
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MLPS LEARN IN-CONTEXT ON
REGRESSION AND CLASSIFICATION TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL), the remarkable ability to solve a task from only input
exemplars, is often assumed to be a unique hallmark of Transformer models. By ex-
amining commonly employed synthetic ICL tasks, we demonstrate that multi-layer
perceptrons (MLPs) can also learn in-context. Moreover, MLPs, and the closely
related MLP-Mixer models, learn in-context competitively with Transformers given
the same compute budget in this setting. We further show that MLPs outperform
Transformers on a series of classical tasks from psychology designed to test re-
lational reasoning, which are closely related to in-context classification. These
results underscore a need for studying in-context learning beyond attention-based
architectures, while also challenging strong prior arguments about MLPs’ limited
ability to solve relational tasks. Altogether, our results highlight the unexpected
competence of MLPs, and support the growing interest in all-MLP alternatives to
task-specific architectures.

1 INTRODUCTION

The last few years have witnessed meteoric progress in neural language models. Catalyzed by the
Transformer architecture and driven by a steady increase in scale, these aptly-named Large Language
Models (LLMs) demonstrate unprecedented competence in drafting grammatical text, answering
questions, summarizing content, generating creative output, and even reasoning through non-trivial
puzzles (Bubeck et al., 2023; Brown et al., 2020; Achiam et al., 2023).

Crucial to an LLM’s proficiency is its ability to learn in-context (Lu et al., 2023; Dong et al., 2022;
Brown et al., 2020). In-context learning (ICL) refers to a task paradigm where exemplars from a
novel task are presented during inference time rather than during training (Figure 1a). The model
must then respond correctly to a query based only on these novel exemplars. No weight updates
occur throughout this process; rather, the model infers the task from the input exemplars and, despite
having fixed weights, produces the correct output.

ICL is commonly assumed to be a unique ability of Transformers, and explanations of the phenomenon
often ground their constructions in attention-based architectures (Akyürek et al., 2024; Von Oswald
et al., 2023; Zhang et al., 2023; Reddy, 2024; Lu et al., 2024). On controlled regression and
classification tasks targeted specifically for evaluating ICL, we demonstrate that the simple multi-layer
perceptron (MLP) can also learn in-context — and moreover, learn in-context competitively with the
full Transformer given the same compute budget.1 These results suggest that ICL is not an exclusive
feature of attention-based architectures, and highlights the need for studying the phenomenon in a
broader setting.

Tasks. We focus on controlled tasks commonly studied in the ICL literature, where the specific
capacity for in-context learning can be precisely characterized. These tasks are necessarily synthetic
approximations of natural language ICL prompting, but allow us to disambiguate a model’s capacity
for in-context learning from its ability to attain natural language fluency. In Section 2, we examine
ICL versions of regression (Garg et al., 2022; Akyürek et al., 2024; Raventós et al., 2024; Zhang

1Universal approximation by MLPs suggests that they may be able to learn in-context, though at uncertain
cost. We demonstrate that MLPs learn in-context without significantly larger compute (and occasionally quite a
bit smaller) than Transformers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2023) and classification (Reddy, 2024; Chan et al., 2022). As the two primary task paradigms
of machine learning, regression and classification form a representative basis for measuring ICL
competency. In Section 3, we consider a series of classical tasks used in the psychology literature to
probe relational reasoning (Campbell et al., 2023; Skinner, 1950; Sablé-Meyer et al., 2021), which
are functionally in-context classification. On these tasks, we find that MLPs outperform Transformers,
challenging common beliefs about MLPs’ proficiency at relational reasoning (see Appendix A
for an extended discussion). In focusing on controlled tasks, we avoid confounds irrelevant to
ICL introduced by naturalistic settings like language and vision. Nonetheless, our findings remain
consistent with existing results that do test MLPs in these more complex domains (Tolstikhin et al.,
2021; Liu et al., 2021; Fusco et al., 2022; Bachmann et al., 2024).

Ground rules. To ensure different architectures are comparable across tasks, we observe the
following ground rules. First, we compare models based on the total compute required for training
(measured in peta-floating point operations, PFLOPs), which summarizes influences like parameter
count, training iterations, and architectural efficiency. Details on how we compute this quantity are
provided in Appendix C.13. Measuring by compute reflects the practical use of these models, fairly
compares architectures by performance per floating-point cost, and is an established scale for defining
neural scaling laws (Kaplan et al., 2020). Second, where a single model is required, we select the best
model configuration as measured by loss, keeping compute cost equal across architectures. Data are
presented online, reflecting the “one-pass" setting common in training large language models (Brown
et al., 2020). Specific model and task configurations are enumerated in Appendix C.

1.1 RELATED WORK

In-context learning has been widely studied in a number of controlled settings. In particular, ICL has
been reproduced for linear regression, where a Transformer trained to perform the task can extrapolate
to novel input/label pairs provided in-context (Garg et al., 2022; Akyürek et al., 2024; Raventós
et al., 2024; Wu et al., 2024; Bai et al., 2024; Li et al., 2023; Lu et al., 2024). Proposed mechanisms
whereby a Transformer accomplishes the feat include that the Transformer implements some form
of gradient descent (Von Oswald et al., 2023; Akyürek et al., 2024) or recapitulates least-squares or
Ridge regression (Zhang et al., 2023; Akyürek et al., 2024; Lu et al., 2024). It has also been observed
that a Transformer interpolates between in-weight learning (IWL), the traditional paradigm where
the model learns specific examples through training, to in-context learning, where the model uses
only exemplars provided in the input context at inference time (Raventós et al., 2024; Wu et al.,
2024). Such a transition occurs as a function of data diversity, where datasets with more distinct
examples encourage the development of ICL competency. Analogous phenomena have been observed
in in-context classification tasks (Chan et al., 2022; Reddy, 2024). Impressively, the ICL performance
attained in these tasks by Transformers approaches Bayes optimality (Xie et al., 2021; Bai et al.,
2024; Li et al., 2023; Ahuja et al., 2024; Lu et al., 2024).

These studies nearly all ground their investigations in Transformer models, and explicitly assume
that the model uses an attention mechanism to implement ICL. The exceptions include Chan et al.
(2022), who discover that recurrent neural networks (both vanilla RNNs and LSTMs) are unable
to learn an in-context classification task under the same conditions where a Transformer can, and
Xie et al. (2021), who discover that LSTMs can in fact learn in-context on a synthetic language
modeling task. Recently, Lee et al. (2024) found that a wide variety of causal sequence models can
learn in-context on a broad array of toy tasks, with varying degrees of success. Park et al. (2024)
support this finding by showing how state space models and their hybrids with Transformers can
learn in-context competitively. To the best of our knowledge, no prior work has examined in-context
learning in vanilla MLPs.

The current resurgence of interest in applying MLPs to modern, complex tasks originates with
Tolstikhin et al. (2021), which introduced the MLP-Mixer model. Mixers operate by alternating
MLPs across the dimensions of the input, treating the remaining dimensions as batch dimensions.
Despite their simplicity, Mixers attain state-of-the-art performance on image classification, recalling
the broad observation that “less inductive bias is better" (Sutton, 2019; Bachmann et al., 2024). In
the ensuing years, “all-MLP" models based primarily on MLP components have spread across many
areas including vision (Bachmann et al., 2024) and natural language (Liu et al., 2021; Fusco et al.,
2022). While strong performance has been documented on natural language, less is known about

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Point
Query

Point
Query

IC
L

R
eg

re
ss

io
n

IC
L

C
la

ss
ifi

ca
tio

n
a

b

c

e f

g

h

j

i

d

Figure 1: ICL regression and classification results. (a) ICL presents context exemplars from a
novel task (red), followed by a query input (blue). The model must infer the solution (green) based
on the context. (b) ICL regression example. The model receives linearly-related input points, and
must regress the query point. (c) Compute vs. MSE on the unrestricted task distribution. Each point
represents a single model, with particular parameters and training iterations. At large compute, MSE
is approximately equal across all architectures. The red line corresponds to the Bayes optimal Ridge
MSE. (d) Excess MSE (MSE above Bayes optimal) for varying context length L on the unrestricted
task distribution. Excess MSE remains flat for Mixers, but rises somewhat for Transformers. MLPs
fail to learn in-context at all beyond 26 context exemplars. The grey line corresponds to the excess
MSE incurred by always guessing zero. (e, f) IWL to ICL transition with increasing data diversity.
We train on a finite distribution with k weights, then test on both the finite training distribution and
the unrestricted distribution. All models exhibit a transition from IWL (represented by dMMSE) to
ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal Ridge
on the finite training distribution by learning in-weight the underlying β’s. (g) ICL classification
example, with burstiness B = 3. Multiple clusters may share the same label. (h) Compute vs. cross
entropy loss on ICL classification, with k = 2048 clusters, B = 4, and L = 8, which pushes all
models to learn in-context. At large compute, all architectures attain near-zero cross entropy loss.
The gray line corresponds to loss obtained from placing equal probability on the 2 (of C = 32) labels
present in context. (i) Cross entropy loss for varying context length L on the task configuration in
(h). Loss is relatively flat for all architectures, though it increases a little for Mixers. (j) IWL to ICL
transition with increasing data diversity, where L = 8 and B = 4. All models exhibit a transition
from IWL to ICL as the number of clusters k increases. (all) We use n = 8 dimension inputs. All
line plots feature 95 percent confidence intervals about the mean, estimated from 5 replications.

MLPs’ specific proficiency for ICL, and how it compares with Transformer models. In this study,
we select a series of controlled, representative tasks that clarify an MLP’s surprising competence for
ICL. Our findings underscore the ultimate utility of MLPs, uncovering avenues of both theoretic and
practical interest.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 EXPERIMENT: IN-CONTEXT TASKS

We begin by exploring MLPs’ behavior in a controlled ICL format, where their specific capacities and
weaknesses can be precisely characterized. Specifically, we examine two tasks: in-context regression
and in-context classification.

2.1 ICL REGRESSION

We present in-context regression following its common formulation (Garg et al., 2022; Zhang et al.,
2023). The input consists of a sequence of values (x1, y1), (x2, y2), . . . , (xL, yL), where xi ∈ Rn

and yi ∈ R. The xi, yi pairs are linearly related through a set of weights β ∈ Rn such that
yi = xi · β + ε, with noise ε ∼ N (0, σ2). Finally, the input includes a query xq . The model output
is a single scalar regressed against the corresponding yq. Crucially, the weights β vary between
input sequences. The model cannot rely on learning any one β. Rather, it must infer from context
exemplars (xi, yi) what the corresponding β must be, and use this to predict the correct output yq.
Figure 1b illustrates the task, with additional details in Appendix C.

In the main text, our task fixes the number of context points at L. A common variation on this tasks
allows the number of context points to vary, and trains the model autoregressively. Results on this
autoregressive variation are presented in Figure 5, and are unchanged fixed-length case.

Following Raventós et al. (2024), we consider two different task distributions: finite and unrestricted.
For the finite distribution, we fix a finite pool of weights before training β1,β2, . . . ,βk, where
βi ∼ N (0, I/n). For each input, we sample a new β by selecting uniformly at random one weight
from the pool {βi}ki=1. Larger k corresponds to higher data diversity. For the unrestricted distribution,
a new set of weights is sampled for each input β ∼ N (0, I/n). The unrestricted distribution can be
thought of as the k →∞ case, and requires full ICL competency in order to infer the correct weights
relating the context exemplars. Unless otherwise stated, we use n = 8 dimensional inputs.

Results. We first consider how MLPs perform compared to Transformers on in-context regression.
To do so, we train and test using online samples drawn from the unrestricted task distribution, requiring
all models to learn an in-context solution. Figure 1c plots the MSE achieved by different architectures
as a function of total compute. With sufficient compute, MLPs, Mixers, and Transformers all
perform in-context regression with near optimal MSE, which is given by Ridge regression on context
points using the Bayes optimal regularization parameter (Appendix C.6). For smaller compute,
Transformers attain somewhat better MSE than their MLP counterparts, though the difference is
modest and performance across all three architectures overlaps substantially.

One domain in which a vanilla MLP is decisively worse than a Transformer is for long context length.
Figure 1d plots the excess MSE obtained after training and testing on the unrestricted task distribution
for varying number of points in the context, where {excess MSE} = {model MSE} - {Bayes optimal
Ridge MSE}. The Transformer generally approaches the optimal MSE regardless of context length,
though it performs with less stability for longer contexts. The vanilla MLP worsens quickly with
larger contexts and approaches the performance of an estimator that returns zero for every input.
Strikingly, the MLP mixer does not exhibit the same sensitivity to context length, and continues
attaining the Bayes optimal MSE consistently even for very long contexts.

One final observation: as data diversity increases, Transformers exhibit a transition from in-weight
learning (IWL), the traditional paradigm where the model learns specific examples through training,
to in-context learning, where the model uses only context exemplars presented at inference time
(Raventós et al., 2024). We next show that MLPs exhibit a similar transition. Following Raventós et al.
(2024), we train each model on a finite distribution with k fixed regression weights. As we increase k,
we record the MSE obtained by each model on both the finite distribution β ∼ U

(
{βi}ki=1

)
using

the same β’s from training (Figure 1e) and the unrestricted distribution β ∼ N (0, I/n) where β’s
are sampled anew (Figure 1f). We determine whether a model has learned the in-weight solution
by comparing its MSE to that of the discrete minimum mean squared error (dMMSE) estimator,
which is a Bayesian estimator derived from a prior matched to the finite training distribution (see

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Appendix C.6 for details).2 We characterize the in-context solution by a Ridge estimator with the
Bayes optimal choice of regularization. For small k, all models demonstrate in-weight learning by
tracing the dMMSE curve. As k increases, we observe a swift transition to the Ridge curve, indicating
a transition to in-context learning. The Transformer makes this transition at a somewhat smaller k
than the MLP models. We consider additional plots and parameterizations in Appendix D.

2.2 ICL CLASSIFICATION

Following Reddy (2024), we present in-context classification as follows. The input consists of
a sequence of context exemplars (x1,y1), (x2,y2), . . . , (xL,yL) followed by a query point xq,
where xi,yi ∈ Rn. The x points are sampled from a Gaussian mixture modelMk consisting of k
components. Each mixture component (i.e. cluster) is labeled by one among C labels, where k ≥ C,
so multiple clusters may map to the same label. Labels are represented in the context by vectors
α1,α2, . . .αC ∈ Rn. If xi belongs to cluster j, then yi = αj . The model must predict the correct
label for xq , and outputs C logits corresponding to the C labels (not a vector of values α, which are
used only to represent labels in the context). Figure 1g illustrates this task, with additional details in
Appendix C.7.

Importantly, the query point xq shares a cluster with at least one of the context points x1,x2, . . . ,xL.
Mixture components and cluster labels remain fixed throughout training. Hence, the model can
learn either an in-weight solution by memorizing the label for each cluster, or an in-context solution
by referencing the class label associated with xq among the context exemplars. We also consider
the input’s burstiness B, which is the number of repeats per cluster in the context (B must divide
the context length L). For example, B = 3 means there are exactly three points from each cluster
represented in the inputs. Data diversity corresponds to the number of clusters k, where larger k
correspond to more diverse dataset. Unless otherwise stated, we use n = 8 dimensional inputs.

Results. We first compare how different architectures perform at ICL across different compute in
Figure 1h. The task is parameterized by burstiness B = 4 and k = 2048 with L = 8 points in the
context, a setting in which all models develop an in-context solution (see Figure 7d for details). As
before, with sufficient compute Transformers do not outperform vanilla MLPs or Mixers. Indeed, at
small compute, vanilla MLPs attain a somewhat lower loss. Note: in this setting, there are L/B = 2
labels present in each context, out of C = 32 total possible labels. As a baseline, we plot in gray
the loss obtained by placing equal probability on the 2 labels present in-context. MLPs in particular
appear to plateau at this baseline before approaching zero loss with higher compute.

We also measure how well each model handles increasingly long context lengths in Figure 1i. In a
surprising reversal, vanilla MLPs attain a relatively flat loss across context lengths, as do Transformers.
Mixers’ loss increases somewhat for longer contexts, though this blip vanishes at higher dimensions
(Figure 7b). Overall, MLPs continue to perform at a comparable level with Transformers on in-context
classification.

Finally, we observe a transition from IWL to ICL across the three architectures as data diversity
increases. As in Reddy (2024), we measure IWL by constructing test examples where the query
point does not appear in the context. The only way the model correctly classifies these points is
if it memorizes the mapping from cluster to label. To measure ICL, we consider two different
strategies: 1) sample points from an entirely different mixtureM′

k, producing novel clusters, or 2)
swap cluster/label mappings so that clusters are labeled differently than they were during training.
Test examples from either strategy can only be solved if the model identifies cluster labels in-
context, since the underlying cluster label assignment is different from training.3 We plot accuracy
across all three types of test examples in Figure 1j for increasing k, and observe a transition from
IWL to ICL across all three model architectures. The transition happens for somewhat lower data
diversity in Transformers and Mixers, and somewhat higher in vanilla MLPs. Additional plots and
parameterizations are explored in Appendix D.

2The dMMSE estimator averages across the k weights in the finite training distribution based on their fit to
the current context exemplars.

3In practice, accuracy on these two ICL measures is virtually identical across all models and settings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Point

Query

Answer

Point

Answer

Point

Answer

M
at

ch
-t

o-
sa

m
pl

e
S

ph
er

e
od

db
al

l
Li

ne
 o

dd
ba

ll

a b c

d e f g

h i j

Train scramble

Te
st

 s
cr

am
bl

e

True

Tr
ue

F
al

se

False

Figure 2: Relational reasoning results. Global legend is at the bottom right. (a) Match-to-sample
task. (b) Compute vs. cross entropy loss on MTS task. Each point represents a single model, with
particular parameters and training time. RB MLPs attain the best loss with the smallest compute,
followed by MLPs and Transformers. (c) OOD generalization on MTS. In-distribution radii are
highlighted in red. MLPs and RB MLPs generalize well on OOD radii. No model generalizes well
on OOD test scrambling. (d) Sphere oddball task. (e) Same as in (b), for sphere oddball. (f) OOD
generalization on sphere oddball. In-distribution distance is highlighted in red. Red dashed lines
correspond to the accuracy obtained by guessing that the furthest point away from the cluster center
is the oddball. (g) Logit of oddball point as its distance from the center increases. Dashed lines
correspond to different polynomial scalings. Only the Transformer fails to increase its logit with
distance. (h) Line oddball task. (i) Compute vs. loss on line oddball task. RB MLP no longer learns
the task well, but appending additional MLP layers (“RB MLP (deep)") helps. (j) OOD generalization
on line oddball. In-distribution distance is highlighted in red. Red lines indicate accuracy attained
by a model guessing that the furthest point away from the center is the oddball. MLPs continue to
generalize stronger than Transformers, and match the deep RB MLP. (all) Shaded regions and error
bars correspond to 95 percent confidence intervals estimated from 5 replications.

3 EXPERIMENT: RELATIONAL TASKS

We next consider classical tasks from psychology used to study relational reasoning in humans,
animals, and neural networks (Campbell et al., 2023; Skinner, 1950; Sablé-Meyer et al., 2021;
Geiger et al., 2023). These tasks are functionally a subset of in-context classification, and rely on
understanding similarity relationships between context exemplars.

In a surprising advance from the tasks explored in Section 2, we find that MLPs perform better with
less compute than Transformers, and generalize more effectively on out-of-distribution test sets. As a
benchmark for gold-standard performance using hand-crafted features, we implement a relationally
bottlenecked MLP (RB MLP), an architecture demonstrated to solve many challenging relational
tasks with competitive generalization and efficiency characteristics (Webb et al., 2023; Campbell et al.,
2023). Relational bottlenecks are architectural components that prevent absolute information about

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the inputs from propagating downstream; rather, the RB computes a set of (hand-crafted) relations
between inputs (often simple dot products), and allows only these relations to flow downstream,
forcing the model to operate on abstractions. Our RB MLP operates by first computing dot product
relations between inputs, then propagating optionally through several MLP layers before a final
readout (see Appendix C.5 for details). We find that while relational bottlenecks are helpful when the
model’s relations align well with the task structure, they may fail on tasks with deviating structure. All
in all, these relational tasks demonstrate that MLPs can quite surprisingly outperform Transformers
on certain in-context tasks.

The question of whether neural network models can reason relationally at all has been an enduring
topic of heated debate (see Alhama and Zuidema (2019) for a recent review). Our results fall
decisively in favor of the affirmative, and contrast a recent attempt at formally proving that MLPs
cannot reason relationally (Boix-Adsera et al., 2023). In Appendix A, we discuss our relationship
with the relational reasoning literature, comment on the proof by Boix-Adsera et al. (2023), and
demonstrate empirically that a vanilla MLP solves a task posited by their arguments to be impossible.

3.1 MATCH TO SAMPLE

The match-to-sample (MTS) task paradigm originates in Skinnerian behavioral experiments (Skinner,
1950). A test subject is first presented with a sample stimulus (e.g. an image). The subject is then
shown a set of many stimuli, and must select the one that matches the original sample.

Our MTS task proceeds as follows. The model is presented with L context points x1,x2, . . . ,xL ∈
R2 followed by a query point xq . The context points are evenly spaced along a circle with unit radius
centered at the origin. The model must return the index of the context point closest to the query
y = argmaxi (xi · xq). The points can be thought of as idealized stimulus embeddings in neural
representation space. A model must reason correctly about distances between points, and ignore
their absolute location (which varies from example to example). Framed this way, the MTS setup is
an in-context classification task with one context point per class. In the results that follow, we use
L = 5 points in the context. Figure 2a presents an illustration of the task, with additional details in
Appendix C.8.

In addition to the vanilla MLP and Transformer models, we also consider a relationally bottlenecked
MLP architecture (RB MLP) (Webb et al., 2023). The RB MLP uses dot-product relations r between
the query point and each of the five context points r = (xq · x1,xq · x2, . . . ,xq · xL). The relations
r are passed directly to a softmax readout, producing class predictions yRB = smax (W readout r).
Note, a choice of weights W readout = I solves the task perfectly, though it remains to be seen whether
the RB model discovers this solution. Further details on the RB MLP model are in Appendix C.5.

Results. Figure 2b plots the loss obtained by each of the three models on the MTS task as a function
of compute. The vanilla MLP outperforms the Transformer by a surprising margin. With relations
that are well-aligned to the task, the RB MLP model achieves the best compute efficiency.

We also consider how well each model performs in different kinds of out-of-distribution test examples.
Results are plotted in Figure 2c. We first try perturbing the radius of the circle after training with
unit radius. As we vary the radius during testing, both MLP models continue to perform well, but
the Transformer quickly degenerates. We also try changing the order of context points. If the points
are ordered, they are presented in clockwise order along the circle. If the points are scrambled, they
are presented in random order. Curiously, if the models are trained first on ordered points, then no
model generalizes well when subsequently tested with scrambled points (not even the relationally
bottlenecked model).

3.2 SPHERE ODDBALL

The oddball tasks described in the next two sections are based on work from Sablé-Meyer et al.
(2021), who used it to measure geometric relational reasoning in humans and baboons. In an oddball
task, the test subject is presented with six stimuli, originally geometric images. One image differs
from the others. The subject must select this “oddball” to succeed. Like the MTS task, the oddball
tasks are a subset of ICL classification where all-but-one point belong to the same class.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

As before, our version of the oddball task simplify full visual stimuli into idealized stimulus repre-
sentations. The model is presented with L context points x1,x2, . . . ,xL ∈ R2. (There are no query
points.) In the sphere oddball task, the context points are sampled as x ∼ N (µ, I), for some nonzero
center µ. One point in the context is randomly selected and perturbed in a random direction by a
distance d. The model must return the index of this oddball point. In the results that follow, we use
L = 6 points in the context. Figure 2d presents an illustration of the task, with additional details in
Appendix C.9.

In addition to the vanilla MLP and Transformer models, we again use an RB MLP with dot-product
relations. Given the average context point x = 1

L

∑
i xi, the relations R form a matrix with entries

Rij = (xi − x) · (xj − x). These centered4 dot-product relations are flattened and passed directly
to a softmax readout, forming class predictions yRB = smax(W readout flat(R)). Note, the sphere
oddball task can be solved by finding the point that is furthest away from the cluster center. Hence,
a choice of W readout that selects the diagonal relations Rii will solve the task, but it remains to be
seen whether the model will learn such a readout. Additional details on the RB MLP are provided in
Appendix C.5.

Results. Figure 2e plots the loss obtained by each model on the sphere oddball task as a function of
compute. Again, the vanilla MLP outperforms the Transformer by a wide margin. With well-suited
relations, the RB MP achieves the best compute efficiency.

We also consider how each model performs on OOD test examples. Training examples consist of
oddballs with fixed perturbation distance d = 5. As we vary towards longer distances, we observe in
Figure 2f that both the vanilla and RB MLPs continue performing perfectly, while the Transformer’s
performance decays. We can also examine how the logit corresponding to the oddball index changes
as we change the position of the oddball with respect to the cluster center (Figure 2g). Both the
vanilla and RB MLPs learn strictly increasing relationships, suggesting they will correctly generalize
to any d provided the other logits do not also increase. The Transformer seems to asymptote to a flat
value, suggesting that it ultimately fails to distinguish the oddball logit for large d.

3.3 LINE ODDBALL

Rather than sample context points from a spherical Gaussian, the line oddball task distributes context
points along a line. For each training example, we select a line with random orientation that passes
through the origin. Context points x1,x2, . . . ,xL ∈ R2 are Gaussian distributed along this line
with zero mean and unit variance. One context point is selected at random to be the oddball, and is
perturbed by a distance d in the direction perpendicular to the line. The model must output the index
of the oddball point. We use L = 6 points in the context. Figure 2h presents an illustration of the
task, with additional details in Appendix C. We use the same models as for the spherical oddball,
including an RB MLP using the same relations R.

The line oddball task cannot be solved by simply selecting the point furthest away from all the
others for small d. The relevant relations are more sophisticated, and must be sensitive to the linear
structure between context points. The line oddball task also presents an alternative hypothesis for
the structure of stimuli in representation space. Whereas the sphere oddball presumes that input
stimuli are distributed isotropically in representation space, the line oddball task assumes that inputs
fall along a favored direction. Neither is obviously more plausible than the other for a general task.
However, as we see below, the RB MLP from the past two tasks fails quickly on this task, presenting
a simple example in which well-aligned relations can be critical. We also experiment with a “deep"
RB MLP, which features two additional MLP layers between the relations and readout, and now
solves the task at a small compute cost.

Results. Figure 2i plots the loss for each model as a function of compute. Vanilla MLPs perform
just a little better than Transformers. A (shallow) RB MLP fails to solve the task altogether, and
loss remains high. A deep RB MLP, which features two additional fully-connected layers after the
relational bottleneck, can solve the task.

4Centering was not required in the MTS task above, since the context points in that task were already
centered.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We also compare how each model performs on different out-of-distribution test examples in Figure 2j.
We vary the distance d between the oddball point and the line of context points on different training
sets. At test time, we compare the accuracy of each model on the whole range of d. As we saw above,
MLPs continue to outperform Transformers on almost all OOD test cases. Unless equipped with
further layers, the shallow RB MLPs fail to learn the task at all for small d. Though a relationally
bottlenecked model can succeed with great efficiency on well-aligned tasks, without relations that are
tailored to the task’s underlying structure, an RB model may be disadvantaged.

4 DISCUSSION

We observed that MLPs can learn in-context and moreover, perform at a level comparable to Trans-
formers on in-context tasks. We also examined relational reasoning tasks, closely related to ICL
classification, which have historically been considered beyond the ability of simple neural architec-
tures like MLPs (Alhama and Zuidema, 2019; Marcus, 1998; Boix-Adsera et al., 2023). Surprisingly,
MLPs learn these relational tasks well — and exhibit both better compute efficiency and general-
ization performance than Transformers. This observation challenges earlier claims to the contrary
(Boix-Adsera et al., 2023; Webb et al., 2023), but is consistent with the emerging realization that,
given sufficient data diversity and compute, an MLP can indeed learn to reason relationally (Geiger
et al., 2023). We discuss our relationship with prior work in relational reasoning further in Appendix
A.

Broadly, our work is consistent with the “bitter lesson” of AI research (Sutton, 2019): in the face of
increasing compute and data resources, general methods with weaker inductive bias will outperform
specialist methods endowed with stronger inductive bias. This heuristic speaks to the intuition that a
strong inductive bias may be beneficial for particular tasks, but may misalign the model in different
or more general settings. We see an extreme example of this in studying relationally bottlenecked
MLPs, where hand-crafted relations strongly benefit the model in specific cases where they align
with the task. However, departing even slightly from the ideal task structure prevents the shallow RB
MLP from learning the task at all, while a vanilla MLP continues to exhibit strong performance. In
the absence of hand-designed relations, Transformers are more general learners than RB MLPs, but
less than vanilla MLPs. As a result, for certain well-suited tasks (like ICL regression), Transformers
perform more efficiently for a fixed compute budget. But for other tasks (relational reasoning, simple
regression and classification in Appendix B), MLPs have the upper hand.

These results expand the range of possible tasks commonly thought solvable by MLP models. ICL
is clearly not the exclusive domain of Transformers, and we encourage greater engagement with
ICL beyond attention-based architectures. The surprising success of MLPs for relational reasoning
also encourages a change in perspective about how simple architectures may be capable of solving
relational tasks, and under what conditions they fail. The impressive performance of MLPs hints at
potential real-world benefits, and we watch the future outcomes of all-MLP approaches with interest.

Limitations and future directions. We consider only controlled, synthetic tasks designed to probe
for specific characteristics. We never compare architectures on complex datasets like those found in
language or vision, though there are other studies that do, and find that MLPs continue to perform
competitively (Tolstikhin et al., 2021; Liu et al., 2021; Fusco et al., 2022). The advantage of our
approach is that we avoid confounds irrelevant to ICL introduced by complex data, and clarify the
specific competencies of each model to learn in-context across representative settings. Nonetheless,
an important direction for future work is to study how MLPs perform on more complex tasks, and
characterize failure modes if they occur.

We also work exclusively in an online setting where models have access to a continuous stream of
infinite data. As the bitter lesson heuristic predicts, this setup benefits the MLP, but we can certainly
imagine that in data-limited scenarios, Transformers and other architectures with stronger inductive
bias would dominate. Indeed, we have already observed that Transformers tend to learn in-context
with comparatively less data diversity. Examining a data-limited setting represents another important
future direction, and will potentially reveal important weaknesses in MLPs.

Where possible, we test on a wide array of parameterizations and task settings. The main text figures
represent only an illustrative subset of our total results, with supplementary figures provided in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Appendix D. However, as with any empirical study, we cannot test every infinite variation on our
models and tasks; there may be further unexpected results hiding behind a setting we have not tried.

Overall, we hope our results encourage further work studying ICL beyond attention-based archi-
tectures, and the properties of simple architectures like MLPs that enable them to solve relational
tasks. Important questions remain in quantifying how much data diversity is generally required to
transition to ICL, how this threshold depends on architecture, varying sensitivity to context length
across architectures, precisely characterizing differences in inductive bias for ICL, and more.

Ethics statement. Since this study focuses on synthetic tasks, it is limited in direct negative societal
impacts beyond that of general theoretical machine learning research. We do not conduct experiments
in human or animal subjects.

Reproducibility statement. Full descriptions of all tasks are provided in Sections 2 and 3 of the
main text. Additional details regarding specific task and model configurations, along with code
availability, compute requirements, and software, are comprehensively enumerated in Appendix C.
We also provide our source code as a zipped supplementary attachment.

REFERENCES

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? arXiv preprint
arXiv:2309.01809, 2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In International Conference
on Learning Representations, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In International Conference on Learning Representations, 2024.

Yue M. Lu, Mary I. Letey, Jacob A. Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymptotic
theory of in-context learning by linear attention. arXiv preprint arXiv:2405.11751, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. Advances in Neural Information
Processing Systems, 36, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Declan Campbell, Sreejan Kumar, Tyler Giallanza, Jonathan D Cohen, and Thomas L Griffiths.
Relational constraints on neural networks reproduce human biases towards abstract geometric
regularity. arXiv preprint arXiv:2309.17363, 2023.

Burrhus Frederic Skinner. Are theories of learning necessary? Psychological review, 57(4):193,
1950.

Mathias Sablé-Meyer, Joël Fagot, Serge Caparos, Timo van Kerkoerle, Marie Amalric, and Stanislas
Dehaene. Sensitivity to geometric shape regularity in humans and baboons: A putative signature
of human singularity. Proceedings of the National Academy of Sciences, 118(16):e2023123118,
2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in neural
information processing systems, 34:9204–9215, 2021.

Francesco Fusco, Damian Pascual, Peter Staar, and Diego Antognini. pnlp-mixer: An efficient all-mlp
architecture for language. arXiv preprint arXiv:2202.04350, 2022.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
bias. Advances in Neural Information Processing Systems, 36, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In International
Conference on Learning Representations, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pages 19565–19594. PMLR, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Kabir Ahuja, Madhur Panwar, and Navin Goyal. In-context learning through the bayesian prism. In
International Conference on Learning Representations, 2024.

Ivan Lee, Nan Jiang, and Taylor Berg-Kirkpatrick. Exploring the relationship between model archi-
tecture and in-context learning ability. In International Conference on Learning Representations,
2024.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1):38, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Atticus Geiger, Alexandra Carstensen, Michael C Frank, and Christopher Potts. Relational reasoning
and generalization using nonsymbolic neural networks. Psychological Review, 130(2):308, 2023.

Taylor W Webb, Steven M Frankland, Awni Altabaa, Kamesh Krishnamurthy, Declan Campbell,
Jacob Russin, Randall O’Reilly, John Lafferty, and Jonathan D Cohen. The relational bottleneck
as an inductive bias for efficient abstraction. arXiv preprint arXiv:2309.06629, 2023.

Raquel G Alhama and Willem Zuidema. A review of computational models of basic rule learning:
The neural-symbolic debate and beyond. Psychonomic bulletin & review, 26:1174–1194, 2019.

Enric Boix-Adsera, Omid Saremi, Emmanuel Abbe, Samy Bengio, Etai Littwin, and Joshua Susskind.
When can transformers reason with abstract symbols? arXiv preprint arXiv:2310.09753, 2023.

Gary F Marcus. Rethinking eliminative connectionism. Cognitive psychology, 37(3):243–282, 1998.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In Proceedings
of the twenty-first international conference on Machine learning, page 78, 2004.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Grigory Khromov and Sidak Pal Singh. Some intriguing aspects about lipschitz continuity of neural
networks. arXiv preprint arXiv:2302.10886, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Gary F Marcus, Sugumaran Vijayan, Shoba Bandi Rao, and Peter M Vishton. Rule learning by
seven-month-old infants. Science, 283(5398):77–80, 1999.

Junkyung Kim, Matthew Ricci, and Thomas Serre. Not-so-clevr: learning same–different relations
strains feedforward neural networks. Interface focus, 8(4):20180011, 2018.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pages 2873–2882. PMLR, 2018.

Thomas Serre. Deep learning: the good, the bad, and the ugly. Annual review of vision science, 5:
399–426, 2019.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

12

http://github.com/google/jax

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):
3021, 2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/joss.03021.

The pandas development team. pandas-dev/pandas: Pandas, February 2020. URL https://doi.
org/10.5281/zenodo.3509134.

13

http://github.com/google/flax
https://doi.org/10.21105/joss.03021
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MLPS REASON RELATIONALLY

Relational reasoning is closely related to in-context learning, as solving ICL tasks requires reasoning
about the relationships between inputs while ignoring their absolute characteristics. Indeed, the
relational tasks we explore in the main text are functional subsets of ICL classification. At the same
time, MLPs are commonly presumed to fail at relational reasoning (Marcus, 1998; Boix-Adsera
et al., 2023) or exhibit severe weaknesses (Fodor and Pylyshyn, 1988). While our primary focus
remains on comparing in-context learning between Transformers and MLPs, we offer this digression
to contextualize our results within the broader relational reasoning literature.

The question of whether connectionist models are able to reason relationally at all has been an
enduring topic of passionate debate (see Alhama and Zuidema (2019) for a recent review). Our
empirics support the notion that classical architectures like vanilla MLPs can indeed reason relation-
ally, consistent with recent findings in Geiger et al. (2023). However, many researchers presuppose
that classical architectures cannot solve relational tasks, resulting in a zoo of alternatives aimed at
endowing neural networks with relational capacities (Webb et al., 2023; Battaglia et al., 2018; Geiger
et al., 2023; Alhama and Zuidema, 2019).

One especially strong claim that MLPs cannot reason relationally was advanced by Boix-Adsera et al.
(2023), who formally prove that MLPs will never generalize to unseen symbols on relational tasks.
Their proof however relies on a pathological input scheme that hinders learning. Below, we discuss
their analysis on MLPs and offer our own remarks on the learnability of relational tasks. We also
demonstrate empirically that, under conventional settings, MLPs do generalize on a relational task
claimed by Boix-Adsera et al. (2023) to be impossible.

A.1 SUMMARY OF BOIX-ADSERA ET AL.

We begin with a brief summary of the relevant theorem in Boix-Adsera et al. (2023). Consider a
template z consisting of a sequence of wildcards

z = α1α2 . . . αk ∈ Wk .

A string x consisting of symbols x = x1x2 . . . xk ∈ X k satisfies z if there exists an injective map
s : W → X such that s(αi) = xi for all i, which we call a substitution map. Finally, we have a
labeling function f∗ :Wk → R that assigns scalar labels to different templates.

A concrete example of this setup is the same-different task often used in probing relational reasoning
(Geiger et al., 2023). Here, we consider two templates z1 = αα and z2 = αβ. The labeling function
is f∗(z1) = 1 and f∗(z2) = 0. The string x = AA matches template z1, and the string x′ = AB
matches template z2. We will abuse notation slightly and write f∗(x) = f∗(z1) = 1. Crucially,
matching a template depends only on relations between symbols and not on the symbols themselves.
For example,

f∗(CC) = f∗(88) = f∗([platypus][platypus]) = 1 ̸= f∗([platypus][kangaroo])
regardless of the concrete meaning of the symbols.

Boix-Adsera et al. (2023) consider MLP models with one-hot encodings of symbols

E(x) = (ex1
, ex2

, . . . , exk
)⊺ , E(x) ∈ Rk×|X|

where exi
∈ R|X | is a vector with 1 at an index corresponding to xi and 0 elsewhere. The one-hot

encodings are then flattened as flat(E(x)) ∈ Rk|X | before being passed directly into an MLP.

For notation, we write fMLP(x;θ
t) as an MLP applied to string x with parameters θt obtained after

t steps of stochastic gradient descent (SGD). We denote Xuns as symbols that are unseen during
training, and Xseen as symbols that are seen during training. The theorem is stated as follows
Theorem A.1 (From Boix-Adsera et al., failure of MLPs at generalizing on unseen symbols). Suppose
the label function f∗ is non-constant. Then for all SGD steps t, there exists a template z ∈ Wk and
a string x consisting of symbols x1x2 . . . xk ∈ X k

uns which satisfy z such that

Eθt

[(
fMLP(x;θ

t)− f∗(z)
)2] ≥ c > 0

where c is a constant that depends only on f∗, and the expectation is taken over random initialization
of parameters θ and subsequent SGD steps.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Their proof relies on the permutation invariance property of MLPs and SGD (Ng, 2004). Summarizing
briefly, they argue that if x1, x2 ∈ Xuns, we can swap their one-hot encodings without any impact
on the MLP. More generally, we can construct a permutation matrix Π ∈ Rk|X |×k|X | such that for
all strings of symbols x(1),x(2) ∈ X k

uns and x′ ∈ X k
seen, it remains true that Π flat(E(x(1))) =

flat(E(x(2))) and Π flat(E(x′)) = flat(E(x′)). That is, we permute only the indices of unseen
symbols, but leave the indices of seen symbols untouched. Then given the permutation symmetry of
MLPs and SGD (Ng, 2004), because we preserve the indices of the seen symbols, we must have that

EθtfMLP

(
x(1);θt

)
= EθtfMLP

(
x(2);θt

)
.

Hence, if f∗(x(1)) ̸= f∗(x(2)), the MLP cannot approach arbitrarily close to both labels, incurring
an irreducible cost c > 0 that depends on the difference. In this way, MLPs cannot generalize to
unseen symbols on any relational task.

A.2 A DIFFERENT INPUT SCHEME

Is there a way to circumvent this impossibility result? One aspect of the proof that may seem suspect
is its reliance on flattening one-hot encodings flat(E(x)) as direct input to the MLP. Going as far
back as Word2vec (Mikolov et al., 2013), a well-established convention for processing one-hot inputs
is to instead pass them through an embedding matrix W e, creating vector embeddings

h0(x) = (W eex1
,W eex2

, . . . ,W eexk
)⊺ , hπ

0 (x) ∈ Rk×d

where d is the dimension of a single symbol’s vector embedding.5 A practitioner then flattens and
operates on the resulting vector embeddings, not the one-hot encodings directly. As we will shortly
see, if we consider the more conventional input scheme that uses vector embeddings h0(x) and not
the one-hot encodings directly, then the conclusion from Boix-Adsera et al. (2023) no longer holds.

In particular, we consider an architecture where the input to the MLP is flat(h0(x)), rather than
flat(E(x)). We can attempt the same logic as before, and identify a permutation Π such that
for all strings of symbols x(1),x(2) ∈ X k

uns and x′ ∈ X k
seen, we have that Π flat(h0(x

(1))) =
flat(h0(x

(2))) and Π flat(h0(x
′)) = flat(h0(x

′)). Unfortunately, if the embedding matrix W e

is randomly initialized like most neural network parameters, it is virtually impossible to find a
permutation where Π flat(h0(x

(1))) = flat(h0(x
(2))) while x(1) ̸= x(2). This is because the

probability that any two elements of W e are identical is zero for typical random matrix ensembles
used in practice, e.g. if the elements of W e are sampled i.i.d from a normal distribution.

Hence, it is clear that the original proof strategy of permuting the input, now flat(h0(x)), has become
unviable. However, a skeptical reader might now wonder whether Theorem A.1 might still be saved
if we apply permutations to the one-hot encodings before they are passed to the embedding matrix.
That is, given a permutation matrix Π ∈ R|X |×|X|, we construct

hπ
0 (x) = (W e(Πex1

),W e(Πex2
), . . . ,W e(Πexk

))⊺ .

In this way, Theorem A.1 might still be rescued through permutations on one-hots before the
embedding matrix. This method sidesteps the issue with permuting flat(h0(x)) directly, and the
MLP trained on SGD remains invariant to any permutation on the underlying one-hots. Hence, it
seems the proof may remain valid, and the impossibility result might still holds.

Unfortunately, this scheme runs into a different issue: it is impossible to find two inputs x(1),x(2)

where Πx(1) = x(2), but that f∗(x(1)) ̸= f∗(x(2)). (Note, we have abused notation slightly and
write Πex = Πx.) Indeed, we next show that if x satisfies a template z, then any permutation Π
on the symbols of x will also satisfy z. This can be seen quite simply by considering that 1) by
definition, template satisfaction is invariant under a relabeling of symbols and 2) any permutation
is a relabeling of symbols — hence, template satisfaction must be invariant under permutation. We
phrase this formally below.
Proposition A.1 (Permutation invariance of template satisfaction). For any template z ∈ Wk and
any permutation Π : X → X , if the string x satisfies z, then Πx also satisfies z.

5Indeed, in their results on Transformers, Boix-Adsera et al. do use vector embeddings. It is unusual they
would choose to omit them in their analysis of MLPs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. If symbols x = x1x2 . . . xk satisfy the template z = α1α2 . . . αk, then there exists an
injective substitution map s such that s(αi) = xi. Because permutations Π are bijective, there must
also exist an injective substitution map s′ such that s′(αi) = Π(xi). Hence, Πx satisfies the template
z.

In this way, it is not actually possible to find two strings x(1),x(2) such that Πx(1) = x(2) but
for which f∗(x(1)) ̸= f∗(x(2)) since they both satisfy the same template. Permuting over one-hot
encodings before the embedding matrix is not viable. Alternatively, we could try permuting the output
from an intermediate layer of the MLP, but this will fail for the same reason that permuting flat(h0(x))
failed. All in all, if we replace the input flat(E(x)) with the more conventional flat(h0(x)), Theorem
A.1 is no longer valid.

A.3 CAN MLPS REASON RELATIONALLY?

We have argued that the impossibility theorem of Boix-Adsera et al. (2023) can be circumvented, but
it remains to be seen whether MLPs can truly reason relationally. We next identify coarse conditions
that would in principle allow an MLP to generalize to unseen symbols given finite training data.
Intuitively, we can imagine that if the MLP’s training data is sufficiently diverse and the model is
sufficiently expressive and smooth, then any unseen input x will fall somewhat close to a seen input
x′, so fMLP(x) ≈ fMLP(x

′) ≈ f∗(x′). If x and x′ are labeled the same (not unreasonable, if they
are close), then the MLP would indeed be generalizing on an unseen input example.

We formalize this intuition in the following proposition, which establishes coarse conditions for a
model f to generalize on unseen input. We adopt the same setting as above, but we now treat strings
x as real-valued x ∈ Rn. This is equivalent to flattening the vector embeddings h0(x) generated
from one-hot encoded symbols x1x2 . . . xk. Doing so simplifies the following discussion.
Proposition A.2 (Conditions for generalizing to unseen inputs). Fix ε and select δ < ε/3. Given a
model f : Rn → R and labeling function f∗ : Rn → R, if they satisfy the following three conditions

1. Smoothness: f and f∗ are L-Lipschitz continuous

2. Expressivity: for all x that are seen, |f(x)− f∗(x)| < δ.

3. Data diversity: for all x′ that are unseen, there exists an x that is seen such that ||x− x′|| <
δ/L

then
|f(x)− f∗(x)| < ε

for all x (seen and unseen).

Proof. This statement is a simple consequence of the triangle inequality. For any unseen x′ in the
δ/L-neighborhood of seen x, we have that

|f(x′)− f∗(x′)| ≤ |f(x′)− f(x)|+ |f(x)− f∗(x)|+ |f∗(x)− f∗(x′)|
≤ 3δ .

Hence, if we select δ < ε/3, we must have that |f(x′)− f∗(x′)| < ε.

In this way, if a model satisfies the above three conditions, it generalizes to unseen inputs for a task
defined by the labeling function f∗. The first condition for smoothness is regularly achieved by
standard neural networks (Khromov and Singh, 2023). The second condition corresponds to a notion
of expressivity — that is, a model f should be able to approach arbitrarily close to zero on its training
data. For modern neural network models trained on simple tasks, this is a frequent occurrence (Zhang
et al., 2021). The third condition corresponds to a coarse description of data diversity. The training
data should be sufficiently diverse such that all unseen examples are very close to an example seen
during training. This condition may be difficult to achieve in practice, but it offers a very coarse
upper bound on the requisite data diversity required to generalize on unseen examples. Nonetheless,
an MLP trained online on a suitably constrained input space may very well achieve this condition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 3: MLP accuracy on unseen symbols for the same-different task. The gray dashed
line indicates chance-level performance. Shaded region indicates 95 percent confidence regions
estimated from 5 replications. For higher data diversity (i.e. number of symbols in the task), the
MLP generalizes progressively better. Beyond roughly 29 symbols in the task, the MLP performs
substantially above chance, and approaches perfect generalization beyond 212 symbols.

Given further assumptions on f (e.g. f is an MLP), it is likely possible to shrink this data diversity
bound considerably.

Regardless whether an MLP achieves these conditions exactly, we next show that with sufficient data
diversity, an MLP equipped with an embedding matrix and trained through gradient descent does
solve a relational task of the form posited in Theorem A.1, generalizing perfectly to unseen data.

A.4 SAME-DIFFERENT TASK

We now demonstrate empirically that a vanilla MLP trained with gradient descent will discover a
solution that generalizes to unseen symbols. While the tasks we explore in Section 3 already indicate
that MLPs solve relational tasks, to address any remaining doubt, we pursue an ostensibly impossible
task as specified in Boix-Adsera et al. (2023). In particular, we examine the same-different task.

As noted in Appendix A.1, the same-different task consists of two templates, z1 = αα and z2 = αβ,
with labels f∗(αα) = 1 and f∗(αβ) = 0. Following Boix-Adsera et al. (2023), we consider input
strings x = x1x2 ∈ X 2 that are one-hot encoded before being passed through a randomly-initialized
embedding matrix. As previously discussed, this embedding enables the model to circumvent the
impossibility result (Theorem A.1) from Boix-Adsera et al. (2023). The remainder of our model
is exactly the MLP described in Appendix C. We use an MLP with 4 hidden layers (in addition to
an embedding layer) all of width 256 dimensions. The MLP is trained on batches of 128 examples
sampled from a set of symbols with varying size |X |, with roughly even positive and negative
examples. In each run, the MLPs are first trained for 10, 000 batches on half the symbols in X , then
tested on the other half. All remaining hyperparameters are specified in Appendix C.

We plot the performance of an MLP on this task in Figure 3. For this task, data diversity refers to the
number of symbols in X . With higher data diversity, we see that the MLP improves progressively at
generalizing on unseen symbols. Beyond about 212 symbols, the MLP generalizes near-perfectly,
confirming that these models do, indeed, learn to reason relationally. This result is particularly
interesting because it shows that, with sufficient data diversity, the MLP generalizes to completely
novel symbols.

A.5 DISCUSSION

Our results are consistent with Geiger et al. (2023), who also find empirically that MLPs (among
other architectures) reason relationally and generalize robustly to unseen inputs. We complement
their results by further evidencing the possible conditions where MLPs may continue to generalize
successfully. Geiger et al. (2023) argue that neural networks require “non-featural input represen-
tations" to generalize. A representation is featural if it encodes interpretable features of the task in
axis-aligned dimensions. One-hot token encodings are featural, but randomized encodings are not.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As in Geiger et al. (2023), we show that featural representations like one-hot encodings remain usable
provided they that pass through an embedding matrix, becoming non-featural and circumventing the
impossibility result found by Boix-Adsera et al. (2023). In this way, with sufficient data diversity, an
MLP still generalizes to unseen inputs, even if the inputs are unseen one-hot encodings.

Despite our success above, many earlier studies document cases where common neural network
architectures fail to reason relationally (Marcus et al., 1999; Kim et al., 2018; Lake and Baroni, 2018;
Alhama and Zuidema, 2019). One important reason for the failure may be that the task inputs are very
large and complex, as in visual reasoning (Kim et al., 2018; Serre, 2019). Proposition A.2 suggests
that the data diversity required for successful generalization scales exponentially with the dimension
of the inputs in the worst case. It is possible that given a sufficiently vast dataset, an MLP would
perform well on visual reasoning tasks. Furthermore, having shown above that MLPs are decisively
capable of relational reasoning (especially when presented with idealized stimulus embeddings, as in
Section 3), their failure on complex tasks highlights a need to separate a model’s ability to reason
relationally from its ability to learn sufficiently rich feature representations. In realistic data-limited
scenarios, perhaps an MLP paired with a more bespoke module for feature learning would reason
quite successfully. We anticipate further work that more closely investigates whether these failures
stem from data limitations, insufficient feature learning, or some other cause, thereby building a more
complete and updated picture of relational reasoning in neural networks.

B EXPERIMENT: SIMPLE TASKS

In the main text, we showed that MLPs perform comparably with Transformers on ICL regression
and classification, and better on relational tasks. In this separate set of experiments, we examine a
setting in which MLPs are decisively superior. To do so, we depart from in-context tasks and consider
simple (non-ICL) regression and classification.

B.1 SIMPLE REGRESSION

Following the classic regression setup, the model receives as input a single point x ∈ Rn, and must
output the corresponding y ∈ R which is related through y = x · β. Note: this is not in-context
regression, so the model receives only a single input x and the weights β remain fixed throughout the
duration of the task. For the Transformer, unless otherwise stated, each input coordinate is processed
as a “token" with depth 1. Additional details are provided in Appendix C.11.

Results. In Figure 4a, we plot the MSE of vanilla MLPs and Transformers as a function of compute
on n = 64 dimensional regression. The gap between the two models is substantial. The Transformer
seems to struggle especially for larger inputs. For smaller n, the compute gap shrinks between MLPs
and Transformers (Figure 10). If your are stuck with large n, one potential strategy for improving
the Transformer’s performance is to manually chunk the inputs into larger tokens, reducing the total
number of tokens. In the extreme case, we chunk the entire input into a single token (effectively
transposing the input). As the token size increases, the Transformer’s effiency smoothly improves
until it reaches a level comparable to the MLP (Figure 4b). Indeed, in the extreme case of a single
input token, the Transformer is almost identical to an MLP anyway.

B.2 SIMPLE CLASSIFICATION

We next consider a classic classification setup. The model receives a single point x ∈ Rn that was
sampled from 1 of k different clusters. The model must output the correct label y of the corresponding
cluster. This is not in-context classification, so the model receives only a single input x and the
cluster/label mapping remains fixed throughout the duration of the task. Additional details are
provided in Appendix C.12.

Results. The same results continue to hold. As shown in Figures 4(c,d), for n = 64 dimensional
classification, there is a wide compute gap between a vanilla MLP and a Transformer model, though
the gap can be narrowed by manually chunking the inputs into larger tokens. Figure 10 gives
performance for inputs of different dimensions, where smaller n narrow the gap between the two
models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Regression Classification

a b c d

Figure 4: Simple regression and classification results. (a) MLPs attain substantially lower MSE at
lower compute than Transformers. The red line corresponds to the minimum attainable MSE. (b)
Transformers attain performance given larger token sizes. (c, d) Same as in (a, b), for classification,
with k = 16 clusters. (all) We use n = 64 dimension inputs. Other parameterizations are explored
in Appendix D. Shaded regions correspond to 95 percent confidence intervals estimated from 5
replications.

B.3 DISCUSSION

Evidently simple tasks with long inputs work against the Transformer’s attention mechanism. Short-
ening the context by reducing the task dimension, chunking inputs into larger tokens, or bypassing
the attention mechanism altogether by stacking the input into a single token all improve the Trans-
former’s efficiency. It is not immediately obvious why the Transformer performs so dramatically
worse compared to the MLP for larger n, though it is well-known that Transformers can struggle with
long inputs (Tay et al., 2020).

C MODEL AND TASK CONFIGURATIONS

In the following appendix, we provide all details on the specific model and task configurations used
in this study, including architecture, hyperparameter settings, training methodology, and more.

C.1 CODE

For the most precise information on our setup, please refer to our GitHub code repository:

[anonymous]

There, you will find all code used to reproduce the plots in this document, as well as any minor
implementation details omitted from this appendix. If you notice an error, we welcome your pull
requests!

C.2 MLP

The MLP accepts inputs x ∈ Rn. If a task provides inputs of shape L×D (length by token depth),
the inputs are first flattened to size n = LD before being passed to the MLP. A model with ℓ hidden
layers then proceeds as follows:

h1(x) = ϕ (W 1x+ b1)

h2(x) = ϕ (W 2h1(x) + b2)

...
hℓ(x) = ϕ (W ℓhℓ−1(x) + bℓ)

fMLP(x) = W outhℓ(x) + bout

For all tasks, we use ReLU activation functions applied pointwise ϕ(x) = max(x,0). Widths of all
hidden layers are fixed to the same value H . As with all models, all training examples are presented
online with batch size 128. Training uses AdamW (Loshchilov and Hutter, 2017) with learning rate
α = 1× 10−4 and weight decay λ = 1× 10−4. The hyperparameters used to train MLPs on each
task are presented in Table 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 1: MLP hyperparameters
Task Depth (ℓ) Width (H) Train iterations

ICL regression 2 - 8 128 - 2048 ≤ 2, 048, 000
ICL classification 2 - 8 64 - 1024 ≤ 128, 000
Simple regression 1 - 4 4 - 256 ≤ 64, 000
Simple classification 1 - 4 4 - 256 ≤ 64, 000
Match-to-sample 1 - 4 4 - 256 ≤ 8, 000
Sphere oddball 1 - 4 4 - 256 ≤ 8, 000
Line oddball 1 - 4 4 - 256 ≤ 8, 000

C.3 MIXER

The MLP-Mixer accepts inputs X ∈ RL×D (length by token depth). If a task does not provide
tokenized inputs, we assume D = 1 unless otherwise stated, and reshape accordingly. A model with
ℓ hidden layers then proceeds as follows:

h1(X) = ϕ(Z1(b
⊺
1 +XW 1) + c1)

h2(X) = ϕ(Z2(b
⊺
2 + h1(X)W 2) + c2)

...

hℓ(X) = ϕ(Zℓ(b
⊺
ℓ + hℓ−1(X)W ℓ) + cℓ)

fMIX(X) = W outhℓ(X)(−1) + bout

The matrices W mix within token dimensions, and share a fixed hidden width H , so W i ∈ RH×H

for 1 < i < ℓ. The matrices Z mix across spatial dimensions, and share a fixed channel width C, so
Zi ∈ RC×C for 1 < i < ℓ. The bias vectors b and c are assumed to broadcast over unit dimensions
as expected. The index −1 in hℓ(X)(−1) refers to taking the last token in the layer, producing an
output vector with length H . We again use point-wise ReLU activations ϕ(X) = max(X, 0). Our
Mixer is a simplified version of the original model proposed in Tolstikhin et al. (2021), and differs in
a number of small ways:

• We use only a single hidden layer per Mixer layer, rather than two.

• We apply the point-wise activation after the final spatial mixing, and not between spatial
and token mixings.

• We do not use layer norm or skip connections.

Using the full original model proved to be unnecessary in our setting, so we proceeded with this
simpler version.

As with all models, all training examples are presented online with batch size 128. Training uses
AdamW with learning rate α = 1× 10−4 and weight decay λ = 1× 10−4. The hyperparameters
used to train MLPs on each task are presented in Table 2.

Table 2: Mixer hyperparameters
Task Depth (ℓ) Hidden width (H) Channel width (C) Train iterations

ICL regression 2 - 8 32 - 512 64 ≤ 500, 000
ICL classification 2 - 8 16 - 256 64 ≤ 24, 000

C.4 TRANSFORMER

The Transformer accepts inputs X ∈ RL×D (length by token depth). If a task does not provide
tokenized inputs, we assume D = 1 unless otherwise stated, and reshape accordingly. A model with

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ℓ hidden layers then proceeds as follows:

X̃ = X + PE(X)

a1(X) = LN(A1X̃V 1 + X̃)

h1(X) = LN(c⊺1 + ϕ(b⊺1 + a1(X)W
(1)
1)W

(2)
1 +X)

...
aℓ(X) = LN(Aℓhℓ−1(X)V ℓ +X)

hℓ(X) = LN(c⊺ℓ + ϕ(b⊺ℓ + aℓ(X)W
(1)
ℓ)W

(2)
ℓ +X)

fTR(X) = W outhℓ(X)(−1) + bout

The attention matrices Ai are single-headed, and constructed as

Ai = σ

(
mask

(
1√
H

(QiXi)(KiXi)
⊺)

))
where “mask" corresponds to a causal attention mask, and σ refers to a softmax applied per query. As
is now popular, we use GeLU activations applied pointwise for ϕ. We fix the hidden dimension across
all key, query, value, and weight matrices to be of width H . We use sinusoidal positional encodings
for PE and layer normalization as indicated by LN . One exception is for ICL regression, which
does not require positional encodings due to the input format (Appendix C.6), so they are omitted in
this case. The bias vectors b and c are assumed to broadcast over unit dimensions as expected. The
index −1 in hℓ(X)(−1) refers to taking the last token in the layer, producing an output vector with
length H . Our architecture is precisely the decoder-only Transformer architecture first described in
Vaswani et al. (2017), with the exception that we do not use dropout.

As with all models, all training examples are presented online with batch size 128. Training uses
AdamW with learning rate α = 1× 10−4 and weight decay λ = 1× 10−4. The hyperparameters
used to train MLPs on each task are presented in Table 3.

Table 3: Transformer hyperparameters
Task Depth (ℓ) Width (H) Train iterations

ICL regression 2 - 8 32 - 512 ≤ 600, 000
ICL classification 2 - 8 16 - 256 ≤ 16, 000
Simple regression 1 - 4 8 - 32 ≤ 256, 000
Simple classification 1 - 4 8 - 32 ≤ 128, 000
Match-to-sample 1 - 4 8 - 32 ≤ 8, 000
Sphere oddball 1 - 4 8 - 32 ≤ 8, 000
Line oddball 1 - 4 8 - 32 ≤ 8, 000

C.5 RB MLP

The relationally-bottlenecked MLP is architecturally identically to the vanilla MLP described above
in Appendix C.2, but with the crucial difference that the inputs are preprocessed to preserve only
(dot-product) relations.

The RB MLP accepts inputs X ∈ RL×D (length by token depth). The inputs are processed into a
relation matrix R such that each entry is

Rij = (xi − x) · (xj − x)

where xi ∈ RD refers to the ith row of X , and x = 1
L

∑
i xi is the average across all xi. Relations

vectors r are then generated by either selecting a specific column r = R(j) (as in the MTS task) or
flattening the entire matrix of relations r = flat(R). The output of the RB MLP is then simply

fRB(r) = W outr + bout

For the “deep" RB MLP used in the line oddball task, there is an additional set of two hidden layers
between r and the readout weights W out, with width 256. All other training parameters are equivalent
to the above models.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.6 ICL REGRESSION

We prepare in-context regression in a setup that closely mimics Raventós et al. (2024),
though without an autoregressive objective. The input consists of a sequence of values
(x1, y1), (x2, y2), . . . , (xL, yL), where xi ∈ Rn and yi ∈ R. The xi, yi pairs are linearly re-
lated through a set of weights β ∈ Rn such that yi = xi ·β+ ε, where ε ∼ N (0, σ2) corresponds to
noise. Finally, the input includes a query xq . The model output is a single scalar regressed against the
corresponding yq . Inputs are sampled as x ∼ N (0, I) and weights are sampled as β ∼ N (0, I/n).
Before being presented to the model, all inputs are packed into an input matrix X̃ ∈ R(L+1)×(n+1)

with the following structure (Zhang et al., 2023)

X̃ =

(
x1 x2 · · · xL xq

y1 y2 · · · yL 0

)
The model returns a scalar value estimate of yq, and is trained using the mean-squared-error. Note:
this format does not require positional encodings. Following Zhang et al. (2023), we omit positional
encodings for this task.

As in Raventós et al. (2024), we fix a finite pool of weights before training β1,β2, . . . ,βk, where
βi ∼ N (0, I/n). For each training example, we sample a new β by selecting uniformly at random
one weight from the pool {βi}ki=1. We also consider the limit k → ∞, which corresponds to
sampling β ∼ N (0, I/n) afresh rather than drawing from a fixed pool. During testing, we probe
the model’s performance both on the training distribution where the weights are restricted to a
finite pool β ∼ U

(
{βi}ki=1

)
and an unrestricted distribution where the weights are drawn freely

β ∼ N (0, I/n).

Unless stated otherwise, all of our experiments use n = 8 dimensional regression with L = 8 points
in the context, and noise level σ2 = 0.05.

Bayes estimators. We compare our models to two different Bayes estimators that correspond to
priors assuming finite or infinite k.

For finite k where weights β are sampled uniformly from a pool of k possibilities, the Bayes optimal
estimator is given by the discrete minimum mean-squared error (dMMSE) estimator, based on the
estimator formulated in Raventós et al. (2024)

β̂dMMSE =

k∑
i=1

wiβi

where the weights wi are given by

wi ∝ exp

− 1

2σ2

L∑
j=1

(yj − xj · βi)
2

normalized such that

∑
i wi = 1.

In the case k →∞, the Bayes optimal estimator is simply the familiar Ridge estimator with Bayes
optimal regularization

β̂Ridge =
(
X⊺X + nσ2I

)−1
X⊺y

where the rows of X are the context points, and y = (y1, y2, . . . , yL) are the corresponding labels.

C.7 ICL CLASSIFICATION

We prepare ICL classification in a setup that closely mimics Reddy (2024). We begin with a set
of labels α1,α2, . . .αC ∈ Rn that correspond to class indices 1, 2, . . . C. Labels are sampled as
α ∼ N (0, I/n). The model ultimately predicts the class index, but the real-valued labels provide
content of the correct dimension to fill an input without arbitrary padding (described further below).

Points are sampled from a Gaussian mixture modelMk consisting of k components, where k ≥ C
(we allow multiple clusters to have the same class label). Each component is associated with a center

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

µk ∼ N (0, I/n). A point is sampled from the kth component as

xk =
µk + εη√
1 + ε2

where η ∼ N (0, I/n) and ε governs the within-cluster variability. Below in Figure 8, we also
consider a k → ∞ setting, where the number of mixture components is infinite. This settings
corresponds to a case where the mixture centers µk are resampled for each example, always producing
novel clusters. In the finite k case, mixture centers remain fixed throughout the duration of the task.

An input sequence consists of L context exemplars (x1,y1), (x2,y2), . . . , (xL,yL) followed by
a query point xq, where xi ∼ Mk and yi ∈ {αj} is the corresponding label for the cluster that
originated the point. The model must predict the corresponding query label yq , and output the class
index associated with this label. The inputs are packed into an input matrix X̃ ∈ R(2L+1)×n which
has structure

X̃ = (x1 y1 x2 y2 · · · xL yL xq)

The model outputs logits over class indices, and is trained using cross-entropy loss.

We also parameterize the inputs by burstiness B, which is the number of repeats per cluster in the
context (B must divide the context length L). For example, B = 2 means there are exactly two points
from each cluster represented in the inputs.

Unless otherwise stated, we use n = 8 dimensional inputs, C = 32 class labels, and within-cluster
variability ε = 0.1.

C.8 MATCH-TO-SAMPLE

The match-to-sample task proceeds as follows. The model is presented with L context points
x1,x2, . . . ,xL ∈ Rn followed by a query point xq. The inputs are packed into an input matrix
X̃ = (x1,x2, . . . ,xL,xq) ∈ R(L+1)×n before being passed to the model.

The context points are evenly distributed along a sphere Sn with unit radius centered at the origin.
Points are rotated by a random angle so that their absolute positions vary from input to input. The
model must return the index of the context point closest to the query y = argmaxi (xi · xq), and is
trained using cross-entropy loss.

Unless otherwise stated, we use L = 5 context points and n = 2 dimensional inputs.

C.9 SPHERE ODDBALL

The sphere oddball task proceeds as follows. The model is presented with L context points
x1,x2, . . . ,xL ∈ Rn. (There are no query points.) The context points are sampled as x ∼ N (µ, I).
The center is sampled uniformly from a box µ ∼ U [−B,B]

n. One point in the context is selected at
random and perturbed in a random direction v with magnitude d = ||v||, so that xoddball ← xoddball+v.
The model must return the index y of the oddball point in the context, and is trained using cross-
entropy loss. Both the center µ and points xi are sampled afresh from example to example, necessi-
tating a general relational solution.

Unless otherwise stated, we use n = 2 dimensional inputs, L = 6 points in the context, and a box
size of B = 10.

C.10 LINE ODDBALL

The line oddball task proceeds as follows. For each training example, we select an n− 1 dimensional
plane with random orientation that passes through the origin. Context points x1,x2, . . . ,xL ∈ Rn

are Gaussian distributed along this subspace with zero mean and unit variance. One context point is
selected at random to be the oddball, and is perturbed by a distance d in the direction perpendicular to
the line. The model must output the index y of the oddball point, and is trained using cross-entropy.

Unless otherwise stated, we use n = 2 dimensional inputs and L = 6 points in the context.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.11 SIMPLE REGRESSION

Simple (non-ICL) regression is the classic regression setup. The model receives as input a single
point x ∈ Rn, and must output the corresponding y ∈ R which is related through y = x · β + ε.
Weights are sampled as β ∼ N (0, I/n), and noise is sampled as ε ∼ N (0, σ2). Weights β are
sampled once, then remain fixed through the entire duration of the task. The model is trained using
MSE loss.

Unless otherwise stated, we consider n = 64 dimensional regression with noise level σ2 = 0.05.

In Appendix D, we also consider a simple non-linear version of regression where y = (x · β)p + ε
for powers p = 2 and 3.

C.12 SIMPLE CLASSIFICATION

Simple (non-ICL) classification proceeds as follows. The model receives as input a single point x ∈
Rn that we sample from 1 of k different clusters. Cluster centers µi are sampled as µi ∼ N (0, I/n).
The label y of x is given by

y = argmin
i
||x− µi||

Cluster centers are sampled once, then remain fixed throughout the entire duration of the task. The
model is trained using cross-entropy loss.

Unless otherwise stated, we consider n = 64 dimensional inputs with k = 16 classes.

C.13 COMPUTE

To measure the number of floating point operations (FLOPs) used to train a model, we use Jax’s cost
analysis routines. Specifically, we compute the total number of FLOPs required to perform a single
step of gradient descent, then multiply this quantity by the total number of gradient steps used to train
the model.

All experiment were run on [anonymous]. CPU requirements are negligible compared to GPU
time, so they are omitted. All experiments required no more than 16 GB of RAM. The per-experiment
GPU time on an A100 to generate the above figures are estimated at

• ICL regression: 1500 GPU hours
• ICL classification: 500 GPU hours
• Simple regression: 50 GPU hours
• Simple classification: 50 GPU hours
• Match-to-sample: 10 GPU hours
• Sphere oddball: 10 GPU hours
• Line oddball: 10 GPU hours

The total GPU time is therefore roughly 2130 GPU hours. The compute used to generate these results
represents less than 5 percent of the total compute deployed through the life-cycle of this research
project.

C.14 SOFTWARE

All models are implemented and trained using the Jax (Bradbury et al., 2018) family of libraries,
particularly Flax (Heek et al., 2023). Plots are created using Seaborn (Waskom, 2021) and Pandas
(pandas development team, 2020).

24

https://jax.readthedocs.io/en/latest/aot.html
https://jax.readthedocs.io/en/latest/aot.html

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D ADDITIONAL FIGURES

a

c d

b

Figure 5: ICL regression with an autoregressive objective. For each input example
(x1, y1,x2, y2, . . . ,xL, yL), we compute the autoregressive loss

∑
i L(f(x1, y1,x2, y2, . . .xi), yi),

for a neural network f and MSE loss L. For vanilla MLPs and Mixers, variable-length inputs
are handled by padding inputs with zero up to the max length L. (a) Compute vs. MSE on the
unrestricted task distribution. Each point represents a single model, with particular parameters and
training iterations. Just as in the fixed input length case, at large compute, MSE is approximately
equal across all architectures. The red line corresponds to the Bayes optimal Ridge MSE. (b) Excess
MSE (MSE above Bayes optimal) for varying context length L on the unrestricted task distribution.
Excess MSE remains flat for Mixers and Transformers, but rises for MLPs. The grey line corresponds
to the excess MSE incurred by the zero predictor. Given compute limitations, we plot on a slightly
narrower range of context lengths, but the overall trends remain consistent with the finite-input-length
case. (c, d) IWL to ICL transition with increasing data diversity. We train on a finite distribution
with k weights, then test on both the finite training distribution and the unrestricted distribution.
Just as with finite input lengths, all models exhibit a transition from IWL (represented by dMMSE)
to ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal
Ridge on the finite training distribution by learning in-weight the underlying β’s. (all) We use n = 8
dimension inputs. All line plots feature 95 percent confidence intervals about the mean, estimated
from 5 replications.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

M
L
P

M
ix
e
r

Tr
a
n
sf
o
rm
e
r

a

b

Figure 6: ICL regression supplementary figures. (a) MSE obtained across each architecture as
a function of compute. Lines connect common models, with colors denoting different parameter
counts. Hence, a single line traces the trajectory of a model across different training iterations. The
red dashed line corresponds to the Bayes optimal MSE. (b) Excess MSE across different context
lengths L, for different input dimensions n. Line colors indicate the number of elapsed training
steps. The gray dashed line corresponds to the MSE obtained from always guessing zero. Particularly
for high dimensions, MLPs struggle to learn in-context with larger context lengths. After sufficient
training, both Mixers and Transformers can learn in-context even for very large input contexts. (all)
Shaded regions correspond to 95 percent confidence intervals computed across 5 replications.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

M
LP

M
ix
er

Tr
an
sf
or
m
er

a

b

c d

Figure 7: ICL classification supplementary figures. (a) MSE obtained across each architecture
as a function of compute. Lines connect common models, with colors denoting different parameter
counts. Hence, a single line traces the trajectory of a model across different training iterations. (b)
Cross entropy loss across different context lengths L, for different input dimensions n. Line colors
indicate the number of elapsed training steps. In these examples, B = n/2, so there are only 2 labels
present in each context (out of C = 32 total possible labels). The gray dashed line corresponds to
the loss obtained by placing equal probability on the 2 labels present in the context. All models
plateau for a time at guessing one among the two correct labels, before eventually collapsing to the
correct ICL solution. (c) IWL to ICL transition for different burstiness B. Consistent with prior work
(Reddy, 2024; Chan et al., 2022), higher burstiness encourages ICL. Transformers transition to ICL
for lower burstiness and lower number of clusters k. (d) ICL vs. IWL behavior for B = n/2 and
k = 2048 clusters across context lengths L and input dimensions n. For the most part, these settings
are sufficient to encourage ICL, including the configuration plotted in the main text Figure 1, though
ICL appears to decay at higher dimensions and longer contexts. (all) Line plots feature 95 percent
confidence intervals about the mean, computed across 5 replications.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

M
LP

M
ix
er

Tr
an
sf
or
m
er

a

b

c

Figure 8: ICL classification with infinite clusters. Just as we can consider a k → ∞ limit for
ICL regression, where regression weights are sampled afresh for each example, we can consider an
analogous k →∞ limit for ICL classification where clusters are resampled for each new example
rather than being fixed to an underlying Gaussian mixture. Doing so forces each model to learn an
in-context solution, but the learning outcomes turn out to be different. In particular, the task because
substantially more difficult for longer contexts. For example, selecting a context length L = 16
with infinite clusters is enough to block any model from learning the full ICL solution. In contrast,
L = 16 with finite clusters can still push a model to learn the full ICL solution (Figure 7), even if an
in-weight solution is also available. For this reason, we consider only finite but large k in the main
text, enough to develop ICL without blocking learning for longer contexts. In this appendix figure,
we examine more closely what happens if we attempt ICL classification with infinite clusters. (a)
Loss obtained by each architecture as a function of compute, for context length L = 8 and n = 8
dimensional inputs with burstiness B = 4, so 2 of the 32 possible labels appears in each example.
The gray dashed line corresponds to the loss obtained by a model if it assigns equal probability to the
2 labels present in the example. Like in Figure 1, we witness a plateau at the gray line, though it is
somewhat more severe. Nonetheless, all models are able to perform the task perfectly with sufficient
compute. (b) Line plot for each architecture in panel (a). Lines connect common models, with colors
denoting different parameter counts. Hence, a single line traces the trajectory of a model across
different training iterations. (c) Cross entropy loss across different context lengths L, for different
input dimensions n. Line colors indicate the number of elapsed training steps. The gray dashed line
corresponds to the loss obtained by placing equal probability on the 2 labels present in the context
among the 32 total labels. For context lengths L ≥ 16, all models plateau at the gray line and fail
to learn further. Hence, it appears that even Transformers fail to learn the full in-context task, and
remain stuck at a local optima of guessing one of the two labels present in the context. In contrast, if
we fixed the number of clusters k to a large but finite value, all models will learn the full ICL solution
even though an in-weight solution is available (Figure 7 above). In this way, it appears that finite
clusters afford some curricular benefit that leads a model to the ICL solution, which the infinite case
lacks. This discrepancy poses a fascinating topic for future study. (all) Shaded regions correspond to
95 percent confidence intervals computed across 5 replications.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

M
T

S
S

ph
er

e
O

dd
ba

ll
Li

ne
 O

dd
ba

ll

Figure 9: Relational reasoning supplementary figures. We plot the loss obtained across each
architecture as a function of compute. Lines connect common models, with colors denoting different
parameter counts. Hence, a single line traces the trajectory of a model across different training
iterations. Note: the RB MLP does not have configurable widths or depths, so all RB MLPs have the
same parameter count. (all) Shaded regions correspond to 95 percent confidence intervals computed
across 5 replications.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

R
eg
re
ss
io
n

C
la
ss
ifi
ca
tio
n

Figure 10: Simple regression and classification with varying input dimension. We plot the MSE
(for regression) or cross entropy loss (for classification) as a function of compute across varying input
dimension n. The red dashed lines in the regression plots correspond to the minimum attainable MSE.
Each point corresponds to a single model with a particular parameter and training time. In all cases,
reducing the dimension of the input reduces the gap between Transformers and MLPs, with the gap
effectively vanishing for n = 2 dimensional inputs.

30

	Introduction
	Related work

	Experiment: In-context tasks
	ICL regression
	ICL classification

	Experiment: Relational tasks
	Match to sample
	Sphere oddball
	Line oddball

	Discussion
	MLPs reason relationally
	Summary of Boix-Adsera et al.
	A different input scheme
	Can MLPs reason relationally?
	Same-different task
	Discussion

	Experiment: Simple tasks
	Simple regression
	Simple classification
	Discussion

	Model and task configurations
	Code
	MLP
	Mixer
	Transformer
	RB MLP
	ICL regression
	ICL classification
	Match-to-sample
	Sphere oddball
	Line oddball
	Simple regression
	Simple classification
	Compute
	Software

	Additional figures

