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Abstract

The dynamic Schrödinger bridge problem provides an appealing setting for solving constrained
time-series data generation tasks posed as optimal transport problems. It consists of learning
non-linear diffusion processes using efficient iterative solvers. Recent works have demonstrated
state-of-the-art results (e.g., in modelling single-cell embryo RNA sequences or sampling
from complex posteriors) but are limited to learning bridges with only initial and terminal
constraints. Our work extends this paradigm by proposing the Iterative Smoothing Bridge
(ISB). We integrate Bayesian filtering and optimal control into learning the diffusion process,
enabling the generation of constrained stochastic processes governed by sparse observations
at intermediate stages and terminal constraints. We assess the effectiveness of our method
on synthetic and real-world data generation tasks and we show that the ISB generalises well
to high-dimensional data, is computationally efficient, and provides accurate estimates of
the marginals at intermediate and terminal times.

1 Introduction

Generative diffusion models have gained increasing popularity and achieved impressive results in a variety of
challenging application domains, such as computer vision (e.g., Ho et al., 2020; Song et al., 2021a; Dhariwal &
Nichol, 2021), reinforcement learning (e.g., Janner et al., 2022), and time series modelling (e.g., Rasul et al.,
2021; Vargas et al., 2021; Tashiro et al., 2021; Park et al., 2022). Recent works have explored connections
between denoising diffusion models and the dynamic Schrödinger bridge problem (SBP, e.g., Vargas et al.,
2021; De Bortoli et al., 2021; Shi et al., 2022) to adopt iterative schemes for solving the dynamic optimal
transport problem more efficiently. The solution of the SBP then acts as a denoising diffusion model in finite
time and is the closest in Kullback–Leibler (KL) divergence to the forward noising process of the noising
model under marginal constraints. Data may then be generated by time reversal of the process, i.e., through
the denoising process.

In many applications, the interest is not purely in modelling transport between an initial and terminal state
distribution. For example, in naturally occurring generative processes, we typically observe snapshots of
realizations along intermediate stages of individual sample trajectories (see Fig. 1). Such problems arise in
medical diagnosis (e.g., tissue changes and cell growth), demographic modelling, environmental dynamics,
and animal movement modelling—see Fig. 4 for modelling bird migration and wintering patterns. Recently,
constrained optimal control problems have been explored by adding additional fixed path constraints (Maoutsa
et al., 2020; Maoutsa & Opper, 2022) or modifying the prior processes (Fernandes et al., 2021). However,
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Figure 1: Illustrative example transport between an initial unit Gaussian and a shifted unit Gaussian at the
terminal time T . Unconstrained transport on the left and the solution constrained by sparse observations ( )
on the right. Colour coding of the initial points is only for distinguishing the paths.

defining meaningful fixed path constraints or prior processes for the optimal control problems can be
challenging, while sparse observational data are accessible in many real-world applications.

In this work, we propose the Iterative Smoothing Bridge (ISB), an iterative method for learning a dynamical
system for time-series data generation under constraints on both the initial and terminal distribution and
sparse observational data constraints. The sparse observational constraints act as a way to encourage
the paths sampled from the transport process to lie close to the observed data points. We perform the
conditioning by leveraging the iterative pass idea from the Iterative Proportional Fitting procedure (IPFP,
see Kullback, 1968; De Bortoli et al., 2021) and applying differentiable particle filtering (Reich, 2013;
Corenflos et al., 2021) within the outer loop. Integrating sequential Monte Carlo methods (e.g., Doucet
et al., 2001; Chopin & Papaspiliopoulos, 2020) into the IPFP framework in such a way is non-trivial and
can be understood as a novel iterative version of the algorithm by Maoutsa & Opper (2022) but with more
general marginal constraints and additional path constraints defined by data.

We summarize the contributions as follows. (i) We propose a novel method for learning a dynamical model
where the terminal constraints match a bridge problem and additional constraints are placed in form of
sparse observations, inspired by optimal transport approaches. (ii) Thereof, we utilize the strong connections
between the constrained bridging problem and particle filtering in sequential Monte Carlo, extending those
links from pure inference to learning. Additionally, (iii) we demonstrate practical efficiency and show that
the iterative smoothing bridge approach scales to high-dimensional data.

1.1 Related Work

Schrödinger bridges The problem of learning a stochastic process moving samples from one distribution
to another can be posed as a type of transport problem known as a dynamic Schrödinger bridge problem
(SBP, e.g., Schrödinger, 1932; Léonard, 2014), where the marginal densities of the stochastic process are
desired to resemble a given reference measure. In machine learning literature, the problem has been studied
through learning the drift function of the dynamical system (De Bortoli et al., 2021; Wang et al., 2021; Vargas
et al., 2021; Bunne et al., 2022; Shi et al., 2023). When an SDE system also defines the reference measure,
the bridge problem becomes a constrained optimal control problem (e.g., Caluya & Halder, 2022; 2021; Chen
et al., 2021; Liu et al., 2022), which has been leveraged in learning Schrödinger bridges by Tianrong Chen
(2022) through forward–backward SDEs. Moreover, neural stochastic control has been studied in Zhang et al.
(2022). An optimal control problem with both initial and terminal distribution constraints and a fixed path
constraint has been studied in Maoutsa et al. (2020) and Maoutsa & Opper (2022), where particle filtering is
applied to continuous path constraints but the boundary constraints are defined by a single point. Maoutsa
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(2023) studies a problem setting where stochastic dynamics are inferred based on sparse observation, but
with geometric constraints rather than in the form of a Schrödinger bridge problem.

Diffusion models in machine learning The recent advances in diffusion models in machine learning
literature have been focused on generating samples from complex distributions defined by data through
transforming samples from an easy-to-sample distribution by a dynamical system (e.g., Ho et al., 2020;
Song et al., 2021b;a; Nichol & Dhariwal, 2021). The concept of reversing SDE trajectories via score-based
learning (Hyvärinen & Dayan, 2005; Vincent, 2011) has allowed for models scalable enough to be applied
to high-dimensional data sets directly in the data space. In earlier work, score-based diffusion models have
been applied to problems where the dynamical system itself is of interest, for example, for the problem of
time series amputation in Tashiro et al. (2021), inverse problems in imaging in Song et al. (2022) and for
importance sampling Doucet et al. (2022). Interpreting the diffusion modelling problem as optimal control
has recently been studied in Berner et al. (2022). Other dynamical models parametrized by neural networks
have been applied to modelling latent time-series based on observed snapshots of dynamics (Rubanova et al.,
2019; Li et al., 2020), but without further constraints on the initial or terminal distributions.

State-space models In their general form, state-space models combine a latent space dynamical system
with an observation (likelihood) model. Evaluating the latent state distribution based on observational data
can be performed by applying particle filtering and smoothing (Doucet et al., 2000) or by approximations of
the underlying state distribution of a non-linear state-space model by a specific model family, for instance, a
Gaussian (see Särkkä, 2013, for an overview). Speeding up parameter inference and learning in state-space
models has been widely studied (e.g., Schön et al., 2011; Svensson & Schön, 2017; Kokkala et al., 2014).
Particle smoothing can be connected to Schrödinger bridges via the two-filter smoother (e.g., Bresler, 1986;
Briers et al., 2009; Hostettler, 2015), where the smoothing distribution is estimated by performing filtering
both forward from the initial constraint and backwards from the terminal constraint. We refer to Mitter
(1996) and Todorov (2008) for a more detailed discussion on the connection of stochastic control and filtering
and to Chopin & Papaspiliopoulos (2020) for an introduction to particle filters.

Data Assimilation methods Data assimilation (DA) methods leverage techniques from state-space
literature to ‘assimilate’ observations into a mechanistic model in order to inform the model dynamics based
on measurements (e.g., Asch et al., 2016; Wang et al., 2000). Approaches based on DA have found wide-spread
use in scientific applications and have been extended to incorporate sparse observational data, for example, in
numerical weather predictions (Whitaker et al., 2009), modelling cell state evolution in epithelial-mesenchymal
transitions (Mendez et al., 2020), or in oceanographic scenarios (Beiser et al., 2023). A crucial difference
to our work is that DA relies on a precise mechanistic model while our approach is data-driven, providing
additional flexibility in modelling scenarios where formulating precise model dynamics is not possible.

2 Background

Let C = C([0, T ],Rd) denote the space of continuous functions from [0, T ] to Rd and let B(C) denote the Borel
Ã-algebra on C. Let P(Ã0, ÃT ) denote the space of probability measures on (C,B(C)) such that the marginals
at 0, T coincide with probability densities Ã0 and ÃT , respectively. The KL divergence from measure Q to
measure P is written as DKL [Q ∥P], where we assume that Q j P. For modelling the time dynamics, we
assume a (continuous-time) state-space model consisting of a non-linear latent Itô SDE (see, e.g., Øksendal,
2003; Särkkä & Solin, 2019) in [0, T ]×Rd with drift function fθ(·) and diffusion function g(·), and a Gaussian
observation model, i.e.,

x0 ∼ Ã0, dxt = fθ(xt, t) dt + g(t) dβt, (1)

and yk ∼ N(yk |xt, Ã2 Id)
∣

∣

t=tk
where the drift function fθ : Rd×[0, T ]→ Rd is a mapping modelled by a neural

network (NN) parameterized by ¹ ∈ Θ, diffusion g : [0, T ]→ R and βt denotes standard d-dimensional Brown-
ian motion. xt denotes the latent stochastic process and yt denotes the observation-space process. In practice,
we consider the continuous-discrete time setting, where the process is observed at discrete time instances
tk such that observational data can be given in terms of a collection of input–output pairs {(tj , yj)}M

j=1.
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2.1 Schrödinger Bridges and Optimal Control

The Schrödinger bridge problem (SBP, Schrödinger, 1932; Léonard, 2014) is an entropy-regularized optimal
transport problem where the optimality is measured through the KL divergence from a reference measure P

to the posterior Q, with fixed initial and final densities Ã0 and ÃT , i.e.,

min
Q∈P(π0,πT )

DKL [Q ∥P] . (2)

In this work, we consider only the case where the measures P and Q are constructed as the marginals of
an SDE, i.e., Qt is the probability measure of the marginal of the SDE in Eq. (1) at time t, whereas Pt

corresponds to the probability measure of the marginal of a reference SDE dxt = f(xt, t) dt + g(t) dβt, at
time t, where we call f the reference drift. Under the optimal control formulation of the SBP (Caluya &
Halder, 2021) the KL divergence in Eq. (2) reduces to

E

[
∫ T

0

1

2g(t)2
∥fθ(xt, t)− f(xt, t)∥2 dt

]

, (3)

where the expectation is over paths from Eq. (1). Rüschendorf & Thomsen (1993) and Ruschendorf (1995)
showed that a solution to the SBP can be obtained by iteratively solving two half-bridge problems using the
Iterative Proportional Fitting procedure (IPFP) for l = 0, 1, . . . , L steps,

Q2l+1 = arg min
Q∈P(·,πT )

DKL [Q ∥Q2l] and Q2l+2 = arg min
Q∈P(π0,·)

DKL [Q ∥Q2l+1] , (4)

where Q0 is set as the reference measure, and P(Ã0, ·) and P(·, ÃT ) denote the sets of probability measures
with only either the marginal at time 0 or time T coinciding with Ã0 or ÃT , respectively. Recently, the IPFP
to solving Schrödinger bridges has been adapted as a machine learning problem (Bernton et al., 2019; Vargas
et al., 2021; De Bortoli et al., 2021). In practice, the interval [0, T ] is discretized and the forward drift fθ

and the backward drift bφ of the corresponding reverse-time process (Haussmann & Pardoux, 1986; Föllmer,
1988) are modelled by NNs. Under the Gaussian transition approximations, each step in the discrete-time
diffusion model can be reversed by applying an objective based on mean-matching.

3 Methods

Given an initial and terminal distribution Ã0 and ÃT , we are interested in learning a data-conditional bridge
between Ã0 and ÃT . Let D = {(tj , yj)}M

j=1 be a set of M sparsely observed values, i.e., only a few or no
observations are made at each point in time and let the state-space model of interest be given by Eq. (1).
Note that we deliberately use (tj , yj) (instead of (tk, yk)) to highlight that we allow for multiple observations
at the same time point tk. Our aim is to find a parameterization of the drift function fθ such that evolving
N particles xi

t, with xi
0 ∼ Ã0 (with i = 1, 2, . . . , N), according to Eq. (1) will result in samples xi

T from the
terminal distribution ÃT . Inspired by the IPFP by De Bortoli et al. (2021), which decomposes the SBP
into finding two half-bridges, we propose to iteratively solve two modified half-bridge problems where the
additional sparse observations are accounted for simultaneously. For this, let

dxt = fl,θ(xt, t) dt + g(t) dβt, x0 ∼ Ã0, (5)

dzt = bl,φ(zt, t) dt + g(t) dβ̂t, z0 ∼ ÃT , (6)

denote the forward and backward SDE at iteration l = 1, 2, . . . , L, where β̂t is the reverse-time Brownian
motion. For simplicity, we denote βt = β̂t when the direction of the SDE is clear.

To learn the Iterative Smoothing Bridge dynamics, we iteratively employ the following steps: 1 evolve forward
particle trajectories according to Eq. (5) with drift fl−1,θ and filter w.r.t. the observations {(tj , yj)}M

j=1, 2

learn the drift function bl,φ for the reverse-time SDE, 3 evolve backward particle trajectories according to
Eq. (6) with the drift bl,φ learned in step 2 and filter w.r.t. the observations {(tj , yj)}M

j=1, and 4 learn the
drift function fl,θ for the forward SDE based on the backward particles. Fig. 2 illustrates the forward and
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Figure 2: Sketch of a diffusion bridge between a 2D data distribution (Ã0) and an isotropic Gaussian (ÃT )
constrained by sparse observations ( ). The forward diffusion at the first iteration (ISB 1) learns to account
for the sparse observations but does not converge to the correct terminal distribution (t = T ), and the
backward diffusion vice versa. After iterating (ISB 6), the forward and backward diffusions converge to the
correct targets and are able to account for the sparse observational data.

backward process of our iterative scheme for a data-conditioned denoising diffusion bridge. Next, we will go
through steps 1 – 4 in detail and introduce the Iterative Smoothing Bridge method for data-conditional
diffusion bridges.

3.1 The Iterative Smoothing Bridge

The Iterative Smoothing Bridge (ISB) method iteratively generates particle filtering trajectories (steps 1
and 3 in Fig. 2) and learns the parameterizations of the forward and backward drift functions fl,θ and bl,φ

(steps 2 and 4 ) by minimizing a modified version of the mean-matching objective presented by De Bortoli
et al. (2021). Note that steps 2 and 4 are dependent on applying differential resampling in the particle
filtering steps 1 and 3 for reversing the generated trajectories. We will now describe the forward trajectory
generating step 1 and the backward drift learning step 2 in detail. Steps 3 and 4 are given by application
of 1 and 2 on their reverse-time counterparts.

Step 1 (and 3 ): Given a fixed discretization of the time interval [0, T ] denoted as {tk}K
k=1 with t1 = 0

and tK = T , denote the time step lengths as ∆k = tk+1 − tk. By truncating the Itô–Taylor series of the
SDE, we can consider an Euler–Maruyama (e.g., Ch. 8 in Särkkä & Solin, 2019) type of discretization for the
continuous-time problem. We give the time-update of the ith particle at time tk evolved according to Eq. (5),
i.e.,

x̃i
tk

= xtk−1
+ fl−1,θ(xtk−1,tk−1

)∆k + g(tk−1)
√

∆k ξi
k, (7)

where ξi
k ∼ N(0, I). Notice that we have not yet conditioned on the observational data. In step 3 , the

particles z̃i
tk

of the backward SDE Eq. (6) are similarly obtained. The SDE dynamics sampled in steps 1

and 3 apply the learned drift functions fl−1,θ and bl,φ from the previous step and do not require sampling
from the underlying SDE model. For times tk at which no observations are available, we set xi

t = x̃i
t (and
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zi
tk

= z̃i
tk

respectively) and otherwise compute the particle filtering weights wi
tk

based on the observations
{(tj , yj) ∈ D | tj = tk} for resampling. See Sec. 3.2 for details on the particle filtering.

For resampling, we employ a differentiable resampling procedure, where the particles and weights (x̃i
tk

, wi
tk

)
are transported to uniformly weighted particles (xi

tk
, 1

N
) by solving an entropy-regularized optimal transport

problem (Cuturi, 2013; Peyré & Cuturi, 2019; Corenflos et al., 2021) (see App. D). Through application of
the ε-regularized optimal transport map T(ε) ∈ RN×N (see Corenflos et al., 2021) the particles are resampled

via the map to xi
tk

= X̃¦
tk

T(ε),i, where X̃tk
∈ RN×d denotes the stacked particles {x̃i

tk
}N

i=1 at time tk before
resampling.

Step 2 (and 4 ): Given the particles {xi
tk
}K,N

k=1,i=1, we now aim to learn the drift function for the
respective reverse-time process. The purpose of this step is to find a mean-matching reversal of the trajectories,
in other words we aim to find fl,θ such that it best explains the change we observe from {xi

tk
} to {xi

tk+1
} for

each trajectory i = 1, 2, . . . , N and particle k = 1, 2, . . . , N . We will review the loss functions used for this
optimization step, where the loss outside observation times will match the approach in De Bortoli et al. (2021)
and the loss at observation times is motivated by a smoothing of trajectories (see App. A.2 for a discussion).

In case no observation is available at time tk, we apply the mean-matching loss based on a Gaussian transition
approximation proposed in De Bortoli et al. (2021):

ℓi
k+1,nobs = ∥bl,φ(xi

tk+1
, tk+1)∆k − xi

tk+1
− fl−1,θ(xi

tk+1
, tk)∆k + xi

tk
+ fl−1,θ(xi

tk
, tk)∆k∥2. (8)

In case an observation is available at time tk the particle values X̃tk
will be coupled through the optimal

transport map. Therefore, the transition density is a sum of Gaussian variables (see App. A for details and
a derivation), and the mean-matching loss is therefore given by:

ℓi
k+1,obs = ∥bl,φ(xi

tk+1
, tk+1)∆k−xi

tk+1
− fl−1,θ(xi

tk+1
, tk)∆k +

∑N

n=1 T(ε),i,n

(

xn
tk

+ fl−1,θ(xn
tk

, tk)∆k

)

∥2. (9)

The derivation of Eq. (9) relies on mean-matching the trajectories as in De Bortoli et al. (2021) combined
with applying the differentiable resampling optimal transport map T(ε)x̃

i
tk

= xi
tk

on all the particles to
obtain the transition density p

xtk
| x

i
tk−1

(xtk
) at observation times, resulting in a Gaussian distribution

dependent on all the particles. In addition, we apply the property that the reverse drift should satisfy

bl,φ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)2∇ ln ptk+1
, (10)

where ptk+1
is the particle filtering density after differential resampling at time tk+1. Thus the impact of

observations to the loss function is two-fold, the observations define the value of the transport matrix T(ε)

and the marginal score ∇ ln ptk+1
. The use of the reverse drift Eq. (10) is further motivated by the smoothing

reverse presented in App. A.2, where we discuss how Eq. (10) matches a backwards controlled drift.

The overall objective function is a combination of both loss functions, with the respective mean-matching loss
depending on whether tk is an observation time. The final loss function is written as:

ℓ(ϕ) =
N

∑

i=1

[

K
∑

k=1

ℓi
k,obs(ϕ)Iytk

̸=∅ + ℓi
k,nobs(ϕ)Iytk

=∅

]

, (11)

where Icond. denotes an indicator function that returns ‘1’ iff the condition is true, and ‘0’ otherwise.
Consequently, the parameters ϕ of bl,φ are learned by minimizing Eq. (11) through gradient descent. In

practice, a cache of trajectories {xi
tk
}K,N

k=1,i=1 is maintained through training of the drift functions, and
refreshed at a fixed number of inner loop iterations, as in De Bortoli et al. (2021), avoiding differentiation
over the SDE generation computational graph. The calculations for step 4 follow similarly. We present
a high-level description of the ISB steps in Alg. 1.

The learned backward drift bl,φ can be interpreted as an analogy of the backward drift in Maoutsa & Opper
(2022), connecting our approach to solving optimal control problems through Hamilton–Jacobi equations,
see App. A.2 for an analysis of the backwards SDE and the control objective. While we are generally
considering problem settings where the number of observations is low, we propose that letting M →∞ yields
the underlying marginal distribution, see Prop. 2 in App. A.3.
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Algorithm 1 The Iterative Smoothing Bridge

Input: Marginal constraints (Ã0, ÃT ), observations D = {(tj , yj)}M
j=1, initial drift function f0,θ, iterations L,

discretization steps K, number of particles N , observation noise schedule »(l)
Output: Learned forward and backward drift (fθ, bφ)

for l = 1 to L do

F
o

rw
a

rd
p

ro
c
e
ss

Initialize forward particles {xi
0}N

i=1 ∼ Ã0

for k = 1 to K do
Generate {xi

k}N
i=1 using {xi

k−1}N
i=1 ▷ Eq. (5)

if Observations at tk then
{xi

k}N
i=1 ← DiffResample({xi

k}N
i=1, »(l))

end if
end for
Optimize the forward loss function w.r.t. ϕ ▷ Eq. (11)

B
a

c
k

w
a

rd
p

ro
c
e
ss

Initialize backward particles {zi
K}N

i=1 ∼ ÃT

for k = K to 1 do
Generate {zi

k−1}N
i=1 using {zi

k}N
i=1 ▷ Eq. (6)

if Observations at tk then
{zi

k−1}N
i=1 ← DiffResample({zi

k−1}N
i=1, »(l))

end if
end for
Optimize the backwards loss function w.r.t. ¹ ▷ Eq. (15)

end for

3.2 Computational Considerations

The ISB algorithm is a generic approach to learn data-conditional diffusion bridges under various choices
of, e.g., the particle filter proposal density or the reference drift. Next, we cover practical considerations
for the implementation of the method and highlight the model choices in the experiments.

Multiple observations per time step Naturally, we can make more than one observation at a single point
in time tk, denoted as Dtk

= {(tj , yj) ∈ D | tj = tk}. To compute particle weights wi
tk

for the ith particle we
consider only the H-nearest neighbours of xi

tk
in Dtk

instead of all observations in Dtk
. By restricting to the

H-nearest neighbours, denoted as DH
tk

, we introduce an additional locality to the proposal density computation,
which can be helpful in the case of multimodality. On the other hand, letting H > 1 results in weights which
take into account the local density of the observations, not only the distance to the nearest neighbour. In
experiments with few observations, we set H = 1, the choice of H is discussed when we have set the value higher.

Particle filtering proposal The proposal density chosen for the ISB is the bootstrap filter, where the
proposal matches the Gaussian transition density p(xtk

|xtk−1
). Assuming a Gaussian noise model N(0, Ã2I),

the unnormalized log-weights for the ith particle at time tk are given by log wi
tk

= −1/2σ2
∑

yj∈DH
tk

∥xi
tk
−yj∥2.

While we restrict our approach in practice to the bootstrap filter, applying more sophisticated proposals such
as in the auxiliary particle filter (Pitt & Shephard, 1999) could improve the results in some cases, although
restricting the problem to a linear observation model.

Observational noise schedule In practice, using a constant observation noise variance Ã2 can result in
an iterative scheme which does not have a stationary point as L→∞. Even if the learned drift function fl,θ

was optimal, the filtering steps 1 and 3 would alter the trajectories unless all particles would have uniform
weights. Thus, we introduce a noise schedule »(l) which ensures that the observation noise increases in the
number of ISB iterations, causing ISB to converge to the IPFP (De Bortoli et al., 2021) as L → ∞. We
found that letting the observation noise first decrease and then increase (in the spirit of simulated annealing)
often outperformed a strictly increasing observation noise schedule. The noise schedule is studied in App. C,
where we derive the property that letting L→∞ yields IPFP.

Drift initialization Depending on the application, one may choose to incorporate additional information by
selecting an appropriate initial drift. A possible choice includes a pre-trained neural network drift learned to
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = T

Figure 3: 2D toy experiments from scikit-learn with both cases starting from a Gaussian: The two circles

(top) and two moons (bottom) data sets, with observations (red markers) constraining the problem. For
the circles, the 10 circular observations at t = 0.5 first force the method to create a circle that then splits
into two; in the lower plot the observations at t ∈ [0.25, 0.5, 0.75] split the data into clusters before joining
them into two moons. See Fig. 6 in the Appendix for the IPFP result.

transport Ã0 to ÃT without accounting for observations. However, starting from a drift for the unconstrained
SBP can be problematic in cases where the observations are far away from the unconstrained bridge. To
encourage exploration, one may choose f0 = 0 for the initial drift. In various problem settings, we found a
zero drift and starting from the SBP to be successful in the experiments. See App. C for discussion.

4 Experiments

To assess the properties and performance of the ISB, we present a range of experiments that demonstrate
how the iterative learning procedure can incorporate both observational data and terminal constraints. We
start with simple examples that build intuition (cf. Fig. 1 and Fig. 2) and show standard ML benchmark
tasks. For quantitative assessment, we design an experiment with a non-linear SDE for which the marginal
distributions are available in closed-form. Finally, we demonstrate our model both in a highly multimodal
bird migration task, conditioned image generation, and in a single-cell embryo RNA modelling problem.
Ablation studies are found in App. C.

Experiment setup In all experiments, the forward and backward drift functions fθ and bφ are parametrized
as neural networks. For low-dimensional experiments, we apply the MLP block design as in De Bortoli et al.
(2021), and for the image experiment an U-Net as in Nichol & Dhariwal (2021). The latent state SDE was
simulated by Euler–Maruyama with a fixed time-step of 0.01 over 100 steps and 1000 particles if not otherwise
stated. All low-dimensional (at most d = 5) experiments were run on a MacBook Pro laptop CPU, whereas
the image experiments used a single NVIDIA A100 GPU and ran for 5 h 10 min. Notice that since ISB only
performs particle filtering outside the stochastic gradient training loop, the training runtime is in the same
order as in the earlier Schrödinger bridge image generation experiments of De Bortoli et al. (2021). Thus we
omit any wall-clock timings. Full details for all the experiments are included in App. B.

All experiment settings include a number of hyperparameter choices, some typical to all diffusion problems
and some specific to particle filtering and smoothing. The diffusion g(t) is a pre-determined function not
optimized during training. We divide the experiments into two main subsets: problems of ‘sharpening to
achieve a data distribution’ and ‘optimal transport problems’. In the former, the initial distribution has
a support overlapping with the terminal distribution and the process noise level g(t) goes from high to
low as time progresses. Conversely, in the latter setting, the particles sampled from the initial distribution
must travel to reach the support of the terminal distribution, and we chose to use a constant process noise
level. Perhaps the most significant choice of hyperparameter is the observational noise level, as it imposes
a preference on how closely should the observational points be followed, see App. C.1 for details.

2D toy examples We show illustrative results for the two moons and circles from scikit-learn. We add ar-
tificial observation data to bias the processes. For the circles, the observational data consists of 10 points, spaced
evenly on the circle. The points are all observed simultaneously, at halfway through the process, forcing the
marginal density of the generating SDE to collapse to the small circle, and then to expand. For the two moons,
the observational data is collected from 10 trajectories of a diffusion model, which generates the two moons from
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Figure 4: Bird migration example. The top row describes nesting and wintering areas and example sightings
during migration. The bottom shows the marginal densities of the ISB model from the initial to terminal
distribution, matching bird sightings along the migration.

noise, and these 10 trajectories are then observed at three points in time. Results are visualized in Fig. 3 (see
videos in supplement). For reference, we have included plots of the IPFP dynamics in the supplement, see Fig. 6.

Quantitative comparison on the Beneš SDE In order to quantify how observing a process in between
its initial and terminal states steers the ISB model to areas with higher likelihood, we test its performance on
a Beneš SDE model (see, e.g. Särkkä & Solin, 2019). The Beneš SDE is a non-linear one-dimensional SDE of
form dxt = tanh(xt) dt + d´t with x0 = 0, but its marginal density is available in closed-form, allowing for
negative log-likelihood evaluation. We simulate trajectories from the Beneš SDE and from the reverse drift
and stack the reversed trajectories. The terminal distribution is shifted and scaled so that the Beneš SDE
itself does not solve the transport problem from Ã0 to ÃT , see App. B.2 for details and visualizations of the
processes.

We fit a Schrödinger bridge model with no observational data as a baseline, using the Beneš SDE drift as the
reference model. The ISB model is initialized with a zero-drift model (not with the Beneš as reference), thus
making learning more challenging. We compare the models in terms of negative log predictive density in
Table 1, where we see that the ISB model captures the process well on average (over the entire time-horizon)
and at selected marginal times.

Bird migration Bird migration can be seen as a regular seasonal transport problem, where birds
move (typically North–South) along a flyway, between breeding and wintering grounds. We take this as
a motivating example of constrained optimal transport, where the geographical and constraints and preferred
routes are accounted for by bird sighting data (see Fig. 4 top). By adapting data from Ambrosini et al.
(2014) and Pellegrino et al. (2015), we propose a simplified data set for geese migration in Europe (OIBMD:
ornithologically implausible bird migration data; available in the supplement). We applied the ISB for 12
iterations, with a linear observation noise schedule from 1 to 0.2, and constant diffusion noise 0.05. The
drift function was initialized as a zero-function, and thus the method did not rely on a separately fit model
optimized for generating the wintering distribution based on the breeding distribution. For comparison,
we include the Schrödinger bridge results in App. B.3.

Constraining an image generation process We demonstrate that the ISB approach scales well to
high-dimensional inputs by studying a proof-of-concept image generation task. We modify the diffusion
generative process of the MNIST (LeCun et al., 1998) digit 8 by artificial observations steering the dynamical
system in the middle of the generation process. While the concept of observations in case of image generation
is somewhat unnatural, it showcases the scalability of the method to high-dimensional data spaces. Here, the
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Table 1: Results for the Beneš experiment. We
report the negative log predictive density (NLPD,
lower better) of the Beneš marginal likelihood over
generated particles at the initial and terminal distri-
butions and at the middle of the transport process.

NLPD
Method Average Middle End

Schrödinger B 4.787 3.565 0.1919

Iterative smoothing B 3.557 2.985 0.1567

Table 2: Results for the single-cell embryo RNA exper-
iment. We compare ISB to TrajectoryNet, IPML, and
our implementation of IPFP. Unlike the other meth-
ods, our model is able to utilize the intermediate data
distributions while training.

Earth mover’s distance
Method t=0 t=1 t=2 t=3 t=T

TrajectoryNet 0.62 1.15 1.49 1.26 0.99

IPML 0.34 1.13 1.35 1.01 0.49

IPFP (no obs) 0.57 1.53 1.86 1.32 0.85

ISB (single-cell obs) 0.57 1.04 1.24 0.94 0.83

drift is initialized using a pre-trained neural network obtained by first running a Schrödinger bridge model
for image generation. The process is then given an observation in the form of a bottom-half of a MNIST digit
8 in the middle of the dynamical process. As the learned model uses information from the observation both
before and after the observation time, the lower half of the image is sharper than the upper half. We provide
further details on this experiment and sampled trajectories in App. B.4, and an ablation of multi-modal
MNIST image generation in App. B.5

Single-cell embryo RNA-seq Lastly, we evaluated our approach on an Embryoid body scRNA-seq time
course (Tong et al., 2020). The data consists of RNA measurements collected over five time ranges from
a developing human embryo system. No trajectory information is available, instead we only have access
to snapshots of RNA data. This leads to a data set over 5 time ranges, the first from days 0–3 and the
last from days 15–18. In the experiment, we followed the protocol by Tong et al. (2020), reduced the data
dimensionality to d = 5 using PCA, and used the first and last time ranges as the initial and terminal
constraints. All other time ranges are considered observational data. Contrary to the other experiments,
intermediate data are imprecise (only a time range of multiple days is known) but abundant.

We learned the ISB using a zero drift and compared it against an unconditional bridge obtained through the
IPFP (De Bortoli et al., 2021)—see Fig. 5. The ISB learns to generate trajectories with marginals closer
to the observed data while performing comparably to the IPFP at the initial and terminal stages. This
improvement is also verified numerically in Table 2, showing that the ISB obtains a lower Earth mover’s
distance between the generated marginals and the observational data than IPFP. Additionally, Table 2 lists
the performance of previous works that do not use the intermediate data during training (Tong et al., 2020)
or only use it to construct an informative reference drift (Vargas et al., 2021), see App. B.6 for details. In
both cases, ISB outperforms the other approaches w.r.t. the intermediate marginal distributions (t = 1, 2, 3),
while IPML (Vargas et al., 2021) outperforms ISB at the initial and terminal stages due to its data-driven
reference drift. Notice that while we reduced the dimensionality via PCA to 5 for fair comparisons to Vargas
et al. (2021), the ISB model would also allow modelling the full state-space model, with observations in the
high-dimensional gene space and a latent SDE.

5 Discussion and Conclusion

The dynamic Schrödinger bridge problem provides an appealing setting for posing optimal transport problems
as learning non-linear diffusion processes and enables efficient iterative solvers. However, while recent works
have state-of-the-art performance in many complex application domains, they are typically limited to learning
bridges with only initial and terminal constraints dependent on observed data. In this work, we have extended
this paradigm and introduced the Iterative Smoothing Bridge (ISB), an iterative algorithm for generating
data-conditional smoothing bridges. For this, we leveraged the strong connections between the constrained
bridging problem and particle filtering in sequential Monte Carlo, extending them from pure inference to
learning. We thoroughly assessed the applicability and flexibility of our approach in various experimental
settings, including synthetic data sets and complex real-world scenarios (e.g., bird migration, conditional
image generation, and modelling single-cell RNA-sequencing time-series). Our experiments showed that ISB
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(b) Iterative Smoothing Bridge

Figure 5: Illustration of the trajectories of the single-cell experiment for the Schrödinger bridge (a) and the
ISB (b), projected onto the first two principal components. The first five trajectories are highlighted in colour,
and intermediate observation densities visualized as slices.

generalizes well to high-dimensional data, is computationally efficient, and provides accurate estimates of the
marginals at initial, terminal, and intermediate times.

Accurately modelling the dynamics of complex systems under both path constraints induced by sparse
observations and initial and terminal constraints is a key challenge in many application domains. These
include biomedical applications, demographic modelling, and environmental dynamics, but also machine
learning specific applications such as reinforcement learning, planning, and time-series modelling. All these
applications have in common that the dynamic nature of the problem is driven by the progression of time,
and not only the progression of a generative process as often is the case in, e.g., generative image models.
Thus, constraints over intermediate stages have a natural role and interpretation in this wider set of dynamic
diffusion modelling applications. We believe the proposed ISB algorithm opens up new avenues for diffusion
models in relevant real-world modelling tasks and will be stimulating for future work. Recent work suggest
close connections between sequential DA, commonly applied in many real-world scientific domains, and the
Schrödinger bridge problem (Reich, 2019) further emphasising the potential for future scientific applications
of our work by exploiting these links. Moreover, in the future more sophisticated observational models,
alternative strategies to account for multiple observations, and different noise schedules could be explored.
Lastly, the proposed approach could naturally be extended to other types of optimal transport problems, such
as the Wasserstein barycenter, a frequently employed case of the multi-marginal optimal transport problem.

A reference implementation of the ISB model can be found at https://github.com/AaltoML/

iterative-smoothing-bridge.
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A Method Details

We present the details of the objective function derivation in App. A.1 and explain the connection of the
backward drift function to Hamilton–Jacobi equations in App. A.2. In App. A.3, we discuss the behaviour of
our model at the limit M →∞, that is, when the observations fully represent the marginal densities of the
stochastic process.

A.1 Deriving the Mean-matching Loss at Observation Times

Recall that the forward loss is written as
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For convenience, we state the backward loss functions which follow similarly to their forward versions. The
backward loss is defined as
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Proposition 1. Define the forward SDE as

dxt = fl,θ(xt, t) dt + g(t) dβt, x0 ∼ Ã0, (18)

and a backward SDE drift as
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where ptk+1
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Proof sketch. Our objective is to find a backward drift function bl,φ(xtk+1
, tk+1) as in Eq. (19). Notice that

at observation times tk, this is not equivalent to finding the reverse drift of the SDE forward transition and
differential resampling combined, since the drift function fl−1,θ alone does not map the particles {xi

tk
}N

i=1 to
the particles {xi

tk+1
}N

i=1. We will derive a loss function for learning the backward drift as in Eq. (19) below,
leaving the discussion on why it is a meaningful choice of a backward drift to App. A.2. Our derivation
closely follows the proof of Proposition 3 in De Bortoli et al. (2021), but we provide the details here for the
sake of completeness.

First, we give the transition density p
xtk

|x
i
tk−1

(xk) and apply it to derive the observation time loss ℓi
k,obs.

The derivation for the loss ℓi
k,no obs is skipped since it is as in the proof of Proposition 3 in De Bortoli et al.

(2021). Suppose that at tk, there are observations. By definition, the particles before resampling {x̃i
tk+1
}N

i=1

are generated by the Gaussian transition density

p(x̃tk+1
|xi

tk
) = N(x̃tk+1

|xi
tk

+ ¶kfl(x
i
tk

, tk), g(tk+1)2∆kI). (21)

Recall that the resampled particles are defined as a weighted average of all the particles, xi
tk

=
∑N

n=1 x̃n
tk

T(ε),i,n.
Thus, the transition density from {xi

tk
}N

i=1 to the particles {xi
tk+1
}N

i=1 is also a Gaussian,

p(xti
k+1
|xi

tk
) = N(x̃tk+1

|
N
∑

n=1

T(ε),i,n(xn
tk−1

+ ∆kfl−1,θ(xn
tk

, tk)), g(tk+1)2∆kCε,iId). (22)

We will derive the loss function Eq. (9) by modifying the mean matching proof in De Bortoli et al. (2021)
by the transition mean Eq. (22) and the backward drift definition Eq. (19). Using the particle filtering

approximation, the marginal density can be decomposed as ptk+1
(xk+1) =

∑N

i=1 ptk
(xi

k)p
xk+1 |x

i
k
(xk+1). By

substituting the transition density Eq. (22) it follows that

ptk+1
(xtk+1

) =
1

Z

N
∑

i=1

ptk
(xi

tk
) exp



−
∥
(

∑N

n=1 T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))

)

− xtk+1
∥2

2g(tk+1)2Cε,i∆k



 , (23)

where Z is the normalization constant of Eq. (22). As in the proof of Proposition 3 of De Bortoli et al.

(2021), we derive an expression for the score function. Since ∇ ln ptk+1
(xtk+1

) =
∇xtk+1

ptk+1
(xtk+1

)

ptk+1(xtk+1
)

, we first

manipulate ∇xtk+1
ptk+1

(xtk+1
),

∇xtk+1
ptk+1

(xtk+1
) =

1

Z

N
∑

i=1

∇xtk+1
p(xi

tk
) exp



−
∥
(

∑N

n=1 T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))

)

− xtk+1
∥2

2g(tk+1)2Cε,i∆k





=
1

Z

( N
∑

i=1

p(xi
tk

)

(

N
∑

n=1

1

g(tk+1)2∆kCε,i

(

T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))− xtk+1

)

)

exp



−
∥
(

∑N

n=1 T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))

)

− xtk+1
∥2

2g(tk+1)2Cε,i∆k





)

. (24)

Substituting ptk
(xi

k) =
ptk+1

(xtk+1
)p

xk+1 | x
i
k

(xk+1)

p
x

i
k

| xk+1
(x

i
k

)
to the equation above gives

∇xtk+1
ptk+1

(xtk+1
) = ptk+1

(xtk+1
)

N
∑

i=1

p
xk+1 |x

i
k
(xi

k)

(

N
∑

n=1

(

T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))− xtk+1

)

g(tk+1)2∆kCε,i

)

, (25)

and dividing by ptk+1(xtk+1
) yields

∇ ln ptk+1
(xtk+1

) =
N
∑

i=1

px
ti

k

|xtk+1
(xti

k
)

(

N
∑

n=1

(

T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))− xtk+1

)

g(tk+1)2∆kCε,i

)

. (26)

17



Published in Transactions on Machine Learning Research (11/2023)

Substituting Eq. (26) to the definition of the optimal backward drift Eq. (19) gives

bl,φ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)2∇ ln ptk+1
(xk+1)

= fl−1,θ(xtk+1
, tk)

− g(tk+1)2
N
∑

i=1

px
ti

k

|xtk+1
(xtk+1

)

(

N
∑

n=1

(

T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))− xtk+1

)

g(tk+1)2∆kCε,i

)

, (27)

where taking fl−1,θ(xtk+1
, tk) inside the sum yields

bl,φ(xtk+1
, tk+1) =

N
∑

i=1

px
ti

k

|xtk+1
(xtk+1

)

(

1

Cε,i

(

N
∑

n=1

T(ε),i,n(xi
tk

+ fl−1,θ(xtk
, tk))

)

− xtk+1

Cε,i

−∆kfl−1,θ(xtk+1
, tk)

)

/∆k). (28)

Multiplying the equation above by ∆k gives

∆kbl,φ(xi
tk+1

, tk+1) =

(

N
∑

n=1

T(ε),i,n(xn
tk

+ fl−1,θ(xn
tk

, tk))

)

−
xi

tk+1

Cε,i

−∆kfl−1,θ(xti
k+1

, tk). (29)

Thus we may set the objective for finding the optimal backward drift bl,φ as

ℓi
k+1,no obs = ∥bl,φ(xi

tk+1
, tk+1)∆k −

xi
tk+1

Cε,i

− fl−1,θ(xi
tk+1

, tk)∆k

+
1

Cε,i

∑N

n=1 T(ε),i,n

(

xn
tk

+ fl−1,θ(xn
tk

, tk)∆k

)

∥2. (30)

Notice that if the weights before resampling are uniform, then T(ε) = IN , and for all i ∈ 1, 2, . . . , N it holds

that Cε,i = 1, since all but one of the terms in the sum 1
g(tk+1)2 Var

(

∑N

n=1 T(ε),i,nx̃n
tk+1

)

vanish. Similarly, for

one-hot weights Cε,i = 1. In practice, we set the constant Cε,i = 1 as in Eq. (9) and observe good empirical
performance with the simplified loss function.

A.2 Connection to Hamilton–Jacobi Equations

We connect the backward drift function bl,φ(xtk+1
, tk+1) = fl−1,θ(xtk+1, tk)− g(tk+1)2∇ ln ptk+1

(xtk+1
) to the

Hamilton–Jacobi equations for stochastic control through following the setting of Maoutsa & Opper (2022),
which applies the drift fl−1,θ(xt, t)− g(t)2∇ ln pt(xt) for a backwards SDE initialized at ÃT .

Consider a stochastic control problem with a path constraint U(xt, t), optimizing the following loss function,

J =
1

N

N
∑

i=1

∫ T

t=0

1

2g(t)2
∥fθ(xi

t, t)− f(xi
t, t)∥2 + U(xi

t, t) dt− ln Ç(xi
T ), (31)

with the paths, xi
t sampled as trajectories from the SDE

x0 ∼ Ã0, dxt = fl−1,θ(xt, t) dt + g(t) dβt, (32)

and the loss ln Ç(xi
T ) measures distance from the distribution ÃT . Since we set the path constraint via

observational data, our method resembles setting U(xi
t, t) = 0 when t is not an observation time, and

U(xi
t) = − log p(y |xi

t), where p(y |xi
t) is the observation model.

Let qt(x) denote the marginal density of the controlled (drift fθ) SDE at time t. In Maoutsa & Opper (2022),
the marginal density is decomposed as

qt(x) = φt(x)pt(x), (33)
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where φt(x) is a solution to a backwards Fokker-Planck-Kolmogorov (FPK) partial differential equation
starting from φT (x) = ÃT , and the density evolves as in

dφt(x)

dt
= −L f φt(x) + U(x, t)φt(x), (34)

where L f is the adjoint FPK operator to the uncontrolled system. The density pt(x) corresponds to the
forward filtering problem, initialized with Ã0,

dpt(x)

dt
= Lf (pt(x))− U(x, t)pt(x), (35)

where Lf is the FPK operator of the uncontrolled SDE (with drift f). The particle filtering trajectories
{xtk
}i generated in our method are samples from the density defined by Eq. (35). In the context of our

method, the path constraint matches the log-weights of particle filtering at observation times and is zero
elsewhere.

In Maoutsa & Opper (2022), a backward evolution for qt is applied, using the backwards time q̃T−τ (x) = qτ (x),
yielding a backwards SDE starting from q̃0(x) = {xi

T }N
i=1, reweighted according to ÃT . The backward samples

from q̃ are generated following the SDE dynamics

dxi
τ = (f(xi

τ , T − Ä) + g(t)2∇ ln pT−τ (xi
τ ) dt + g(t) d´τ . (36)

We have thus selected the backward drift bl,φ to match the drift of q̃t(x), the backward controlled density.
Intuitively, our choice of bl,φ is a drift which generates the smoothed particles when initialized at {xi

T }N
i=1,

the terminal state of the forward SDE. The discrepancy between ÃT and the distribution induced by {xi
T }N

i=1

then motivates the use of an iterative scheme after learning to simulate from qt(x).

A.3 Observing the Full Marginal Density

Suppose that at time tk, we let the number of observations grow unbounded. We analyse the behaviour of
our model at the resampling step, at the limit M →∞ for the number of observations and Ã → 0 for the
observation noise. When applying the bootstrap proposal, recall that we combined the multiple observations
to compute the log-weights as

log wi
tk

= − 1

2Ã2

∑

yj∈DH
i,tk

∥xi
tk
− yj∥2, (37)

which works well in practice for the sparse-data settings we have considered. Below we analyse the behaviour
of an alternative way to combine the weights and show that given an infinite number of observations, it
creates samples from the true underlying distribution.

Proposition 2. Let {xi
tk
}N

i=1 be a set of particles and {yj}M
j=1 the observations at time tk. Assume that the

observations have been sampled from a density Ätk
and that for all i it holds that xi

tk
∈ supp(Ätk

). Define the
particle weights as

log wi
tk,σ,M = log

(

1

Z|DH(M)
i,tk

|

∑

yj∈D
H(M)
i,tk

exp(−∥xi
tk
− yj∥2/2Ã2)

)

, (38)

where Z is the normalization constant of the observation model Gaussian p(y |xi
tk

). Then for each particle
xi

tk
, its weight satisfies

lim
σ→0

lim
M→∞

wi
tk,σ,M = Ätk

(xtk
). (39)

Proof sketch. We drop the Ã and H(M) from the weight notation for simplicity of notation, but remark
that the particle filtering weights are dependent on both quantities. Consider the number of particles N fixed,
and denote the d-dimensional sphere centered at xi

tk
as B(xi

tk
, r). Since each particle xi

tk
lies in the support

of the true underlying marginal density Ätk
, then for any radius r > 0 such that B(xi

tk
, r) ∈ supp(Ätk

), and
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H > 0, we may choose M high enough so that the points yj ∈ DH
i,tk

satisfy yj ∈ B(xi
tk

, r). It follows from
Eq. (38) that

wi
tk

=
1

Z|DH(M)
i,tk

|

∑

yj∈D
H(M)
i,tk

exp(−∥xi
tk
− yj∥2/2Ã2). (40)

For any r > 0 and with observation noise Ã = cr, we may set c, H(M) so that the sum above approximates
the integral

wi
r,tk
≈ 1

|B(xi
tk

, r)|

∫

B(x
i
tk

,r)

p(y |xi
tk

)Ät(y) dy. (41)

By applying the Lebesque differentiation theorem, we obtain that for almost every xi
tk

, we have limr→0 wi
tk,r =

Ätk
(xi

tk
), since as Ã → 0, the density p(y |xi

tk
) collapses to the Dirac delta of xi

tk
.

Prop. 2 can be interpreted as the infinite limit of a kernel density estimate of the true underlying distribution.
Resampling accurately reweights the particles so that the probability of resampling particle xi

tk
is proportional

to the density Ätk
compared to the other particles. Notice that the result does not guarantee that the particles

will cover the support of Ätk
, since we did not assume that the drift initialization generates a marginal density

at time tk covering its support.

B Experimental Details

B.1 2D Toy Data Sets

For the constrained transport problem for two-dimensional scikit-learn, the observational data we chose to use
was different for each of the three data sets presented; two moons, two circles and the S-shape. All three
experiments had the same discretization (t ∈ [0, 0.99]), ∆k = 0.01), learning rate 0.001, and differentiable
resampling regularization parameter ε = 0.01. The process noise g(t)2 follows a linear schedule from 0.001
to 1, with low noise at time t = 0 and high noise at t = 0.99, and each iteration of the ISB method trains
the forward and backward drift networks each for 5000 iterations, with batch size 256. When running on
a Macbook Pro CPU, it took approximately 6 minutes to complete for the two circles experiment for
instance, while the exact runtime varies based on factors such as the number of observations and the number
of ISB iterations required. Other hyperparameters are explained below.

Two moons The observational data consists of 10 points selected from the Schrödinger bridge trajectories,
all observed at t ∈ [0.25, 0.5, 0.75] with an exponential observation noise schedule »(l) = 1.25l−1. The ISB
was run for 6 epochs and initialized with a drift from the pre-trained Schrödinger bridge model from the
unconstrained problem.

Two circles The observational data consists of 10 points which lie evenly distributed on a circle, observed
at t = 0.5 with an exponential observational noise schedule »(l) = 0.5 · 1.25l−1. The ISB was run for 6 epochs
and initialized with a drift from the pre-trained Schrödinger bridge model from the unconstrained problem.

S-shape The observational data consists of 6 points, with pairs being observed at times t ∈ [0.4, 0.5, 0.6].
We used a bilinear observational noise schedule with a linear decay for the first half of the iterations from
»(0)2 = 4 to »(L/2)2 = 1 and a linear ascend for the second half of the iterations from »(L/2)2 = 1 to
»(L)2 = 4. The ISB ran for 6 epochs, with a zero drift initialization.

B.2 The Beneš SDE

In the Beneš SDE experiment, we obtain the sparse observational data from sampled Beneš SDE trajectories
while the terminal state is a shifted and scaled (3 + 5xT ) version of a Beneš marginal density. As the Beneš
trajectories were first generated by simulating the SDE until t = 6 and then in reverse from t = 6 to t = 0,
we set T = 11.97. We apply the analytical expression for the Beneš marginal density for computing log pt(x),

pt(x) =
1√
2Ãt

cosh(x)

cosh(x0)
exp

(

− 1

2
t

)

exp

(

− 1

2t
(x− x0)2

)

. (42)
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(a) t = 0.00 (b) t = 0.25 (c) t = 0.50 (d) t = 0.75 (e) t = 0.99

Figure 6: The unconditioned Schrödinger bridges for the scikit-learn 2D experiment, corresponding to the
Fig. 3. The observations (red markers) were not used in any way during training but are included in the figure
for reference, to show that the unconstrained dynamics greatly differ from the learned ISB model dynamics.

See the Beneš SDE trajectories in Fig. 8a. As expected, the transport model with no observations performs
well in the generative task, but its trajectories cover also some low-likelihood space around t = 6 (in the
middle part in Fig. 8b). The observations for the ISB model were sampled from the generated trajectories, 10
observations at 10 random time-instances (see Fig. 8c)

Both the unconstrained Schrödinger bridge model and the ISB model were run for 3 iterations, using a learning
rate of 0.001 for the neural networks. Likely due to the fact that the problem was only one-dimensional, the
convergence of the Schrödinger bridge to a process which matches the desired terminal state was fast, and we
chose not to run the model for a higher number of ISB iterations, see Fig. 7 for a comparison of the trained
model marginal densities and the true terminal distribution ÃT . We set the observation noise schedule to
the constant 0.7, and at each iteration of the ISB or the unconstrained Schrödinger bridge the drift neural
networks were trained for 5000 iterations each with the batch size 256, and the trajectories were refreshed
every 500 iterations with a cache size of 1000 particles. The number of nearest neighbours to compare to was
H = 10.

0 4 8

True πT

ISB

Schrödinger

Figure 7: A kernel density estimate of the Beneš SDE terminal state. We compare ÃT to the Schrödinger
bridge and ISB terminal states. Both unconstrained Schrödinger bridge and ISB terminal states succeed in
representing ÃT well, with the Schrödinger bridge terminal state more closely matching ÃT near its mean.
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(a) Trajectories of the Beneš SDE

0 4 8 12

−
1

0
0

1
0

Time, t

(b) SBP trajectories

0 4 8 12

−
1

0
0

1
0

Time, t

(c) ISB trajectories (ours)

Figure 8: Comparison of the solution for the SBP (with Beneš SDE reference drift) and the ISB (with
zero initial drift) on the Beneš SDE under sparse observations ( ). The target distribution ÃT is slightly
shifted and scaled from the Beneš SDE. Even if the SBP has the true model as reference drift, its trajectories
degenerate into a unimodal distribution, while the ISB manages to cover both modes even if only sparse
observations are available.

B.3 The Bird Migration Data Set

The ISB model learned bird migration trajectories which transport the particles from the Northern Europe
summer habitats to the southern winter habitats, see Fig. 11 for a comparison of a Schrödinger bridge and
ISB. Since the problem lies on a sphere, Schrödinger bridge methods adjusted for learning on Riemannian
manifolds could have been applied here. For simplicity, we mapped the problem to a two-dimensional plane
using a Mercator projection and solved the problem on a [0, 5]× [0, 5] square. The SDE had the discretization
t ∈ [0, 0.99], ∆k = 0.01 and a constant process noise g(t)2 = 0.05. The model was trained for 12 iterations,
and initialized with a zero drift, while the observational data was chosen by the authors to promote learning
trajectories clearly different from the unconstrained transport trajectories. The observation noise schedule
was piecewise linear (starting at 2, going to 0.1 at iteration 6, then rising linearly to reach 2 at iteration 12).
At each ISB iteration, the neural networks were trained for 5000 iterations each, and the trajectories were
refreshed every 1000 iterations. We used a batch size of 256 and a learning rate of 0.001.

B.4 The MNIST Generation Task

Applying state-space model approaches such as particle filtering and smoothing to generative diffusion models
directly in the observation space (that is, not in a lower-dimensional latent space) has to our knowledge
not been explored before. Some experimental design choices had a great impact on the training objectives
sensibility, as the observational data is completely artificial and its timing during the process modifies the
filtering distribution significantly. As the MNIST conditional generative model was trained to display the
scalability of our method beyond low-dimensional toy examples, we did not further explore optimizing the
hyperparameters or the observation model. To avoid the background noise in MNIST images in the middle of
the generative process impacting the particle filtering weights excessively, the observation model is a Gaussian
with masked inputs equal to zero in pixels where the observation image is black, see Fig. 9 for sampled
trajectories. The figure shows the progression of seven samples, where the lower half of the eight resemble the
observation target.

The SDE was run for time t ∈ [0, 0.5], with the digit eight observed at t = 0.38. The ISB method was applied
for 10 iterations, with a discretization t ∈ [0, 0.495], ∆k = 0.005, and the process noise g(t)2 followed a linear
schedule from 0.0001 to 1. At each iteration of the method, the forward and backward drift neural networks
were trained for 5000 iterations with a batch size of 256, and the trajectory cache regenerated every 1000
iterations. The observational data consisted of a single sample of a lower half of the digit eight, observed at
time t = 0.38. The observation noise schedule was a constant »(l) = 0.3.
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π0 = noise T = 0.5

Observation biasing the lower half of images

Figure 9: Model trajectories for MNIST digit ‘8’ conditioned on a lower-loop of a single ‘8’ at t = 0.38 to
bias the lower half of the digits to look alike, with the effect still visible at terminal time T .

π0 = noise T = 0.5

Observation biasing the upper half of images

Figure 10: Model trajectories for MNIST digits ‘8’ and ’9’ conditioned on a upper-loop of a single ‘8’ at
t = 0.38 to bias the upper half of the digits to look alike, with the effect still visible at terminal time T , while
observing both modes at the end of the trajectory.

B.5 MNIST for Multi-modal Data Generation

In addition to the MNIST experiment as explained in App. B.4, we evaluated the performance of our model
on a multi-modal generation task. The reference model was a Schrödinger bridge trained via IPFP from
normal distribution noise to MNIST digits eight and nine, and the observation was a single upper loop of
a figure eight. Our goal was to generate trajectories that match the observation but still generate both
digits eight and nine by the end of the trajectory. Based on the results in Fig. 10, ISB succeeds in the task.
Most hyperparameters were kept the same as explained in App. B.4, but the cache size if IPFP training was
increased to 5000 and the number of trajectories in the particle filtering step of ISB was increased to 1000, to
encourage a sufficiently versatile sample of both modes.

B.6 Single-Cell Data Set

We directly use the preprocessed data from the TrajectoryNet (Tong et al., 2020) repository. A major
difference between our implementation and Vargas et al. (2021) is the reference drift. We set the reference
drift to zero, which means that we utilize the intermediate data only as observations in the state-space model.
On the contrary, Vargas et al. (2021) fits a mixture model of 15 Gaussians on the combined data set (across
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all measurement times) and sets the reference drift to the gradient of the log-likelihood of the mixture model.
Effectively, such a reference drift aids in keeping the SDE trajectories within the support of the combined
data set. We remark that if the intermediate observed marginals had clearly disjoint support, combining all
the data would cause the mixture model to have ‘gaps’ and could cause an unstable reference model drift.
Thus we consider our approach of setting the reference drift to zero as more generally applicable.

As in Vargas et al. (2021), we set the process noise to g(t) = 1 and model the SDE between time t ∈ [0, 4].
The learning rate is set to 0.001 with a batch size of 256 and the number of neural network training iterations
equal to 5000. We apply the ISB for 6 iterations. We perform filtering using 1000 points from the intermediate
data sets, but compute the Earth mover’s distance by comparing it to all available data. As the observational
data at T = 1, 2, 3 consists of a high number of data points, the parameters H (number of nearest neighbours)
and σ (observation noise) need to be carefully set. We set H = 10 to only include the close neighbourhood of
each particle and set the observation noise schedule as constant 0.7.

C Computational Considerations

In Sec. 3.2, we raised a number of important computational considerations for the constrained transport
problem. Below we discuss them in detail, analyzing the limit L → ∞ from the perspective of setting the
observation noise schedule in App. C.1, and presenting ablation results on modifying the initial drift in the
bird migration experiment in App. C.2. Finally, we study the impact of the observation noise schedule on
effective sample size in the filtering step in App. C.3.

C.1 Discussion on Observation Noise

We briefly mentioned in Sec. 3.2 that when letting L → ∞, the choice of observation noise should be carefully
planned in order for the ISB procedure to have a stationary point. Here we explain why an unbounded
observation noise schedule κ(l) implies convergence to the IPF method for uncontrolled Schrödinger bridges
(De Bortoli et al., 2021), when using a nearest neighbour bootstrap filter as the proposal density.

Proposition 3. Let Ω ∈ R
d be a bounded domain where both the observations and SDE trajectories lie, and

let the particle filtering weights {wi
l,tk

}N
i=1 at ISB iteration l be

log wi
l,tk

= −
1

2κ(l)2

∑

yj∈DH
tk

∥xi
tk

− yj∥2. (43)

If the schedule κ(l) is unbounded with respect to l, then for any δ there exists l′ such that for the normalized
weights it holds

|ŵi
l′,tk

−
1

N
| f δ. (44)

Proof sketch. Since κ(l) is unbounded, for any S > 0 ∃ l′ such that κ(l′) g S. We choose the value of S so
that the following derivation yields Eq. (44).

Let S =
√

0.5R−1|DH
tk

| diam(Ω)2, and apply the property that ∥xi
tk

− yj∥2 f diam(Ω)2 to Eq. (43),

log wi
l′,tk

g −
1

2S2

∑

yj∈DH
tk

∥xi
tk

− yj∥2

g −

∑

yj∈DH
tk

∥xi
tk

− yj∥2

R−1|DH
tk

| diam(Ω)2
g −

∑

yj∈DH
tk

diam(Ω)2

R−1|DH
tk

| diam(Ω)2
g −R.

(45)

The bound above is for the unnormalized weights, and the normalized log-weights are defined as

log ŵi
l′,tk

= log wi
l′,tk

− log

( N
∑

j=1

exp(log wj
l′,tk

)

)

, (46)
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where for the normalizing constant it holds that

log

( N
∑

j=1

exp(log wj
l′,tk

)

)

f log

( N
∑

j=1

1

)

= log(N), (47)

since wj
l′,tk

is the value of a probability density and thus always wj
l′,tk

f 1. Combining Eq. (46), Eq. (45) and
Eq. (47), it follows that

log ŵi
l′,tk

− (− log(N) g −R, (48)

where taking exponentials on both sides gives

ŵi
l′,tk

−
1

N
g −(1 − exp(−R))

1

N
. (49)

Since the weights are normalized, even the largest particle weight ŵj
l′,tk

can differ from 1
N

as much as every

smaller weight in total lies under 1
N

,

ŵj
l′,tk

f
1

N
+ (N − 1)

(

(1 − exp(−R))
1

N

)

, (50)

implying that for any weight ŵj
l′,tk

, it holds that

|ŵj
l′,tk

−
1

N
| f (N − 1)

(

(1 − exp(−R))
1

N

)

f 1 − exp(−R), (51)

and selecting R = − log(1 − δ) is sufficient for δ < 1.

Effectively, the above derivation implies that for an unbounded observation noise schedule κ(l), the particle
weights will converge to uniform weights. Since performing differentiable resampling on uniform weights
implies that T(ε) = IN , the ISB method trajectory generation step and the objective in training the backward
drift converge to those of the IPF method for solving unconstrained Schrödinger bridges. Intuitively, this
means that at the limit L → ∞, our method will focus on reversing the trajectories and matching the terminal
distribution while not further utilizing information from the observations.

C.2 Ablation on Initial Drift

We conducted an ablation study on drift initialization for the bird migration problem. As the distributions
π0 and πT (as pictured in Fig. 11) are complex, we consider the problem setting to be interesting for setting
f0 as the unconstrained transport problem drift. To this end, we trained a Schrödinger bridge model for 10
epochs, and trained an ISB model with the same hyperparameter selections as explained in App. B.3, using
the Schrödinger bridge as the initialization. Compare the two bottom rows of Fig. 11 to see a selection of
marginal densities of the two processes. Based on a visual analysis of the densities, it seems that the zero
drift and pre-trained diffusion model initializations produce similar results around the observations, although
the Schrödinger bridge initialization gave slightly sharper results at the terminal time.

C.3 Effective Sample Size

We studied the Effective Sample Size (ESS) of the particles generated during the filtering steps 1 and 3 .
Ideally, our method would steer the particle trajectories near the observations quickly over the iterations,
to allow for efficient training. Furthermore, as we additionally constrain the system to match the initial
and terminal distributions, it is desired that the ESS will eventually rise to a high number, indicating that
the particle filtering step no longer greatly adjusts the trajectories. In order to assess these properties,
we computed the ESS in the scikit-learn two circles experiment, see App. B.1 for other experimental
details. In Table 3, we have reported three scenarios: (i) an increasing noise schedule without learning of
the drift function, (ii) an ISB model with constant observation noise, (iii) the proposed ISB model with the
increasing noise schedule. Note that the first scenario only serves as a control to better isolate the impact of
increasing noise in ISB. Table 3 indicates that our approach succeeds in directing the particle trajectories and
consistently obtains higher ESS even when comparing the constant noise level ISB to an increasing noise
level but no learning.
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Figure 11: Top row: The first map image on the left describes the initial position of the birds, and the final one
on the right depicts their position after migration. The observational data in the middle are bird observations
during migration, at given timestamps. Second row: Marginal densities of a Schrödinger bridge model from
the initial to terminal distribution, without using the observations. Third row: Marginal densities of our
model, using both initial and terminal distributions and observational data and a zero drift initialization.
Bottom row: Same as the third row, but with the second-row dynamics as initialization.

Table 3: Average and standard deviation of effective sample size (ESS) results over five seeds for the scikit-learn
two circles experiment, developing over six ISB iterations with 1000 particles. We observe a rapid increase
in ESS when the trajectories are steered towards the observations in the optimization step of the ISB compared
to only increasing the observing noise, and see a diminishing impact of the filtering step as ESS nears 1000.

ESS / Iteration
Noise schedule l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

No learning and noise schedule 0.5 × 1.25
l−1

6 ± 2 9 ± 2 14 ± 3 27 ± 5 57 ± 8 121 ± 11

ISB with a constant noise schedule 0.5 6 ± 2 66 ± 21 165 ± 9 300 ± 24 456 ± 37 564 ± 46

ISB with a noise schedule 0.5 × 1.25
l−1

6 ± 2 92 ± 21 250 ± 14 442 ± 39 593 ± 64 700 ± 39

26



Published in Transactions on Machine Learning Research (11/2023)

D Differentiable Resampling

In the ISB model steps 1 and 3 presented in Sec. 3.1, we applied differentiable resampling (see Corenflos
et al., 2021). Resampling itself is a basic block of particle filtering. A differentiable resampling step transports
the particles and weights (x̃i

tk
, wi

tk
) to a uniform distribution over a set of particles through applying the

differentiable ensemble transport map T(ε), that is

(x̃i
tk

, wi
tk

) → (X̃¦
tk

T(ε),i, 1/N) = (xi
tk

, 1/N), (52)

where X̃tk
∈ R

N×d denotes the stacked particles {x̃i
tk

}N
i=1 at time tk before resampling and xi

tk
denotes the

particles post resampling. Here we give the definition of the map T(ε) and review the regularized optimal
transport problem which has to be solved to compute it. We partly follow the presentation in Sections 2 and
3 of Corenflos et al. (2021), but directly apply the notation we use for particles and weights and focus on
explaining the transport problem rather than the algorithm used to solve it.

The standard particle filtering resampling step consists of sampling N particles from the categorical distribution
defined by the weights {wi

tk
}N

i=1, resulting in the particles with large weights being most likely to be repeated
multiple times. A result from Reich (2013) gives the property that the random resampling step can be
approximated by a deterministic ensemble transform T. In heuristic terms, the ensemble transform map
will be selected so that the particles {xi

tk
}N

i=1 will be transported with minimal cost, while allowing all the
weights to be uniform.

Let µ and ν be atomic measures, µ =
∑N

i=1 wi
tk

δx̃i
tk

and ν =
∑N

i=1 N−1δx̃i
tk

, where δx is the Dirac delta

at x. Then µ is the particle filtering distribution before resampling. Define the elements of a cost matrix
C ∈ R

N×N as Ci,j = ∥x̃i
tk

− x̃
j
tk

∥2, and the 2-Wasserstein distance between two atomic measures as

W2
2 (µ, ν) = min

P ∈S(µ,ν)

N
∑

i=1

N
∑

j=1

Ci,jPi,j . (53)

Above the optimal matrix P is to be found within S(µ, ν), which is a space consisting of mixtures of N
particles to N particles such that the marginals coincide with the weights of µ and ν, formally

S(µ, ν) =







P ∈ [0, 1]N×N |

N
∑

i=1

Pi,j = wi
tk

,

N
∑

j=1

Pi,j =
1

N







. (54)

The entropy-regularized Wasserstein distance with regularization parameter ε is then

W2
2,ε = min

P∈S(µ,ν)

N
∑

i=1

N
∑

j=1

Pi,j

(

Ci,j + ε log
Pi,j

wi
tk

· 1
N

)

. (55)

The unique minimizing transport map of the above Wasserstein distance is denoted by POPT
ε , and the

ensemble transport map is then set as T(ε) = NPOPT
ε . This means that we can find the matrix T(ε) via

minimizing the regularized Wasserstein distance, which is done by applying the iterative Sinkhorn algorithm
for entropy-regularized optimal transport (Cuturi, 2013).
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