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ABSTRACT

In reinforcement learning applications, agents usually need to deal with various in-
put/output features when specified with different state and action spaces by their
developers or physical restrictions, indicating re-training from scratch and consid-
erable sample inefficiency, especially when agents follow similar solution steps
to achieve tasks. In this paper, we aim to transfer pre-trained skills to alleviate
the above challenge. Specifically, we propose PILoT, i.e., Planning Immediate
Landmarks of Targets. PILoT utilizes the universal decoupled policy optimization
to learn a goal-conditioned state planner; then, we distill a goal-planner to plan
immediate landmarks in a model-free style that can be shared among different
agents. In our experiments, we show the power of PILoT on various transferring
challenges, including few-shot transferring across action spaces and dynamics,
from low-dimensional vector states to image inputs, from simple robot to com-
plicated morphology; and we also illustrate PILoT provides a zero-shot transfer
solution from a simple 2D navigation task to the harder Ant-Maze task.

1 INTRODUCTION

Figure 1: Zero-shot transferring on Ant-Maze, where
the Ant agent starts from the yellow point to the de-
sired goal (big blue star). PILoT provide planned im-
mediate landmarks (small red points) given the tempo-
ral goal (green points) and the desired goal (small blue
point), learned from a naive 2D maze task.

Recent progress of Reinforcement Learning
(RL) has promoted considerable developments
in resolving kinds of decision-making chal-
lenges, such as games (Guan et al., 2022),
robotics (Gu et al., 2017) and even autonomous
driving (Zhou et al., 2020). However, most of
these work are designed for a single task with
a particular agent. Recently, researchers have
developed various goal-conditioned reinforce-
ment learning (GCRL) methods in order to ob-
tain a generalized policy to settle a group of
homogeneous tasks with different goals simul-
taneously (Liu et al., 2022a), but are still lim-
ited in the same settings of environment dynam-
ics/reward, and the same state/action space of
the agent. Many existing solutions in the domain
of Transfer RL (Zhu et al., 2020) or Meta RL (Yu
et al., 2020) aim to transfer among different dy-
namics/reward with the same agent, but care less
for the shared knowledge across agents with different state/action spaces.

There are many motivations and scenarios encouraging us to design a transferring solution among
agents: a) deployed agents facing with changed observing features, for instance, non-player charac-
ters (NPC) trained and updated for incremental scenes of games (Juliani et al., 2018), robots with
new sensors due to hardware replacement (Bohez et al., 2017); b) agents in different morphology
have to finish the same tasks (Gupta et al., 2021), such as run a complicate quadruped robotic fol-
lowing a much simpler simulated robot (Peng et al., 2018); c) improving the learning efficiency with
rich and redundant observations or complicate action spaces, like transferring the knowledge from
compact low-dimensional vector input to high-dimensional image features (Sun et al., 2022).
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Some previous works have made progress on transfer across agents on a single task. (Sun et al.,
2022) transferred across different observation spaces with structural-similar dynamics and the same
action spaces via learning a shared latent-space dynamics to regularize the policy training. On the
other hand, (Liu et al., 2022b) decouples a policy as a state planner that predicts the consecutive
target state, and an inverse dynamics model that delivers action to achieve the target state, which
allows transferring across different action spaces and action dynamics, but limit in the same state
space and state transitions.

In this paper, we propose a more general solution for transferring the multi-task skills across agents
with heterogeneous action spaces and observation space, named Planning Immediate Landmarks of
Targets (PILoT). Our method works under the assumption that agents share the same goal transition
to finish tasks, but without any prior knowledge of the inter-task mapping between the different
state/action spaces, and agents can not interact with each other.

The whole workflow of PILoT is composed of three stages, including pre-training, distillation and
transfer: 1) the pre-training stage extends the decoupled policy to train a universal state planner
on simple tasks with universal decoupled policy optimization; 2) the distillation stage distills the
knowledge of state planner into an immediate goal planner, which is then utilized to 3) the transfer-
ring stage that plans immediate landmarks in a model-free style serving as dense rewards to improve
the learning efficiency or even straightforward goal guidance. Fig. 1 provides a quick overview of
our algorithm for zero-shot transferring on Ant-Maze. Correspondingly, we first train a decoupled
policy on a simple 2D maze task to obtain a universal state planner, then distill the knowledge into a
goal planner that predicts the immediate target goal (red points) to reach given the desired goal (blue
point) and arbitrary started goal (green points). Following the guidance, the Ant controllable policy
is pre-trained on a free ground without the walls can be directly deployed on the maze environment
without any training. As the name suggests, we are providing immediate landmarks to guide various
agents like the runway center line light on the airport guiding the flight to take off.

Comprehensive challenges are designed to examine the superiority of PILoT on the skill transfer
ability, we design a set of hard transferring challenges, including few-shot transfer through different
action spaces and action dynamics, from low-dimensional vectors to image inputs, from simple
robots to complicated morphology, and even zero-shot transfer. The experimental results present the
learning efficiency of PILoT transferred on every tasks by outperforming various baseline methods.

2 PRELIMINARIES

Goal-Augmented Markov Decision Process. We consider the problem of goal-conditioned re-
inforcement learning (GCRL) as a γ-discounted infinite horizon goal-augmented Markov decision
process (GA-MDP) M = ⟨S,A, T , ρ0, r, γ,G, pg, ϕ⟩, where S is the set of states, A is the action
space, T : S × A × S → [0, 1] is the environment dynamics function, ρ0 : S → [0, 1] is the initial
state distribution, and γ ∈ [0, 1] is the discount factor. The agent makes decisions through a policy
π(a|s) : S → A and receives rewards r : S ×A → R, in order to maximize its accumulated reward
R =

∑t
t=0 γ

tr(st, at). Additionally, G denotes the goal space w.r.t tasks, pg represents the desired
goal distribution of the environment, and ϕ : S → G is a tractable mapping function that maps the
state to a specific goal. One typical challenge in GCRL is reward sparsity, where usually the agent
can only be rewarded once it reaches the goal:

rg(st, at, g) = 1(the goal is reached) = 1(∥ϕ(st+1)− g∥ ≤ ϵ) . (1)

Therefore, GCRL focuses on multi-task learning where the task variationality comes only from the
difference of the reward function under the same dynamics. To shape a dense reward, a straightfor-
ward idea is to utilizing a distance measure d between the achieved goal and the final desired goal,
i.e., r̃g(st, at, g) = −d(ϕ(st+1), g). However, this reshaped reward will fail when the agent must
first increase the distance to the goal before finally reaching it, especially when there are obstacles
on the way to the target (Trott et al., 2019).

In our paper, we work on a deterministic environment dynamics function T , such that s′ = T (s, a),
and we allow redundant actions, i.e., the transition probabilities can be written as linear combination
of other actions’. Formally, there exists of a state sm ∈ S, an action an ∈ A and a distribution p
defined on A \ {an} such that

∫
A\{an} p(a)T (s′|sm, a) da = T (s′|sm, an).
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Decoupled Policy Optimization Classical RL methods learn a state-to-action mapping policy
function, whose optimality is ad-hoc to a specific task. In order to free the agent to learn a high-
level planning strategy that can be used for transfer, Liu et al. (2022b) proposed Decoupled Policy
Optimization (DePO) which decoupled the policy structure by a state transition planner and an
inverse dynamics model as:

π(·|s) =
∫
s′
hπ(s

′|s)I(·|s, s′) ds′ = Eŝ′∼hπ(ŝ′|s)
[
I(·|s, ŝ′)

]
. (2)

To optimize the decoupled policy, DePO first optimizes the inverse dynamics model via supervised
learning, and then performs policy gradient assuming a fixed but locally accurate inverse dynamics
function. DePO provides a way of planning without training an environment dynamics model. The
state planner of DePO pre-trained on simple tasks can be further transferred to agents with various
action spaces or dynamics. However, as noted below, the transferring ability of DePO limits in the
same state space transition. In this paper, we aims to derive a more generalized skill transferring
solution utilizing the common latent goal space shared among tasks and agents.

3 TRANSFER ACROSS AGENTS

(a) Shared State Transition

Source 
MDP

Target 
MDP

(b) Shared Latent State Transition (c) Shared Goal Transition

Figure 2: Comparison of the different assumption for transferring across agents of previous works (Liu et al.,
2022b; Sun et al., 2022) and PILoT. (a) (Liu et al., 2022b) allows for transferring across action spaces and but
ask the same state space and state transition. (b) (Sun et al., 2022) transfers across different state spaces but
require there exists a shared latent state space and dynamics. (c) PILoT provides a generalized transferring
ability for both state space and action space, but asks for a shared underlying latent goal transition.

In this section, we explain the problem setup of transfer across agents. Formally, we pre-train and
learn knowledge from a source GA-MDP M = ⟨S,A, T , ρ0, r, γ,G, pg, ϕ⟩ and transfer to a target
GA-MDP M̃ = ⟨S̃, Ã, T̃ , ρ̃0, r̃, γ,G, pg, ϕ̃⟩. Here we allow significant difference between the state
spaces S, S̃, and action spaces A, Ã. Therefore, both the input / output shapes of the source policy
are totally different from the target one and therefore it is challenging to transfer a shared knowledge.

To accomplish the objective of transfer, prior works always make assumptions about the shared
structure (Fig. 2). For example, (Sun et al., 2022) proposed to transfer across significantly different
state spaces with the same action space and similar structure between dynamics, i.e., a mapping
between the source and target state spaces exists such that the transition dynamics shares between
two tasks under the mapping. In comparison, (Liu et al., 2022b) pay attention on transferring across
action spaces under the same state space and the same state transitions, i.e., a action mapping be-
tween the source and target exists such that the transition dynamics shares between two tasks under
the mapping. In this paper, we take a more general assumption by only require agents have a shared
goal transition, and allow transferring across different observation spaces and action spaces. We ar-
gue that this is a reasonable requirement in real world since for tasks like robot navigation, different
robot agents can share a global positioning system constructed by techniques like SLAM that allows
them to quickly figure out their 3D position in the world. Formally, the assumption corresponds to:

Assumption 1. There exists a function f : A → Ã such that ∀s, s′ ∈ S,∀a ∈ A, and ∃s̃, s̃′ ∈
S̃,∃ã ∈ Ã,

T (s′|s, a) = T̃ (s̃′|s̃, f(a)), r(s, a, gt) = r̃(s̃, ã, gt), ϕ(s) = ϕ̃(s̃), ϕ(s′) = ϕ̃(s̃′) .

Here ϕ is usually a many-to-one mapping, such as an achieved position or the velocity of a robot.
f can be any function, like many-to-one mapping, where several target actions relate to the same
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Figure 3: Overview of universal decoupled policy optimization (PILoT) framework. PILoT leverages a
transferring-by-pre-training process, including the stage of pre-training, distillation and transferring.

source action; or one-to-many mapping; or non-surjective, where there exists a source action that
does not correspond to any target action.

4 PLANNING IMMEDIATE LANDMARKS OF TARGETS

In this section, we introduce our generalized multi-task skills transfer solution with the proposed
Planning Immediate Landmarks of Targets (PILoT) framework. First, we demonstrate how we
derive the training procedure of a universal decoupled policy structure for multiple tasks in the pre-
training stage; then, we characterize the distillation stage which obtain a goal planner for providing
the informative reward bonus or zero-shot guidance for the transferring stage. An overview of the
method is shown in Fig. 3, and we list the step-by-step algorithm in Algo. 1.

4.1 UNIVERSAL DECOUPLED POLICY OPTIMIZATION

In order to derive a generally transferable solution, we first extend the decoupled policy struc-
ture (Liu et al., 2022b) into a goal-conditioned form. Formally, we decouple the goal-conditioned
policy π(a|s, gt) as:

π(a|s, gt) =
∫
s′
hπ(s

′|s, gt)I(·|s, s′) ds′ = Eŝ′∼hπ(ŝ′|s,gt)
[
I(·|s, ŝ′)

]
, (3)

where gt is the target goal, hπ is a goal-conditioned state planner. Approximating the planner
by neural networks (NNs), we can further apply the reparameterization trick and bypass explicitly
computing the integral over s′ as

s′ = h(ϵ; s, gt), π(a|s, gt) = Eϵ∼N
[
I(a|s, h(ϵ; s, gt))

]
, (4)

where ϵ is an input noise vector sampled from some fixed distribution, like a Gaussian. The inverse
dynamics I should serve as a control module known in advance for reaching the target predicted
by the planner. When it must be learned from scratch, we can choose to minimize the divergence
(for example, KL) between the inverse dynamics of a sampling policy πB and the ϕ-parameterized
function Iϕ, i.e.,

min
ψ

LI = E(s,s′)∼πB [Df(IπB(a|s, s′)∥Iϕ(a|s, s′))] . (5)

It is worth noting that the model is only responsible and accurate for states encountered by the
current policy instead of the overall state space. In result, the inverse dynamics model is updated
every time before updating the policy.

To update the decoupled policy, particularly, the goal-conditioned state planner hπ , given that the
inverse dynamics to be an accurate local control module for the current policy and the inverse dy-
namics function I is static when optimizing the policy function, we adopt the decoupled policy
gradient (DePG) as derived in (Liu et al., 2022b):

∇ψLπ = E(s,a)∼π,gt∼pg,ϵ∼N

[
Q(s, a, g)

π(a|s, gt)
(
∇hI(a|s, hψ(ϵ; s, gt))∇ψhψ(ϵ; s, g

t)
)]

, (6)
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which can be seen as taking the knowledge of the inverse dynamics about the action a to optimize
the planner by a prediction error ∆s′ = α∇hI(a|s, h(ϵ; s)) where α is the learning rate. However,
(Liu et al., 2022b) additionally pointed that there exists the problem of agnostic gradients that the
optimization direction is not always lead to a legal state transition. To alleviate the challenge, they
proposed calibrated decoupled policy gradient to ensure the state planner from predicting a infeasible
state transition. In this paper, we turn to a simpler additional objective for constraints, i.e., we
maximize the probability of predicting the legal transitions that are sampled by the current policy,
which is demonstrated to have a similar performance in (Liu et al., 2022b):

maxE(s,s′)∼π[h(s
′|s, gt)] , (7)

Therefore, the overall gradient for updating the planner becomes:

∇ψLπ = E(s,a,s′)∼π,gt∼pg,ϵ∼N

[
Q(s, a, g)

π(a|s, gt)
(
∇hI(a|s, hψ(ϵ; s, gt))∇ψhψ(ϵ; s, g

t)
)
+ λ∇ψhψ(ϵ; s, g

t)

]
,

(8)
where λ is the hyperparamer for trading off the constraint. Note that such a decoupled learning
scheme also allows incorporating various relabeling strategy to further improving the sample effi-
ciency, such as HER (Andrychowicz et al., 2017).

4.2 GOAL PLANNER DISTILLATION

In order to transfer the knowledge to new settings, we leverage the shared latent goal space and distill
a goal planner from the goal-conditioned state planner, i.e., we want to predict the consecutive goal
given the current goal and the target goal. Formally, we aims to obtain a ω-parameterized function
fω(g

′|g, gt), where g′ is the next goal to achieve, g = ϕ(s) is the current goal the agent is achieved,
and gt is the target. This can be achieved by treating the state planner hψ(s′|s, gt) as the teacher, and
fω(g

′|g, gt) becomes the student. The objective of the distillation is constructed as an MLE loss:

∇ωLf = max
ω

Es∼B,s̃′∼hψgt∼pg [fω(g̃
′|g, gt)], where g = ϕ(s), g̃′ = ϕ(s̃′) , (9)

where B is the replay buffer, ϕ is the mapping function that translates a state to a specific goal.
With the distilled goal planner, we can now conduct goal planning without training and querying an
environment dynamics model as in Zhu et al. (2021); Chua et al. (2018).

4.3 TRANSFER MULTI-TASK KNOWLEDGE ACROSS AGENTS

A typical challenge for GCRL is the rather sparse reward function, and simply utilizing the Euclid
distance of the final goal and the current achieved goal can lead to additional sub-optimal problems.
To this end, with PILoT having been distilled for acquiring plannable goal transitions, it is natural
to construct a reward function (or bonus) leveraging the difference between the intermediate goals
to reach and the goal that actually achieves for transferring. In particular, when the agent aims to
go to gt with the current achieved goal g, we exploit the distilled planner fω from PILoT to provide
reward as similarity of goals:

r(s, a, ĝ′) =
ϕ(s′) · ĝ′

∥ϕ(s′)∥∥ĝ′∥
, where s′ = T (s, a) , ĝ′ ∼ fω(ĝ

′|g, gt) . (10)

Note that we avoid the different scale problem among different agents by using the form of cosine
distance. Thereafter, we can actually transfer to a totally different agent. For example, we can learn
a locomotion task from a easily controllable robot, and then transfer the knowledge to a complex
one with more joints which is hard to learn directly from the sparse rewards; or we can learn from
a low-dimensional ram-based agent and then transfer on high-dimensional image inputs. To verify
the effectiveness of PILoT, we design various of transferring settings in Section 6.

5 RELATED WORK

Goal-conditioned RL. Our work lies in the formulation of goal-conditioned reinforcement learn-
ing (GCRL). The existence of goals, which can be explained as skills, tasks, or targets, making it
possible for our skill transfer across various agents with different state and action space. In the
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literature of GCRL, researchers focus on alleviating the challenges in learning efficiency and gener-
alization ability, from the perspective of optimization Trott et al. (2019); Ghosh et al. (2021); Zhu
et al. (2021), generating or selecting sub-goals Florensa et al. (2018); Pitis et al. (2020) and relabel-
ing Andrychowicz et al. (2017); Zhu et al. (2021). A comprehensive GCRL survey can be further
referred to Liu et al. (2022a). In these works, the goal given to the policy function is either provided
by the environment or proposed by a learned function. In comparison, in our paper, the proposed
UDPO algorithm learns the next target states in an end-to-end manner which can be further distilled
into a goal planner that can be used to propose the next target goals.

Hierarchical reinforcement learning. The framework of UDPO resembles Hierarchical Rein-
forcement Learning (HRL) structures, where the state planner plays like a high-level policy and
the inverse dynamics as the low-level policy. Typical paradigm of HRL trains the high-level policy
using environment rewards to predict sub-goals (or called options) that the low-level policy should
achieve, and learn the low-level policy using handcrafted goal-reaching rewards to provide the ac-
tion and interacts with the environment. Generally, most of works provided the sub-goals / options
by the high-level policy are lied in a learned latent space (Konidaris & Barto, 2007; Heess et al.,
2016; Kulkarni et al., 2016; Vezhnevets et al., 2017; Zhang et al., 2022), keeping it for a fixed
timesteps (Nachum et al., 2018; Vezhnevets et al., 2017) or learn to change the option (Zhang &
Whiteson, 2019; Bacon et al., 2017). On the contrary, Nachum et al. (2018) and Kim et al. (2021)
both predicted sub-goals in the raw form, while still training the high-level and low-level policies
with separate objectives. As for Nachum et al. (2018), they trained the high-level policy in an off-
policy manner; and for Kim et al. (2021), which focused on goal-conditioned HRL tasks as ours,
they sampled and selected specific landmarks according to some principles, and asked the high-level
policy to learn to predict those landmarks. Furthermore, their only sampled a goal from the high-
level policy for a fixed steps, otherwise using a pre-defined goal transition process. Like UDPO,
Li et al. (2020) optimized the two-level hierarchical policy in an end-to-end way, with a latent skill
fixed for c timesteps. The main contribution of HRL works concentrate on improving the learning
efficiency on complicated tasks, yet UDPO aims to obtain every next targets for efficient transfer.

Transferable RL. Before our work, there are a few works have investigated transferable RL. In
this endeavor, Srinivas et al. (2018) proposed to transfer an encoder learned in the source tasks,
which maps the visual observation to a latent representation. When transfer to target tasks / agents,
the latent distance from the goal image to the current observation is used to construct an obstacles-
aware reward function. To transfer across tasks, Barreto et al. (2017); Borsa et al. (2018) utilized
success features based on strong assumptions about the reward formulation, that decouples the in-
formation about the dynamics and the rewards into separate components, so that only the relevant
module need to be retrained when the task changes. In order to reuse the policy, Heess et al. (2016)
learned a bi-level policy structure, composed of a low-level domain-general controller and high-level
task-specific controller. They transfer the low-level controller on the target tasks while retraining the
high-level one. On the other hand, Liu et al. (2022b) decoupled the policy as a state planner and an
inverse dynamic model, and shown that the high-level state planner can be transferred to agents with
different action spaces. For generalizing and transferring across modular robots’ morphology, Gupta
et al. (2017) tried learning invariant visual features. Wang et al. (2018) and Huang et al. (2020) both
exploited graph structure present in the agent’s morphology, and proposed specific structured poli-
cies for learning the correlations between agent’s components, while Gupta et al. (2021) proposed
a transformer-based policy to model the morphology representation. Theses works with such struc-
tured policies, although can generalize to agents with unseen morphology, limit in modular robots
with specific representation of the state space. Similar to PILoT, Sun et al. (2022) proposed to trans-
fer across agents with different state spaces, which is done with a latent dynamics model trained
on the source task. On the target tasks, the pre-trained dynamics model is transferred as a model-
based regularizer for improving the learning efficiency. In comparison, PILoT can do effectively
multi-tasks skill transfer to agents with different structures, state spaces and action spaces. First, we
separate the state spaces and action spaces in the decoupled policy structure, and the state predictor
can be transferred to target tasks with different actions spaces. Furthermore, we distill a planner in
the goal space, which allows for planning consecutive target goals as transferable skills to different
agent structures and state spaces.
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6 EXPERIMENTS

We conduct a set of transferring challenges to examine the skill transfer capacity of PILoT.

6.1 EXPERIMENTAL SETUPS

Environments, tasks and agents. a) Fetch-Reach. The agent controls the robot arm to reach a
target position. b) Fetch-Push. The robotic arm is controlled to push a block to a target position.
c) Reacher. Controling a multi-joint reacher robot to reach a target position. d) Point-Locomotion.
The agent controls an point robot to move to a target position freely. e) Ant-Locomotion. The agent
controls an ant robot to move to a target position freely. f) 2D-Maze. The agent controls a mass
point in a U-shape maze to reach a target position. g) Ant-Maze. The agent controls an ant robot to
move to a target position in a U-shape maze.

(a) Fetch-Reach (b) Fetch-Push (c) Reacher

(d) Point-Locomotion (e) Ant-Locomotion (f) 2D-Maze (g) Ant-Maze

Figure 4: Illustration of tested environments.

Designed transferring challenges. 1) Few-shot transfer to high-dimensional action spaces:
we take Fetch-Reach and Fetch-Push as the source tasks, and change the gravity, action dynamics
and spaces to get the target tasks while sharing the same state space and state transition (see Ap-
pendix B.2 for details). 2) Few-shot transfer to a complicate morphology: we take Point robot
with 6 observation dimensions as the source task, and Ant with 29 observation dimensions as the
target task. 3) Few-shot transfer from vector to image observations: We take Fetch-Reach and
Reacher with low-dimensional vector state as the source task, and the same environment with high-
dimensional image observations as the target task. 4) Zero-shot transfer: we take 2D-Maze and
Ant-Locomotion as the source tasks, which are used to train a goal planner and a local controller
separately; then we combine the knowledge of the goal planner and the local controller to master the
task of Ant-Maze without any further training. All of these tasks varies in either in the state space or
in the action space, but a pair of tasks must share the same goal space and transition, making it pos-
sible to transfer useful knowledge. In the sequal, we show different usages of PILoT on transferring
such knowledge in different challenges.

Implementation and baselines. We choose several classical and recent representative works as
our comparable baselines, for both source tasks and target tasks. For source tasks we want to com-
pare the learning performance from scratch of the proposed UDPO algorithm with: i) Hindsight
Experience Replay (HER) (Andrychowicz et al., 2017), a classical GCRL algorithm that trains
goal-conditioned policy by relabeling the target goals as the samples appeared in future of the same
trajectory for one particular state-action sample, which is also used as the basic strategy to train
the UDPO policy; ii) HIerarchical reinforcement learning Guided by Landmarks (HIGL) Kim
et al. (2021), an HRL algorithm that utilizes a high-level policy to propose landmark states for the
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Figure 5: Training curves on four source tasks and four target tasks. High-Dim-Action: few-shot transfer to
high-dimensional action space. High-Dim-Action: few-shot transferring to high-dimensional action space.
Vec-to-Image: few-shot transferring from vector to image states. Complex-Morph: few-shot transfer to
different morphology. UDPO denotes the learning algorithm proposed in Section 4.1. HER (PILoT) denotes
HER with the transferring rewards provided by the proposed PILoT solution.

low-level policy to explore. As for the target tasks, we aim to show the transferring ability of PILoT
from source tasks to target tasks, except HER and HIGL, we also compare a recent well-performed
GCRL algorithm, Maximum Entropy Gain Exploration (MEGA) (Pitis et al., 2020), which pro-
posed to enhance the exploration coverage of the goal space by sampling goals that maximize the
entropy of past achieved goals; also, a very recent algorithm, Contrastive RL (Eysenbach et al.,
2022), which design a contrastive representation learning solution for GCRL. Noted that contrastive
RL requires the goal space the same as the state space (e.g., both are images). For each baseline
algorithm, we either take their suggested hyperparameters, or try our best to tune important ones.

In our transferring experiments, our PILoT solution first trains the decoupled policy by UDPO with
HER’s relabeling strategy for all source tasks; then, we distill the goal planner and generate dense
reward signals to train a normal policy by HER in the target tasks, denoted as HER (PILoT).

6.2 RESULTS AND ANALYSIS

In the main context, we focus on presenting the training results on source tasks and the transferring
results on target tasks. Additionally, we leave in depth analysis, ablation studies and hyperparameter
choices in the Appendix C.

Learning in the source tasks. We first train UDPO on four source tasks, and show the training
curve in Fig. 5. Compared with HER that is trained using a normal policy, we observe that UDPO
achieves similar performance, and sometimes it behaves better efficiency. For comparing UDPO
with HRL methods, we also include HIGL on these source tasks. To our surprise, HIGL performs
badly or even fails in many tasks, indicating its sensitivity by their landmarks sampling strategy. In
Appendix C.1 we further illustrate the MSE error between the planned state and the real state that
the agent actually achieved, with the visualization of the planning states, demonstrating that UDPO
has a great planning ability under goal-conditioned challenges.

Few-shot transferring to high-dimensional action spaces. The High-Dim-Action transfer-
ring challenge requires the agent to generalize its state planner to various action spaces and action
dynamics. In our design, the target task has higher action dimension with different dynamics (see
Appendix B.2 for details), making the task hard to learn from scratch. As shown in Fig. 5, on the
target Fetch-Reach and Fetch-Push, HER is much more struggle to learn well as it is in the source
tasks, and all GCRL, HRL and contrastive RL baselines can only learn with much more samples
or even fail. For PILoT, since the source and the target tasks share the same state space and state
transition, we can transfer the goal-conditioned state planner and only have to train the inverse dy-
namics from scratch. In result, by simply augmented HER with additional transferring reward, HER
(PILoT) shows impressive efficiency advantage for transferring the shared knowledge to new tasks.
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Few-shot transfer from vector to image states. The Vec-to-Image transferring challenge
learns high-dimensional visual observation input based agents guided by the planned goals learned
from the low-level vector input. From Fig. 5, we can also learn that using the transferring reward of
PILoT, HER (PILoT) achieves the best efficiency and final performance with much less samples on
the two given tasks, compared with various baselines that are designed with complicated techniques.

Few-shot transferring to different morphology. We further test the Complex-Morph transfer-
ring challenge that requires to distill the locomotion knowledge from a simple Point robot to a much
more complex Ant robot. The learning results from Fig. 5 again indicate impressive performance
of HER (PILoT), while we surprisingly find that MEGA, HIGL and contrastive RL all can hardly
learn feasible solutions on this task, even worse than HER. In our further comparison, we find that
this tested task is actually more hard to determine the success by requiring the agent to reach at a
very close distance (i.e., less than 0.1, which can be further referred to Appendix B). In addition,
the reason why MEGA fails to reach a good performance like the other tasks can be attribute to its
dependency on an exploration strategy, which always chooses rarely achieved goals measured by its
lowest density. This helps a lot in exploration when and the target goals’ distribution is dense, like
Ant-Maze. However, when the goals are scattered as in Ant-Locomotion, the agent has to explore
a wide range of the goal space, which may lead MEGA’s exploration strategy to be inefficient. On
comparison, PILoT shows that, despite the task is difficult or the target goals are hard-explored, as
long as we can transfer necessary knowledge from similar source tasks, agents can learn the skills
quickly in few interactions.
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Figure 6: Training and zero-shot transferring
curves on Ant-Maze task across 10 seeds.

Zero-shot transfer for different layouts. Finally, as
we find the intermediate goals provided by the goal
planner is accurate enough for every step that the agent
encounters, we turn to a intuitive and interesting zero-
shot knowledge transfer experiment for different map
layouts. Specifically, we try to learn the solution on
Ant-Maze, as shown in Fig. 4, which is a hard-exploring
tasks since the wall between the starting point and the
target position requires the agent to first increase the
distance to the goal before finally reaching it. As Fig. 6
illustrates, simply deploying HER fails. With sufficient
exploration, all recent GCRL, HRL and contrastive RL
baselines can learn a feasible solution after a quite large
times of sampling. However, since PILoT provide a
way of distilling the goal transition knowledge from a
much simpler tasks, i.e., the 2D-Maze task, we take the
intermediate goals as short guidance for the Ant-Locomotion policy pre-trained in Fig. 5. Note
that the Ant-Locomotion policy provides the ability to reach arbitrary goals within the map. In this
way, PILoT achieves zero-shot transfer performance without any sampling. This shows a promising
disentanglement of goal planner and motion controler for resolving complex tasks.

7 CONCLUSION AND LIMITATION

In this paper, we provide a general solution for skill transferring across various agents. In particular,
We propose PILoT, i.e., Planning Immediate Landmarks of Targets. First, PILoT utilizes and extends
a decoupled policy structure to learn a goal-conditioned state planner by universal decoupled policy
optimization; then, a goal-planner is distilled to plan immediate landmarks in a model-free style
that can be shared among different agents. To validate our proposal, we further design kinds of
transferring challenges and show different usages of PILoT, such as few-shot transferring across
different action spaces and dynamics, from low-dimensional vector states to image inputs, from
simple robot to complicated morphology; we also show a promising case of zero-shot transferring
on the harder Ant-Maze task. However, we find that the proposed PILoT solution mainly limited in
those tasks that have clear goal transitions that can be easily distilled, such as navigation tasks; on
the contrary, for those tasks which takes the positions of objects as goals, it will be much harder to
transfer the knowledge since the goals are always static when agents do not touch the objects. We
leave those kinds of tasks as future works.

9



Under review as a conference paper at ICLR 2023

8 ETHICS STATEMENT

This submission does not violate any ethics concern and adheres and acknowledge the ICLR Code
of Ethics.
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The algorithm outline is included in Appendix A, the hyperparameters are included in Appendix B.4
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Appendices
A ALGORITHM OUTLINE

Algorithm 1 Planning Immediate Landmarks of Targets (PILoT)

1: Source Task Input: Empty replay buffer Bs, state planner hψ , inverse dynamics model Iϕ and
goal planner fω .

2: Target Task Input: Empty replay buffer Bt, goal planner fω , policy πθ.
▷ Pre-training stage trains UDPO on source tasks.

3: for k = 0, 1, 2, · · · do
4: Collect trajectories {(s, a, s′, gt, r, done)} using current policy π =

Eϵ∼N [Iϕ(a|s, hψ(ϵ; s))] and store in B
5: Sample (s, a, s′, gt, r) ∼ Bs
6: if learn inverse dynamics function then
7: repeat
8: Update ϕ by LI (Eq. (5))
9: until Converged

10: end if
▷ Distillation stage: distill goal planner from state planner.

11: Update ω by ∇ωLf (Eq. (9))
12: end for

▷ Transfer stage trains HER (PILoT) on target tasks.
13: for k = 0, 1, 2, · · · do
14: Collect trajectories {(s, a, s′, gt, r, done)} using current policy πθ
15: Supplement the reward with additional bonus following Eq. (10):

r = r + r(s, a, ĝ′), where ĝ′ ∼ fω(ĝ
′|ϕ(s), gt)

16: Store {(s, a, s′, gt, r, done)} in Bt
17: Sample {(s, a, s′, gt, r, done)} ∼ Bt
18: Learn πθ by HER
19: end for

B EXPERIMENT SETTINGS

B.1 ENVIRONMENTS

We list important features of the tested environments as in Tab. 1. Note that the Goal Reaching
Distance is rather important to decide the difficulty of the tasks, so we carefully choose them to
meet the most of the current works.

Environment Name Obs. Type Obs. Dim Act. Dim Goal Dim Goal Reaching Distance Episode Length
Fetch-Reach Vector 10 4 3 0.05 50
Fetch-Push Vector 25 4 3 0.05 50
Fetch-Reach-High-Dim Vector 10 8 3 0.05 50
Fetch-Push-High-Dim Vector 25 8 3 0.05 50
Fetch-Reach-Image Image 64*64*3 4 3 0.05 50
Reacher Vector 11 3 2 0.02 50
Reacher-Image Image 64*64*3 3 2 0.02 50
Point-Locomotion Vector 6 2 2 0.1 500
Ant-Locomotion Vector 29 8 2 0.1 100
2D-Maze Vector 2 2 2 1.0 50
Ant-Maze Vector 29 8 2 1.0 500

Table 1: The environments used in our experiments, where goal reaching distance denotes the range of the goal;
in other words, when the agent get closer to the desired goal than the distance, the task is regarded success.
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It’s worth noted that Ant robot in the common used Ant-Maze environment (e.g., the one used in
Pitis et al. (2020); Eysenbach et al. (2022)) is different the one in Ant-Locomotion (e.g., the one used
in Zhu et al. (2021)), like the gear and ctrlrange attributes. Thus, in order to test the transferring
ability, we synchronize the Ant robot in these two tasks and re-run all baseline methods on these
tasks.

B.2 ACTION DYNAMICS SETTING FOR HIGH-DIM-ACT CHALLENGE

For transferring experiments on High-Dim-Act challenge, we take an 80% of the original gravity
with a designed complicated dynamics for the transferring experiment (different both action space
and dynamics). Particularly, given the original action space dimension m and dynamics s′ = fs(a)
on state s, the new action dimension and dynamics become n = 2m and s′ = fs(h(a)), where h is
constructed as:

h = − exp(a[0 : n/2] + 1) + exp(a[n/2 : −1]))/1.5

here a[i : j] selects the i-th to (j−1)-th elements from the action vector a. In other words, we trans-
fer to a different gravity setting while doubling the action space and construct a more complicated
action dynamics for agent to learn.

B.3 IMPLEMENTATION DETAILS

The implementation of PILoT and HER are based on a open-source Pytorch code framework1. As
for compared baselines, we take their official implementation, use its default hyperparameters and
try our best to tune important ones:

• MEGA (Pitis et al., 2020): https://github.com/spitis/mrl
• HIGL (Kim et al., 2021): https://github.com/junsu-kim97/HIGL
• Contrastive RL (Eysenbach et al., 2022): https://github.com/
google-research/google-research/tree/master/contrastive_rl

Text
3×3 Conv, 32, 

ReLU
×4

FullyConnected, 
50+LayerNorm

State Embedding

Figure 7: The encoder network architecture.

For resolving image-based tasks, we learn an encoder
that is shared between the policy and the critic. In par-
ticular, we use the same encoder structure for HER,
MEGA and HIGL. The encoder has four convolution
layers with the same 3 × 3 kernel size and 32 output
channel. The stride of the first layer is 2 and the stride
of the other layers is 1, as shown in Fig. 7. We adopt
ReLU as the activation function in all the layers. Af-
ter convolution, we have a fully connected layer with
50 hidden units and a layer-norm layer to get the output
of the encoder. When training, only the gradients from
Q network are used to update the encoder. For con-
trastive RL, we take their default structures for image-
based tasks.

B.4 IMPORTANT HYPERPARAMETERS

We list the key hyperparameters of the best performance of HER in Tab. 2 and UDPO in Tab. 3 on
each source task. For each task, we first tune HER to achieve the best performance, based on which
we further slightly adjust UDPO’s additional hyperparameters.

For HER, we tune Replay buffer size ∈ {1e5, 1e6}, Batch size ∈ {128, 2048, 4096}, Policy π learn-
ing rate ∈ {3e− 4, 1e− 3}.

For UDPO, we only tune two hyperparameters, State planner coefficient λ ∈ {1e− 3, 5e− 3, 1e−
2, 5e − 2, 1e − 1}, Inverse dynamics I learning interval ∆ ∈ {200, 500, 1500, 2000}. As further
shown in Section C.2, the choice slightly affects the success rate but can impose considerable influ-
ence on the accuracy of the state planner. The larger λ will lead stronger constraint on the accuracy

1https://github.com/Ericonaldo/ILSwiss
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of the state planner, but can hurt the exploration. On the other hand, ∆ controls the training stability,
and a larger ∆ assumes that the local inverse dynamics does not change for a longer time. Therefore,
in principle, for those tasks that exploration is much more difficult, we tend to choose a small λ; for
those tasks that the algorithm can learn fast so that the local inverse dynamics changes drastically,
we should have a small ∆. In default, we choose λ = 1e− 2 and ∆ = 1500.

We also list the hyperparameters of HER (PILoT) in Tab. 4 on each target task, which is the same
as the baseline HER algorithm (except the additional Transferring bonus rate.) In default, we set all
Transferring bonus rate to be 1.0, and find that it can reach a desired performance. In Section C.2,
we also include the ablation of the choice of this hyperparameter.

Table 2: Hyperparameters of HER on the source tasks.

Environments Fetch-Reach Fetch-Push Reacher 2D Maze Point-Locomotion
Optimizer Adam Optimizer
Discount factor γ 0.99
Replay buffer size 1e5 1e6 1e6 1e5 1e6
Batch size 128 2048 2048 128 2048
Number of VecEnvs 1 8 4 1 4
Q learning rate 3e-4
Policy π learning rate 3e-4 1e-3 3e-4

Table 3: Hyperparameters of UDPO on the source tasks.

Environments Fetch-Reach Fetch-Push Reacher 2D Maze Point-Locomotion
Optimizer Adam Optimizer
Discount factor γ 0.99
Replay buffer size 1e5 1e6 1e6 1e5 1e6
Batch size 128 2048 2048 128 2048
Number of VecEnvs 1 8 4 1 4
State planner coefficient λ 1e-2 1e-1 5e-3
Q learning rate 3e-4
Policy π learning rate 3e-4 1e-3 3e-4
Inverse dynamics I learning rate 1e-4
Inverse dynamics I learning interval ∆ (epochs) 200 1500

Table 4: Hyperparameters of HER / HER (PILoT) on the target tasks.

Environments Fetch-Reach-High-Dim Fetch-Push-High-Dim Fetch-Reach-Image Reacher-Image Ant-Locomotion
Optimizer Adam Optimizer
Discount factor γ 0.99
Replay buffer size 1e5 1e6
Batch size 128 2048 4096
Number of VecEnvs 1 8 1 4 4
Q learning rate 3e-4
Policy π learning rate 3e-4 1e-3 3e-4 1e-3 1e-3
Transferring bonus rate - - 1.0

C MORE EXPERIMENTAL RESULTS

C.1 DOES UDPO REACH WHERE IT PREDICTS?

In the universal decoupled policy structure, the state planner is decoupled and trained for predicting
the future plans that the agent is required to reach. Therefore, it is critical to understand the plans
given by the planner and make sure it is accurate enough that the agent can reach where it plans to
go, for distilling and transferring. To this end, we analyze the distance of the reaching states and the
predicted consecutive states and draw the mean square error (MSE) along the RL leaning procedure
in Fig. 8. To our delight, as the training goes, the gap between the planned states and the achieved
states is becoming smaller, indicating the accuracy of the state plan.
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Additionally, we also visualize the imagined rollout by state planner on the source tasks, which is
generated by consecutively take a predicted states as a new input. We compare it with the real rollout
in Fig. 9, showing the state planner can conduct reasonable multi-step plan.

On the target tasks, we visualize the subgoals proposed by the distilled goal planner and the real
rollout that was achieved during the interaction in Fig. 10, showing the effective and explainable
guidance from the goal planner.
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Figure 8: Curves of the MSE between one-step prediction of the state planner and the real state achieved in the
source environments.
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Figure 9: Imagined rollout by state planner and the real rollout that was achieved during the interaction in two
source tasks, showing the reasonable multi-step plan of the state planner. For Fetch-Reach and Fetch-Push
environments, we cannot render the planned rollout since the simulator internal states can not be recovered
from agent observations.

C.2 ABLATION STUDY

In this section, we aim to investigate the robustness and the key components of our proposed PILoT
framework. Specifically, we first analyse the two critical hyperparameters, i.e., the inverse dynamic
train frequency ∆ and the regularization coefficient λ on training UDPO in the pre-training stage;
then, we provide additional ablation analysis on bonus ratio β in the transferring stage.

Pre-training ablation on the inverse dynamic train frequency ∆. We first conduct ablation
studies on the inverse dynamic train frequency ∆. In particular, this hyperparameter determines
how often we train the low-level inverse dynamics and how long we regard the inverse dynamics is
static when we train the high-level state planner. It is intuitive that a larger ∆ is assuming that the
local inverse dynamics does not change for a longer time; on the contrary, a small ∆ should be used
when the the local inverse dynamics changes drastically. In our experiments, we find that ∆ affects
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25 steps

Figure 10: Subgoals proposed by the distilled goal planner and the real rollout that was achieved during the
interaction in two target tasks, showing the effective and explainable guidance from the goal planner. For Ant-
Locomotion environment, the goal planner is distilled from Point-Locomotion environment, in which the point
agent has faster moving speed than the ant. Nevertheless, the resultant trajectory in Ant-Locomotion can still
match the planned goals roughly.

the training stability, as it embeds some prior about the policy training in certain tasks. As is shown
in Fig. 11, Fetch-Push requires smaller ∆ than Point-Locomotion, since Fetch-Push is more simple,
and the policy training is much faster than the policy training in the Point-Locomotion.
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Figure 11: Ablation study on inverse dynamic train frequency ∆ with 5 seeds, given the other parameters the
same in Section 6.2.

Pre-training ablation on the regularization coefficient λ. The regularization coefficient λ is
another critical hyperparameter in UDPO training. The choice of λ balances the policy gradient
term and the constraint term in state planning updates. Particularly, larger λ puts more weight on the
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supervised penalty objective, which reduces the planning of infeasible next states. However this can
hurt the exploration ability offered by policy gradient objective. The results in Fig. 12 supports the
intuition. In both environments, the models trained with λ = 0.1 performs best in reaching where
they plan, but can not finish the goal-reaching task well. On the other hand, a extreme small λ results
in a quite large gap between reached states and planned states. Such gap can make the subsequent
transferring impossible. Therefore, the recipe is to find the medium λ which achieves competitive
success rate while keeping the value of prediction real MSE from explosion.
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Figure 12: Ablation study on state planner coefficient λ with 5 seeds, given the other parameters the same in
Section 6.2.

Transferring ablation on the bonus ratio β. In the transferring stage, bonus ratio β balances the
similarity reward from distilled planner and the sparse reward from the environment. We observe
from Fig. 13 that 1.0 is an appropriate choice for at least tasks tested in this paper. When β is smaller
(e.g., 0.1, 0.2, 0.5), the success rate converges more slowly, and the final performance is also worse.
This indicates that small β can not provide strong enough signals for the policy to follow planned
landmarks, leading to a decreased transfer efficiency. On the other hand, when a much larger β
(e.g., 2.0, 5.0) is adopted, the performance becomes even worse than insufficient guidance from
small β. Also, in Fetch-Reach-Image environment, the training curves are quite unstable. Although
the planned landmarks are useful in overcoming the sparse reward issue, they can not completely
replace the final sparse reward. As Fig. 8 shows, even in the source environments, there exist small
but not negligible errors between planned states and achieved states. Using large β can let the policy
misled by the goal planner and overfitted to those errors.
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Figure 13: Ablation study on bonus ratio β with 5 seeds, given the other parameters the same in Section 6.2.
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C.3 MORE ZERO-SHOT TRANSFER VISUALIZATION

In this section we illustrate more zero-shot transfer cases including success cases and failure cases.
In fact, the failures should be attributed to the inaccuracy of the controller (policy) since the goal
planner always gives the right way to success. If we can train a more accurate local controller, the
performance of success rate can no doubt be further improved.

C.3.1 SUCCESS CASES

Figure 14: Success cases of zero-shot transfer on Ant-Maze.
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C.3.2 FAILURE CASES

Figure 15: Failure cases of zero-shot transfer on Ant-Maze.
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