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Abstract001

Recent advances in multimodal large lan-002
guage models (LLMs) have enabled impressive003
speech recognition and translation capabilities,004
yet these models remain poorly evaluated in005
low-resource settings, particularly for African006
languages and non-native English accents. In007
this work, we systematically compare state-of-008
the-art speech-based LLMs with traditional Au-009
tomatic Speech Recognition (ASR) systems010
across transcription and translation tasks in-011
volving dialectally diverse African speech. To012
support reproducible evaluation, we introduce013
AfriVox, a novel open-source benchmark com-014
prising medical and non-medical speech sam-015
ples spanning 20 African languages and 100+016
African English accents. Our findings reveal017
substantial performance disparities, underscor-018
ing the limitations of current LLMs in han-019
dling underrepresented linguistic varieties. To020
address this, we fine-tune the newly released021
Qwen-2.5-Omni for multilingual transcription022
and translation using NaijaVoices, a 1,800-023
hour Nigerian speech corpus. Fine-tuning024
via instruction-tuned, LoRA-based parameter-025
efficient methods yields a 54% reduction in026
Word Error Rate (WER) and a 21% average027
improvement in BLEU scores over baseline028
models. Our results demonstrate that multi-029
modal LLMs can be effectively adapted for030
low-resource speech tasks using lightweight031
techniques. This work provides a foundation032
for scalable speech technology development in033
underrepresented languages and informs future034
research in inclusive multimodal learning.035

1 Introduction036

Recent rapid LLM advancements have enabled037

multimodal data processing (McKinzie et al., 2024;038

Cappellazzo et al., 2024). LLMs like GPT-4o039

(Hurst et al., 2024), Gemini (Team et al., 2024),040

and SALMONN (Yu et al.) now take native speech041

input, bypassing text altogether, showing promising042

performance across multiple languages and accents 043

(Kwak and Pardos, 2024). 044

Despite these advancements, the performance 045

of these multimodal models on low-resource lan- 046

guages remains underexplored (Liu and Niehues, 047

2024; Yin et al., 2024; McKinzie et al., 2024). In 048

Nigeria alone, over 200 million people communi- 049

cate in Igbo, Hausa, Yoruba, and Pidgin, yet off- 050

the-shelf ASR and translation systems exhibit high 051

error rates, code-switching failures, and dialectal 052

bias (Ogunmodimu, 2015). 053

Several studies have explored unimodal speech 054

models for African languages (e.g., Whisper, MMS, 055

AfricanHubert, Seamless by Meta (Radford et al., 056

2023; Denisov and Vu, 2024; Alabi et al., 2024; 057

Barrault et al., 2023)). However, the performance 058

of multimodal speech LLMs for several African 059

languages remains an open question (Yin et al., 060

2024). Multimodal LLMs with capabilities to han- 061

dle multiple data types - text, images, audio, video 062

- tasks simultaneously hold significant promise be- 063

yond communication, particularly in enhancing ac- 064

cess to accurate and personalized information (Lyu 065

et al., 2023). Therefore, understanding their ability 066

to process spoken and indigenous languages from 067

African-accented countries is essential to promote 068

inclusive speech-driven AI in Africa (Sanni et al., 069

2025a). 070

In this work, we investigate the generalizability 071

and robustness of speech- and multimodal LLMs 072

to African languages and non-native English ac- 073

cents, comparing them with traditional unimodal 074

ASR models. Our results reveal wide performance 075

gaps with African languages and dialects. To ad- 076

dress this gap, we fine-tuned the Qwen 2.5 Omni 077

model on 3 African languages for transcription 078

and translation, applying parameter-efficient fine- 079

tuning (PEFT) (Ding et al., 2023; Han et al., 2024; 080

Ding et al., 2023) achieving a 54% relative reduc- 081

tion in WER and an 21-point BLEU gain for tran- 082

scription and translation respectively. As a final 083
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contribution, we release 2 diverse benchmark sets084

to measure progress on African languages: (i) a085

multilingual translation test set for 20 African lan-086

guages, and (ii) a multilingual transcription test087

set for those same 20 languages, all curated from088

a wide array of sources. Our work aims to pro-089

vide valuable insights for building more inclusive,090

multilingual voice-native systems by establishing a091

strong baseline for evaluating unimodal and multi-092

modal speech LLMs in low-resource settings and093

demonstrating the potential of instruction tuning to094

improve their performance.095

2 Related works096

Prior work suggests that three main trends –scaling097

laws, reinforcement learning, and the emergence098

of self-supervised learning– are responsible for the099

current advances in speech-large language mod-100

els (LLMs) (Sanni et al., 2025b; Liu and Niehues,101

2024; Wang et al., 2024; Johnson et al., 2014).102

However, these performance gains are dominated103

by high-resource languages, particularly English104

(Olatunji et al., 2023; Radford et al., 2023), with105

these gains remaining unevenly distributed. Train-106

ing sets are dominated by English and other high-107

resource languages or multilingual corpora with108

limited coverage for African languages and di-109

alects (Shanbhogue et al., 2023; Lam-Yee-Mui110

et al., 2023; Hamed et al., 2022). As a result, while111

speech-based LLMs excel in challenging tasks such112

as open-domain question answering and conversa-113

tional interactions (Wu et al., 2024; Nachmani et al.,114

2023), their applicability to the rich linguistic land-115

scapes of Africa remains underexplored (Reitmaier116

et al., 2022). Furthermore, accent mismatch, code-117

switching, and sparse training data significantly118

impact model performance for African languages119

(Tachbelie et al., 2014; Sanni et al., 2025a).120

Recent multimodal LLMs now integrate speech121

and text in unified architectures. Examples in-122

clude Google’s AudioPaLM (Rubenstein et al.,123

2023; Wang et al., 2024) which combine a PaLM-124

based LLM with a wav2vec-style speech encoder;125

Meta AI’s SeamlessM4T (Barrault et al., 2023)126

which offers an all-in-one solution for speech-to-127

text, speech-to-speech, text-to-speech, and text-to-128

text, and Alibaba’s Qwen-Audio (Chu et al., 2023),129

which scales audio-language pretraining across130

30+ tasks, achieving breakthrough performance131

in speech based tasks (Wang et al., 2024).132

Given these multimodal capabilities, fine-tuning133

such massive models for each new downstream 134

task incurs prohibitive memory and compute costs 135

(Han et al., 2024). Parameter-efficient fine-tuning 136

(PEFT) has been proposed as a possible way to ad- 137

dress this challenge by updating only a small sub- 138

set of parameters, thus reducing resource overhead 139

(Ding et al., 2023). Such strategies include adapters 140

(Han et al., 2024), which insert lightweight bottle- 141

neck modules into each Transformer layer; LoRA 142

(Karimi Mahabadi et al., 2021), which updates 143

low-rank matrices (0.1–1 % of parameters) that 144

can be merged into the backbone at inference; hy- 145

brid methods such as QLoRA—combining 4-bit 146

quantization with LoRA on a single GPU—have 147

further pushed this efficiency frontier (Dettmers 148

et al., 2023). Together, these PEFT methods 149

enable rapid, cost-effective adaptation of multi- 150

modal LLMs in resource-constrained and low-data 151

regimes (Dettmers et al., 2023). 152

3 Methodology 153

3.1 Datasets 154

This work evaluates speech-based LLMs and uni- 155

modal ASR models on low-resource African lan- 156

guages and explores the benefits of fine-tuning 157

multimodal LLMs. To support these tasks, we 158

curated and open-sourced two datasets categories: 159

African Accented English Speech (AES) and Mul- 160

tilingual African Speech (MLS) for benchmark- 161

ing and model evaluations, while using the open- 162

sourced NaijaVoices datasets for fine-tuning. 163

3.1.1 African Accented English Speech (AES) 164

We compiled speech from the NCHLT (Barnard 165

et al., 2014), AfriSpeech (Olatunji et al., 2023), 166

Common Voice 17 (filtered for African accents) 167

(Ardila et al., 2020). The combined dataset con- 168

sisted of 63.2 hours of speech from 2,000+ speak- 169

ers across 12 countries and 108 distinct accents 170

(Table 1). 171

3.1.2 Multilingual African Speech (MLS) 172

This group of datasets comprises 20 African 173

languages across 7 public and private datasets, 174

designed for ASR and AST benchmarking 175

(Tables 2 and 3). For transcription, we included 176

NCHLT, Common Voice 17, FLEURS, OpenSLR, 177

BibleTTS, NaijaVoices1, FISD2, MedConv- 178

Transcribe 4. For translation, we included 179

FLEURS, CoVoST(), NaijaVoices, IWSLT-LRST, 180

MedConv-Translate 5. 181
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3.1.3 NaijaVoices Dataset182

For fine-tuning, we utilize the NaijaVoices dataset183

(Emezue et al., 2025): a 1,800-hour corpus with184

600 hours each for Igbo, Hausa, and Yoruba. It185

includes 5,000+ speakers with balanced gender and186

age distributions (Table 3).187

3.2 Data Quality and Ethics188

All audio files are mono-channel WAV at 16kHz.189

Public datasets contain predefined transcripts. Par-190

liamentary recordings were manually transcribed191

by native speakers and quality-checked; only those192

with over 80% reviewer approval were retained.193

Dataset Hours Speakers Accents

NCHLT 2.24 8 1
AfriSpeech 18.68 750 108
CV-17 En-Afr 0.11 46 9
Afrispeech-Parl (Sanni
et al., 2025a)

42.17 ∼1651 4

Total 63.20 ∼2455 108

Table 1: Summary of African-accented English speech
datasets.

Language Region Language Family # Speakers

afr South IndoWest (Germanic) 7.2M
aka West Niger-Congo (Kwa) 24M
amh East Afro-Asiatic (Semitic) 35M
arz North Afro-Asiatic (Semitic) 78M
fra West Indo-European (Romance) 320M
ful West Niger-Congo (Atlantic) 36.8M
gaa West Niger-Congo (Kwa) 0.7M
hau West Afro-Asiatic (Chadic) 54M
ibo West Niger-Congo (Volta-Niger) 31M
kin East Niger-Congo (Bantu) 15M
lug East Niger-Congo (Bantu) 5.6M
nso South Niger-Congo (Bantu) 4.6M
sna South Niger-Congo (Bantu) 8.4M
sot South Niger-Congo (Bantu) 5.6M
swa East Niger-Congo (Bantu) 87M
tsn South Niger-Congo (Bantu) 8.2M
twi West Niger-Congo (Kwa) 4.4M
xho South Niger-Congo (Bantu) 8M
yor West Niger-Congo (Yoruboid) 45M
zul South Niger-Congo (Bantu) 13.6M

Table 2: Language, region, family, and number of speak-
ers.

3.3 Models194

For the evaluation task, we assessed five unimodal195

models for ASR and three for Automatic Speech196

1https://huggingface.co/datasets/naijavoices/
naijavoices-dataset

2https://github.com/Ashesi-Org/
Financial-Inclusion-Speech-Dataset

3URL to be added after anonimity period

Dataset Num Langs Hours Speakers

NCHLT 6 12.75 36
CV-17 10 16.89 670
FLEURS 13 14.44 1595
OpenSLR 3 0.31 372
Bible TTS 3 0.47 3
NaijaVoices1 3 1800 5000
FISD2 3 0.05 23
MedConv 3 19 36.63 1179

Total Hours 1878.52

Table 3: Summary of multilingual speech datasets.

Translation (AST). MMS was excluded from trans- 197

lation evaluation as it was not trained for this task, 198

and Parakeet-TDT is a monolingual ASR model. 199

Four multimodal LLMs were evaluated for ASR: 200

SeamlessM4T (Barrault et al., 2023), Gemini 2.0 201

Flash (Team et al., 2024), GPT-4o Audio Preview 202

and Qwen2.5-Omni-7B (Chu et al., 2024). We uti- 203

lized the pre-trained models or API endpoints with- 204

out additional fine-tuning. Notably, only Qwen2.5- 205

Omni-7B is open-source; the others are accessible 206

via API. Therefore, we used Qwen 2.5 omni (Yang 207

et al., 2025) for the PEFT fine-tuning. 208

4 Experiments 209

4.1 Experimental Setup 210

We evaluate both base and fine-tuned models 211

across two tasks: Automatic Speech Recognition 212

(ASR) and Automatic Speech Translation (AST). 213

Inference is performed in two modes: using the 214

base model’s default settings and using the same 215

setup with a fine-tuned model. For each task, we 216

test three prompting strategies (detailed in Ap- 217

pendix A). All models use standard inference pa- 218

rameters unless otherwise noted. Inference was 219

conducted on a single NVIDIA T4 for ASR and an 220

NVIDIA A100 for the AST model with the largest 221

memory footprint. 222

4.2 Fine-tuning Details 223

Due to our limited compute budget, we fine-tuned 224

Qwen2.5-Omni-7B on approximately 280 hours 225

per language from the NaijaVoices dataset using 226

LoRA (rank 8, alpha 32), applied to all linear lay- 227

ers while freezing the vision encoder. We trained 228

for three epochs using a learning rate of 1e-4 and a 229

warmup ratio of 0.05. We used bfloat16 precision, 230

a per-device batch size of 4, and gradient accumu- 231

lation steps of 16. Training was conducted on four 232

NVIDIA 3090 GPUs, with evaluations and check- 233
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points every 500 steps. Prompt formatting details234

are included in Appendix A.235

4.3 Post-processing.236

To ensure fair comparisons, we normalize the out-237

put before scoring. For African-accented English238

ASR, we use a custom cleaning function to remove239

filler words, extraneous whitespace, and punctu-240

ation inconsistencies. For multilingual ASR, we241

apply Whisper’s BasicTextNormalizer, remov-242

ing diacritics to mitigate variability from incon-243

sistent labeling. For AST, we use Moses tools244

(MosesPunctNormalizer and MosesTokenizer)245

for consistent punctuation and tokenization across246

languages.247

4.4 Evaluation Metrics.248

We apply a consistent evaluation protocol to both249

base and fine-tuned models across ASR and AST250

tasks. ASR performance is measured using Word251

Error Rate (WER) (Klakow and Peters, 2002), de-252

fined as the total number of substitutions, dele-253

tions, and insertions divided by the number of254

words in the reference. For AST, we report BLEU255

(Papineni et al., 2002), chrF (Popović, 2015), and256

two African-centric AfriCOMET-STL (Wang et al.,257

2023), which evaluate semantic adequacy using258

multilingual and single-task learning, respectively.259

We use AfriComet-STL as our main metric after260

conducting human-evaluation to identify which261

metric best evaluates the translation quality. The262

results from human-evaluation can be found in Ap-263

pendix 16264

5 Results and Analysis265

Tables 4 and 5 present the transcription results on266

the African-Accented English Speech and Multilin-267

gual African Speech datasets. Results presented are268

for single runs. The results indicate that, in most269

cases, unimodal models outperformed the multi-270

modal models. While Table 7 show multimodal271

models edges over unimodal models on the speech272

translation task. Additionally, Table 6 shows the273

comparison between the results of the base and fine-274

tuned Qwen 2.5 Omin model. A detailed break-275

down of results by individual languages is provided276

in Appendix A. We provide the following analy-277

sis based on the findings from our experimental278

results.279

Model Lib Af NC CV Parl

Canary 1.48 38.03 10.05 8.41 27.38
Parakeet 1.40 34.96 11.33 9.48 21.89

Whisper M 3.02 30.81 10.17 12.39 28.53
Whisper L 2.01 26.49 10.10 12.54 19.29

MMS 12.63 61.19 32.11 23.09 107.41

M4T 2.89 49.75 32.96 10.40 54.68
Gemini 3.03 28.12 14.19 13.76 21.63

GPT-Aud. 5.26 36.54 86.52 26.76 41.88
Qwen2 1.60 49.61 25.14 11.16 57.43

Table 4: Word Error Rates (WER) across African-
accented English speech data sources and Librispeech
test-clean [Lib]. Af: Afrispeech, NC: NCHLT,
CV: Common Voice, Parl: Parliamentary Proceed-
ings (Panayotov et al., 2015), models in top are uni-
modal ASRs while those below are multimodal LLMs

5.1 Accent Robustness Gaps for African 280

Speech 281

Across all models, WER on African-accented En- 282

glish and true African languages is dramatically 283

higher than on native English or French as shown 284

in Tables 4 and 5. For example Whisper Large- 285

v3’s WER increases from 2.01% on LibriSpeech to 286

26.49% on Afrispeech (Nigerian accents)- a more 287

than ten-fold increase (Table 4). Likewise, MMS- 288

1B-All—despite multilingual pretraining—yields 289

61.19% WER on Afrispeech, compared to 12.63% 290

on LibriSpeech (Table 4). On individual languages 291

such as Hausa and Yoruba, error rates often exceed 292

100% (e.g., 180.29% and 213.88% WER for Whis- 293

per Medium on Swahili and Yoruba respectively; 294

Table 5), indicating severe misrecognitions. These 295

findings highlight that simply including African 296

data in pretraining does not guarantee accent ro- 297

bustness; improving performance in low-resource 298

settings may require targeted accent adaptation and 299

balanced data sampling. 300

5.2 Noise and Speaker-Overlap Vulnerability 301

When evaluated on the noisy parliamentary pro- 302

ceedings dataset, all models experienced substan- 303

tial WER inflation. Whisper Large-v3’s WER rose 304

from 10.10% on NCHLT to 19.29% on Parlimen- 305

tary audio, while GPT-4o Audio-Preview’s WER 306

soared to 41.88% (Table 4). Overlapping speech 307

and background chatter proved especially challeng- 308

ing: systems often failed to segment speakers or 309

filter noise, resulting in garbled transcripts or place- 310

holder outputs (“cannot transcribe this audio”). In- 311

terestingly, Gemini-2.0 (Flash) remained compara- 312

tively robust, achieving a 21.63% WER—close to 313
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Model eng fra afr aka ara fra hau ibo kin lug sna swa xho yor zul
Canary 3.03 4.06 - - - 9.67 - - - - - - - - -
Whis. M 6.80 8.90 68.87 - 39.49 13.95 180.29 - - - 193.21 117.7 - 213.88 -
Whis. L 3.53 5.38 45.43 - 29.72 9.31 95.11 - - - 110.35 62.75 - 93.77 -
MMS 17.63 19.3 48.73 62.92 44.94 33.93 40.47 50.33 36.73 28.85 30.7 28.37 42.24 39.59 43.19

Qwen2.5 16.32 10.43 - - - 24.14 - - - - - - - - -
M4T 4.14 5.38 18.41 - 51.26 15.9 - 70.03 - 16.39 76.05 16.25 - 37.43 52.53
GPT-Aud. 9.63 22.71 84.36 104.02 31.88 22.29 118.6 112.23 135.75 131.19 90.51 73.96 130.79 101.14 135.84
Gemini 6.59 5.49 28.68 76.56 16.11 10.13 48.52 81.91 78.81 80.18 50.64 22.4 51.92 67.36 35.71

Table 5: Word Error Rates (WER) on Multilingual African Speech. Columns left of the vertical line show baseline
performance on Multilingual LibriSpeech (Pratap et al., 2020), while those to the right display results for a selected
subset of the 20 evaluated languages. A dash (–) means the model does not support that language, models in top are
unimodal ASRs while those below are multimodal LLMs

Whisper’s 19.29%—and outperforming other mul-314

timodals by 10+ points (Table 5). These results315

highlight that specialized acoustic models retain316

an advantage under adverse conditions, but some317

multimodal architectures can match that resilience318

if they incorporate sufficient noisy-audio training319

or robust front-ends.320

5.3 Multimodal Models Struggle with321

Verbatim Transcription.322

While multimodal models offer multiple avenues323

for language processing, they often struggle with324

verbatim transcription, which is key in ASR tasks.325

Instead of transcribing the exact spoken content,326

these models sometimes paraphrase the speech or327

generate descriptions of either the speech content328

or the audio’s characteristics. In some cases, they329

fail to produce a transcription altogether, generat-330

ing placeholders such as "cannot transcribe this au-331

dio." This behavior suggests that multimodal mod-332

els prioritize high-level understanding over word-333

for-word transcription, making them less reliable334

for tasks requiring precise transcriptions. Figure 1335

illustrates some of the common failure modes.336

Figure 1: Examples of paraphrasing and audio descrip-
tion.

5.4 Multimodal Models Offer Better 337

Language Coverage 338

Table 5 shows that multimodal models can support 339

a much wider range of African languages com- 340

pared to unimodal models. For instance, Gemini 341

and SeamlessM4T achieve moderate-quality tran- 342

scriptions for multiple African languages. Gemini 343

is able to achieve this without needing explicit lan- 344

guage prompts (i.e., there is no need to write the 345

prompt in the language of the audio or supply a 346

language ID). In contrast, some unimodal models 347

demonstrate little to no support for these languages, 348

underscoring a critical gap in language coverage. 349

5.5 Model Performance Across Languages 350

ASR: While MMS-1b (with language adapters) 351

delivers the best overall performance for transcrip- 352

tion, a closer examination reveals that different 353

models excel in specific areas. SeamlessM4Tv2, 354

for example, shows particularly strong results for 355

Southern and Eastern African languages, providing 356

clues about the language distribution in its training 357

data. MMS performs best or remains competitive 358

across most languages demonstrating stronger gen- 359

eralizability potential. These performance nuances 360

suggest that model design, data, and training strat- 361

egy can be optimized to tackle specific linguistic 362

challenges in African languages–a promising direc- 363

tion for future research. Some examples of ASR 364

outputs from the models are shown in Figure 2. 365

5.6 Performance Contrast with 366

High-Resource Languages 367

The English and French WERs in Table ?? high- 368

light a significant performance divide between high- 369

resource and African languages. For example, our 370

results show a significant gap in performance on na- 371

tive vs African-accented French. The gap worsens 372

considerably as we examine other relatively large 373
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Figure 2: Examples of ASR outputs from unimodal and
multimodal models.

African languages like Swahili and Hausa, each374

spoken by over 50m people across 4+ countries.375

Our results reinforce the need for targeted improve-376

ments, as advances in ASR have yet to close the377

performance gap for African languages.378

5.7 Noise & Environment Robustness379

Across all datasets, models performed worst on380

the parliamentary proceedings dataset, despite con-381

taining accents present in other datasets. This sug-382

gests that the primary challenge was not linguistic383

variation but rather the presence of background384

noise and overlapping speech, which were mostly385

absent in the other datasets. Notably, unimodal386

ASR models maintained a lower WER in these387

conditions, while multimodal models like Gpt-4o-388

audio-preview exhibited significant performance389

degradation. The resilience of Gemini 2.0 Flash390

in this setting is noteworthy, as it remains competi-391

tive with ASR models despite being a multimodal392

model.393

394

5.8 Unimodal vs. Multimodal Model AST395

Performance396

Our evaluation highlights a significant performance397

gap between traditional unimodal models and mod-398

ern multimodal models, particularly in handling399

African languages. Unimodal models like Whisper400

often struggle with these languages, frequently pro-401

ducing incoherent or untranslated outputs (See Ta-402

ble 7). For instance, Whisper Large-v3 consistently403

yields very low BLEU and CHRƒ scores across sev-404

eral languages, indicating minimal overlap with the405

reference translations and poor semantic capture.406

In contrast, multimodal models demonstrate 407

markedly better performance, especially on low- 408

resource languages. Models such as Google’s 409

Gemini-2.0 (flash) achieve substantially higher 410

scores, showing a clear advantage over Whisper 411

in both Yoruba and Hausa, among others (See Ta- 412

ble 7). Even multimodal models that are not the 413

top performers—like Meta’s SeamlessM4T (Large- 414

v2)—outperform unimodal baselines across the 415

board. Notably, SeamlessM4T performs competi- 416

tively despite being trained on less data than Gem- 417

ini or GPT-4. On higher-resource languages such as 418

French and Arabic, its scores closely match those 419

of larger models, and on low-resource languages 420

like Shona, it often outperforms them. These re- 421

sults demonstrate that multimodal training signifi- 422

cantly enhances translation quality, allowing mod- 423

els to generalize better and provide more accurate 424

outputs even with limited language-specific data. 425

5.9 Impact of In-Domain Fine-Tuning on 426

Qwen2.5-Omni 427

Fine-tuning Qwen-2.5 Omni on a subset of the 428

NaijaVoices corpus yields dramatic improvements 429

in both WER and translation quality (Table 7). 430

Igbo WER plunges from 198 to 42 (-79%), Hausa 431

from 127 to 51 (-60%), and Yoruba from 121 to 432

71 (-41%), while AfriComet-STL for those lan- 433

guages nearly triples (Igbo 0.18 → 0.54, Hausa 434

0.19 → 0.39, Yoruba 0.20 → 0.29), as seen in 435

Table 6. These gains indicate that even modest, 436

language-specific data can unlock large pretrained 437

models’ latent capacity for under-represented lan- 438

guages. 439

Table 6: Qwen-Omni2 ASR (WER score) and AST
(AfriComet-STL) Performance Before and After Fine-
Tuning

Language
ASR (WER) AST (STL)

Base Finetuned Base Finetuned

Hausa 127 51 0.19 0.39
Igbo 198 42 0.18 0.54
Yoruba 121 71 0.20 0.29

5.10 ASR Failures 440

Our evaluation revealed several common transcrip- 441

tion failure modes across models. A primary issue 442

was phonetic confusions, where accent variation 443

led models to misinterpret spoken words, resulting 444

in erroneous transcriptions. This was especially 445
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prevalent in non-standard pronunciations. We also446

observed hallucinations, notably in Whisper and447

Canary models, where silent segments were filled448

with repetitive or unrelated text, inflating WER449

scores. Additionally, Whisper models occasionally450

exhibited skipped segments, omitting significant451

portions at the beginning of audio clips—likely a452

result of internal heuristics ignoring initial speech.453

The large multimodal models (Gpt-4o-audio454

& Gemini) sometimes introduce contextual er-455

rors, such as inserting additional phrases or para-456

phrasing content, which diverges from strict tran-457

scription standards. Furthermore, other mod-458

els (e.g., Canary 1B) expanded acronyms (e.g.,459

“HIV” as “human immunodeficiency virus”), which460

conflicted with domain conventions where ab-461

breviations are standard, artificially increasing462

WER. Lastly, GPT-4o-Preview frequently failed463

to transcribe short samples—particularly from the464

NCHLT dataset—responding with messages indi-465

cating an inability to transcribe the content.466

Possible Benchmark Contamination Issues:467

NCHLT and Common-Voice were released several468

years ago (old). Afrispeech and the private parlia-469

mentary proceedings are more recent (new). The470

2-7x gap in performance of unimodal and multi-471

modal models on the new vs old data suggests that472

model exposure to old datasets may convey a false473

sense of generalizability that new datasets expose.474

All models perform worst on the noisy challenging475

parliamentary dataset suggesting limitations with476

their use in real-world settings. This underscores477

the value of newer and more representative bench-478

marks in the speech domain.479

5.11 AST Failures480

Contextual Miss-Translation by Multimodal481

Models: In contrast to Whisper, the multimodal482

models produced meaning translations. Models483

like GPT-4 (audio), Gemini-2.0, and SeamlessM4T484

generally succeeded in translating entire sentences485

from the audio, even for more low-resource lan-486

guages like (Ga) in contrast to Whisper. This high-487

lights the multimodal models’ strength in handling488

sentence-length context – they rarely got “stuck”489

partway through a translation. When errors did490

occur in the multimodal outputs, the problem was491

omitting or mistranslating important words. A com-492

mon issue was the selection of an incorrect syn-493

onym or a phrase that slightly shifted the nuance494

of the source. This led to translations with sig-495

nificant information gaps. Such substitutions can 496

affect fidelity – the translation is understandable 497

and contextually plausible, but not exactly what a 498

human translator would pick. Despite this, these 499

errors are relatively minor compared to the com- 500

plete failures seen in unimodal outputs. The higher 501

AfriComet and CHRƒ scores for multimodal mod- 502

els (Table 7 & Appendix 18) support this: even if 503

BLEU penalizes synonym mismatches, the char- 504

acter n-gram overlap remains high, indicating that 505

translations captured most of the content. Over- 506

all, the multimodal systems demonstrated far better 507

sentence-level translation quality, preserving con- 508

text and structure, with errors generally confined to 509

fine-grained lexical nuances. 510

Hallucination Patterns: Omission vs. Specu- 511

lative Completions: While multimodal models 512

like SeamlessM4T and Gemini reduce random er- 513

rors compared to unimodal models, they are not 514

entirely free from hallucinations. A notable issue 515

we observed is over-generation—the model adds 516

contextually relevant but unspoken content. For 517

example, when a Yoruba speaker poses a question, 518

SeamlessM4T might translate the question into En- 519

glish and then generate a plausible answer (see fig 520

4, even though none was provided. This suggests 521

the model is attempting to be helpful or complete 522

the conversation, behaving more like a dialogue 523

agent than a strict translator. 524

This differs from hallucinations in unimodal 525

models like Whisper, which tend to produce un- 526

related or nonsensical outputs (fig. 4) (Koenecke 527

et al., 2024). In contrast, multimodal hallucina- 528

tions often feel coherent and related, making them 529

more subtle yet still problematic, as they intro- 530

duce information not present in the original speech. 531

These behaviors may originate from exposure to 532

instruction-tuned or conversational training data. 533

As such models are deployed in real-world transla- 534

tion tasks, it’s critical to identify and correct these 535

tendencies- users need accurate translations, not 536

the model’s assumptions or commentary. 537

Limited Robustness to Heavily Noisy Inputs: 538

All models, regardless of architecture, showed dif- 539

ferent range of robustness when faced with very 540

noisy or challenging audio. In our tests with over- 541

lapping speakers, background chatter, or poor audio 542

quality, translation performance degraded substan- 543

tially across the board. Often, the models would 544

fail to disentangle multiple speakers or filter out 545

noise, resulting in jumbled output. A common 546
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Table 7: AfriComet-STL scores across the languages for each model. "–" means the models doesn’t support the
language. The the higlighted scores are the best score per language

Language Canary 1b
Whisper
medium

Whisper
large-v3 Qwen2.5

SeamlessM4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans - 0.57 0.65 - 0.73 0.71 0.80
Akan - - - - - 0.34 0.38
Amharic - 0.23 0.27 - 0.64 0.42 0.79
Arabic - 0.65 0.70 - 0.80 0.81 0.85
French 0.65 0.70 0.73 0.8 0.79 0.78 0.80
Fulani - - - - 0.19 0.30 0.35
Ga - - - - - 0.24 0.29
Hausa - 0.16 0.19 - 0.17 0.37 0.65
Igbo - - - - 0.25 0.29 0.37
Kinyarwanda - - - - - 0.29 0.54
Luganda - - - - 0.57 0.47 0.59
Pedi - - - - - 0.31 0.39
Sesotho - - - - 0.23 0.35 0.50
Shona - 0.18 0.21 - 0.73 0.47 0.61
Swahili - 0.32 0.42 - - 0.76 0.81
Tswana - - - - 0.56 0.32 0.46
Twi - - - - 0.41 0.33 0.32
Xhosa - - - - - 0.35 0.66
Yoruba - 0.18 0.20 - - 0.36 0.49
Zulu - - - - - 0.40 0.71

Figure 3: Examples of AST outputs from unimodal and
multimodal models.

failure mode under heavy noise was partial tran-547

scription without translation for Gemini and Gpt-548

4o audio. Other times, Whisper and GPT-4 audio,549

would latch onto a few words they could recognize550

and simply repeat them or present them in the orig-551

inal language, rather than translating. These issues552

show that while our models perform well on clean,553

single-speaker audio, real-world conditions with554

noise or speaker overlap remain very challenging.555

Improving noise robustness – perhaps via data aug-556

mentation (Puvvada et al., 2024)– is an important557

Figure 4: Examples of AST outputs from unimodal and
multimodal models.

direction. 558

Limitations 559

One key limitation of this study lies in the use 560

of pre-trained models without any fine-tuning or 561

adaptation to the African linguistic context. While 562

this approach allowed for consistent benchmarking 563

across systems, it may have disadvantaged models 564

that require domain-specific calibration to perform 565

optimally in low-resource or accented speech set- 566
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tings. In our future work, we plan to fine-tune567

speech models to improve their performance on568

African languages and African-accented speech.569

Additionally, reliance on older benchmark datasets570

such as NCHLT and Common Voice raises con-571

cerns about possible benchmark contamination, as572

these datasets may have been included in the pre-573

training corpus of some models. This could lead574

to inflated performance estimates and reduce con-575

fidence in the models’ generalizability to newer,576

more representative data. Furthermore, the evalua-577

tion employed a uniform prompting strategy across578

all languages and models, using simple instruc-579

tions like “Transcribe this audio.” While this en-580

sured comparability, it may have constrained the581

performance of models that rely on task-specific582

or few-shot prompting strategies to fully leverage583

their multimodal or contextual capabilities.584
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A Appendix832

A.1 Automatic Speech Recognition833

A.1.1 ASR Prompts834

For automatic speech recognition (ASR), we eval-835

uate three prompting strategies. The first employs836

a simple instruction: “Transcribe this audio.” The837

second includes language specificity: “Transcribe838

the entire audio in {source_language}.” The third is 839

a few-shot variant of the second prompt, which pro- 840

vides two audio-transcription exemplars as demon- 841

strations to guide the model’s output. 842

A.2 Automatic Speech Translation 843

A.2.1 AST Prompting Strategies 844

We evaluate three AST prompting strategies: 845

1. Zero-shot translation: 846

“Given audio in {source_language}, trans- 847

late to English.” 848

2. Zero-shot transcriptiontranslation: 849

“Given audio in {source_language}, first 850

transcribe the speech, then translate the tran- 851

script into English.” 852

3. Few-shot variants: 853

For each of the above prompts, we prepend 854

two example audio–translation pairs to pro- 855

vide in-context demonstrations of the desired 856

behavior. 857

We found the Zero-shot transcriptiontranslation 858

gives the best result as it encourages the model 859

to understand the audio by first transcribing, before 860

attempting to translate. 861

A.2.2 Fleurs dataset 862
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Table 8: WER scores for each models per language

Language Canary-1b
Whisper
medium

Whisper
large-v3

MMS-1b
all Qwen2.5

Seamless-M4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

English (M. Lib) 3.03 6.80 3.53 17.63 16.32 4.68 9.63 6.63
French (M. Lib) 4.06 8.90 5.38 19.30 10.43 6.82 22.71 5.23
Spanish (M. Lib) - - - 17.35 - 6.76 21.25 3.22

Afrikaans - 68.87 45.43 48.73 - 18.41 84.36 18.02
Akan - - - 62.92 - - 104.02 67.04
Amharic - 447.26 165.83 67.52 - 44.05 245.4 55.88
Arabic - 39.49 29.72 44.94 - 51.26 31.88 14.44
French 9.67 13.95 9.31 33.93 24.14 15.90 22.29 9.12
Fulani - - - 56.78 - 86.85 157.03 66.11
Ga - - - - - - 172.73 87.27
Hausa - 180.29 95.11 40.47 - - 118.60 38.48
Igbo - - - 50.33 - 70.03 112.23 66.68
Kinyarwanda - - - 36.73 - - 135.75 58.44
Luganda - - - 28.85 - 16.39 131.19 59.89
Pedi - - - 41.43 - - 119.29 70.69
Sesotho - - - - - - 158.21 59.30
Shona - 193.21 110.35 30.7 - 76.05 90.51 38.84
Swahili - 117.7 62.75 28.37 - 16.25 73.96 25.88
Tswana - - - - - - 133.46 54.85
Twi - - - 51.09 - - 98.86 67.13
Xhosa - - - 42.24 - - 130.79 39.32
Yoruba - 213.88 93.77 39.59 - 37.43 101.14 43.42
Zulu - - - 43.19 - 52.53 135.84 30.02

Table 9: FLEURS performance across models by language

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans 0.44 0.31 0.26 0.19 0.32 0.14
Amharic 4.42 2.06 0.35 0.86 1.18 0.19
Arabic – 0.11 0.36 0.09 0.07 0.04
Fulani – – 0.57 – 1.57 0.75
Hausa 1.58 0.86 0.31 – 1.01 0.35
Igbo – – 0.45 1.03 1.11 0.66
Luganda – – 0.46 0.38 0.89 0.53
Pedi – – 0.31 – 1.10 0.90
Shona 2.22 1.17 0.30 0.76 0.97 0.54
Swahili 0.99 0.42 0.22 0.12 0.30 0.12
Xhosa – – 0.45 – 1.25 0.57
Yoruba 2.04 0.87 0.34 0.31 0.83 0.42
Zulu – – 0.40 0.51 1.11 0.32
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Table 10: Word Error Rate (WER) scores for each model for the Intron-medical dataset. “–” indicates unsupported
languages.

Language Canary 1b
Whisper
medium

Whisper
large-v3

MMS-1b
all Qwen2.5

SeamlessM4T-v2
Large

GPT-4o
audio-preview

Gemini-2.0
flash

Afrikaans – 0.53 0.33 0.37 – 0.15 0.47 0.18
Akan – – – 0.63 – – 1.04 0.77
Arabic – 0.46 0.33 0.75 – – 0.33 0.24
French 0.13 0.16 0.11 0.42 0.24 0.17 0.12 0.08
Hausa – 1.30 0.94 0.43 – – 1.26 0.40
Igbo – – – 0.54 – 0.69 1.04 0.77
Kinyarwanda – – – 0.47 – – 1.34 0.65
Pedi – – – 0.47 – – 1.24 0.77
Sesotho – – – – – – 1.73 0.78
Shona – 1.50 1.01 0.32 – 0.75 0.80 0.45
Swahili – 1.12 0.48 0.34 – 0.19 0.43 0.16
Tswana – – – – – – 1.36 0.73
Twi – – – 0.51 – – 1.03 0.81
Xhosa – – – 0.44 – – 1.23 0.47
Yoruba – 1.57 0.89 0.43 – 0.30 1.35 0.54
Zulu – – – 0.48 – 0.52 1.29 0.35

Table 11: ALFFA performance across models by language

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Amharic 4.28 1.56 0.76 0.24 2.80 2.80
Swahili 1.33 0.73 0.41 0.26 0.94 0.94

Table 12: Ashesi Financial Inclusion performance across models by language

Language
MMS-1b

all
Gpt-4o

audio-preview
Gemini-2.0

flash

Akan 0.78 1.33 0.94
Ga – 1.73 1.15
Twi 0.75 1.84 1.50

Table 13: Common Voice performance across models by language

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o-
audio-preview

Gemini-2.0
flash

Afrikaans 0.52 0.38 0.27 0.14 0.57 0.18
Amharic 5.14 1.83 0.53 0.93 1.84 1.30
Arabic 0.36 0.18 0.28 0.68 0.32 0.12
Hausa 2.70 0.91 0.27 – 1.09 0.41
Igbo – – 0.61 0.43 2.46 0.82
Kinyarwanda – – 0.33 – 1.36 0.84
Luganda – – 0.29 0.16 1.32 0.81
Swahili 1.21 0.71 0.25 0.14 0.92 0.26
Twi – – 0.58 – 1.23 0.93
Yoruba 2.94 0.99 0.39 0.40 0.96 1.04
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Table 14: NCHLT performance across models by language

Language
Whisper-
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans 0.99 0.68 0.71 0.25 1.52 0.49
Pedi – – 0.42 – 1.19 0.91
Sesotho – – – – 1.33 1.04
Tswana – – – – 1.28 0.85
Xhosa – – 0.32 – 1.71 0.57
Zulu – – 0.28 0.56 2.08 0.45

Table 15: NaijaVoices performance across models by language

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Hausa 1.86 0.97 0.39 – 1.20 0.52
Igbo – – 0.49 0.66 1.18 0.87
Yoruba 2.13 0.98 0.44 0.45 1.07 0.78

Language Metric Fluency r Adequacy r

Akan BLEU –0.09 0.58
ChrF –0.24 0.68
AfriComet-STL 0.07 0.61

Igbo BLEU 0.10 0.63
ChrF –0.11 0.69
AfriComet-STL –0.04 0.93

Pedi BLEU 0.05 0.78
ChrF 0.26 0.68
AfriComet-STL 0.38 0.61

Shona BLEU 0.38 0.44
ChrF 0.48 0.73
AfriComet-STL 0.67 0.86

Swahili BLEU 0.43 0.47
ChrF 0.56 0.70
AfriComet-STL 0.67 0.76

Twi BLEU 0.43 0.34
ChrF 0.44 0.36
AfriComet-STL 0.52 0.60

Yoruba BLEU 0.30 0.61
ChrF 0.40 0.76
AfriComet-STL 0.47 0.70

Table 16: Pearson correlations (r) between automatic metrics and human evaluations of fluency and adequacy.
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Table 17: BLEU performance across models by language

Language Canary 1b
Whisper
medium

Whisper
large-v3 Qwen2.5

SeamlessM4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans – 19.39 23.2 – 27.62 31.59 38.76
Akan – – – – – 2.44 5.15
Amharic – 0.8 0.71 – 15.61 4.2 24.88
Arabic – 17.97 20.34 – 27.69 31.06 34.68
French 24.46 27.39 28.92 41.40 33.38 41.27 43.57
Fulani – – – – 0.58 1.05 2.41
Ga – – – – – 0.49 1.06
Hausa – 0.71 0.71 – 0.31 6.23 21.06
Igbo – – – – 1.92 2.97 5.82
Kinyarwanda – – – – – 1.99 10.91
Luganda – – – – 15.97 7.77 13.79
Pedi – – – – – 3.19 6.34
Sesotho – – – – – 4.11 11.23
Shona – 0.4 0.52 – 2.11 6.78 12.56
Swahili – 2.84 5.47 – 23.27 26.78 32.62
Tswana – – – – – 3.72 9.59
Twi – – – – – 2.83 2.48
Xhosa – – – – - 4.71 19.9
Yoruba – 0.24 0.37 – 14.39 4.89 11.77
Zulu – – – – 8.17 6.57 22.9

Table 18: CHrF performance across models by language

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium Canary-1b Qwen2.5

Afrikaans 64.33 56.39 – – – – –
Akan 29.86 25.01 56.13 – – – –
Amharic 56.62 29.62 – 50.33 45.58 – –
Arabic 63.10 59.26 43.48 17.06 13.57 – –
French 66.56 64.40 55.53 47.85 44.38 54.12 64.94
Fulani 27.56 23.82 63.72 58.61 57.19 – –
Ga 20.08 19.09 16.25 – – – –
Hausa 48.48 29.81 – – – – –
Igbo 32.10 25.40 13.47 13.29 7.78 – –
Kinyarwanda 37.69 23.62 18.52 – – – –
Luganda 44.23 35.56 44.21 – – – –
Pedi 34.63 27.51 – – – – –
Sesotho 38.00 26.71 – – – – –
Shona 42.07 33.56 21.65 15.59 12.76 – –
Swahili 61.74 55.90 53.39 30.00 22.13 – –
Tswana 35.52 25.11 – – – – –
Twi 24.22 23.15 – – – – –
Xhosa 48.82 28.54 40.53 14.29 10.45 – –
Yoruba 38.45 28.37 – – – – –
Zulu 52.76 31.54 32.79 – – – –
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Table 19: Multi-metric performance across models for FLEURS

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

Amharic 29.44 62.09 5.60 33.25 21.24 50.16 1.20 19.06 1.08 16.30
Arabic 33.25 66.44 30.66 63.85 33.86 62.88 18.83 50.45 18.07 48.54
Fulani 2.41 27.56 1.05 23.82 0.58 16.25 – – – –
Hausa 17.68 50.09 6.07 34.25 0.48 16.79 0.16 15.18 0.22 10.13
Igbo 5.54 34.91 2.48 27.37 1.17 17.99 – – – –
Luganda 13.79 44.23 7.77 35.56 15.97 44.21 – – – –
Pedi 6.30 36.41 2.95 28.84 – – – – – –
Shona 12.20 43.54 6.15 34.43 2.67 25.44 0.79 17.46 0.55 14.62
Swahili 30.70 62.10 23.89 55.24 28.41 57.03 4.48 29.04 2.54 20.40
Xhosa 20.09 51.51 4.19 29.77 – – – – – –
Yoruba 10.21 40.15 4.23 30.70 13.25 41.04 0.62 16.73 0.41 12.20
Zulu 21.54 53.45 5.86 33.00 7.67 34.19 – – – –

Table 20: Multi-metric performance across models for Intron (part 1: Gemini–Whisper Medium).

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Afrikaans 38.76 64.33 31.59 56.39 27.62 56.13 23.20 50.33 19.39 45.58
Akan 5.15 29.86 2.44 25.01 – – – – – –
Amharic 16.45 45.29 1.39 22.12 6.07 29.50 0.12 13.29 0.31 7.98
Arabic 24.75 55.28 21.98 52.07 15.99 44.95 13.55 41.54 10.78 36.94
French 32.49 60.96 28.99 57.45 20.07 50.06 23.95 53.37 21.31 51.01
Ga 1.06 20.08 0.49 19.09 – – – – – –
Hausa 23.18 48.70 6.48 28.76 0.19 11.88 0.16 12.52 0.15 6.34
Igbo 5.69 29.50 2.99 23.62 2.05 17.18 – – – –
Kinyarwanda 10.91 37.69 1.99 23.62 – – – – – –
Pedi 6.40 31.04 3.61 24.81 – – – – – –
Sesotho 11.23 38.00 4.11 26.71 – – – – – –
Shona 12.98 40.15 7.55 32.42 1.15 16.26 0.23 13.34 0.25 10.40
Swahili 30.45 58.71 23.52 51.43 19.82 49.07 6.51 30.33 4.00 21.80
Tswana 9.59 35.52 3.72 25.11 – – – – – –
Twi 2.48 24.22 2.83 23.15 – – – – – –
Xhosa 19.76 46.48 5.11 27.47 – – – – – –
Yoruba 14.37 39.68 5.61 27.77 14.01 40.44 0.11 12.72 0.08 8.35
Zulu 24.01 52.14 7.17 30.20 8.60 31.48 – – – –

Table 20: (continued) Multi-metric performance across models for Intron (part2: Canary1b & Qwen).

Language Canary1b Qwen2.5

BLEU CHrF BLEU CHrF

French 13.78 44.46 41.40 64.94
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Table 21: Multi-metric performance across select models by NaijaVoices

Language Gemini
GPT-4o-audio

preview
SeamlessM4T

v2 Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Hausa 19.15 44.84 5.61 25.34 0.17 12.69 0.17 12.52 0.11 8.29
Igbo 6.97 28.67 4.35 22.91 4.22 22.80 – – – –
Yoruba 9.92 32.57 4.88 24.32 16.34 39.61 0.11 11.52 0.11 10.33

Table 22: Multi-metric performance across models by IWSLT_LRST

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Swahili 37.22 65.60 33.74 62.25 25.15 57.15 4.32 30.09 1.68 23.38

Table 23: Multi-metric performance across models by Covost (part 1: Gemini–Whisper Medium).

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Arabic 51.72 70.78 45.97 64.50 37.07 62.11 30.92 54.18 28.03 50.48
French 44.40 66.91 42.19 64.83 34.35 64.56 29.32 58.98 27.84 57.57

Table 23: (continued) Multi-metric performance across models by Covost (part 2: Canary-1b & QWEN).

Language Canary-1b QWEN

BLEU CHrF BLEU CHrF

French 25.03 54.72 41.40 64.94
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