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ABSTRACT

While Foundation Models provide a general tool for rapid content creation, they reg-
ularly require task-specific adaptation. Traditionally, this exercise involves careful
curation of datasets and repeated fine-tuning of the underlying model. Fine-tuning
techniques enable practitioners to adapt foundation models for many new applica-
tions but require expensive and lengthy training while being notably sensitive to
hyper-parameter choices. To overcome these limitations, we introduce HyperLoRA,
a model capable of adapting Large Language Models on the fly—solely based on
a natural language description of the target task. HyperLoRA is a hypernetwork
trained to construct LoRAs in a single inexpensive forward pass. After training
HyperLoRA on a suite of 9 pre-trained LoRA adapters (GSM8K, Arc, etc.), we
show that the ad-hoc reconstructed LoRA instances match the performance of
task-specific adapters across the corresponding test sets. Furthermore, HyperLoRA
can compress hundreds of LoRA instances and zero-shot generalize to entirely
unseen tasks. This approach provides a significant step towards democratizing
the specialization of foundation models and enables language-based adaptation
with minimal compute requirements. Our code and pre-trained checkpoints will be
available through GitHub and HuggingFace upon publication.

1 INTRODUCTION

Biological systems are capable of rapid adaptation, given limited sensory cues. For example, the
human visual system can tune its light sensitivity and focus through neuromodulation of the fovea and
rod cells (Wurtz et al., 2011; Digre & Brennan, 2012). While recent Large language models (LLMs)
exhibit a wide variety of capabilities and knowledge, they remain rigid when adding task-specific
capabilities. In such cases, practitioners often resort to re-training parts of the model (Gururangan
et al., 2020; Wei et al., 2021; Dettmers et al., 2022; Tay et al., 2021) using techniques such as
parameter-efficient fine-tuning, e.g. via Low-Rank Adaptation (LoRA, Hu et al., 2022). Typically, a
LoRA adapter has to be optimized for each individual downstream task and requires a task-specific
dataset and hyperparameter setting. This fine-tuning scheme for adaptation significantly limits the
possibility of transferring knowledge between tasks and induces engineering overhead.

Recently, it has been observed that by inducing structural constraints, the low-rank matrices learned
by LoRA adapters can be further compressed. For example, one can train lossy versions of the
original adapter while maintaining downstream performance (Brüel-Gabrielsson et al., 2024; Kim
et al., 2024; Kopiczko et al., 2024). Furthermore, multiple LoRAs can be combined for new tasks
at inference time (Ostapenko et al., 2024). At the core of these approaches lies the explicit use of
decomposition or dimensionality reduction techniques (e.g., SVD or routing) for better compression
and online composition of existing LoRAs. This raises the following questions:

1. Can we end-to-end train a neural network to compress many pre-trained LoRAs?
2. Can we decode new task-specific LoRA adapters from this network solely based on

natural-language instructions for an unseen task at test time?

We hypothesize that different LoRA adapters share the same underlying adaptation mechanism and
can be optimized simultaneously without any explicit structure or recipe for combining them. To
explicitly test this hypothesis, we propose HyperLoRA (see Section 1), a hypernetwork (Ha et al.,
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Figure 1: Left: Conceptual overview of the HyperLoRA training routine. Given task description
embeddings, we train a hypernetwork to generate LoRA adaptation matrices (∆W ) for various
tasks. The weights of the HyperLoRA are either optimized to distill pre-trained LoRA weights or via
multi-task supervised fine-tuning on downstream tasks. Right, Top: Relative performance to the
oracles on training SNI tasks with varying compression ratios. Right, Bottom: Zero-shot LoRA
generation performance on 10 benchmark tasks. As we increase the number of pre-training datasets,
the performance of HyperLoRA increases for three different HyperLoRA architectures.

2016) that compresses task-specific LoRAs and generates a new LoRA adapter zero-shot at inference
time. HyperLoRA is trained to compress LoRAs on a diverse task distribution from the Super Natural
Instruction (SNI) dataset (Wang et al., 2022). Importantly, HyperLoRA takes a natural language
description of the target task as an input, allowing zero-shot LoRA generation to unseen tasks. Empir-
ically, we show that HyperLoRA can effectively be trained either to reconstruct pre-trained adapters
or via supervised fine-tuning on a distribution of downstream tasks (see Fig. 1, top right). After
training HyperLoRA outperforms a multi-task LoRA baseline and Arrow Routing (Ostapenko et al.,
2024), a state-of-the-art zero-shot LoRA routing method, on various benchmark tasks. Furthermore,
we show that HyperLoRA can generate LoRA adapters for previously unseen tasks solely using the
language-based task description. This highlights the generalization capabilities and applicability of
our proposed indirect adaptation encoding. Our contributions are summarized as follows:

1. We introduce a hypernetwork-based architecture for producing LoRA adapters with a single
forward pass (Section 3) and based on text instructions. The HyperLoRA architecture can be
trained using both distillation of pre-trained adapters and supervised multi-task fine-tuning.

2. We show that HyperLoRA can efficiently encode hundreds of LoRA adapters (Section 4).
While the compression is lossy, HyperLoRA maintains the performance of task-specifically
tuned LoRA adapters. Furthermore, HyperLoRA can generalize to unseen tasks given suitable
natural language instructions.

3. We provide rigorous ablations (Appendix A) including HyperLoRA scaling with datasets
(see Fig. 1, bottom right), the impact of different task description embeddings, the training
routine and text-based task descriptions.

4. Finally, we provide various efforts to analyze the nature of the HyperLoRA generations
(Section 5). We study the relationship between LoRA adapters and find compelling evidence
why reconstruction-trained HyperLoRA cannot generalize. Furthermore, we find semantically
meaningful LoRA clusters when visualizing the generated LoRAs in a dimensionality-
reduced space.
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2 PRELIMINARIES

We utilize multiple fine-tuning datasets D = {D1, . . . ,DT }, which correspond to different tasks
T = {t1, . . . , tT }. For the purpose of training HyperLoRA, we assume that each fine-tuning dataset
has a set of natural language task descriptions (Zi = {zi1, . . . , zim}): Di = {Xi, Y i, Zi}. The task
descriptions do not need to be specific to each sample but rather a general description of the dataset.
For a single task ti, the fine-tuning objective of an LLM with pre-trained weights (Ψ) is given by

∆W i = argmin
∆W i

LSFT(Di,Ψ,∆W i), (1)

where LSFT gives the supervised fine-tuning loss and ∆W i is the fine-tuning adaption for task ti to
the base weights. For the multi-task setting, we train a single adapter ∆W to minimize the expected
loss over the union of all datasets D:

∆W = argmin
∆W

EDi∼D LSFT(Di,Ψ,∆W ). (2)

Low-Rank Adaptation (LoRA, Hu et al., 2022): LoRA is a parameter-efficient fine-tuning method
that freezes the pre-trained weights of a base model and only learns low-rank weight matrices, which
serve as an adapter to the base model. For each selected linear transformation h = W0x, the
fine-tuned transformation is given by h = W0x+∆Wx = W0x+BTAx, where A,B ∈ Rr×d

are weight matrices of rank r < d. We drop the layer index and module type of the LoRA weights
when referring to all LoRA weights simultaneously. Otherwise, we use subscripts to represent the
layer index and module type, e.g., ∆Wm,l, where m is the module type (e.g., query projection) and l
is the layer index.

Hypernetworks: A hypernetwork is a neural network that generates parameters for another ‘base’
network (Ha et al., 2016). It serves as an indirect encoding (Schmidhuber, 1997; Stanley & Miikku-
lainen, 2003) of the base network, given that the parameter count of the hypernetwork is much smaller.
This compression is achieved by learning to share parameters indirectly. More specifically, given a
layer-specific descriptor vector ϕl, a hypernetwork with parameters θ generates the parameters of
the base model at layer l ∈ {1, . . . L} as follows: Wl = hθ(ϕl). Traditionally, the layer descriptors
are either one-hot or learned vectors. The weights θ are trained via end-to-end optimization on a
downstream task. Hypernetworks have been applied to encode weights of various architectures (Ha
et al., 2016; Zhang et al., 2018; Schug et al., 2024).

3 HYPERLORA: LEARNING TO COMPRESS AND GENERATE LORAS

In this work, we utilize a hypernetwork to generate LoRA adapters for specific fine-tuning tasks. For
each target module (m) and layer index (l), a hypernetwork generates the two low-rank matrices
A,B based on a task description zi ∈ Zi of a task ti as follows:

∆W i
m,l = hθ(ϕ

i
m,l), with ϕi

m,l = concat
[
f(zi), E[m], E[l]]

]
, (3)

where f gives a vector representation of a text description, typically represented by a CLS token of
a bidirectional transformer model or last token activation of an LLM. E is a learnable embedding
dictionary indexed by either a module type m or a layer index l. For legibility, we introduce a
shorthand notation for HyperLoRA’s output ∆W i := hθ(ϕ

i) := hθ({ϕi
m,l}). Then, a supervised

fine-tuning training objective for HyperLoRA is

θ = argmin
θ

EDi∼D,zi∼Zi LSFT(Di,Ψ, hθ(ϕ
i)), (4)

Note that values of m and l can be batched, which allows HyperLoRA to generate ∆W for all the
modules and layer indices efficiently within a single forward-pass.

3.1 HYPERLORA ARCHITECTURES

Most of a hypernetwork’s parameters come from the output layer, which scales linearly with the size
of the target weights (Von Oswald et al., 2019). To explore the complexity-performance trade-off,
we propose three variants of HyperLoRA: L , M , and S . We impose different output spaces on
the hypernetwork that represent different inductive biases and parameter counts (see Fig. 2). We
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Figure 2: Overview of HyperLoRA architectural variations. The dashed box at the bottom shows the
output size of a single forward pass of HyperLoRA. Blue boxes are trainable modules. Cyan Boxes
are trainable embedding layers. Components in dashed boxes are only used with their corresponding
architectures. r is the rank of a LoRA adapter and d is the size of the input and the output dimension.

note that all variants use the same backbone architecture and only differ in their output heads and
learnable embeddings: The L architecture is the largest variant. Its final linear layer outputs
low-rank A and B matrices simultaneously with the number of weight connections to the output head
|θhead| = dout × 2× r × d, where dout is the output size of the last MLP block. M architecture is
the medium-size model with a shared output layer between the low-rank A and B matrices. That is,
the head outputs a low-rank matrix, either A or B, depending on the learnable embedding. The size
of the output head is |θhead| = dout × r × d. Finally, S architecture is the most parameter-efficient
model with the strongest inductive biases, where the hypernetwork outputs only one rank of a low-
rank matrix at a time. This output space makes the size of the head much smaller: |θhead| = demb × d.
For reference, a LoRA adapter has r× d× 2×L× |M | trainable parameters, where L is the number
of layers and |M | is the number of target modules. We note that every architecture can generate the
entirety of low-rank matrices A and B in a single forward pass by batching all the input embeddings.
We provide more details of the architectures in Appendix C.

3.2 TRAINING HYPERLORA VIA LORA RECONSTRUCTION (DISTILLATION)

The most straightforward way to train HyperLoRA is to reconstruct pre-trained task-specific LoRAs.
This setup allows us to utilize publicly available libraries of LoRAs (Brüel-Gabrielsson et al., 2024;
Zhao et al., 2024). Alternatively, one can also use a two-stage procedure, in which a library of
LoRAs is manually pre-trained first, and then one trains HyperLoRA to reconstruct them. For the sole
purpose of compressing LoRAs, we can train HyperLoRA using one-hot or learnable vectors as task
embeddings. However, these embeddings do not allow zero-shot LoRA generation for unseen tasks.
To enable zero-shot LoRA generation, we additionally condition HyperLoRA with embeddings of
natural language task descriptions, which allows HyperLoRA to generate LoRA adapters for various
tasks—including unseen ones—given corresponding task descriptions. Given a suitable library of
LoRA adapters Ω, the reconstruction loss for HyperLoRA can be written as

L(Ω, θ) = E∆W i∼Ω |∆W i − hθ(ϕ
i)|. (5)

3.3 TRAINING HYPERLORA VIA SUPERVISED FINE-TUNING

Alternatively, HyperLoRA can be directly optimized on fine-tuning datasets. Training HyperLoRA with
SFT sidesteps the need for intermediate target LoRA adapters and allows for end-to-end training
of the hypernetwork. This training scheme is preferred if existing trained LoRAs are not naturally
clustered by their functionalities or downstream tasks. For instance, t1 and t2 could be two related
tasks requiring a similar LLM capability, but ∆W 1 and ∆W 2 could be in different minima. Thus,
HyperLoRA trained via reconstruction training would have to compress numerically different ∆W 1

and ∆W 2, making it less likely to generalize. In fact, we empirically find that a HyperLoRA trained
via reconstruction fails to generalize to unseen tasks (Appendix A.5). In contrast, an SFT-trained
HyperLoRA can implicitly learn to cluster tasks, which has been shown to improve zero-shot LoRA
routing performance (Ostapenko et al., 2024). The SFT loss for HyperLoRA is given by Eq. (4).
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4 EXPERIMENTS

We investigate the effectiveness of the different HyperLoRA architectures and training schemes in
terms of compression of adapters and zero-shot LoRA generation for unseen tasks. We include
task-specific LoRAs, element-wise average LoRA, and multi-task LoRA—a LoRA adapter trained
on all training tasks—as baselines. Additionally, we include results of Arrow Routing zero-shot
performance from Ostapenko et al. (2024). Note that the performance should not be compared
directly as it uses a different set of LoRA adapters and training tasks, and there are likely differences
in the benchmark evaluation prompts. Furthermore, HyperLoRA uses a multi-task (MT) LoRA as a
prediction offset in all experiments because of its strong performance on the benchmarks. That is,
HyperLoRA has to learn to generate task-specific deltas, which will be added to the offset.

In all experiments, we use Mistral-7B-Instruct (Jiang et al., 2023) as the base LLM model and
gte-large-en-v1.5 (Li et al., 2023; Zhang et al., 2024) for extracting the task embedding from a
natural language task description. All LoRA adapters are of rank 8 and only target the query and the
value projection modules in every attention block of the base LLM. With this LoRA configuration,
L , M , and S have 55M, 34M, and 5M trainable parameters respectively.

We utilize the SNI dataset (Wang et al., 2022) for training LoRA adapters. We use a subset of 500
tasks following Brüel-Gabrielsson et al. (2024), 10 of which are manually chosen while the rest
are randomly sampled. We use 11 tasks for held-out evaluation, leaving 489 datasets for training.
Finally, we limit the size of each task to 500 samples to ensure compute feasibility. All samples are
in English.

For evaluation, we choose 10 widely used benchmarks that collectively cover a variety of LLM
capability assessments, e.g., reasoning, math, science, coding, and world knowledge. Specifically, we
include the following benchmarks: Arc-challenge (ArcC) and Arc-easy (ArcE) (Clark et al., 2018),
BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021), Hellaswag (HS) (Zellers et al., 2019),
OpenBookQA (OQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), Winogrande (WG) (Keisuke
et al., 2019), HumanEval (HE) (Chen et al., 2021), and MBPP (Austin et al., 2021). Task descriptions
for the training datasets and the benchmarks are fully generated, as described in Appendix F. When
we use language task embedding as a part of the input, we average HyperLoRA performance using
three descriptions for each benchmark.

4.1 LORA COMPRESSION

Table 1: Benchmark performance of HyperLoRA trained via reconstruction loss on 9 benchmark tasks.
Green highlight indicates that HyperLoRA outperform the benchmark-specific LoRA adapters.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(9 tasks)

Base model 65.4 77.8 71.6 40.9 49.7 54.2 72.8 45.0 43.1 55.8

One-Hot Task Embeddings
HyperLoRA (Recon) L 76.4 89.9 89.4 53.8 92.6 85.0 69.7 51.2 52.6 73.4
HyperLoRA (Recon) M 76.7 89.9 89.4 53.2 92.6 85.0 69.9 51.4 52.9 73.4
HyperLoRA (Recon) S 75.2 88.8 87.4 50.9 89.1 75.6 83.9 58.1 48.1 73.0

Task Description Embeddings
HyperLoRA (Recon) L 76.6 89.8 89.4 53.9 92.6 85.0 69.6 51.2 51.8 73.3
HyperLoRA (Recon) M 76.5 89.9 89.4 53.9 92.5 84.9 70.4 51.6 52.8 73.5
HyperLoRA (Recon) S 75.4 88.8 87.8 49.1 89.7 76.7 84.2 56.9 48.0 73.0

Task-specific LoRAs 76.6 89.9 89.4 53.5 92.6 85.0 69.9 51.1 52.1 73.3

In this experiment, we aim to investigate whether HyperLoRA can recover the performance of trained
LoRAs via reconstruction training. For quality control and consistent evaluation, we train a task-
specific LoRA (oracle) on the training split of each training and benchmark task, collectively
forming a library of LoRAs. Table 1 shows the benchmark performance of HyperLoRA trained by
distilling 9 benchmark-specific LoRAs using either one-hot or natural language task embeddings
from gte-large-en-v1.5. We can see that HyperLoRA fully recovers the performance of the oracle
adapters with both task embedding types. Notably, HyperLoRA outperforms task-specific LoRAs
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on some benchmarks (highlighted in green). We hypothesize that the gain comes from the lossy
compression of the target LoRAs, which acts as a regularization on the already trained LoRA weights.
This effect is most apparent on PIQA and WG benchmarks, where the oracle LoRA overfits and
performs worse than the base model.
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Figure 3: Relative performance (y-axis)
and training reconstruction error (x-axis)
of HyperLoRA instances trained with in-
creasing number of tasks.

Next, we explore whether one-hot HyperLoRA can main-
tain the oracles’ performance when using increasing num-
ber of training tasks. Fig. 3 shows the performance of
one-hot HyperLoRA on the test splits of a subset of 10 SNI
training tasks with varying degree of final training L1 re-
construction error. For each architecture, we train various
HyperLoRA instances using {16, 32, 64, 128, 256, 489}
training tasks, effectively increasing the training recon-
struction error by training on more tasks. Although
HyperLoRA fully recovers the oracles’ performance when
the reconstruction loss is less than 10−4, we can see that
the performance drops as the training error increases. This
result suggests that HyperLoRA learns lossy compression
of the target LoRAs. Still, we find that all HyperLoRA
architectures can maintain around 65% of oracles’ perfor-
mance and the performance does not drop further even at
> 8× 10−4 per element L1 error. Despite the performance drop, we show that increasing the number
of training tasks are beneficial, increasing generalization of HyperLoRA when generating LoRAs for
unseen tasks in Appendix A.1.

4.2 ZERO-SHOT LORA GENERATION

Table 2: Zero-shot performance on unseen benchmark tasks. HyperLoRA generates LoRAs based
on unseen task descriptions. Its performance is an average of three generated LoRAs, each with a
different instance of descriptions. Arrow Routing results are taken from (Ostapenko et al., 2024).
Green highlight indicates high performance than that of the benchmark-specific LoRA adapters.

Bold numbers are used when the performance is higher than the multi-task LoRA.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(8 tasks)

GSM8K
(acc)

HE
(pass@1) Avg.

No Test-Time Adaptation
Base model 65.4 77.8 71.6 49.7 54.2 72.8 45.0 43.1 60.0 40.9 37.2 55.8
Average LoRA 70.7 84.4 75.4 59.9 59.0 78.0 54.3 47.1 66.1 42.4 37.8 60.9
Multi-task LoRA 73.7 86.9 84.6 64.3 66.6 80.7 59.0 50.4 70.8 44.2 36.0 64.6

Zero-Shot Adaptation
Arrow Routing 60.9 86.2 87.6 80.8 48.6 83.0 68.5 50.2 70.7 N/A 28.7 N/A
HyperLoRA (SFT) L 74.0 87.9 85.1 65.7 73.8 82.0 61.7 53.2 72.9 46.2 39.8 66.9
HyperLoRA (SFT) M 74.9 88.0 84.9 65.6 73.9 82.0 62.1 52.7 73.0 47.7 40.2 67.2
HyperLoRA (SFT) S 74.1 86.9 84.3 64.9 69.9 80.8 60.5 52.1 71.7 45.5 38.6 65.8
Oracle
Task-specific LoRAs 76.6 89.9 89.4 92.6 85.0 69.9 51.1 52.1 75.8 53.5 N/A N/A

Here, we explore whether HyperLoRA can generate useful LoRA adapters for unseen tasks. We train
HyperLoRA with SFT on 256 SNI tasks, each with 128 task descriptions. For each sample in a training
minibatch, we sample a description from the corresponding dataset in an online fashion. Table 2
shows the zero-shot performance on 10 benchmarks. We observe that a multi-task LoRA adapter
performs considerably well on the benchmarks despite no adaptation. Still, there is a performance
gap between task-specific LoRAs and MT LoRA. We can see that SFT-trained HyperLoRA indeed
generates useful LoRAs, thus improving over the multi-task LoRA adapter consistently across
benchmarks (indicated by bold numbers). Notably, even though HyperLoRA cannot fully bridge the
performance gap, it outperforms the oracles on some tasks (highlighted in green).

We also observe that the best-performing variant in both experiments (Sections 4.1 and 4.2) is the
M variation, which has a shared output layer for the low-rank matrices (see Fig. 2). This result

corroborates with a general knowledge in the machine learning literature that certain inductive biases
improve models’ robustness and generalization.
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5 ANALYSIS

5.1 LORAS OF SIMILAR TASKS
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Figure 4: Top row: Each plot shows the similarity between a benchmark LoRA adapter and 489
SNI-trained adapters in the weight space (y-axis) against their similarity in the task embedding space
(x-axis). Bottom row: Each plot shows SNI-trained adapters’ performance relative to a benchmark
adapter (y-axis) with the same x-axis. We can see that LoRAs with similar description embeddings
to the benchmarks’ perform better in those benchmarks, suggesting their shared functionalities.
However, LoRAs with similar functionalities are not nearby in the parameter space.
Here, we investigate the relationship between LoRA adapters by inspecting their similarity in the
parameter space, performance on the benchmarks, and similarity of their description embeddings.
To measure adapter similarity, we compute the cosine similarity of the concatenation of flattened
low-rank A and B matrices of all layers. We plot the adapters’ similarity against task description
similarity (using the mean embedding of each task) in the top row of Fig. 4. We find no correlation
between the cosine similarity of the adapters’ weights (y-axis) and the task embedding similarity
(x-axis) indicated by near-zero Pearson correlation coefficients.

In the bottom row of Fig. 4, we change the y-axis to adapters’ relative benchmark performance
to benchmark-specific adapters. We find a positive correlation between the relative benchmark
performance of SNI-trained adapters and the task embedding similarity. That is, adapters perform
better on a benchmark if their task descriptions are similar to those of the benchmark. However,
despite their similar functionalities, adapters with similar descriptions are not similar in the parameter
space. We believe that this relationship has a significant impact on the limited generalization of
reconstruction-trained HyperLoRA. We further discuss this topic in Appendix E.

5.2 VISUALIZATION OF HyperLoRA ACTIVATIONS

Next, we aim to understand HyperLoRA further and see whether it generates task-specific LoRA
adapters for unseen tasks with unseen descriptions. We probe our best performing model in the
zero-shot evaluation, SFT HyperLoRA M trained on 256 training tasks. We probe the model on all
the benchmark tasks, each with three unseen descriptions. Fig. 5 shows the 2D t-SNE projection
of HyperLoRA’s task encoder activation and the output of the last MLP block. We can see clear
clustering in both projection plots based on the benchmark tasks (colors). This means that HyperLoRA
generates different adapters for different tasks, confirming that HyperLoRA indeed generates task-
specific adapters. Moreover, similar tasks, e.g., MBPP and HumanEval, are clustered together in
both plots, suggesting that SFT-trained HyperLoRA produces similar adapters for semantically similar
tasks.
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Figure 5: 2D t-SNE projection of activations of HyperLoRA’s task encoder (left) and activations of the
last MLP block (right) grouped by benchmark tasks (represented by colors). We probe HyperLoRA
with unseen three task descriptions per benchmark. We can see activations clustering in both plots,
indicating that HyperLoRA indeed learns to generate LoRAs tailored to specific tasks.

6 RELATED WORK

Hypernetworks for Adaptation: Hypernetworks (Ha et al., 2016) provide a general indirect encoding
method for neural network weights. They have been applied to different architectures (e.g., in
attention, Schug et al., 2024) and training paradigms (e.g., in continual learning, Von Oswald et al.,
2019). Here, we focus on generating low-rank adapters using natural language instruction. Previous
work (Mahabadi et al., 2021; He et al., 2022; Ortiz-Barajas et al., 2024) considers hypernetworks for
LLM adaptation in a multi-task context but uses learned task identifiers instead of natural language
for adaptation. Thus, these approaches do not enable task-wise zero-shot generalization.

Hypernetworks for Zero-Shot LLM Adaptation: Xiao et al. (2023) explore the use of HyperLoRA
on a limited set of English dialects; they only consider five dialects, one of which is unseen. Plus,
the hypernetwork relies on expert-based transformation of the dialects, limiting the possibility of
generalization. Closely related to our work is Hyperdecoders (Ivison & Peters, 2022): a hypernetwork
that generates adapters on the fly based on the input sequence. While per-sequence adaptation is
desirable for benchmark evaluation—where the LLM should always output the correct answer—we
argue that description-based adaptation gives more control to users since they can steer the LLM in
creative ways based on user-generated descriptions. Our work improves upon Xiao et al. (2023) and
Ivison & Peters (2022) in many ways, including achieving task-wise zero-shot generalization, simpler
and more general hypernetwork input requirement, and more comprehensive experiments, ablations
and analyses. Concurrent to our work, Lv et al. (2024) propose a similar approach that utilizes a
hypernetwork to generate LoRA adapter at inference time. However, their hypernetwork assumes that
the context vector provided to the hypernetwork contains few-shot examples. In contrast, HyperLoRA
only assumes a task description, which users can produce by themselves within minutes.

7 LIMITATIONS AND FUTURE WORK

Limitations. Our results have primarily focused on modulating the Mistral architecture, with an
emphasis on LLM adaptation. However, no inherent constraints are preventing us from applying
HyperLoRA to other LLMs or to adapt vision language models. Additionally, we believe the compres-
sion achieved by HyperLoRA can be further optimized. Finally, the potential for HyperLoRA trained
on a smaller base model to transfer to effectively to larger models within the same architecture class
remains an open area for exploration.

Future Work. We plan to expand HyperLoRA across multiple architectures and explore the potential
for transfer between diverse systems. In addition, we intend to rigorously study the scaling laws of
LoRA compression as the number of HyperLoRA parameters increases. Finally, our goal is to provide
an openly accessible service for various HyperLoRA configurations. We envision a use-friendly
platform where individuals could generate and download fine-tuned adapters by simply prompting a
model with a minimal chat interface.
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A ABLATIONS

A.1 SCALING NUMBER OF TRAINING TASKS

Table 3: Benchmark performance of SFT-trained HyperLoRA with varying numbers of training tasks.
Due to the space constraint, we show results with {128, 256, 489} tasks. ▲▲▲ (▼▼▼) indicates increased
(decreased) performance compared to the previous increment in the number of training tasks.

Number
of tasks

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

HyperLoRA (SFT) L
128 75.4 88.0 85.0 43.6 66.7 74.7 82.2 57.7 38.0 51.4 66.3 ▲▲▲
256 74.0 87.9 85.1 46.2 65.7 73.8 82.0 61.7 39.8 53.2 66.9 ▲▲▲
489 74.1 87.6 84.9 44.9 65.6 69.9 81.4 59.1 40.7 52.5 66.1 ▼▼▼

HyperLoRA (SFT) M

128 74.2 87.7 83.6 46.9 65.4 71.1 81.4 56.3 40.7 53.3 66.1 ▲▲▲
256 74.9 88.0 84.9 47.7 65.6 73.9 82.0 62.1 40.2 52.7 67.2 ▲▲▲
489 74.7 87.8 85.4 46.9 65.7 72.5 81.2 61.5 40.9 53.6 67.0 ▼▼▼

HyperLoRA (SFT) S

128 73.2 86.5 84.6 45.8 65.6 69.5 81.4 59.2 42.9 51.4 66.0 ▲▲▲
256 74.1 86.9 84.3 45.5 64.9 69.9 80.8 60.5 38.6 52.1 65.8 ▼▼▼
489 73.2 86.7 85.1 45.0 64.4 66.1 80.1 59.4 37.4 52.0 64.9 ▼▼▼

We study the impact of the number of training tasks on the zero-shot benchmark performance of
HyperLoRA in the SFT setting, where all HyperLoRA instances are trained for the same number of
gradient steps (see details in Appendix D). We find that increasing the number of training tasks
improves the average zero-shot benchmark performance of the hypernetwork (Fig. 1 and Table 3).
However, after 256 tasks (128 tasks for S ), we see a consistent performance drop on all variants. We
hypothesize that hypernetworks have a certain capacity for storing task knowledge. Thus, training
hypernetworks on more tasks beyond their capacities causes performance degradation. This also
explains why the smallest architecture S experiences a performance drop before other variants.

A.2 TASK EMBEDDING MODELS

Table 4: Zero-shot benchmark performance of
HyperLoRA trained via SFT on 489 tasks.

gte Mistral

Avg. Benchmark
performance

S M L S M L
64.9 67.0 66.1 65.4 66.9 66.5

Avg. 66.0 66.3

Table 4 shows the zero-shot benchmark
performance with two different embed-
ding models: gte-large-en-v1.5 and
Mistral-7B-Instruct. For the gte model, we
represent a task description with the activation
of the CLS token in the last layer (1024D) as the
model is a bidirectional model. For Mistral,
we use the activation of the last token in the sequence (4096D) to represent a given description.
Table 4 shows the results with the two embedding models used for HyperLoRA SFT training on
489 tasks. We find that both embedding models yield HyperLoRA instances with comparable
generalization capability (66.0 vs 66.3), suggesting HyperLoRA robustness to specific text embedding
methods as long as the embeddings contain some semantic information of the tasks.

A.3 PREDICTION OFFSET
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Figure 6: Impact of prediction offsets.

We ablate the inclusion of the MT LoRA prediction off-
set in HyperLoRA. We train HyperLoRA L with 256 SNI
training datasets using three different offset values: MT
LoRA, Avg. LoRA, and not using offset. Fig. 6 shows
the performance differences. We find that using either MT
LoRA or Avg. LoRA improves for the zero-shot perfor-
mance equally, despite the worse benchmark performance
of Avg. LoRA (see Table 2). Because we apply the offset
to low-rank matrices as opposed to the full adapter matrix
in each layer, we hypothesize that the offset serves as an
adapter “basis”, which eases the learning process. We
discuss this topic further in Appendix E.
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A.4 VARYING TASK DESCRIPTIONS

Table 5: Benchmark performance of HyperLoRA
trained via reconstruction on 9 benchmark tasks.

Aligned Unaligned
Train Eval Train (random) Random strings

HyperLoRA L 73.3 73.6 49.1 68.2
HyperLoRA M 73.5 70.2 49.5 68.5
HyperLoRA S 73.0 72.9 55.7 53.9

Avg. 73.3 72.2 51.4 63.5

We investigate the impact of input task descrip-
tions on the performance of generated LoRAs.
We use four types of task descriptions:

• Train: Training descriptions

• Eval: Unseen descriptions

• Random strings: Random literal strings

• Train (random): Training descriptions randomly sampled from other benchmarks

For each description type, we report the average performance using three descriptions. The four
description types can be grouped into two categories based on the alignment between the descriptions
and the tasks: aligned (Train, Eval) and unaligned (Train (random) and Random strings). We
can see a clear performance gap between the two description categories. Specifically, training and
evaluation descriptions generate the best performing LoRAs, matching the performance of oracle
LoRAs, despite the evaluation descriptions being unseen. These results suggest that HyperLoRA are
robust to changes in the task description as long as the descriptions are aligned with the task. On the
other hand, if the descriptions are not aligned with the task at hand, the generated LoRAs will not
perform as well, as indicated by the performance of the unaligned group.

A.5 TRAINING SCHEMES

Table 6: Zero-shot benchmark performance of
HyperLoRA trained via reconstruction and SFT.

Recon SFT

Benchmark
performance

S M L S M L
61.8 61.7 62.0 65.8 67.2 66.9

Avg. 61.8 66.6

In this section, we investigate the zero-shot per-
formance of SFT-trained and reconstruction-
trained HyperLoRA. All model instances are
trained with roughly equal wall-clock time of
10 hours (see Appendix D for details). From
Table 6, we can see that there is a clear per-
formance gap between reconstruction and SFT
training schemes. Specifically, SFT produces HyperLoRA instances that perform significantly better
than that of reconstruction training (66.63 vs 61.83 benchmark performance averaged over model
architectures). We attribute the performance difference to the library of LoRAs needed for reconstruc-
tion training. For reconstruction-trained HyperLoRA to generalize, the target LoRA adapters of similar
tasks should be clustered in some latent manifold. In contrast, SFT training does not need pre-trained
task-specific LoRA adapters, thus sidestepping this problem by learning end-to-end. In the next
section, we show that adapters of similar tasks do not live nearby in the weight space (Section 5.1),
supporting our claim of a potential problem when reconstructing pre-trained LoRA adapters.

B HYPERPARAMETER SETTINGS

Table 7: Hyperparameters for training a task-specific LoRA adapter.

Hyperparameters Task-specific LoRA HyperLoRA (SFT) HyperLoRA (recon)
Batch size 4 4 Number of the target LoRAs

Epochs 10

80 for 16 tasks
40 for 32 tasks
20 for 64 tasks

10 for 128 tasks
5 for 256 tasks
3 for 489 tasks

100000

Gradient accumulation steps 2 16 1
Max learning rate 8× 10−5 10−4 10−3

Max gradient norm 1.0 1.0 1.0
NEFTune noise alpha 5.0 5.0 5.0
Warmup fraction 0.1 0.1 0.1
Learning rate scheduler Linear with warm up Linear with warm up Linear with warm up
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Figure 7: Parameter-efficient fine-tuning (PEFT) config for all LoRA adapters.

Table 7 and Fig. 7 show the training configuration of all models trained in this work. For LoRA
reconstruction training, each prediction target is an entirety of a LoRA adapter. That is, there is a
total of 489 training samples for 489 SNI tasks. Thus, we increase the epochs to 100, 000 to ensure
that the HyperLoRA converges.

C ADDITIONAL DETAILS OF HYPERLORA ARCHITECTURES

Figs. 8 and 9 shows the details of the backbone of HyperLoRA. Specifically, the size of the module and
layer embedding (E[m] and E[l]) is 32D. Together, they form a dictionary of 34 learnable embeddings
(32 layers + 2 target modules). The task encoder is a linear layer that takes in a text embedding
(1024D for the gte embedding and 4096D for Mistral embedding) and outputs a 64D vector. The
encoded task, module, and layer embedding are concatenated and then fed into mlp0 followed by
a residual MLP block mlp1. At this point, for M and S , we add a 128D A/B embbedding to the
residual stream. The output is then fed to another residual MLP block mlp2. At this point, for S , we
add a 128D rank embedding to the residual stream. After this, we feed the activation to the last MLP
block. The output of the last MLP block is then fed to a linear head, whose output size is as follows:

• L : 2× r × d giving both A and B matrices

• M : r × d giving a low-rank matrix A or B depending on the A/B embedding

• S : d giving a rank of a low-rank matrix depending on both the A/B embedding and the
rank embedding.
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Figure 8: Detailed backbone architecture.
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Figure 9: Detailed A/B and rank embedding of HyperLoRA.

For ease of explanation, we assume d is the same for the input and the output space of a linear
transformation. In practice, din = dout = 4096 for q_proj module and din = 4096, dout = 1024 for
v_proj module. r = 8 for all adapters in this work. Finally, we list the number of trainable parameters
of each architecture: 55, 252, 992 for L , 34, 282, 240 for M , 4, 923, 392 for S , 3, 407, 872 for
LoRA.

D TRAINING DETAILS

All models trained in this work fit in a single H100 GPU (80GB of VRAM). Notably, SFT requires
much more memory because of the need to backpropagate the gradient through the base LLM.
Reconstruction training, on the other hand, should be possible in a modern consumer-grade GPU.

For reconstruction training, we fix the training epochs to be 100K but scale the batch size to match
the number of target LoRA adapters. This means the model trains much faster for a lower number
of target LoRAs while maintaining the same number of optimizer steps. For reference, training to
reconstruct 9 benchmark-specific LoRAs takes around 10 minutes to complete, while training to
reconstruct 489 SNI LoRA adapters takes around 10 hours.

For SFT training, we aim to keep the number of optimizer steps the same as we do for reconstruction
training. However, since we cannot fit all fine-tuning samples, we scale the number of epochs inverse
to the number of training tasks (see Table 7).

Additionally, for reconstruction training, instead of predicting the weights directly, HyperLoRA learns
to predict the z-score of a normal distribution of each weight entry in the low-rank A,B matrices.
At test time, the output is multiplied by the standard deviation of each element before adding to the
mean, converting the prediction to the correct scale.

E UTILIZING FULL ADAPTATION MATRIX VS LOW-RANK MATRICES

Similar to Fig. 4, Fig. 10 show the similarity of SNI adapters to benchmark-specific adapters, but
instead of using the concatenation of flattened A and B matrices, we use flattened ∆W instead.
With the change, we find a positive correlation between the task embedding similarity and the adapter
similarity in the weight space. This is likely because, for a given ∆W matrix, there are many possible
permutations of low-rank matrices A and B. This suggests that if we compute the reconstruction
loss in the full adaptation matrix space, reconstruction-trained HyperLoRA could generalize better.
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Figure 10: Each plot shows the similarity between a benchmark LoRA adapter and 489 SNI-trained
adapters in the ∆W weight space. There is a positive correlation between the two variables indicated
by small positive Pearson correlation coefficients.

However, we empirically find that it does not outperform HyperLoRA trained to reconstruct low-rank
matrices at zero-shot LoRA generation.

Furthermore, we also ablate how the prediction offset is applied to HyperLoRA under SFT training.
First, the offset could be added to the low-rank matrices:

∆W = (Bpred +Boffset)
T (Apred +Aoffset) (6)

= BT
predApred +BT

predAoffset +BT
offsetApred +BT

offsetAoffset. (7)

The other approach is to apply the offset to the full adaptation matrix:

∆W = BT
predApred +BT

offsetAoffset (8)

In a preliminary experiment, we find that applying the offset to the low-rank matrices performs better
than the alternative for SFT training. We hypothesize that the cross terms (the middle two terms in
Eq. (7)) ease the learning process. Effectively, the offset matrices in the cross terms act as ‘answer
bases‘ for Apred and Bpred to act upon.

F GENERATING TASK DESCRIPTIONS WITH A FOUNDATION LANGUAGE
MODEL

We automate task description generation for each task by leveraging powerful closed-source language
models (Achiam et al., 2023). We query GPT-4o mini with carefully constructed prompts that incen-
tivize diversity to facilitate downstream generalization. In particular, we generate 200 descriptions per
task by querying the model 10 times, each time asking for 20 descriptions given randomly sampled
five question-answer pairs from the task. We leverage in-context learning by providing examples of
question-answer pairs with matching descriptions. Finally, we also designed our prompts to avoid
overly verbose responses and unnecessary information, such as explicit mentions of answer formats
and additional instructions. We use the generated descriptions for the training and benchmark tasks.

G SCALING NUMBER OF DESCRIPTIONS PER TASK

Fig. 12 shows mixed results on the benchmark performance when vary the number of descriptions per
training task. For consistency, we always train HyperLoRA with 128 descriptions per training task.
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System message
You are a creative and helpful assistant.

Prompt

Given the following question-response pairs, please give a short description of the task describing what the task is.

{IN CONTEXT EXAMPLES}

Now, you must describe the task based on the following question-response pairs.

{5 sampled question-answer pairs}

Please use the information in the question-answer pairs and example description and come up with several descriptions 
that explain the task. Each description should be written in plain text, with the following format.

Description 1: DESCRIPTION_1
Description 2: DESCRIPTION_2
...

You should also be creative and vary the structure and the length of the descriptions such that they'll be diverse and 
cover various writing styles. You should ignore the specific question-answer pairs and focus on the high-level concept 
and topic of the task in general.
**DO NOT** describe that there are multiple choice options or the format of the answer.
**DO NOT** include the answer format, e.g., 'choose the correct option', 'answer with only one word', etc.
**DO NOT** describe how to answer the question, but rather what the task is about and the skills and knowledge 
required.
You can include reasoning steps that should be used to reach the expected answer.

Response with 20 descriptions. Use simple words and please be clear and diverse in your descriptions.

In-context examples

Here are some examples of the structure of the task of describing a task based on question-response pairs.

## Example question-answer pair: 1
### Input
You are given a question on high school macroeconomics. You are also given 4 answer options (associated with 'A', 'B', 'C', 
'D'), out of which only one is correct. You need to answer the question by selecting the correct option. You should only 
answer with the choice letter, not the whole answer.
Input: Allocative efficiency (A)means that no inferior products will be produced. (B)implies that the economy's output is 
distributed evenly. (C)means that those who work hardest will get more. (D)implies that resources are used to produce 
the goods and services society desires in just the right amounts.
Output:
### Expected output
D
### Plausible descriptions
Description 1: Your job is to analyze the provided question about economics. Use your understanding of economic 
principles to guide your choice.
Description 2: Utilize your economic understanding to determine which choice is right. The correct answer will be the one 
that best aligns with economic principles.

## Example question-answer pair: 2
### Input
In this task, you are given a country name and you need to return the capital city of the given country.
Input: Senegal
Output:
### Expected output
Dakar
### Plausible descriptions
Description 1: Given the name of a country, your job is to provide its capital city.
Description 2: For each country listed, determine and state its capital city. This requires familiarity with global locations 
and capitals.

Figure 11: The prompt template used to query GPT-4o mini for task descriptions.
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Figure 12: Zero-shot benchmark performance of SFT-trained HyperLoRA with varying number of
descriptions per training task.
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