small accuracy differences observed in the experiment, we include error bounds with 95%
confidence intervals in Table 5. The results show that although the performance is very close, there is no overlap
between the confidence intervals of multimodal accuracy (Multi) of TCMax and the second-best method (Joint
Learning). This statistically significant difference (p > 0.9752 > 0.95) confirms that the performance gap is
not caused by experimental variance.

Table 5: Result of the average test accuracy(%) of 10 random seeds on MVSA with frozen CLIP
pretrained encoders. We report the 95% confidence intervals.

Methods RN50 ViT-B/32
Image Text Multi Image Text Multi

Joint 75.76± 0.20 73.60± 0.16 81.23± 0.27 76.88± 0.09 74.27± 0.27 82.83± 0.15
Unimodal 76.74 ± 0.07 77.16 ± 0.22 80.02± 0.13 78.54 ± 0.09 76.97 ± 0.07 81.77± 0.15
TCMax 75.38± 0.12 74.97± 0.54 81.75 ± 0.23 78.03± 0.16 76.55± 0.22 84.05 ± 0.15

C POTENTIAL IN REGRESSION TASKS

Although this paper primarily focuses on the task of multimodal image classification, TCMax may also be
applied to other tasks, such as regression. Here, we use a simple regression task as an example to explore the
potential of TCMax in regression scenarios.

We employ two sentiment analysis datasets: CMU-MOSI and CMU-MOSEI. We use MAG-BERT Rahman et al.
(2020) as the baseline, which takes multimodal inputs from audio (A), visual (V), and text (L) modalities and
outputs a continuous value (Y) representing the degree of positive sentiment. To train with TCMax we first
define the mapping FΘ : A× V × L× Y → R in Equation 11.
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We modified the prediction head to output both the predicted value and its confidence: ypred = ypred(a, v, l)
and cpred(a, v, l). We define FΘ in our paper’s Equation 11 as:

FΘ(a, v, l, y) = − (ypred(a, v, l)− y)2

σ2
+ λcpred(a, v, l), (39)

where σ represents the standard deviation in the predicted Gaussian distribution, and λ is a multiplicative
coefficient to facilitate analysis. Let B and Bns denote the batch and sampled negative set, respectively.
Substituting this into Equation 11 yields:

LTCMax =− E(a,v,l,y)∈B

[
− (ypred(a, v, l)− y)2

σ2
+ λcpred(a, v, l)

]
+ logE(a,v,l,y)∈Bns

[
exp

(
− (ypred(a, v, l)− y)2

σ2
+ λcpred(a, v, l)

)]
.

(40)

For classification tasks where y takes discrete values, we conventionally assume a uniform distribution PY since
labels typically occur with roughly equal frequency. However, in this continuous y case, we must explicitly
define y’s probability distribution in Bns. For the derivation, we assume y follows a uniform distribution over
interval [a, b], yielding the following loss function:

LTCMax =
1

σ2
E(a,v,l,y)∈B

[
(ypred(a, v, l)− y)2

]︸ ︷︷ ︸
MSE

+ λ
{
−E(a,v,l,y)∈B [cpred(a, v, l)] + logE(a,v,l,y)∈Bns [exp (cpred(a, v, l))]

}︸ ︷︷ ︸
TCMax

+ log

∫ b

a

exp

(
− (ypred(a, v, l)− y)2

σ2

)
dy − log (b− a).

(41)

By taking the limits as a → −∞ and b → +∞ (i.e., extending to R), while observing that the − log (b− a)
term becomes divergent yet vanishes during differentiation (being a constant), we obtain the final form:

LTCMax =
1

σ2
E(a,v,l,y)∈B

[
(ypred(a, v, l)− y)2

]︸ ︷︷ ︸
MSE

+ λ
{
−E(a,v,l,y)∈B [cpred(a, v, l)] + logE(a,v,l,y)∈Bns [exp (cpred(a, v, l))]

}︸ ︷︷ ︸
TCMax

+ lim
a→−∞

lim
b−>+∞

log

∫ b

a

exp

(
− (ypred(a, v, l)− y)2

σ2

)
dy

=
1

σ2
E(a,v,l,y)∈B

[
(ypred(a, v, l)− y)2

]︸ ︷︷ ︸
MSE

+ λ
{
−E(a,v,l,y)∈B [cpred(a, v, l)] + logE(a,v,l,y)∈Bns [exp (cpred(a, v, l))]

}︸ ︷︷ ︸
TCMax

+ log
√
πσ.

(42)

The resulting loss function naturally decomposes into two components: (1) The first term constrains regression
accuracy (MSE); (2) The second term enforces TCMax’s cross-modal alignment constraint on (a, v, l) triplets.
When λ = 0 (eliminating cpred), the loss reduces to conventional MSE as the second term is eliminated.

Table 6 presents the experimental results on the CMU-MOSI and CMU-MOSEI datasets. After training with
TCMax, the model achieves modest improvements on both datasets. This suggests that TCMax may hold
potential research value for such regression tasks, and further in-depth studies will be conducted in the future.

Table 6: Result on CMU-MOSI and CMU-MOSEI datasets. For CMU-MOSI, we set σ = 0.5, while for
CMU-MOSEI, σ = 0.75. In all experiments, λ = 1, and all results represent averages across three random
seeds.

Dataset Mehod Binary Acc↑ F1↑ MAE↓ Corr↑

CMU-MOSI Baseline (MAG-BERT) 83.36 83.21 0.7938 0.7644
TCMax 84.27 84.13 0.7775 0.7753

CMU-MOSEI Baseline (MAG-BERT) 85.14 85.10 0.5903 0.7867
TCMax 85.61 85.52 0.5889 0.7887
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