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Abstract

Recent advances in multimodal large lan-
guage models (LLMs) have enabled impressive
speech recognition and translation capabilities,
yet these models remain poorly evaluated in
low-resource settings, particularly for African
languages and non-native English accents. In
this work, we systematically compare state-of-
the-art speech-based LLMs with traditional Au-
tomatic Speech Recognition (ASR) systems
across transcription and translation tasks in-
volving dialectally diverse African speech. To
support reproducible evaluation, we introduce
AfriVox, a novel open-source benchmark com-
prising medical and non-medical speech sam-
ples spanning 20 African languages and 100+
African English accents. Our findings reveal
substantial performance disparities, underscor-
ing the limitations of current LLMs in han-
dling underrepresented linguistic varieties. To
address this, we fine-tune the newly released
Qwen-2.5-Omni for multilingual transcription
and translation using NaijaVoices, a 1,800-
hour Nigerian speech corpus. Fine-tuning
via instruction-tuned, LoRA-based parameter-
efficient methods yields a 54% reduction in
Word Error Rate (WER) and a 21% average
improvement in BLEU scores over baseline
models. Our results demonstrate that multi-
modal LLLMs can be effectively adapted for
low-resource speech tasks using lightweight
techniques. This work provides a foundation
for scalable speech technology development in
underrepresented languages and informs future
research in inclusive multimodal learning.

1 Introduction

Recent rapid LLM advancements have enabled
multimodal data processing (McKinzie et al., 2024;
Cappellazzo et al., 2024). LLMs like GPT-40
(Hurst et al., 2024), Gemini (Team et al., 2024),
and SALMONN (Yu et al.) now take native speech
input, bypassing text altogether, showing promising

performance across multiple languages and accents
(Kwak and Pardos, 2024).

Despite these advancements, the performance
of these multimodal models on low-resource lan-
guages remains underexplored (Liu and Niehues,
2024; Yin et al., 2024; McKinzie et al., 2024). In
Nigeria alone, over 200 million people communi-
cate in Igbo, Hausa, Yoruba, and Pidgin, yet off-
the-shelf ASR and translation systems exhibit high
error rates, code-switching failures, and dialectal
bias (Ogunmodimu, 2015).

Several studies have explored unimodal speech
models for African languages (e.g., Whisper, MMS,
AfricanHubert, Seamless by Meta (Radford et al.,
2023; Denisov and Vu, 2024; Alabi et al., 2024,
Barrault et al., 2023)). However, the performance
of multimodal speech LLLMs for several African
languages remains an open question (Yin et al.,
2024). Multimodal LLMs with capabilities to han-
dle multiple data types - text, images, audio, video
- tasks simultaneously hold significant promise be-
yond communication, particularly in enhancing ac-
cess to accurate and personalized information (Lyu
et al., 2023). Therefore, understanding their ability
to process spoken and indigenous languages from
African-accented countries is essential to promote
inclusive speech-driven Al in Africa (Sanni et al.,
2025a).

In this work, we investigate the generalizability
and robustness of speech- and multimodal LLMs
to African languages and non-native English ac-
cents, comparing them with traditional unimodal
ASR models. Our results reveal wide performance
gaps with African languages and dialects. To ad-
dress this gap, we fine-tuned the Qwen 2.5 Omni
model on 3 African languages for transcription
and translation, applying parameter-efficient fine-
tuning (PEFT) (Ding et al., 2023; Han et al., 2024;
Ding et al., 2023) achieving a 54% relative reduc-
tion in WER and an 21-point BLEU gain for tran-
scription and translation respectively. As a final



contribution, we release 2 diverse benchmark sets
to measure progress on African languages: (i) a
multilingual translation test set for 20 African lan-
guages, and (ii) a multilingual transcription test
set for those same 20 languages, all curated from
a wide array of sources. Our work aims to pro-
vide valuable insights for building more inclusive,
multilingual voice-native systems by establishing a
strong baseline for evaluating unimodal and multi-
modal speech LLMs in low-resource settings and
demonstrating the potential of instruction tuning to
improve their performance.

2 Related works

Prior work suggests that three main trends —scaling
laws, reinforcement learning, and the emergence
of self-supervised learning— are responsible for the
current advances in speech-large language mod-
els (LLMs) (Sanni et al., 2025b; Liu and Niehues,
2024; Wang et al., 2024; Johnson et al., 2014).
However, these performance gains are dominated
by high-resource languages, particularly English
(Olatunji et al., 2023; Radford et al., 2023), with
these gains remaining unevenly distributed. Train-
ing sets are dominated by English and other high-
resource languages or multilingual corpora with
limited coverage for African languages and di-
alects (Shanbhogue et al., 2023; Lam-Yee-Mui
et al., 2023; Hamed et al., 2022). As a result, while
speech-based LLMs excel in challenging tasks such
as open-domain question answering and conversa-
tional interactions (Wu et al., 2024; Nachmani et al.,
2023), their applicability to the rich linguistic land-
scapes of Africa remains underexplored (Reitmaier
et al., 2022). Furthermore, accent mismatch, code-
switching, and sparse training data significantly
impact model performance for African languages
(Tachbelie et al., 2014; Sanni et al., 2025a).

Recent multimodal LLMs now integrate speech
and text in unified architectures. Examples in-
clude Google’s AudioPaLM (Rubenstein et al.,
2023; Wang et al., 2024) which combine a PalLM-
based LLM with a wav2vec-style speech encoder;
Meta AI's SeamlessM4T (Barrault et al., 2023)
which offers an all-in-one solution for speech-to-
text, speech-to-speech, text-to-speech, and text-to-
text, and Alibaba’s Qwen-Audio (Chu et al., 2023),
which scales audio-language pretraining across
30+ tasks, achieving breakthrough performance
in speech based tasks (Wang et al., 2024).

Given these multimodal capabilities, fine-tuning

such massive models for each new downstream
task incurs prohibitive memory and compute costs
(Han et al., 2024). Parameter-efficient fine-tuning
(PEFT) has been proposed as a possible way to ad-
dress this challenge by updating only a small sub-
set of parameters, thus reducing resource overhead
(Ding et al., 2023). Such strategies include adapters
(Han et al., 2024), which insert lightweight bottle-
neck modules into each Transformer layer; LoORA
(Karimi Mahabadi et al., 2021), which updates
low-rank matrices (0.1-1 % of parameters) that
can be merged into the backbone at inference; hy-
brid methods such as QLoRA—combining 4-bit
quantization with LoRA on a single GPU—have
further pushed this efficiency frontier (Dettmers
et al.,, 2023). Together, these PEFT methods
enable rapid, cost-effective adaptation of multi-
modal LLMs in resource-constrained and low-data
regimes (Dettmers et al., 2023).

3 Methodology

3.1 Datasets

This work evaluates speech-based LLMs and uni-
modal ASR models on low-resource African lan-
guages and explores the benefits of fine-tuning
multimodal LLMs. To support these tasks, we
curated and open-sourced two datasets categories:
African Accented English Speech (AES) and Mul-
tilingual African Speech (MLS) for benchmark-
ing and model evaluations, while using the open-
sourced NaijaVoices datasets for fine-tuning.

3.1.1 African Accented English Speech (AES)

We compiled speech from the NCHLT (Barnard
et al., 2014), AfriSpeech (Olatunji et al., 2023),
Common Voice 17 (filtered for African accents)
(Ardila et al., 2020). The combined dataset con-
sisted of 63.2 hours of speech from 2,000+ speak-
ers across 12 countries and 108 distinct accents
(Table 1).

3.1.2 Multilingual African Speech (MLS)

This group of datasets comprises 20 African
languages across 7 public and private datasets,
designed for ASR and AST benchmarking
(Tables 2 and 3). For transcription, we included
NCHLT, Common Voice 17, FLEURS, OpenSLR,
BibleTTS, NaijaVoicesl, FISD?, MedConv-
Transcribe *.  For translation, we included
FLEURS, CoVoST(), NaijaVoices, IWSLT-LRST,
MedConv-Translate .



3.1.3 NaijaVoices Dataset

For fine-tuning, we utilize the NaijaVoices dataset
(Emezue et al., 2025): a 1,800-hour corpus with
600 hours each for Igbo, Hausa, and Yoruba. It
includes 5,000+ speakers with balanced gender and
age distributions (Table 3).

3.2 Data Quality and Ethics

All audio files are mono-channel WAV at 16kHz.
Public datasets contain predefined transcripts. Par-
liamentary recordings were manually transcribed
by native speakers and quality-checked; only those
with over 80% reviewer approval were retained.

Dataset Hours Speakers Accents
NCHLT 2.24 8 1
AfriSpeech 18.68 750 108
CV-17 En-Afr 0.11 46 9
Afrispeech-Parl (Sanni  42.17 ~1651 4

et al., 2025a)

Total 63.20 ~2455 108

Table 1: Summary of African-accented English speech
datasets.

Language Region Language Family # Speakers
afr South IndoWest (Germanic) 7.2M
aka West Niger-Congo (Kwa) 24M
amh East Afro-Asiatic (Semitic) 35M
arz North Afro-Asiatic (Semitic) 78M
fra West Indo-European (Romance) 320M
ful West Niger-Congo (Atlantic) 36.8M
gaa West Niger-Congo (Kwa) 0.7M
hau West Afro-Asiatic (Chadic) 54M
ibo West Niger-Congo (Volta-Niger) 31M
kin East Niger-Congo (Bantu) 15M
lug East Niger-Congo (Bantu) 5.6M
nso South  Niger-Congo (Bantu) 4.6M
sna South  Niger-Congo (Bantu) 8.4M
sot South Niger-Congo (Bantu) 5.6M
swa East Niger-Congo (Bantu) 87M
tsn South  Niger-Congo (Bantu) 8.2M
twi West Niger-Congo (Kwa) 4.4M
xho South  Niger-Congo (Bantu) 8M
yor West Niger-Congo (Yoruboid) 45M
zul South Niger-Congo (Bantu) 13.6M

Table 2: Language, region, family, and number of speak-
ers.

3.3 Models

For the evaluation task, we assessed five unimodal
models for ASR and three for Automatic Speech

1https://huggingface.co/datasets/naijavoices/
naijavoices-dataset

Zhttps://github.com/Ashesi-Org/
Financial-Inclusion-Speech-Dataset

SURL to be added after anonimity period

Dataset Num Langs Hours  Speakers
NCHLT 6 12.75 36
CV-17 10 16.89 670
FLEURS 13 14.44 1595
OpenSLR 3 0.31 372
Bible TTS 3 0.47 3
NaijaVoices' 3 1800 5000
FISD? 3 0.05 23
MedConv * 19 36.63 1179
Total Hours 1878.52

Table 3: Summary of multilingual speech datasets.

Translation (AST). MMS was excluded from trans-
lation evaluation as it was not trained for this task,
and Parakeet-TDT is a monolingual ASR model.
Four multimodal LLMs were evaluated for ASR:
SeamlessM4T (Barrault et al., 2023), Gemini 2.0
Flash (Team et al., 2024), GPT-40 Audio Preview
and Qwen2.5-Omni-7B (Chu et al., 2024). We uti-
lized the pre-trained models or API endpoints with-
out additional fine-tuning. Notably, only Qwen2.5-
Omni-7B is open-source; the others are accessible
via APIL. Therefore, we used Qwen 2.5 omni (Yang
et al., 2025) for the PEFT fine-tuning.

4 Experiments

4.1 Experimental Setup

We evaluate both base and fine-tuned models
across two tasks: Automatic Speech Recognition
(ASR) and Automatic Speech Translation (AST).
Inference is performed in two modes: using the
base model’s default settings and using the same
setup with a fine-tuned model. For each task, we
test three prompting strategies (detailed in Ap-
pendix A). All models use standard inference pa-
rameters unless otherwise noted. Inference was
conducted on a single NVIDIA T4 for ASR and an
NVIDIA A100 for the AST model with the largest
memory footprint.

4.2 Fine-tuning Details

Due to our limited compute budget, we fine-tuned
Qwen2.5-Omni-7B on approximately 280 hours
per language from the NaijaVoices dataset using
LoRA (rank 8, alpha 32), applied to all linear lay-
ers while freezing the vision encoder. We trained
for three epochs using a learning rate of le-4 and a
warmup ratio of 0.05. We used bfloat16 precision,
a per-device batch size of 4, and gradient accumu-
lation steps of 16. Training was conducted on four
NVIDIA 3090 GPUs, with evaluations and check-
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points every 500 steps. Prompt formatting details
are included in Appendix A.

4.3 Post-processing.

To ensure fair comparisons, we normalize the out-
put before scoring. For African-accented English
ASR, we use a custom cleaning function to remove
filler words, extraneous whitespace, and punctu-
ation inconsistencies. For multilingual ASR, we
apply Whisper’s BasicTextNormalizer, remov-
ing diacritics to mitigate variability from incon-
sistent labeling. For AST, we use Moses tools
(MosesPunctNormalizer and MosesTokenizer)
for consistent punctuation and tokenization across
languages.

4.4 Evaluation Metrics.

We apply a consistent evaluation protocol to both
base and fine-tuned models across ASR and AST
tasks. ASR performance is measured using Word
Error Rate (WER) (Klakow and Peters, 2002), de-
fined as the total number of substitutions, dele-
tions, and insertions divided by the number of
words in the reference. For AST, we report BLEU
(Papineni et al., 2002), chrF (Popovié, 2015), and
two African-centric AfriCOMET-STL (Wang et al.,
2023), which evaluate semantic adequacy using
multilingual and single-task learning, respectively.
We use AfriComet-STL as our main metric after
conducting human-evaluation to identify which
metric best evaluates the translation quality. The
results from human-evaluation can be found in Ap-
pendix 16

5 Results and Analysis

Tables 4 and 5 present the transcription results on
the African-Accented English Speech and Multilin-
gual African Speech datasets. Results presented are
for single runs. The results indicate that, in most
cases, unimodal models outperformed the multi-
modal models. While Table 7 show multimodal
models edges over unimodal models on the speech
translation task. Additionally, Table 6 shows the
comparison between the results of the base and fine-
tuned Qwen 2.5 Omin model. A detailed break-
down of results by individual languages is provided
in Appendix A. We provide the following analy-
sis based on the findings from our experimental
results.

Model Lib Af NC Cv Parl
Canary 148  38.03 10.05 841 27.38
Parakeet 140 3496 1133 9.48 21.89
WhisperM  3.02 30.81 10.17 12.39 28.53
Whisper L~ 2.01 2649 10.10 12.54 19.29
MMS 12.63 61.19 32.11 23.09 107.41
MAT 289 4975 3296 10.40 54.68
Gemini 3.03 2812 14.19 13.76 21.63
GPT-Aud. 526 3654 86.52 26.76 41.88
Qwen2 1.60 49.61 25.14 11.16 5743

Table 4: Word Error Rates (WER) across African-
accented English speech data sources and Librispeech
test-clean [Lib]. Af: Afrispeech, NC: NCHLT,
CV: Common Voice, Parl: Parliamentary Proceed-
ings (Panayotov et al., 2015), models in top are uni-
modal ASRs while those below are multimodal LLMs

5.1 Accent Robustness Gaps for African
Speech

Across all models, WER on African-accented En-
glish and true African languages is dramatically
higher than on native English or French as shown
in Tables 4 and 5. For example Whisper Large-
v3’s WER increases from 2.01% on LibriSpeech to
26.49% on Afrispeech (Nigerian accents)- a more
than ten-fold increase (Table 4). Likewise, MMS-
1B-All—despite multilingual pretraining—yields
61.19% WER on Afrispeech, compared to 12.63%
on LibriSpeech (Table 4). On individual languages
such as Hausa and Yoruba, error rates often exceed
100% (e.g., 180.29% and 213.88% WER for Whis-
per Medium on Swahili and Yoruba respectively;
Table 5), indicating severe misrecognitions. These
findings highlight that simply including African
data in pretraining does not guarantee accent ro-
bustness; improving performance in low-resource
settings may require targeted accent adaptation and
balanced data sampling.

5.2 Noise and Speaker-Overlap Vulnerability

When evaluated on the noisy parliamentary pro-
ceedings dataset, all models experienced substan-
tial WER inflation. Whisper Large-v3’s WER rose
from 10.10% on NCHLT to 19.29% on Parlimen-
tary audio, while GPT-40 Audio-Preview’s WER
soared to 41.88% (Table 4). Overlapping speech
and background chatter proved especially challeng-
ing: systems often failed to segment speakers or
filter noise, resulting in garbled transcripts or place-
holder outputs (“‘cannot transcribe this audio™). In-
terestingly, Gemini-2.0 (Flash) remained compara-
tively robust, achieving a 21.63% WER——close to



Model eng fra \ afr aka ara fra hau ibo kin lug sna swa xho yor zul
Canary 3.03 4.06 - - - 9.67 - - - - - - - - -
Whis. M 6.80 8.90 | 68.87 - 39.49 1395 180.29 - - - 193.21 117.7 - 213.88 -
Whis. L 3.53 538 | 4543 - 29.72 931 95.11 - - - 110.35 62.75 - 93.77 -
MMS 17.63  19.3 | 4873 62.92 4494 3393 4047 5033 36.73 28.85 30.7 2837 4224 3959 43.19
Qwen2.5 1632 10.43 - - - 24.14 - - - - - - - - -
M4T 4.14 538 | 1841 - 51.26 15.9 - 70.03 - 16.39 76.05 16.25 - 3743 5253
GPT-Aud. 9.63 22.71 | 84.36 104.02 31.88 2229 118.6 112.23 13575 131.19 90.51 7396 130.79 101.14 135.84
Gemini 6.59 549 |28.68 7656 16.11 10.13 4852 8191 7881 80.18 50.64 224 5192 6736 3571

Table 5: Word Error Rates (WER) on Multilingual African Speech. Columns left of the vertical line show baseline
performance on Multilingual LibriSpeech (Pratap et al., 2020), while those to the right display results for a selected
subset of the 20 evaluated languages. A dash (—) means the model does not support that language, models in top are

unimodal ASRs while those below are multimodal LLMs

Whisper’s 19.29%—and outperforming other mul-
timodals by 10+ points (Table 5). These results
highlight that specialized acoustic models retain
an advantage under adverse conditions, but some
multimodal architectures can match that resilience
if they incorporate sufficient noisy-audio training
or robust front-ends.

5.3 Multimodal Models Struggle with

Verbatim Transcription.

While multimodal models offer multiple avenues
for language processing, they often struggle with
verbatim transcription, which is key in ASR tasks.
Instead of transcribing the exact spoken content,
these models sometimes paraphrase the speech or
generate descriptions of either the speech content
or the audio’s characteristics. In some cases, they
fail to produce a transcription altogether, generat-
ing placeholders such as "cannot transcribe this au-
dio." This behavior suggests that multimodal mod-
els prioritize high-level understanding over word-
for-word transcription, making them less reliable
for tasks requiring precise transcriptions. Figure 1
illustrates some of the common failure modes.

Example 1 [Af]: Paraphrasing and Audio Description
Reference: Adana spoke with doctor
Qwen2-Audio: A woman is saying Adana spoke with doctor

Example 2 [Parl.]: Content Description

Reference: We had legislation in front of this house to push
down funds to the lowest levels of service delivery in the
counties, namely the wards. What we have discussed this
morning is that a lot of areas are against.

GPT Audio: The audio content discusses legislation aimed to
allocate funds to the lowest levels of service delivery in
counties, specifically the wards. It indicates that there is some
disagreement or istance to this approach in various areas.

Figure 1: Examples of paraphrasing and audio descrip-
tion.

5.4 Multimodal Models Offer Better

Language Coverage

Table 5 shows that multimodal models can support
a much wider range of African languages com-
pared to unimodal models. For instance, Gemini
and SeamlessM4T achieve moderate-quality tran-
scriptions for multiple African languages. Gemini
is able to achieve this without needing explicit lan-
guage prompts (i.e., there is no need to write the
prompt in the language of the audio or supply a
language ID). In contrast, some unimodal models
demonstrate little to no support for these languages,
underscoring a critical gap in language coverage.

5.5 Model Performance Across Languages

ASR: While MMS-1b (with language adapters)
delivers the best overall performance for transcrip-
tion, a closer examination reveals that different
models excel in specific areas. SeamlessM4Tv2,
for example, shows particularly strong results for
Southern and Eastern African languages, providing
clues about the language distribution in its training
data. MMS performs best or remains competitive
across most languages demonstrating stronger gen-
eralizability potential. These performance nuances
suggest that model design, data, and training strat-
egy can be optimized to tackle specific linguistic
challenges in African languages—a promising direc-
tion for future research. Some examples of ASR
outputs from the models are shown in Figure 2.

5.6 Performance Contrast with
High-Resource Languages

The English and French WERs in Table ?? high-
light a significant performance divide between high-
resource and African languages. For example, our
results show a significant gap in performance on na-
tive vs African-accented French. The gap worsens
considerably as we examine other relatively large



Example 1: Background Noise

Reference: Uso wao ni kijvu zaidi kuliko mvesui.

Whisper Large-v3: kwa hivyo kwa hivo kw hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo.

Example 2: Word substitution

Reference: A adalai Hausawa ana ywa yara masu kaciya a cikin
sa safar bakaahwi.

Gemini2.0: A daddare Hausawa ana yiwa yara masu kaciya in
san ke shakar bakwai.

Example 3: Wrong language

Reference: awon obinrin naa na je isu.

GPT-Audio (French): malheureusement je ne peux pas repondre
a des questions ou identifier des locuteurs a partir d’un
echantillon vocal.

Translated to English: Unfortunately, | cannot answer questions
or identify speakers from a voice sample.

Figure 2: Examples of ASR outputs from unimodal and
multimodal models.

African languages like Swahili and Hausa, each
spoken by over 50m people across 4+ countries.
Our results reinforce the need for targeted improve-
ments, as advances in ASR have yet to close the
performance gap for African languages.

5.7 Noise & Environment Robustness

Across all datasets, models performed worst on
the parliamentary proceedings dataset, despite con-
taining accents present in other datasets. This sug-
gests that the primary challenge was not linguistic
variation but rather the presence of background
noise and overlapping speech, which were mostly
absent in the other datasets. Notably, unimodal
ASR models maintained a lower WER in these
conditions, while multimodal models like Gpt-4o-
audio-preview exhibited significant performance
degradation. The resilience of Gemini 2.0 Flash
in this setting is noteworthy, as it remains competi-
tive with ASR models despite being a multimodal
model.

5.8 Unimodal vs. Multimodal Model AST
Performance

Our evaluation highlights a significant performance
gap between traditional unimodal models and mod-
ern multimodal models, particularly in handling
African languages. Unimodal models like Whisper
often struggle with these languages, frequently pro-
ducing incoherent or untranslated outputs (See Ta-
ble 7). For instance, Whisper Large-v3 consistently
yields very low BLEU and CHRf scores across sev-
eral languages, indicating minimal overlap with the
reference translations and poor semantic capture.

In contrast, multimodal models demonstrate
markedly better performance, especially on low-
resource languages. Models such as Google’s
Gemini-2.0 (flash) achieve substantially higher
scores, showing a clear advantage over Whisper
in both Yoruba and Hausa, among others (See Ta-
ble 7). Even multimodal models that are not the
top performers—Ilike Meta’s SeamlessM4T (Large-
v2)—outperform unimodal baselines across the
board. Notably, SeamlessM4T performs competi-
tively despite being trained on less data than Gem-
ini or GPT-4. On higher-resource languages such as
French and Arabic, its scores closely match those
of larger models, and on low-resource languages
like Shona, it often outperforms them. These re-
sults demonstrate that multimodal training signifi-
cantly enhances translation quality, allowing mod-
els to generalize better and provide more accurate
outputs even with limited language-specific data.

5.9 Impact of In-Domain Fine-Tuning on
Qwen2.5-Omni

Fine-tuning Qwen-2.5 Omni on a subset of the
NaijaVoices corpus yields dramatic improvements
in both WER and translation quality (Table 7).
Igbo WER plunges from 198 to 42 (-79%), Hausa
from 127 to 51 (-60%), and Yoruba from 121 to
71 (-41%), while AfriComet-STL for those lan-
guages nearly triples (Igbo 0.18 — 0.54, Hausa
0.19 — 0.39, Yoruba 0.20 — 0.29), as seen in
Table 6. These gains indicate that even modest,
language-specific data can unlock large pretrained
models’ latent capacity for under-represented lan-
guages.

Table 6: Qwen-Omni2 ASR (WER score) and AST
(AfriComet-STL) Performance Before and After Fine-
Tuning

ASR (WER) AST (STL)
Language
Base Finetuned Base Finetuned
Hausa 127 51 0.19 0.39
Igbo 198 42 0.18 0.54
Yoruba 121 71 0.20 0.29

5.10 ASR Failures

Our evaluation revealed several common transcrip-
tion failure modes across models. A primary issue
was phonetic confusions, where accent variation
led models to misinterpret spoken words, resulting
in erroneous transcriptions. This was especially



prevalent in non-standard pronunciations. We also
observed hallucinations, notably in Whisper and
Canary models, where silent segments were filled
with repetitive or unrelated text, inflating WER
scores. Additionally, Whisper models occasionally
exhibited skipped segments, omitting significant
portions at the beginning of audio clips—Ilikely a
result of internal heuristics ignoring initial speech.

The large multimodal models (Gpt-4o-audio
& Gemini) sometimes introduce contextual er-
rors, such as inserting additional phrases or para-
phrasing content, which diverges from strict tran-
scription standards. Furthermore, other mod-
els (e.g., Canary 1B) expanded acronyms (e.g.,
“HIV” as “human immunodeficiency virus”), which
conflicted with domain conventions where ab-
breviations are standard, artificially increasing
WER. Lastly, GPT-40-Preview frequently failed
to transcribe short samples—particularly from the
NCHLT dataset—responding with messages indi-
cating an inability to transcribe the content.

Possible Benchmark Contamination Issues:
NCHLT and Common-Voice were released several
years ago (old). Afrispeech and the private parlia-
mentary proceedings are more recent (new). The
2-7x gap in performance of unimodal and multi-
modal models on the new vs old data suggests that
model exposure to old datasets may convey a false
sense of generalizability that new datasets expose.
All models perform worst on the noisy challenging
parliamentary dataset suggesting limitations with
their use in real-world settings. This underscores
the value of newer and more representative bench-
marks in the speech domain.

5.11 AST Failures

Contextual Miss-Translation by Multimodal
Models: In contrast to Whisper, the multimodal
models produced meaning translations. Models
like GPT-4 (audio), Gemini-2.0, and SeamlessM4T
generally succeeded in translating entire sentences
from the audio, even for more low-resource lan-
guages like (Ga) in contrast to Whisper. This high-
lights the multimodal models’ strength in handling
sentence-length context — they rarely got “stuck”
partway through a translation. When errors did
occur in the multimodal outputs, the problem was
omitting or mistranslating important words. A com-
mon issue was the selection of an incorrect syn-
onym or a phrase that slightly shifted the nuance
of the source. This led to translations with sig-

nificant information gaps. Such substitutions can
affect fidelity — the translation is understandable
and contextually plausible, but not exactly what a
human translator would pick. Despite this, these
errors are relatively minor compared to the com-
plete failures seen in unimodal outputs. The higher
AfriComet and CHR f scores for multimodal mod-
els (Table 7 & Appendix 18) support this: even if
BLEU penalizes synonym mismatches, the char-
acter n-gram overlap remains high, indicating that
translations captured most of the content. Over-
all, the multimodal systems demonstrated far better
sentence-level translation quality, preserving con-
text and structure, with errors generally confined to
fine-grained lexical nuances.

Hallucination Patterns: Omission vs. Specu-
lative Completions: While multimodal models
like SeamlessM4T and Gemini reduce random er-
rors compared to unimodal models, they are not
entirely free from hallucinations. A notable issue
we observed is over-generation—the model adds
contextually relevant but unspoken content. For
example, when a Yoruba speaker poses a question,
SeamlessM4T might translate the question into En-
glish and then generate a plausible answer (see fig
4, even though none was provided. This suggests
the model is attempting to be helpful or complete
the conversation, behaving more like a dialogue
agent than a strict translator.

This differs from hallucinations in unimodal
models like Whisper, which tend to produce un-
related or nonsensical outputs (fig. 4) (Koenecke
et al., 2024). In contrast, multimodal hallucina-
tions often feel coherent and related, making them
more subtle yet still problematic, as they intro-
duce information not present in the original speech.
These behaviors may originate from exposure to
instruction-tuned or conversational training data.
As such models are deployed in real-world transla-
tion tasks, it’s critical to identify and correct these
tendencies- users need accurate translations, not
the model’s assumptions or commentary.

Limited Robustness to Heavily Noisy Inputs:
All models, regardless of architecture, showed dif-
ferent range of robustness when faced with very
noisy or challenging audio. In our tests with over-
lapping speakers, background chatter, or poor audio
quality, translation performance degraded substan-
tially across the board. Often, the models would
fail to disentangle multiple speakers or filter out
noise, resulting in jumbled output. A common



Table 7: AfriComet-STL scores across the languages for each model. "-" means the models doesn’t support the
language. The the higlighted scores are the best score per language

Whisper ~ Whisper SeamlessMA4T Gpt-4o Gemini-2.0
Language Canary 1b medium large-v3 Qwen2.5 Large-v2 audio-preview flash
Afrikaans - 0.57 0.65 - 0.73 0.71 0.80
Akan - - - - - 0.34 0.38
Ambharic - 0.23 0.27 - 0.64 0.42 0.79
Arabic - 0.65 0.70 - 0.80 0.81 0.85
French 0.65 0.70 0.73 0.8 0.79 0.78 0.80
Fulani - - - - 0.19 0.30 0.35
Ga - - - - - 0.24 0.29
Hausa - 0.16 0.19 - 0.17 0.37 0.65
Igbo - - - - 0.25 0.29 0.37
Kinyarwanda - - - - - 0.29 0.54
Luganda - - - - 0.57 0.47 0.59
Pedi - - - - - 0.31 0.39
Sesotho - - - - 0.23 0.35 0.50
Shona - 0.18 0.21 - 0.73 0.47 0.61
Swahili - 0.32 0.42 - - 0.76 0.81
Tswana - - - - 0.56 0.32 0.46
Twi - - - - 0.41 0.33 0.32
Xhosa - - - - - 0.35 0.66
Yoruba - 0.18 0.20 - - 0.36 0.49
Zulu - - - - - 0.40 0.71

Example 1: Altered meaning

Reference: be careful not to allow fabric to become
too hot which can cause shrinkage or in extreme
cases scorch

SeamlessM4T-v2: be careful not to overheat the
cloth which can cause itching or burn if it is to thick

Example 2: Altered meaning

Reference: on 15 august 1940 the allies invaded
southern france the invasion was called operation
dragoon

Whisper L.: name of the operation was given to the
king in 1940 and was first introduced in southern
france it was later called operation dragon

Example 3: Noisy samples
Gpt-4o0-audio: I'm sorry, | cannot identify speakers

Figure 3: Examples of AST outputs from unimodal and
multimodal models.

failure mode under heavy noise was partial tran-
scription without translation for Gemini and Gpt-
40 audio. Other times, Whisper and GPT-4 audio,
would latch onto a few words they could recognize
and simply repeat them or present them in the orig-
inal language, rather than translating. These issues
show that while our models perform well on clean,
single-speaker audio, real-world conditions with
noise or speaker overlap remain very challenging.
Improving noise robustness — perhaps via data aug-
mentation (Puvvada et al., 2024)— is an important

Example 1: Hallucination
Reference: Go and forgive your father

SeamlessM4T-v2: i m not going to be able
todoit

Example 2: Token Repitition

Reference: the three kingdoms was one of the
bloodiest eras in ancient china’s history
thousands of people died fighting to sit in the
highest seat in the grand palace at xi’an

Whisper L: hello my name is meta i am from
okanlala i am from kokor i am from the village
of daiwa and the next day the next day the
next day the next day the next day the next
day the next day the next day

Figure 4: Examples of AST outputs from unimodal and
multimodal models.

direction.

Limitations

One key limitation of this study lies in the use
of pre-trained models without any fine-tuning or
adaptation to the African linguistic context. While
this approach allowed for consistent benchmarking
across systems, it may have disadvantaged models
that require domain-specific calibration to perform
optimally in low-resource or accented speech set-



tings. In our future work, we plan to fine-tune
speech models to improve their performance on
African languages and African-accented speech.
Additionally, reliance on older benchmark datasets
such as NCHLT and Common Voice raises con-
cerns about possible benchmark contamination, as
these datasets may have been included in the pre-
training corpus of some models. This could lead
to inflated performance estimates and reduce con-
fidence in the models’ generalizability to newer,
more representative data. Furthermore, the evalua-
tion employed a uniform prompting strategy across
all languages and models, using simple instruc-
tions like “Transcribe this audio.” While this en-
sured comparability, it may have constrained the
performance of models that rely on task-specific
or few-shot prompting strategies to fully leverage
their multimodal or contextual capabilities.
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A Appendix

A.1 Automatic Speech Recognition
A.1.1 ASR Prompts

For automatic speech recognition (ASR), we eval-
uate three prompting strategies. The first employs
a simple instruction: “Transcribe this audio.” The
second includes language specificity: “Transcribe
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the entire audio in {source_language}.” The third is
a few-shot variant of the second prompt, which pro-
vides two audio-transcription exemplars as demon-
strations to guide the model’s output.

A.2 Automatic Speech Translation
A.2.1 AST Prompting Strategies
We evaluate three AST prompting strategies:

1. Zero-shot translation:
“Given audio in {source_language}, trans-
late to English.”

. Zero-shot transcriptiontranslation:
“Given audio in {source_language}, first
transcribe the speech, then translate the tran-
script into English.”

. Few-shot variants:
For each of the above prompts, we prepend
two example audio—translation pairs to pro-
vide in-context demonstrations of the desired
behavior.

We found the Zero-shot transcriptiontranslation
gives the best result as it encourages the model
to understand the audio by first transcribing, before
attempting to translate.

A.2.2 Fleurs dataset
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Table 8: WER scores for each models per language

Whisper Whisper MMS-1b Seamless-M4T Gpt-4o Gemini-2.0
Language Canary-1b medium large-v3 all Qwen2.5 Large-v2 audio-preview flash
English (M. Lib) 3.03 6.80 3.53 17.63 16.32 4.68 9.63 6.63
French (M. Lib) 4.06 8.90 5.38 19.30 10.43 6.82 22.71 5.23
Spanish (M. Lib) - - - 17.35 - 6.76 21.25 3.22
Afrikaans - 68.87 45.43 48.73 - 18.41 84.36 18.02
Akan - - - 62.92 - - 104.02 67.04
Ambharic - 447.26 165.83 67.52 - 44.05 245.4 55.88
Arabic - 39.49 29.72 44.94 - 51.26 31.88 14.44
French 9.67 13.95 9.31 33.93 24.14 15.90 22.29 9.12
Fulani - - - 56.78 - 86.85 157.03 66.11
Ga - - - - - - 172.73 87.27
Hausa - 180.29 95.11 40.47 - - 118.60 38.48
Igbo - - - 50.33 - 70.03 112.23 66.68
Kinyarwanda - - - 36.73 - - 135.75 58.44
Luganda - - - 28.85 - 16.39 131.19 59.89
Pedi - - - 41.43 - - 119.29 70.69
Sesotho - - - - - - 158.21 59.30
Shona - 193.21 110.35 30.7 - 76.05 90.51 38.84
Swabhili - 117.7 62.75 28.37 - 16.25 73.96 25.88
Tswana - - - - - - 133.46 54.85
Twi - - - 51.09 - - 98.86 67.13
Xhosa - - - 4224 - - 130.79 39.32
Yoruba - 213.88 93.77 39.59 - 37.43 101.14 43.42
Zulu - - - 43.19 - 52.53 135.84 30.02
Table 9: FLEURS performance across models by language
Whisper Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o0 Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Afrikaans 0.44 0.31 0.26 0.19 0.32 0.14
Ambharic 4.42 2.06 0.35 0.86 1.18 0.19
Arabic - 0.11 0.36 0.09 0.07 0.04
Fulani - - 0.57 - 1.57 0.75
Hausa 1.58 0.86 0.31 - 1.01 0.35
Igbo - - 0.45 1.03 1.11 0.66
Luganda - - 0.46 0.38 0.89 0.53
Pedi - - 0.31 - 1.10 0.90
Shona 2.22 1.17 0.30 0.76 0.97 0.54
Swabhili 0.99 0.42 0.22 0.12 0.30 0.12
Xhosa - - 0.45 - 1.25 0.57
Yoruba 2.04 0.87 0.34 0.31 0.83 0.42
Zulu - - 0.40 0.51 1.11 0.32
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Table 10: Word Error Rate (WER) scores for each model for the Intron-medical dataset. “—" indicates unsupported

languages.
Whisper ~ Whisper  MMS-1b SeamlessM4T-v2 GPT-40 Gemini-2.0
Language Canary 1b  medium large-v3 all Qwen2.5 Large audio-preview flash
Afrikaans - 0.53 0.33 0.37 - 0.15 0.47 0.18
Akan - - - 0.63 - - 1.04 0.77
Arabic - 0.46 0.33 0.75 - - 0.33 0.24
French 0.13 0.16 0.11 0.42 0.24 0.17 0.12 0.08
Hausa - 1.30 0.94 0.43 - - 1.26 0.40
Igbo - - - 0.54 - 0.69 1.04 0.77
Kinyarwanda - - - 0.47 - - 1.34 0.65
Pedi - - - 0.47 - - 1.24 0.77
Sesotho - - - - - - 1.73 0.78
Shona - 1.50 1.01 0.32 - 0.75 0.80 0.45
Swahili - 1.12 0.48 0.34 - 0.19 0.43 0.16
Tswana - - - - - - 1.36 0.73
Twi - - - 0.51 - - 1.03 0.81
Xhosa - - - 0.44 - - 1.23 0.47
Yoruba - 1.57 0.89 0.43 - 0.30 1.35 0.54
Zulu - - - 0.48 - 0.52 1.29 0.35
Table 11: ALFFA performance across models by language
Whisper  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Ambharic 4.28 1.56 0.76 0.24 2.80 2.80
Swahili 1.33 0.73 0.41 0.26 0.94 0.94
Table 12: Ashesi Financial Inclusion performance across models by language
MMS-1b Gpt-4o Gemini-2.0
Language all audio-preview flash
Akan 0.78 1.33 0.94
Ga - 1.73 1.15
Twi 0.75 1.84 1.50
Table 13: Common Voice performance across models by language
Whisper  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o- Gemini-2.0
Language medium large-v3 all Large audio-preview flash
Afrikaans 0.52 0.38 0.27 0.14 0.57 0.18
Ambharic 5.14 1.83 0.53 0.93 1.84 1.30
Arabic 0.36 0.18 0.28 0.68 0.32 0.12
Hausa 2.70 0.91 0.27 - 1.09 0.41
Igbo - - 0.61 0.43 2.46 0.82
Kinyarwanda - - 0.33 - 1.36 0.84
Luganda - - 0.29 0.16 1.32 0.81
Swahili 1.21 0.71 0.25 0.14 0.92 0.26
Twi - - 0.58 - 1.23 0.93
Yoruba 2.94 0.99 0.39 0.40 0.96 1.04
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Table 14: NCHLT performance across models by language

Whisper-  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o0 Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Afrikaans 0.99 0.68 0.71 0.25 1.52 0.49
Pedi - - 0.42 - 1.19 0.91
Sesotho - - - - 1.33 1.04
Tswana - — - - 1.28 0.85
Xhosa - - 0.32 - 1.71 0.57
Zulu - - 0.28 0.56 2.08 0.45

Table 15: NaijaVoices performance across models by language

Whisper  Whisper MMS-1b  Seamless-MA4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Hausa 1.86 0.97 0.39 - 1.20 0.52
Igbo - - 0.49 0.66 1.18 0.87
Yoruba 2.13 0.98 0.44 0.45 1.07 0.78
Language Metric Fluency » Adequacy r
Akan BLEU ~0.09 0.58
ChrF -0.24 0.68
AfriComet-STL  0.07 0.61
Igbo BLEU 0.10 0.63
ChrF -0.11 0.69
AfriComet-STL -0.04 0.93
Pedi BLEU 0.05 0.78
ChrF 0.26 0.68
AfriComet-STL 038 0.61
Shona BLEU 0.38 0.44
ChrF 0.48 0.73
AfriComet-STL 0.67 0.86
Swabhili BLEU 0.43 0.47
ChrF 0.56 0.70
AfriComet-STL 0.67 0.76
Twi BLEU 0.43 0.34
ChrF 0.44 0.36
AfriComet-STL 0.52 0.60
Yoruba BLEU 0.30 0.61
ChrF 0.40 0.76
AfriComet-STL 0.47 0.70

Table 16: Pearson correlations () between automatic metrics and human evaluations of fluency and adequacy.
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Table 17: BLEU performance across models by language

Whisper  Whisper SeamlessM4T Gpt-4o0 Gemini-2.0
Language Canary 1b medium large-v3 Qwen2.5 Large-v2 audio-preview flash
Afrikaans - 19.39 23.2 - 27.62 31.59 38.76
Akan - - - - - 2.44 5.15
Ambharic - 0.8 0.71 - 15.61 4.2 24.88
Arabic - 17.97 20.34 - 27.69 31.06 34.68
French 24.46 27.39 28.92 41.40 33.38 41.27 43.57
Fulani - - - - 0.58 1.05 241
Ga - - - - - 0.49 1.06
Hausa - 0.71 0.71 - 0.31 6.23 21.06
Igbo - - - - 1.92 2.97 5.82
Kinyarwanda - - - - - 1.99 10.91
Luganda - - - - 15.97 .77 13.79
Pedi - - - - - 3.19 6.34
Sesotho - - - - - 4.11 11.23
Shona - 0.4 0.52 - 2.11 6.78 12.56
Swabhili - 2.84 547 - 23.27 26.78 32.62
Tswana - - - - - 3.72 9.59
Twi - - - - - 2.83 2.48
Xhosa - - - - - 471 19.9
Yoruba - 0.24 0.37 - 14.39 4.89 11.77
Zulu - - - - 8.17 6.57 229

Table 18: CHrF performance across models by language
Gemini-2.0 GPT-40 SeamlessM4T-v2 ~Whisper ~ Whisper

Language flash audio-preview Large Large  Medium Canary-1b Qwen2.5
Afrikaans 64.33 56.39 - - - -
Akan 29.86 25.01 56.13 - - -
Amharic 56.62 29.62 - 50.33 45.58 -
Arabic 63.10 59.26 43.48 17.06 13.57 - -
French 66.56 64.40 55.53 47.85 44.38 54.12 64.94
Fulani 27.56 23.82 63.72 58.61 57.19 -
Ga 20.08 19.09 16.25 - - -
Hausa 48.48 29.81 - - - -
Igbo 32.10 25.40 13.47 13.29 7.78 -
Kinyarwanda 37.69 23.62 18.52 - - -
Luganda 44.23 35.56 44.21 - - -
Pedi 34.63 27.51 - - - -
Sesotho 38.00 26.71 - - - -
Shona 42.07 33.56 21.65 15.59 12.76 -
Swabhili 61.74 55.90 53.39 30.00 22.13 -
Tswana 35.52 25.11 - - - -
Twi 24.22 23.15 - - - -
Xhosa 48.82 28.54 40.53 14.29 10.45 -
Yoruba 38.45 28.37 - - - -
Zulu 52.76 31.54 32.79 - - -
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Table 19: Multi-metric performance across models for FLEURS

Gemini-2.0 GPT-40 SeamlessM4T-v2 ~ Whisper Whisper

Language flash audio-preview Large Large Medium
BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF
Ambharic 29.44  62.09 5.60 3325 21.24 50.16 1.20 19.06 1.08 16.30
Arabic 33.25 6644 30.66 63.85 33.86 62.88 18.83 5045 18.07 48.54
Fulani 241 27.56 1.05 23.82 0.58 16.25 - - - -
Hausa 17.68 50.09 6.07 34.25 0.48 16.79 0.16 15.18 0.22 10.13
Igbo 5.54 34091 248 2737 1.17 17.99 - - - -
Luganda 13.79 44.23 7.77 3556 1597 44.21 - - - -
Pedi 6.30 36.41 295 28.84 - - - - - -
Shona 1220 43.54 6.15 34.43 2.67 25.44 0.79 17.46 0.55 14.62
Swabhili 30.70 62.10 23.89 5524 2841 57.03 448 29.04 2.54 2040
Xhosa 20.09 51.51 419 29.77 - - - - - -
Yoruba 10.21 40.15 423 3070 13.25 41.04 0.62 16.73 041 1220
Zulu 21.54 53.45 5.86  33.00 7.67 34.19 - - - -

Table 20: Multi-metric performance across models for Intron (part 1: Gemini—Whisper Medium).

Gemini-2.0 GPT-40 SeamlessMA4T-v2 Whisper Whisper

Language flash audio-preview Large Large Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF
Afrikaans 38.76 6433 31.59 56.39 27.62 56.13 2320 5033 19.39 45.58
Akan 5.15 29.86 244 25.01 - - - - - -
Ambharic 1645 45.29 1.39 22.12 6.07 29.50 0.12 13.29 0.31 7.98
Arabic 24775 55.28 2198 52.07 15.99 4495 13.55 4154 10.78 36.94
French 3249 6096 28.99 5745 20.07 50.06 2395 5337 21.31 51.01
Ga 1.06 20.08 0.49 19.09 - - - - - -
Hausa 23.18 48.70 6.48 28.76 0.19 11.88 0.16 12.52 0.15 6.34
Igbo 5.69 29.50 2.99 23.62 2.05 17.18 - - - -
Kinyarwanda | 10.91 37.69 1.99 23.62 - - - - - -
Pedi 6.40 31.04 3.61 24.81 - - - - - -
Sesotho 11.23  38.00 411 26.71 - - - - - -
Shona 12.98 40.15 7.55 3242 1.15 16.26 0.23 13.34 0.25 10.40
Swabhili 3045 58771 23.52 5143 19.82 49.07 6.51 30.33 4.00 21.80
Tswana 9.59 35.52 3.72 25.11 - - - - - -
Twi 2.48 24.22 2.83 23.15 - - - - - -
Xhosa 19.76 46.48 5.11 27.47 - - - - - -
Yoruba 14.37 39.68 5.61 27.77 14.01 40.44 0.11 12.72 0.08 8.35
Zulu 24.01 52.14 7.17 30.20 8.60 31.48 - - - -

Table 20: (continued) Multi-metric performance across models for Intron (part2: Canarylb & Qwen).

Language ‘ Canarylb Qwen2.5
‘ BLEU CHrF BLEU CHrF
French ‘ 13.78 4446 4140 64.94
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Table 21: Multi-metric performance across select models by NaijaVoices

GPT-40-audio = SeamlessM4T Whisper Whisper

Language Gemini preview v2 Large Large Medium
BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF
Hausa 19.15 44.84 561 25.34 0.17 12.69 0.17 12.52 0.11  8.29
Igbo 6.97 28.67 435 2291 422 22.80 - - - -
Yoruba 9.92 3257 488 2432 1634 39.61 0.11 11.52 0.11 10.33

Table 22: Multi-metric performance across models by IWSLT_LRST

Gemini-2.0 GPT-4o SeamlessM4T-v2 ~ Whisper Whisper
Language flash audio-preview Large Large Medium

‘BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Swabhili ‘ 37.22 65.60 33.74 6225 25.15 57.15 432 30.09 1.68 23.38

Table 23: Multi-metric performance across models by Covost (part 1: Gemini—Whisper Medium).

Gemini-2.0 GPT-40 SeamlessM4T-v2 Whisper Whisper
Language flash audio-preview Large Large Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Arabic 51.72  70.78 4597 64.50 37.07 62.11 3092 54.18 28.03 5048
French 4440 6691 42.19 64.83 3435 64.56 29.32 5898 27.84 57.57

Table 23: (continued) Multi-metric performance across models by Covost (part 2: Canary-1b & QWEN).

Language ‘ Canary-1b QWEN
| BLEU CHrF BLEU CHIF
French ‘ 25.03 5472 4140 64.94
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