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ABSTRACT

Balancing covariates is critical for credible and efficient randomized experiments.
Rerandomization addresses this by repeatedly generating treatment assignments
until covariate balance meets a prespecified threshold. By shrinking this thresh-
old, it can achieve arbitrarily strong balance, with established results guarantee-
ing optimal estimation and valid inference in both finite-sample and asymptotic
settings across diverse complex experimental settings. Despite its rigorous the-
oretical foundations, practical use is limited by the extreme inefficiency of re-
jection sampling, which becomes prohibitively slow under small thresholds and
often forces practitioners to adopt suboptimal settings, leading to degraded perfor-
mance. Existing work focusing on acceleration typically fail to maintain the uni-
formity over the acceptable assignment space, thus losing the theoretical grounds
of classical rerandomization. Building upon a Metropolis-Hastings framework,
we address this challenge by introducing an additional sampling-importance re-
sampling step, which restores uniformity and preserves statistical guarantees. Our
proposed algorithm, PSRSRR, achieves speedups ranging from 10 to 10,000 times
while maintaining exact and asymptotic validity, as demonstrated by simulations
and two real-data applications.

1 INTRODUCTION

Randomized experiments are the gold standard for credible causal inference as random assignment
balances both observed and unobserved confounders in expectation. However, in practice, even un-
der complete randomization, there remains a nontrivial risk of covariate imbalance (Rosenberger &
Sverdlov, 2008), which grows as the number of covariates increases (Krieger et al., 2019; Morgan
& Rubin, 2012). Such imbalance can reduce credibility due to accidental bias. While deterministic
allocation can enforce near-exact covariate balance, it introduces its own problems, including se-
lection bias, a loss of robustness, and the inability to use randomization-based inference (Harshaw
et al., 2024).

An intuitive and practical approach to achieve what Kapelner et al. (2021) describe as “a harmony
of optimal deterministic design and completely randomized design” is to randomize repeatedly until
an assignment with appropriate and satisfactory covariate balance is achieved, a procedure known
as rerandomization. Despite its long history and widespread use (Student, 1938; Cox, 1982; Bailey
& Rowley, 1987; Maclure et al., 2006; Imai et al., 2008; Bruhn & McKenzie, 2009), the theoretical
implications of rerandomization were first formally studied by Morgan & Rubin (2012) using the
Mahalanobis distance. Since then, rerandomization has attracted growing interest, and its theoretical
foundations have been established across various scenarios (Morgan & Rubin, 2015; Li et al., 2018;
Zhou et al., 2018; Li et al., 2020; Shi et al., 2024; Wang et al., 2023; Lu et al., 2023).

Although rerandomization can, in theory, achieve asymptotically optimal precision by shrinking
the balance threshold as the sample size grows (Wang & Li, 2022), it is often regarded as compu-
tationally infeasible and therefore implemented with suboptimal thresholds when compared with
alternative methods (Yang et al., 2023; Harshaw et al., 2024). Because the statistical properties
of rerandomization critically depend on the choice of threshold, this computational issue leads to
suboptimal statistical performance and results in unfair comparisons with existing methods. The
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computational limitation of rerandomization stems from its reliance on naive rejection-sampling,
which typically yields a single accepted assignment only after evaluating thousands of candidate al-
locations based on their Mahalanobis distance. In practice, as the number of covariates increases, the
optimal acceptance probability can become astronomically small (e.g., < 10−15 with 20 covariates),
making naive rejection–sampling implementations of rerandomization practically infeasible.

This computational challenge is amplified when applying Fisher randomization tests (FRT) under
rerandomization. Constructing the null distribution requires generating hundreds or thousands of
acceptable assignments, compounding an already slow and costly process. Yet, FRT is particularly
vital in small-sample settings: Johansson et al. (2021) shows that the asymptotic confidence–interval
results of Li et al. (2018) fail to control Type I error when n is limited. Consequently, FRT has been
widely advocated as a robust alternative, supported by extensive empirical evidence (Bind & Rubin,
2020; Keele, 2015; Proschan & Dodd, 2019; Young, 2019) and theoretical analyses (Branson, 2021;
Cohen & Fogarty, 2022; Caughey et al., 2023; Luo et al., 2021; Wu & Ding, 2021; Zhao & Ding,
2021).

Several methods have been proposed to address the pressing need for accelerating rerandomiza-
tion, including incorporating heuristic rules to search for satisfactory assignments (Krieger et al.,
2019; Zhu & Liu, 2022), directly tackling the tradeoff between robustness and covariate balance by
a Gram-Schmidt design (Harshaw et al., 2024), and engineering techniques such as via key-based
storage and GPU/TPU backends (Goldstein et al., 2025). Among these approaches, the most rel-
evant to our study is Zhu & Liu (2022), which uses pair-switching to search for a well-balanced
allocation. This procedure substantially reduces computational cost and improves practical feasibil-
ity. However, due to the nature of the algorithm, it does not guarantee to sample uniformly from
the set of acceptable assignments. Consequently, the uniformity condition underpinning asymptotic
randomization-based inference is not assured, and those established theoretical results for classical
rerandomization in Li et al. (2018) and Wang & Li (2022) do not directly apply.

Our contributions are twofold—theoretical and practical. On the theoretical side, we build on the
Metropolis–Hastings framework to construct a Markov chain over the space of treatment assign-
ments via pair switching. We derive the stationary distribution of this Markov chain, thus estab-
lishing the distribution of the acceptable assignment space it generates. Starting from this stationary
distribution, we then apply rejection sampling to restore uniformity over this acceptable space. These
results provide formal guarantees for the uniformity of the generated assignments, therefore validat-
ing theoretical results derived for classical rerandomization. Because the guarantees are asymptotic
(valid as the number of iterations increases), we introduce an efficient stopping rule and translate
our framework into a practical algorithm, PSRSRR. We show on both simulated and real data that
PSRSRR yields assignment sets that are approximately uniformly distributed while substantially
reducing sampling time compared to classical rerandomization. Our method bridges theory and
practice, delivering a fast and reliable rerandomization procedure with desired theoretical guaran-
tees.

The remainder of this paper is organized as follows. In Section 2, we introduce some preliminary
knowledge of classical rerandomization. In Section 3, we develop our methodology in three steps:
We begin with the formulation of the Markov chain given by pair-switching assignments, and derive
the theoretical results on the generated distribution. We then incorporate rejection sampling to re-
store uniformity with theoretical foundations. Finally, we turn this theoretical result into a practical
algorithm with a stopping rule that accelerates the rerandomization process while maintaining good
enough uniformity. In Section 4, we present comprehensive experiment results on simulated and
real data to illustrate the superior performance of our proposed algorithm in both estimation effi-
ciency and sampling speed. We summarize and discuss our results in Section 5. Technical proofs
and additional experimental results are in Appendix A and B.

2 PRELIMINARIES

2.1 THE NEYMAN-RUBIN POTENTIAL OUTCOME FRAMEWORK

This study adopts the Neyman-Rubin potential outcome framework (Neyman, 1923; Rubin, 1974).
We consider an experiment with n units randomly drawn from a population, among which nt units
are treated and nc = n− nt units are controlled. We denote W = (W1, . . . ,Wn)

T as the vector of
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treatment assignment indicators, where Wi = 1 if unit i receives treatment and Wi = 0 otherwise.
For each unit i, we consider the existence of two potential outcomes, (Yi(1), Yi(0)), and assume the
stable unit treatment value assumption(SUTVA) (Rubin, 1980), i.e., Yi = WiYi(1)+(1−Wi)Yi(0).
The unit-level treatment effect for unit i is defined as τi = Yi(1)− Yi(0), and the average treatment
effect is defined as τ = 1

n

∑n
i=1(Yi(1)− Yi(0)), which could be estimated using the difference-in-

means estimator τ̂(W) = 1
nt

∑
i:Wi=1 Yi(1) − 1

nc

∑
i:Wi=0 Yi(0). For each unit, we also observe

p baseline covariates, denoted by Xi = (Xi1, . . . , Xip)
T. The covariates of all units are gathered

in a matrix X = (X1, . . . ,Xn)
T, and the corresponding covariance matrix is denoted by SXX =

1
n−1

∑n
i=1(Xi −X)(Xi −X)T, where X = 1

n

∑n
i=1 Xi.

2.2 CLASSICAL RERANDOMIZATION USING THE MAHALANOBIS DISTANCE

Mahalanobis distance can be used to measure the covariate balance between the treatment and
control groups. For a given assignment W, the Mahalanobis distance is defined as M(W) :=(
Xt −Xc

)T [
Cov

(
Xt −Xc

)]−1 (
Xt −Xc

)
. Morgan & Rubin (2012) suggested performing ran-

domization by sampling a treatment assignment W from the set W = {W ∈ Rn :
∑n

i=1 Wi =
nt,Wi ∈ {0, 1}}. For the sampled assignment W, its Mahalanobis distance M(W) is com-
pared against a pre-specified threshold a that controls the acceptance level of the covariate im-
balance. If M(W) ≤ a, the assignment is accepted; otherwise, the sampling process is repeated
until a satisfactory assignment is found. We refer to rerandomization based on this acceptance-
rejection sampling strategy as RR, and denote the set formed by all acceptable assignments as
Wa = {W ∈ W : M(W) ≤ a}.

3 METHOD

3.1 STATIONARY DISTRIBUTION OF PAIR-SWITCHING MARKOV CHAIN

Classical rerandomization inefficiently searches for balanced assignments via rejection sampling. To
improve this process, we propose a constructive approach based on a Metropolis-Hastings algorithm.
Our method starts with a single random assignment and iteratively refines it. In each step, a candidate
assignment is proposed by swapping a randomly selected treatment-control pair. This candidate
is then accepted or rejected based on a probability determined by the change in the Mahalanobis
distance, M(W). The temperature, T , is a tuning parameter that controls the likelihood of accepting
a candidate with a worse balance (i.e., a higher M(W)), allowing the search to escape local minima.
This process is repeated for a fixed number of iterations, N . The complete procedure is detailed in
Algorithm 1, which will serve as a crucial building block for our final proposed algorithm PSRSRR.

Algorithm 1: Truncated Pair-Switching
Input: Covariates data X, temperature T , max iteration number N .
Set t = 0;
Set W(0) as nt elements equal to 1 and nc elements equal to 0 with random positions;
Set M (0) = M

(
W(0)

)
;

while t < N do
Randomly switch the positions of one of the 1’s and one of the 0’s in W(t) and obtain W∗;
Set M∗ = M (W∗);

Sample J from a Bernoulli distribution with probability min{
(
M (t)/M∗)1/T , 1};

if J = 1 then
Set W(t+1) = W∗;

end
else

Set W(t+1) = W(t);
end
Set t = t+ 1;

end
Output: W = W(N).
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By the definition of Markov chain (see for example, Givens & Hoeting (2012)), the sequence
{W(t)}t≥0 in Algorithm 1 forms a Markov chain over the space of all valid assignments, W . As a
result, as the number of iterations N → ∞, the distribution of the generated assignments converges
to a stationary distribution. This stationary distribution is characterized by the following theorem.

Theorem 1 The limiting distribution of the Markov chain {W(t)}t≥0 with temperature T is

π(W) = M(W)−1/T∑
W∗∈W M(W∗)−1/T for any W ∈ W . π is also the stationary distribution.

This stationary distribution is not uniform; the probability of sampling an assignment, π(W),
is inversely proportional to its Mahalanobis distance raised to a positive exponent (π(W ) ∝
M(W)−1/T ). We will leverage this non-uniform distribution in the next section to generate as-
signments that are uniform over the acceptable set, Wa.

3.2 REJECTION SAMPLING

Although Algorithm 1 introduces a probabilistic mechanism for assignment generation and pos-
sesses a valuable theoretical guarantee, it can not be used directly for rerandomization because of
two reasons. First, its final output is not guaranteed to be an acceptable assignment (i.e., it may
have a Mahalanobis distance greater than the threshold). Second, its final output is not uniformly
distributed. This departure from uniformity invalidates the theoretical guarantees that underpin clas-
sical rerandomization and can compromise the statistical efficiency of the resulting treatment effect
estimates. Prior work like the PSRR method (Zhu & Liu, 2022) solves the first problem by letting
the algorithm stop at the first accpetable assignment, but fails to solve the second.

To solve these challenges, we introduce a second step based on the principle of rejection sampling.
The key insight is to treat the non-uniform stationary distribution π (from Theorem 1) as a pro-
posal distribution and then apply a corrective filter to obtain our target uniform distribution over
the acceptable set Wa. We achieve this based on a carefully designed formula of the acceptance
probability.

The acceptance rule has two components. First, to ensure acceptability, any proposed assignment
W that does not meet the balance criterion (M(W) > a) is automatically rejected by setting its
acceptance probability to zero. Second, to ensure uniformity among the remaining candidates, we
apply the “inverse back” strategy. From Theorem 1, we know the probability of proposing an assign-
ment is inversely proportional to M(W)1/T . To cancel this known bias, the acceptance probability
for a valid candidate is made directly proportional to M(W)1/T . The initial sampling bias and the
corrective acceptance probability thereby cancel each other out, making the final probability con-
stant for all assignments in Wa. This two-part rule, formalized in Algorithm 2, results in a uniform
sample from the acceptable set.

Algorithm 2: Rejection Sampling of Truncated Pair-Switching
Input: Covariates data X, temperature T , max iteration number N , threshold a.
Set Acc = False;
while Acc = False do

Run Algorithm 1 with inputs(X, T,N) to generate assignment W ;
Determine the acceptance probability

p(W) =

{
(M(W)/a)

1/T
M(W) ≤ a

0 M(W) > a
(1)

Sample J from Bernoulli variable with probability p(W);
if J = 1 then

Set Acc = True;
end

end
Output: W.
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Theorem 2 The assignment W generated by PSRSRR follows a uniform distribution on Wa; that
is, each W ∈ Wa is selected with equal probability.

We defer the proof of Theorem 2 to Appendix A. Since the assignments generated by PSRSRR
follow the uniform distribution over Wa, which is a fundamental assumption in Li et al. (2018), we
can verify the unbiasedness of the resulting treatment effect estimator immediately and build upon
their theoretical guarantees to construct asymptotic confidence intervals.

Corollary 3 Let χ2
p,a ∼ χ2

p | (χ2
p ≤ a) be a truncated χ2 random variable, Up be the first coor-

dinate of the uniform random vector over the (p − 1)-dimensional unit sphere. Let νξ
(
R2, pa, p

)
be the ξ th quantile of

√
1−R2 · ε0+

√
R2 · χp,aUp where ε0 ∼ N (0, 1). Denote by sY (i),X

the sample covariance between potential outcomes and covariates, s2Y (i) the sample variance of
potential outcomes, and s2Y (i)|X the projection of potential outcomes on covariates (with inter-

cept term). Let s2τ |X =
(
sY (1),X − sY (0),X

) (
S2
X

)−1 (
sX,Y (1) − sX,Y (0)

)
. Let V̂ττ = n/nt ·

s2Y (1) + n/nc · s2Y (0) − s2τ |X . Let R̂2 = V̂ −1
ττ

{
n/nt · s2Y (1)|X + n/nc · s2Y (0)|X − s2τ |X

}
. An

asymptotic (1 − α) × 100% confidence interval of the difference-in-means estimator is given by

τ ∈
[
τ̂ − να/2

(
R̂2, pa, p

)√
V̂ττ/n, τ̂ − ν1−α/2

(
R̂2, pa, p

)√
V̂ττ/n

]
.

3.3 PRACTICAL IMPLEMENTATION

The procedure in Algorithm 2 is theoretically perfect: it is guaranteed to produce a uniform sample
from the acceptable set Wa. However, it can be computationally slow, as it requires running a full
Markov chain (Algorithm 1) for many iterations just to generate a single candidate, which might
then be rejected. This process is repeated until a candidate is finally accepted.

To bridge the gap between theoretical purity and practical speed, we introduce our main algorithm,
Pair-Switching Rejection Sampling Rerandomization (PSRSRR). This algorithm fuses the Markov
chain search and the rejection sampling check into a single, efficient procedure. Instead of running
a full chain to draw a single candidate from the stationary distribution, we run a single chain and
perform the acceptance check on-the-fly.

As the chain evolves from state W(t) to W(t+1), we check if the new state is acceptable (i.e.,
if M(W(t+1)) < a). If it is, we immediately apply the “inverse back” rejection sampling step.
The chain terminates the very first time a candidate passes this second check. While this “early-
stopping” heuristic no longer provides a formal guarantee of perfect uniformity, our experiments
show that it produces a distribution that is nearly uniform in practice, with a substantial reduction in
computational cost. This practical procedure is formalized in Algorithm 3.

4 EXPERIMENTS

4.1 SIMULATION STUDIES

Objective Our simulation studies have three primary objectives. First, we empirically test whether
our practical algorithm generates a nearly uniform distribution over the set of acceptable assign-
ments. Second, we compare our method against competing methods on key statistical metrics,
including mean squared error (MSE), confidence interval coverage, and statistical power. Third, we
compare the computational time of our method with existing methods to demonstrate the computa-
tional efficiency of our method.

Simulation setup Covariates are drawn from the standard normal distribution identically and in-
dependently: Xij

i.i.d.∼ N(0, 1), i = 1, . . . , n, j = 1, . . . , p. The potential outcomes of the
control group are generated independently from a linear model, Yi(0) =

∑p
j=1 Xij + ϵi, where

ϵi ∼ N(0, σ2). σ2 is selected such that R2 = V(
∑p

j=1 Xij)/V(
∑p

j=1 Xij + ϵi) = 0.2, 0.5 or 0.8.
We conduct simulations under both the null hypothesis and the alternative hypothesis, where we set
Yi(1) = Yi(0) and Yi(1) = Yi(0) + 0.3

√
V[Yi(0)], respectively. The sizes of the treatment group
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Algorithm 3: Pair-Switching Rejection Sampling Rerandomization (PSRSRR)
Input: Covariates data X, threshold a, temperature T .
Set Acc = False;
Set t = 0;
Set W(0) as nt elements equal to 1 and nc elements equal to 0 with random positions;
Set M (0) = M

(
W(0)

)
;

while Acc = False do
Randomly switch the positions of one of the 1’s and one of the 0 ’s in W(t) and obtain W∗;
Set M∗ = M (W∗);

Sample J from a Bernoulli distribution with probability min
{(

M (t)/M∗)1/T , 1
}

;

if J = 1 then
Set W(t+1) = W∗;
Set M (t+1) = M∗;
if M (t+1) < a then

Sample J̃ from a Bernoulli distribution with probability
(
M (t+1)/a

)1/T
;

end
if J̃ = 1 then

Set Acc = True;
end

end
else

Set W(t+1) = W(t);
end
Set t = t+ 1;

end
Output: W = W(t).

and the control group are set as equal. More detailed settings regarding sample sizes n and their
corresponding sets of number of covariates p are deferred to Appendix B.1.

We use two strategies for setting the acceptance threshold a. The first is the conventional approach,
which sets a to a small quantile of the χ2

p distribution, (e.g., pa = P
(
χ2
p ≤ a

)
= 10−3 or 10−5).

The second strategy chooses a based on the desired asymptotic variance reduction. Specifically, we
set νp,a = P

(
χ2
p+2 ≤ a

)
/P

(
χ2
p ≤ a

)
= 0.01 as recommended by Wang & Li (2022).

We set the temperature hyperparameter T using the empirical rule T = 1.8/p. The intuition is that
as the number of covariates p increases, the Mahalanobis distance landscape becomes smoother,
meaning a single pair-switch yields a smaller change in M(W). A lower temperature is therefore
appropriate, as large, unfavorable jumps become less necessary to explore the assignment space
effectively.

Competing methods We benchmark our method against four competing methods, using hyper-
parameters as recommended in their respective papers: (1) PSRR with temperature as 0.1 and
pa = P

(
χ2
p ≤ a

)
= 10−5 (Zhu & Liu, 2022); (2) GSW with ϕ = 0.1 (Harshaw et al., 2024).

(3) Classical rerandomization (RR) with acceptance threshold M(W) < a, where a satisfies
pa = P

(
χ2
p ≤ a

)
= 10−3; (4) Complete randomization (CR) that randomly draws assignments

from all possible ones.

Uniformity We provide strong indirect evidence for the near-uniformity of our practical algo-
rithm throughout our main results, as the validity of the statistical inference we construct relies
on the fundamental assumption of uniformity. We defer a direct statistical evaluation using the
Kolmogorov-Smirnov test to Appendix B.2.
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Figure 1: Comparison plots of, from top to bottom, MSE (relative to CR), CI length (relative to CR),
coverage rate, power and type I error, by sample size n and number of covariates p. The red dashed
lines represent the nominal level of 95% CI coverage rate and 0.05 type I error. Better performance
is indicated by lower MSE and CI Length, a coverage rate at or above 95%, higher power, and a type
I error at or below 0.05.

Evaluation metrics for estimation and inference For each method, we evaluate the performance
of its resulting treatment effect estimator using five key statistical metrics. To assess estimation
efficiency, we measure the estimator’s mean squared error (MSE) and the average length of its
corresponding confidence interval (CI). Both are reported as ratios relative to CR. To assess the
validity of statistical inference, we evaluate the CI Coverage Rate (which should exceed the nominal
95% level), the Type I Error rate under the null hypothesis, and the statistical power under the
alternative hypothesis.

Comparison of estimation and inference results For each method, we sample 1000 assignments
to evaluate their estimation and inference performance. The results for R2 = 0.5 are presented
below; additional reults can be found in Appendix B.3. As demonstrated by Figure 1, PSRSRR has
the best and comparable performance as GSW in terms of the relative MSE, and the best performance
in the relative confidence interval length. More detailed simulation results show that PSRSRR could

7
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have relative MSE ratio compared with CR as 58% ∼ 78%, 81% ∼ 107% with RR, and 88% ∼
107% with PSRR. And when compared with PSRR, the improvement in MSE appears to be more
significant when p is larger, for example, when p = 25, the relative MSE ratio compared with PSRR
is 88% ∼ 94%. And we can obtain similar statistics for the relative confidence interval length
ratio, which is 58% ∼ 74% compared with CR, 83% ∼ 101% with RR, 89% ∼ 101% with PSRR,
and 86% ∼ 97% with GSW. As for CI coverage rate, power, and Type I error, PSRSRR achieves
satisfactory results and has comparable or better performance than the other competing methods.

Comparison of sampling time We compare the computational efficiency of each method by mea-
suring the average time required to generate 100 assignments. As shown in Figure 2, PSRSRR is
highly efficient. Its sampling time is comparable to the fast but non-uniform PSRR method and is
faster than GSW and RR. Notably, PSRSRR achieves a dramatic speedup over these competitors,
which is, on median, 4 times faster than GSW and over 1,800 times faster than RR.

Figure 2: Comparison of sampling time (on a log10 scale) by sample size n and number of covariates
p. CR is plotted to provide a baseline for the computational cost of a single random draw, rather
than as a benchmark to outperform.

4.2 APPLICATION TO REAL DATASETS

We apply PSRSRR to two real-world experimental datasets, one is the reserpine data (Jones, 2017)
with 30 participants, and the other is the data from the Student Achievement and Retention (STAR)
Project (Angrist et al., 2009) with nearly 1000 participants. The difference in these two datasets
helps us to examine the performance of algorithms in both small-sample and large-sample circum-
stances, thus providing a more overall illustration. We provide a description for the analysis of
STAR data and defer that of reserpine data and other details to Appendix B.4.

Table 1: Sampling Time Comparison in Reserpine and STAR Data.

Data PSRSRR (νp,a) PSRSRR (pa) PSRR RR CR
Reserpine – 0.47s 0.30s 22.70s 0.03s

STAR 2.95s 3.63s 1.28s 193.65s 0.21s

STAR data Similar to the pre-processing procedures in Li et al. (2018) and Wang & Li (2022),
we drop the students with missingness in some important variables, resulting in the treatment group
of size n1 = 118 and control group n0 = 856. And we include the following variables to balance:
high-school GPA, age, gender and indicators for whether lives at home and whether rarely puts off
studying for tests. We exclude GSW due to its incompatibility in dealing with exact imbalanced
designs, and include PSRSRR using both pa = 10−3 and νp,a = 0.01 for threshold selection, while
setting pa = 10−3 for other methods.

We generate 10, 000 assignments, and obtain the estimation performance result in Figure 3 and sam-
pling time performance in Table 1. The results show that both selection strategies of PSRSRR have
achieved much faster sampling speed than RR and much improved variance reduction compared

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with CR. Regarding the different strategies used for threshold selection, we can conclude from the
results that PSRSRR (νp,a) is able to reduce most of the variance among all methods, and has an even
shorter sampling time compared with PSRSRR (pa). This illustrates the strength of this threshold
selection strategy in asymptotic scenarios.

Figure 3: Box-plot of standardized differences in covariate means for STAR data. The diamonds
indicates the standardized difference for the actual assignment in the experiment. The values on
the right side are PRIVs, the empirical percent reductions in variance compared with CR of each
method.

5 CONCLUSION AND DISCUSSION

Our study demonstrates that rerandomization, long considered computationally impractical under
stringent thresholds, can be made both fast and theoretically sound through a Metropolis–Hastings
framework with an importance resampling correction. The key insight is that pair–switching updates
naturally form a Markov chain whose stationary distribution favors balanced allocations, and by
layering rejection sampling we recover exact uniformity over the accepted set. In practice, a simple
early–stopping rule yields nearly uniform assignments while accelerating computation by orders of
magnitude. Extensive simulations and real–data applications show that this approach preserves the
inferential validity of classical rerandomization, narrows confidence intervals, and reduces mean
squared error, all while drastically cutting down runtime.

Still, our framework opens several new directions. First, more advanced MCMC kernels may further
improve mixing and exploration of the assignment space. Techniques such as adaptive tempering
or hybrid proposals (Liang et al., 2011) could be incorporated, potentially achieving better balance
or faster convergence. Second, complex experiments are increasingly central to causal inference
(Cinelli et al., 2025). Extending our method to factorial, clustered, stratified, or sequential designs
will be crucial for ensuring that rerandomization remains feasible and theoretically justified in these
contexts. Third, while we improved both the algorithmic efficiency and the implementation via
Rcpp, complementary system-level advances are emerging. For example, Goldstein et al. (2025)
leverage hardware–accelerated tools for rerandomization and randomization testing. Combining
their acceleration with our sampling framework could make strict thresholds practical at scale.

Taken together, our results show that rerandomization need not force a tradeoff between balance
and computational feasibility. By unifying fast sampling with rigorous inference guarantees, our
approach makes rerandomization a practical tool for modern experimental research, and lays the
groundwork for further advances in both methodology and applications.

9
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REPRODUCIBILITY STATEMENT

The code for reproducing our experiments will be released publicly following the double-blind re-
view process. The technical proofs and details regarding data preprocessing can be found in Ap-
pendix A and B, respectively.
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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

We first give a rigorous mathematical definition of the pair-switching Markov chain constructed in
Algorithm 1. For any pair of assignments Wi,Wj ∈ W and temperature T , we use QT (Wj |Wi)
to denote the transition probability from Wi to Wj , i.e., the probability that Wi is updated to Wj

within one step of pair-switching. The update rule indicated by Algorithm 1 could therefore be
formulated as follows,

• if Wi and Wj are neighbors, then

QT (Wj |Wi) =
1

ntnc
min{1, (M(Wi)/M(Wj))

1/T }, (2)

• if Wi and Wj are not neighbors and Wi ̸= Wj , then

QT (Wj |Wi) = 0, (3)

• if Wi = Wj , then
QT (Wj |Wi) = 1−

∑
k ̸=i

QT (Wk|Wi), (4)

where two assignments are called neighbors if and only if one assignment can be obtained by switch-
ing one 0-1 pair in the other assignment. By definition, it is straightforward to identify the sequence
{W(t)}, t = 0, 1, . . . , as a Markov chain (Givens & Hoeting, 2012, Equation (1.41)). The transition
matrix of this Markov chain could be formulated as QT = (qij)m×m , qij = QT (Wj |Wi), where
m =

(
n
nt

)
is the total number of all possible assignments, and {W1,W2, . . . ,Wm} = W is the

assignment space. From the perspective of Markov chain, Algorithm 1 can be interpreted as starting
from an all-zeros distribution vector of length m except for the k-th entry being 1, i.e., the initial
assignment W(0) = Wk. We denote this distribution vector as π(0). Followed by N successive
left-multiplications of the transition matrix QT, i.e., after N iterations in Algorithm 1, the final out-
put could be regarded as a randomly selected assignment according to the distribution π(N), where
π(N) = (QT)

N
π(0).

With the above formulation and the perspective of Markov chain, we present the proof for Theorem
1, which relies on the following lemma.
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Lemma 4 The limiting distribution of the Markov chain {W(t)}, t = 0, 1, 2, . . . , exists and is equal
to its stationary distribution.

With this lemma, we only need to verify that the distribution of π = lim
N→∞

π(N) given in Theorem

1 is indeed the stationary distribution. Since ∀i, j = 1, 2, . . . ,m, we have qijπi = qjiπj given the
formulation in Equation (2) (3) (4). This indicates that the distribution π satisfies the detailed balance
conditions, and therefore is the stationary distribution of the Markov chain (Givens & Hoeting, 2012,
Equation (1.43)). This completes the proof of Theorem 1.

Hence, it suffices to prove Lemma 4. We use the following result from Harchol-Balter (2024).

Lemma 5 (Summary theorem for ergodic, finite-state DTMCs, Theorem 25.19 in Harchol-Balter
(2024)) In a finite-state DTMC, the word ergodic refers to two properties: aperiodic and irreducible.
Given an ergodic finite-state chain, the following results hold:

• The limiting distribution exists and has all-positive components.

• πlimiting
j = 1

mjj
.

• The stationary distribution is unique and is equal to the limiting distribution.

• Time-average pj =
1

mjj
, w.p.1.

• Putting it all together, we have that:

0 <
1

mjj
= πlimiting

j = πstationary
j = pj , w.p.1.

According to Lemma 5, we only need to verify the irreducibility and aperiodicity of the Markov
chain {W(t)}, since it has finite states.

To show its irreducibility, we denote any two assignments as Wi,Wj ∈ W , and their treatment and
control indices are It, Ic and Jt,Jc, respectively. The shared indices in the treatment and control
groups are denoted as sets Dt,Dc, respectively. Apparently, we have

It ∪ Ic = Jt ∪ Jc = {1, 2, . . . ,m},

and further
|It \ Dt| = |Jt \ Dt|, |Ic \ Dc| = |Jc \ Dc|.

For the treatment indices of Wi, if they are not shared by treatment indices of Wj , then they will
be included in the control indices of Wj not shared by control indices of Wi, since treatment and
control groups have no overlap, i.e., It \ Dt ⊆ Jc \ Dc. We can similarly obtain the conclusion that
Ic \ Dc ⊆ Jt \ Dt. Therefore, we have

|It \ Dt| = |Jt \ Dt| = |Ic \ Dc| = |Jc \ Dc|,

indicating that pairs could be formed between It \ Dt and Ic \ Dc. So after switching each pair,
whose probability is positive as shown in the formulation of the transition matrix, the generated Wi′

would be equal to Wj , which verifies that any two states in this Markov chain could communicate
with each other.

To establish its aperiodicity, we need to show that QT
2 and QT

3 both have positive diagonal ele-
ments, implying that the period is given by gcd(2, 3) = 1, where gcd() denotes the greatest common
divisor function. The property of QT

2 could be readily verified: as for any Wi ∈ W , the assign-
ment can return to itself by switching the 0-1 pair to become its neighbor and then reversing that
switch, with transition probabilities both greater than zero. As for QT

3, for any Wi ∈ W , denote
p, s as the indices in the control group and q the index in the treatment group. Since transition
probability between any neighbor is positive, we can easily verify the conclusion by the following
derivation. First, the switch takes place between 0-1 pair (p, q). Then the second switch is performed
between (p, s), and the third between (q, s), returning to the initial Wi. Therefore, we confirm the
aperiodicity of the chain. □
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A.2 PROOF OF THEOREM 2

We follow the steps given in Section 6.2.3 in Givens & Hoeting (2012) to give this proof.

Our target distribution is a uniform distribution on Wa, i.e., the probability mass function would be
f(W) = I{W∈Wa}

|Wa| , and π(W) denote the stationary distribution sampled from Algorithm 1. Let
e(W) denote an envelope function, and in this case, we have

e(W) =
π(W)

α
=

M(W)−1/T

α ·
∑

w∈W M(W)−1/T
≥ f(W) =

I{W ∈ Wa}
|Wa|

where α is a scaling parameter, and we choose

α = αmin =
a−1/T |Wa|∑

w∈W M(W)−1/T
.

We go through the following sampling procedure.

1. Sample Y ∼ g;

2. Sample J ∼ Ber
(

f(Y)
e(Y)

)
, where

f(Y)

e(Y)
=
I{W ∈ Wa}

|Wa|

∑
w∈W M(W)−1/T

M(W)−1/T

a−1/T |Wa|∑
w∈W M(W)−1/T

=
M(W)1/T · I{W ∈ Wa}

a1/T

=I{W ∈ Wa}
(
M(W)

a

)1/T

=p(W)

which is the acceptance probability as defined in Algorithm 2;
3. Reject Y if J = 0, and do not record Y but instead return to step 1; Otherwise, keep the

value of Y, set W = Y.

We verify that the above sampling procedure could indeed generate the targeted distribution,
P(W = y) = P(Y = y | J = 1)

=
P(Y = y, J = 1)

P(J = 1)

=
π(y) · f(y)

e(y)∑
z∈W

π(z) · f(z)
e(z)

=
π(y) · α · f(y)

π(y)∑
z∈W

π(z) · α · f(z)
π(z)

=
αf(y)

α
∑

z∈W
f(z)

= f(y).

Therefore, we conclude the proof. □

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

B.1 DETAILED SIMULATION SETTINGS

When conducting simulation studies to examine the performance of estimation results as well as
sampling speeds, we use different sample sizes n and their corresponding sets of number of covari-
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ates p as shown in Table 2 below. The range of sample size n could help illustrate the performance of
our proposed method in a larger scale, from small-sample behavior to large-sample behavior. And
for each sample size n, we choose different values of p, while not violating the asymptotic rule,
p = O (log n), as demonstrated in Harshaw et al. (2024).

Table 2: Simulation setting regarding sample size and number of covariates.

n p n p n p

50 {2, 5} 500 {2, 5, 10, 25} 2000 {2, 5, 10, 25}
100 {2, 5, 10} 1000 {2, 5, 10, 25} 2500 {2, 5, 10, 25}
250 {2, 5, 10, 25} 1500 {2, 5, 10, 25} 3000 {2, 5, 10, 25}

For each (n, p) pair, we have a total of 6 simulation settings, with R2 = 0.2, 0.5, 0.8 and individual
causal effect zero or non-zero, as described in the main body of the paper, to study and compare
the estimation and inference results. As for the comparison of sampling times, we only keep one
setting of each (n, p) pair, i.e., R2 = 0.5 and non-zero effect, as changes in R2 and the effect would
not essentially affect the simulation speed and therefore one setting would already be sufficient in
illustrating the acceleration performance of our proposed method PSRSRR.

B.2 UNIFORMITY VERIFICATION

Besides the non-direct verification of near-uniformity of the assignment distribution generated by
our proposed method PSRSRR, we here verify more directly whether the assignments generated by
PSRSRR can be regarded as uniformly distributed and possess better uniformity than PSRR.

The verification procedure is designed as follows. For each setting, we generate 10, 000 assignments
using PSRSRR, PSRR and RR, respectively. We calculate the Mahalanobis distance of each assign-
ment and obtain the Mahalanobis distance distribution. We conduct one Kolmogorov-Smirnov test
on whether the Mahalanobis distance of assignments generated by PSRSRR and that generated by
RR are the same, and another Kolmogorov-Smirnov test on whether the Mahalanobis distance of
assignments generated by PSRR and that generated by RR are the same. This way, we obtain one
p-value for each hypothesis testing, which has the implication whether the accelerated algorithm
could generate assignments that have the distribution to be accepted as the same as the assignment
distribution generated by RR in the sense of Mahalanobis distance. We repeat this process for 100
times to get an empirical distribution of p-values, which can be visualized in a boxplot.

Due to the computational constraint of RR, we limit our verification to some small-sample settings,
and also the threshold selection strategy to pa only, since νp,a-based strategy would likely lead
to much stricter criteria that RR could hardly handle. We present the boxplots obtained from the
verification procedures described above as follows. In all these settings, PSRSRR shows a great
proportion of p-values above the rejection threshold 0.05, indicating a good alignment with RR,
verifying the good uniformity of PSRSRR in the sense of Mahalanobis distance. While PSRR,
especially in (a) and (d), appears to have many p-values below the 0.05 threshold, meaning that
in many of the repetitions, the null hypothesis that the Mahalanobis distance distribution of the
assignments generated by PSRR is the same as that generated by RR is rejected. Therefore, we can
conclude that PSRSRR can generally be considered as a better approximation of RR than PSRR.
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(a) n = 10, p = 2, pa = 0.1 (b) n = 50, p = 2, pa = 0.001

(c) n = 50, p = 5, pa = 0.001 (d) n = 100, p = 10, pa = 0.0001

Figure 4: Boxplots of Kolmogorov-Smirnov test p-value distribution. In each figure, the left boxplot
is for H0: PSRR = RR and the right one is for H0: PSRSRR = RR. The red line indicates the 0.05
significance threshold of rejecting the null hypothesis.

B.3 ESTIMATION AND INFERENCE RESULTS FOR ADDITIONAL SETTINGS

In the main body of the paper, we have already presented and discussed results under the simulation
settings with R2 = 0.5. Here, we include more simulation results under settings with R2 = 0.2 and
R2 = 0.8, in order to provide a more comprehensive overview of the performance of our proposed
algorithm PSRSRR.

In the following, we present the comparison plots of MSE for all three R2 settings, as well as the
comparative statistics regarding the MSE improvement of PSRSRR with respect to other compet-
ing methods. We can obtain the similar conclusion as given in the main body of the paper, that
PSRSRR has the best performance among all methods, with very similar estimation results as GSW.
And when the number of covariates p increases, i.e., in more completed simulation settings, the
improvement of PSRSRR compared with PSRR and CR is more stable and more significant. And
when R2 increases, i.e., the covariates are more explanatory and there is less noise, the improvement
of PSRSRR becomes more significant (except for GSW). Therefore, MSE comparison results show
that PSRSRR is superior, especially in large-sample and high-dimensional settings.
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(a) R2 = 0.2

(b) R2 = 0.5

(c) R2 = 0.8

Figure 5: Comparison plots of MSE relative to CR, by sample size n and number of covariates p.

R2 Statistic Relative MSE Ratio

To CR To RR To PSRR To GSW

0.2 Range [78%, 98%] [89%, 107%] [92%, 107%] [94%, 107%]
Mean 89% 98% 99% 100%

0.5 Range [56%, 78%] [81%, 107%] [88%, 107%] [95%, 105%]
Mean 70% 96% 97% 99%

0.8 Range [39%, 56%] [65%, 111%] [70%, 109%] [87%, 107%]
Mean 46% 89% 95% 100%

Table 3: Relative MSE ratios: range and mean of PSRSRR compared with each competing method
under different R2.

In the following, we present the comparison plots of confidence interval length for all three R2

settings, as well as the comparative statistics regarding the improvement of PSRSRR with respect to
other competing methods. We can obtain similar conclusions that PSRSRR has consistently the best
performance among all methods. And its superiority becomes more significant as R2 increases, n
increases and p increases, illustrating its strength in large-sample and high-dimensional settings.
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(a) R2 = 0.2

(b) R2 = 0.5

(c) R2 = 0.8

Figure 6: Comparison plots of CI length relative to CR, by sample size n and number of covariates
p.

R2 Statistic Relative CI Length Ratio

To CR To RR To PSRR To GSW

0.2 Range [73%, 92%] [95%, 100%] [97%, 100%] [92%, 98%]
Mean 88% 99% 99% 97%

0.5 Range [58%, 74%] [83%, 101%] [88%, 101%] [86%, 97%]
Mean 69% 96% 98% 94%

0.8 Range [37%, 51%] [66%, 102%] [74%, 102%] [72%, 93%]
Mean 45% 88% 94% 89%

Table 4: Relative CI Length ratios: range and mean of PSRSRR compared with each competing
method under different R2.
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Figure 7: Comparison plots of Coverage Rate, Power and Type I Error under R2 = 0.2.

The above plots are the comparison plots under the settings with R2 = 0.2. We can tell from the
Coverage Rate one that PSRSRR can achieve a satisfactory coverage rate, with values closely around
the nominal level 95%. And PSRSRR has relatively better power when the number of covairates p
is larger. As for the Type I Error, when sample size n increases, PSRSRR has error values slightly
above or below the error bound 0.05. These results all show the validity of applying the theoretical
results with the ground in uniformity of distribution to PSRSRR, thus non-directly verifying the
near-uniformity of the distribution of the assignments generated by our proposed algorithm.
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We can obtain similar conclusions from the following plots under the settings with R2 = 0.8. In
the Coverage Rate figure, GSW seems to be well above the nominal level 95%, indicating the fact
that inference of GSW under settings with R2 = 0.8 may tend to be conservative; while PSRSRR
still has values closely around the nominal level, showing good inference performance. In Power,
compared with settings under R2 = 0.2 and R2 = 0.5, all methods appear to have higher powers,
due to the fact that the covariates can explain more variation in the simulation model. And among
all methods, PSRSRR has an obviously higher power when p is relatively large. As for the Type I
Error, when sample size n increases, PSRSRR has error values reasonably around 0.05.

Figure 8: Comparison plots of Coverage Rate, Power and Type I Error under R2 = 0.8.

B.4 MORE DETAILS OF REAL DATA APPLICATIONS

Analysis of Reserpine data. In this dataset, the treatment group has 20 participants while the control
group has 10. Similar to Zhu & Liu (2022), we include 8 important covariates to balance, and the
threshold a is set as the pa = 0.001 quantile of χ2

8, i.e., a = 0.86 for all methods. Here, we exclude
comparison with GSW as it could not have an exact treatment-control division as desired. And
due to the small sample size, we also do not include the proposed method using νp,a for threshold
selection, as this would only have correct interpretations in asymptotic scenarios.

We generate 10, 000 assignments, and obtain the following results. In Table 1, we compare the
total time of generating these 10, 000 assignments, and in Figure 9, the empirical distributions of
the standardized differences in each covariate mean are presented and the empirical percent reduc-
tions in variance (PRIVs) relative to CR are calculated. From these results, we can conclude that
our proposed algorithm PSRSRR has achieved much faster sampling speed than the CR and much
improved variance compared to the randomized design. Besides, the assignments generated using
our proposed algorithm have a balance table for each covairate mostly within the recommended
univariate balance thresholds [−0.1, 0.1] (Austin, 2009) (illustrated with dashed lines).
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Figure 9: Box-plot of standardized differences in covariate means for Reserpine data. The diamonds
indicates the standardized difference for the actual assignment in the experiment.

STAR data in Angrist et al. (2009) and its preprocessing. Student Achievement and Retention
(STAR) Project is a randomized experimental evaluation of strategies designed to improve academic
performance among college freshmen. Students in this experiment, except for those with a high
school grade point average (GPA) in the upper quantile, were randomly assigned to one of three
treatment groups or a control group. To keep the situation simple, similar to Li et al. (2018) and
Wang & Li (2022), we keep only one treatment group, which received both additional mentoring
services as well as incentives in the form of substantial cash awards for meeting a target GPA, to
compare against the control group that was only eligible for standard university support services but
nothing extra. And following their data preprocessing procedure, we discard students with missing
data in the following covariates, or the first year GPA which is used as the observed outcome in their
analysis, resulting in a treatment group of n1 = 118 and control group of n0 = 856. Considering
the practical implications regarding the number of covariates given in Wang & Li (2022), we keep
the first five covariates, i.e., high-school GPA, whether lives at home, gender, age and whether rarely
puts off studying for tests, in our design stage.

Table 5: Covariates by tier in STAR data as in Li et al. (2018).

Tier Covariates
Tier 1 High-school GPA
Tier 2 Whether lives at home, gender, age

Whether rarely puts off studying for tests
Tier 3 Whether mother/father is a college graduate

Whether mother/father is a high-school graduate
Whether never puts off studying for tests
Whether wants more than a bachelor degree
Whether intends to finish in 4 years
Whether plans to work while in school
Whether at the first choice school, mother tongue
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C LLM USAGE

We used ChatGPT-5 to improve the clarity of our writing by correcting grammar, refining sentence
structure, and ensuring stylistic consistency.
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