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Abstract—Predicting seizure outcome is essential for tailor-
ing epilepsy treatment. However, accurate prediction remains
challenging with traditional methods, particularly in diverse
patient populations. This study presents a graph-based deep
learning framework for predicting seizure outcomes using stereo-
electroencephalography (sEEG) data in pediatric patients with
drug-resistant epilepsy and deep thalamic involvement. We ana-
lyzed 105 ictal events from sEEG recordings of 10 pediatric pa-
tients with documented thalamic seizure networks and evaluated
our model in three different cross-validation strategies: seizure-
wise, windowed segmentation, and patient-wise analysis. Our
graph neural network-based model represents each sEEG chan-
nel as a node with power spectral density features, while edges
capture inter-channel correlations. The windowed segmentation
approach, which divides seizure recordings into non-overlapping
2-second temporal windows, demonstrated superior performance
across all metrics. This data augmentation technique achieved
93.9% accuracy, significantly outperforming both seizure-wise
(82.%) and patient-wise (77.0%) approaches using complete
seizure recordings. Network analysis revealed distinct thalamo-
cortical connectivity patterns with denser network topology in
sample patient with poor outcomes (<50% seizure reduction)
as compared to sample patient with favorable outcomes (>50%
seizure reduction). These findings demonstrate the potential of
connectivity-based deep learning models for enhancing seizure
outcome prediction in pediatric epilepsy, particularly in cases
involving complex thalamo-cortical networks. This framework
advances our understanding of thalamic seizure propagation and
offers promise for AI-assisted personalized epilepsy treatment
planning.

Index Terms—graph learning, network analysis, sEEG,
epilepsy, seizure outcome

I. INTRODUCTION

Epilepsy affects approximately 50 million people world-
wide, with nearly one-third experiencing drug-resistant
epilepsy (DRE), where seizures persist despite multiple anti-
seizure medications [1]. For these patients, surgical inter-
vention is often necessary to achieve full or partial seizure
freedom. Surgical resections can be extensive; however, they
are based on the network of brain regions that propagate
the seizure. There is strong evidence that surgery can be
highly effective in achieving seizure freedom and improving

the quality of life in patients with drug-resistant epilepsy [2],
[3]. Furthermore, the World Health Organization [1] estimates
that up to 70% of individuals with epilepsy could live seizure-
free if properly diagnosed and treated, including patients with
DRE.

The success of epilepsy surgery heavily depends on the
accurate identification of the epileptogenic network and pre-
diction of post-surgical outcomes [4]. This critical need for
precise seizure outcome prediction has driven research into
developing more sophisticated analytical approaches [4], [5].
Stereo electroencephalography (sEEG) and subdural electrode
(SDE) implantation are among the most widely used invasive
monitoring methods for identifying the epileptogenic network,
with significant evidence supporting better seizure outcomes
when utilizing sEEG [2], [6]. sEEG offers deep brain recording
capabilities with high temporal resolution and is often used
for the identification of discrete cortical seizure onset zones
(SOZs) in surgical planning. Among the subcortical regions
involved in propagation of seizures, thalamic nuclei have
repeatedly shown interconnectedness with ictal brain regions.
In a study investigating energy distribution between temporal
cortices across seizure stages, the average thalamic power was
found to be significantly higher at seizure onset compared to
baseline power [2].

The increasing inclusion of thalamic recordings in sEEG
implementations has opened new avenues for understanding
thalamo-cortical networks, which are fundamental to both
developing brain function and pathological states [7]. Despite
this wealth of data, traditional analysis methods often struggle
to capture the complex, interconnected nature of epileptic
networks, particularly the subtle patterns that may predict
treatment outcomes. Graph Neural Networks (GNNs) present
a promising approach for analyzing such complex neural data,
as they can model the brain’s networked structure and capture
both local and global connectivity patterns [8–11] . In graph-
based applications, brain regions are represented as nodes
and the strength of their connection as edges, hence enabling
the representation of connectivity patterns. Therefore, unlike



traditional machine learning approaches, GNNs can explicitly
incorporate spatial relationships and non-linear interactions be-
tween brain regions, making them particularly well-suited for
analyzing thalamo-cortical connectivity patterns in epilepsy.

In this paper, we present a GNN-based classifier model for
predicting seizure outcome using sEEG data. Our contributions
include:

1) Our proposed method combines spatial mapping from
GNNs with data offering high temporal precision to
capture the complex interactions between various brain
regions, especially the critical connections between the
thalamus and cortical structures.

2) We analyzed the classification of post-resection seizure
outcome per patient as well as per individual seizure. We
also applied network analysis to study connectivity pat-
terns between the thalamic and cortical regions involved
during seizure onset.

3) This approach not only improves prediction accuracy
but also provides valuable insights into poorly under-
stood seizure dynamics, such as the relationship between
seizure onset zones and seizure networks.

II. PROPOSED METHODOLOGY

A. Patient Selection and Implantation

This study investigated sEEG recordings from 10 pediatric
patients with drug-resistant epilepsy who had documented
thalamic involvement in their seizure networks. The data were
collected at our clinical center under an approved IRB study
for analyses. All patients underwent stereotactic implantation
of depth electrodes with multiple contacts strategically placed
within thalamic nuclei, guided by individual clinical presen-
tations and suspected seizure propagation patterns. Figure
1 demonstrates the electrode placement methodology: (a)
shows a representative patient’s MRI with overlaid electrode
trajectories and thalamic contacts, while (b) displays post-
operative CT imaging confirming precise contact positioning
within deep brain structures.

Seizure outcomes were assessed using a five-point scale
[12]: (1) seizure-free, complete elimination of seizures; (2)
excellent, > 80% reduction in seizure frequency; (3) good,
> 50% reduction in seizure frequency; (4) poor, < 50%
reduction in seizure frequency; and (5) worse, worsening
of seizures and/or unacceptable neurologic deficit. Based on
the post-surgical seizure frequency reduction, patients were
stratified into two distinct outcome groups. Group I (Favorable
Outcome, n=3): Patients achieving > 50% seizure frequency
reduction, representing successful surgical intervention with
significant thalamic network disruption. Group II (Poor Out-
come, n=7): Patients with < 50% seizure frequency reduction,
indicating persistent thalamic seizure networks despite surgical
intervention.

The dataset comprised 105 ictal events captured across
all patients (9-11 seizures per patient), providing substantial
data for analyzing thalamic seizure propagation patterns and
their relationship to surgical outcomes. Comprehensive clin-
ical information was retrospectively extracted from medical

records, including patient demographics, seizure semiology,
underlying epilepsy etiology, preoperative diagnostic testing
results, non-invasive epilepsy monitoring findings, detailed
sEEG procedural records, subsequent surgical interventions,
and long-term seizure outcome assessments.

Fig. 1: Demonstration of (a) sEEG electrode placement within
the brain and (b) post-op Computed Tomography scan showing
sEEG contacts in the brain.

B. Model Development and Testing
The preprocessing of raw sEEG data involved several steps

utilizing MNE-Python [13]. Stereo-EEG data was resampled to
a fixed sampling rate of 128 Hz and filtered to include signals
between 0.5 and 40 Hz. Each sEEG sample was normalized
by subtracting the mean and dividing by the standard deviation
of the signal.

Figure 2 shows the model architecture for our pipeline.
The processed sEEG data were used to create graph data
structures. Each channel was treated as a node, with node
features extracted using Power Spectral Density (PSD), and
edges were established between all pairs of nodes based on
the connectivity matrix of the channels. Connectivity matrix
was calculated using Pearson’s correlation and thresholded at
τ = 0.3, which is a commonly used threshold value to retain
nontrivial connections and disregard the rest, i.e., set them
to zero [14]. The data was split into training and test sets
with stratified sampling to ensure both classes were adequately
represented in each set.

The GNN architecture consisted of two graph convolutional
layers followed by a global mean pooling layer to aggregate
node features. Rectified linear unit (ReLU) activation functions
were applied after each convolutional layer. The model’s
output was either 0, indicating poor seizure outcome, or 1, in-
dicating favorable seizure outcome. We used the cross-entropy
loss function and the Adam optimizer for training the model.
Hyperparameter tuning was performed using Optuna [15]. The
study was run for 50 epochs, with learning rate, number of
convolutional layers, hidden dimensions, and dropout rate as
the parameters being fine-tuned. The model was trained with
K-Fold cross validation (K=10) and evaluated by accuracy,
precision, recall, and the F1 score.

C. Network Analysis
To investigate the spatio-temporal dynamics of thalamo-

cortical neural synchronization during seizure onset, we im-



Fig. 2: Our proposed model architecture for seizure outcome prediction. The diagram describes steps for analyzing raw sEEG
input, by extracting power spectral density features with a seizure outcome prediction for each segmented graph i with two
classes 0: poor outcome, 1: positive outcome.

plemented a network analysis framework. This approach en-
ables systematic visualization and quantification of functional
connectivity patterns between thalamic and cortical electrodes,
with particular emphasis on characterizing seizure propagation
from the seizure onset zone through thalamo-cortical circuits.

Functional connectivity between electrode pairs was quanti-
fied using magnitude-squared coherence, a frequency-domain
measure that assesses the linear correlation between two
signals as a function of frequency. Coherence provides a robust
metric for identifying synchronized neural activity while being
less sensitive to amplitude variations compared to simple
correlation measures. The coherence between two signals x(t)
and y(t) was calculated using equation 1

Cxy(f) =
|Pxy(f)|2

Pxx(f) · Pyy(f),
(1)

where Pxy(f) represents the cross-power spectral density
between signals x and y at frequency f, while Pxx(f) and
Pyy(f) denote the auto-power spectral densities of signals x
and y, respectively. The coherence values range from 0 (no
linear relationship) to 1 (perfect linear relationship) at each
frequency. For network construction, we computed the average
coherence across seizure-relevant frequency bands (typically
0.5-40 Hz) to obtain a single connectivity strength value for
each electrode pair.

For the network analysis visualizations, we focused on a 5-7
seconds seizure onset range, dividing it into 3 non-overlapping
temporal windows (w = 2s) to balance temporal precision
with statistical reliability of coherence estimates. For each time
window, we constructed weighted functional networks where
nodes represent individual thalamic and cortical electrode
contacts and edges represent coherence values between elec-
trodes. Only connections exceeding a threshold θ = 0.25 were
retained to preserve clinically relevant connectivity patterns
while reducing noise.

For each time window graph, we computed topological net-
work metrics to characterize evolving connectivity patterns and
compare network behavior between patient outcome groups.
These metrics include network density, average clustering

coefficient, average thalamic node connectivity, and average
thalamic node coherence.

III. EXPERIMENTAL RESULTS

We used three different validation strategies to test the per-
formance of our dataset. For a patient-wise approach we used
a Leave-one-patient-out cross-validation (LOPO-CV) where
all seizures from a single patient formed the test set while
seizures from the remaining 9 patients comprised the training
set. In the seizure-wise approach, each seizure was treated as
an independent sample, with standard k-fold cross-validation
applied across all 105 seizures regardless of patient origin.

In addition to these, we used windowed segmentation with
non-overlapping temporal windows applied to segment each
seizure into multiple samples, effectively augmenting the
dataset size. A total of 2452 graphs were created from the 105
seizures through data segmentation. We used a window size
of 10 seconds for the segmentation, with full sEEG recordings
ranging from 200 seconds to 600 seconds for all patients.
Figure 3 visualizes the data segmentation process.

Fig. 3: The segmentation process to create data windows from
sEEG recordings.

The experimental results demonstrate significant perfor-
mance differences across the three analytical approaches for



seizure outcome prediction, summarized in I. The windowed
segmentation approach achieved the highest performance
across all metrics, with an accuracy of 93.9% Seizure-wise val-
idation showed moderate performance with 82.7% accuracy,
while patient-wise validation yielded the lowest performance
at 77.0% accuracy.

TABLE I: Performance Metrics for Seizure Outcome Predic-
tion Across Different Experimental Approaches

Metric Seizure-wise Windowed Patient-wise
Accuracy 0.827 ± 0.131 0.939 ± 0.012 0.770 ± 0.155
Precision 0.875 ± 0.099 0.941 ± 0.012 0.838 ± 0.131
Recall 0.827 ± 0.131 0.939 ± 0.012 0.770 ± 0.155
F1-Score 0.818 ± 0.138 0.939 ± 0.012 0.756 ± 0.164

(a) Sample from class 0: poor outcome

(b) Sample from class 1: positive outcome

Fig. 4: Network dynamics at seizure onset from samples (a)
with poor outcome, (b) with positive outcome post-surgery.
The figure shows thalamic nodes in blue and cortical seizure
onset zone nodes in red for both patients. Edges are calculated
using coherence, thresholded at θ = 0.25. Within the region
(cortical-cortical and thalamic-thalamic) connections are high-
lighted in red and blue edges, respectively, and the thickness of
the edges represents the strength of the connection. The same
subset of nodes is used in all three windows to demonstrate
seizure dynamics in one network.

Figures 4a and 4b visualize the evolution of thalamo-cortical
network dynamics at seizure onset for two representative
patients, one from each outcome group (favorable vs. poor
outcome). The two figures highlight significant differences
in network topologies over time, quantified in table II for
three consecutive time windows (W1, W2, W3). Patients
with poor surgical outcomes demonstrated consistently high
network density values, ranging from 0.952 to 1.00 across all
time windows, indicating dense connectivity between thalamo-

cortical regions during seizure propagation. In contrast, pa-
tients with favorable outcomes exhibited significantly lower
network density, with values of 0.285, 0.047, and 0.095 for
windows W1, W2, and W3, respectively.

The role of thalamic nodes was significantly different be-
tween the two sample patients as well. Poor outcome patient
maintained consistently high thalamic connectivity with an av-
erage degree of 5.8 across the three time windows compared to
an average degree of 1.6 in the patient with a positive outcome.
Average thalamic node coherence values were moderately
elevated in poor outcome patients (0.404-0.432) compared to
favorable outcome patients (0.00-0.308).

IV. DISCUSSION

Our model achieved high performance across all three
experimental approaches, with the windowed segmentation
method demonstrating superior results at 93.9% accuracy, fol-
lowed by seizure-wise analysis at 82.7% accuracy, and patient-
wise analysis at 77.0% accuracy. The windowed approach also
showed the most consistent performance with low standard
deviation (±0.012), indicating robust and reliable predictions
across different data segments.

Thalamo-cortical network analysis revealed distinct connec-
tivity patterns between patient outcome groups. Patients with
poor surgical outcomes (Class 0) exhibited dense network
connectivity with network density values ranging from 0.952
to 1.00 across time windows, accompanied by high thalamic
node degrees (5.5-6.0) and elevated clustering coefficients. In
contrast, patients with favorable outcomes (Class 1) demon-
strated significantly lower network density (0.047-0.285), re-
duced thalamic connectivity (0.25-2.25 average degree), and
minimal clustering, particularly in later time windows. This
suggests that excessive thalamo-cortical connectivity during
seizure onset may contribute to poorer surgical outcomes,
possibly reflecting more widespread seizure propagation that
extends beyond surgically treatable regions.

The superior performance of the windowed segmentation
approach demonstrates the value of temporal data augmen-
tation in capturing seizure dynamics. By dividing seizure
recordings into 2-second non-overlapping windows, the model
effectively increased the training dataset while preserving clin-
ically relevant temporal patterns. This finding has important
implications for clinical implementation, as it suggests that
shorter data segments can provide sufficient information for
accurate outcome prediction.

One notable strength of our study is achieving high accuracy
with a relatively small cohort of only 10 pediatric patients with
deep thalamic contacts. This demonstrates that connectivity-
based deep learning approaches such as GNNs may be par-
ticularly effective for specialized patient populations where
traditional large-scale studies are challenging. The ability to
extract meaningful patterns from limited data suggests promise
for applications in rare epilepsy syndromes and personalized
treatment planning where patient populations are inherently
constrained.



TABLE II: Network Properties of Thalamo-cortical Activity Across Time Windows for Coherence Threshold θ = 0.25.

Metric Class 0 (Poor Outcome) Class 1 (Favorable Outcome)
W1 W2 W3 W1 W2 W3

Density 0.952 1.00 0.952 0.285 0.047 0.095
Average Clustering 0.952 1.00 0.952 0.333 0.000 0.00
Average Thalamic Node Degree 6.0 6.0 5.5 2.25 0.25 0.50
Average Thalamic Node Coherence 0.408 0.404 0.432 0.308 0.308 0.00

Utilization of sEEG data in conjunction with advanced deep
learning techniques, like we present in this study offers a
highly promising direction for personalized seizure treatment
planning. Enhancing model accuracy through the incorporation
of additional modalities such as MRI and PET could also
provide a more comprehensive understanding of epilepsy.
However, variations in individual patient characteristics, such
as the type and location of epilepsy, may not be fully cap-
tured in a small sample size such as ours. Future studies
that include larger patient populations can refine the model’s
performance, ensuring its robustness and reliability in different
clinical settings. Expanding the sample size would also enable
the exploration of more nuanced patterns and relationships
within the data, ultimately enhancing the model’s predictive
capabilities and clinical utility.

V. CONCLUSIONS

This study presents a novel connectivity-based deep learn-
ing framework that demonstrates the potential for accurate
seizure outcome prediction in pediatric patients with com-
plex thalamo-cortical epilepsy networks. By integrating graph
neural networks with temporal segmentation strategies, we
have shown that machine learning approaches can effectively
capture the complex dynamics of seizure propagation through
deep brain structures, even with limited patient cohorts typical
of specialized epilepsy populations. Our findings establish
that thalamo-cortical connectivity patterns during seizure onset
contain predictive information about surgical outcomes in
patients with wide/complex seizure networks or multi-focal
epilepsy, providing a foundation for pre-operative assessment
tools. Future research with more patients and multi-modal
prediction pipeline provides a promising direction in this field.

The ability to achieve robust predictions with a small, spe-
cialized patient population demonstrates the particular value of
connectivity-based deep learning for rare epilepsy syndromes
and complex cases involving deep brain structures. This ap-
proach addresses a critical gap in personalized epilepsy care,
where traditional large-scale machine learning methods may be
impractical due to the inherently limited patient populations.
Beyond immediate clinical applications, this work establishes
a framework for investigating brain connectivity disruptions
during pathological states. The integration of spectral analysis
with graph-based network representations offers a powerful
methodology that may extend to other neurological conditions
involving network dysfunction. As AI-assisted clinical tools
continue to evolve, connectivity-based approaches like those
presented here represent a promising direction for advancing

personalized neurological care and deepening our understand-
ing of brain network dynamics during disease states.
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