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Abstract

We study the fundamental problem of sequential probability assignment, also
known as online learning with logarithmic loss, with respect to an arbitrary, pos-
sibly nonparametric hypothesis class. Our goal is to obtain a complexity measure
for the hypothesis class that characterizes the minimax regret and to determine
a general, minimax optimal algorithm. Notably, the sequential ℓ∞ entropy, ex-
tensively studied in the literature (Rakhlin and Sridharan, 2015, Bilodeau et al.,
2020, Wu et al., 2023), was shown to not characterize minimax risk in general. In-
spired by the seminal work of Shtarkov (1987) and Rakhlin, Sridharan, and Tewari
(2010), we introduce a novel complexity measure, the contextual Shtarkov sum,
corresponding to the Shtarkov sum after projection onto a multiary context tree,
and show that the worst case log contextual Shtarkov sum equals the minimax re-
gret. Using the contextual Shtarkov sum, we derive the minimax optimal strategy,
dubbed contextual Normalized Maximum Likelihood (cNML). Our results hold
for sequential experts, beyond binary labels, which are settings rarely considered
in prior work. To illustrate the utility of this characterization, we provide a short
proof of a new regret upper bound in terms of sequential ℓ∞ entropy, unifying
and sharpening state-of-the-art bounds by Bilodeau et al. (2020) and Wu et al.
(2023).

1 Introduction

Sequential probability assignment is a fundamental problem with connections to information theory
[Ris84; MF98; XB00], machine learning [CL06; Vov95; RST15; FKLMS18; Sha20], and portfolio
optimization [Kel56; Cov74; Cov91; CO96; Fed91]. In the original non-contextual setup, the learner
aims to assign probabilities to a series of labels, which are revealed sequentially. The goal is to offer
probabilistic forecasts over the label set such that the probability assigned to any observed sequence
is comparable to that assigned by the best model in any fixed class of models.

The celebrated work of Shtarkov [Sht87] characterized minimax regret for context-free sequential
probability assignment in terms of what is now known as the Shtarkov sum, and subsequently de-
scribed the minimax algorithm, Normalized Maximum Likelihood (NML). NML represents the ideal
probabilistic forecast in the sense of minimax regret, providing a benchmark for universal coding and
prediction strategies. While often not used directly due to its computational complexity, NML has
guided the design of practical algorithms and informed the development of efficient approximation
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methods. The principles underlying NML have inspired advances in both information theory and
online learning, establishing fundamental limits and serving as critical benchmarks for performance
evaluation.

In this work, we study the problem of sequential probability assignment with contexts, which
has been analyzed in recent works (e.g. [RS15; BFR20; WHGS23]) under the framework of on-
line supervised learning formalized by Rakhlin, Sridharan, and Tewari [RST10]. In this setup,
the problem is modeled as a T - round game between a learner and the nature: On each round
t = 1, . . . , T , the learner observes a context xt from nature and predicts a distribution p̂t over some
finite label space Y . Then nature reveals a label yt ∈ Y and the learner incurs a logarithmic loss
ℓ(p̂t, yt) = − log(p̂t(yt)), where p̂t(yt) is the probability assigned to label yt by p̂t. The perfor-
mance of the learner is measured by the regret with respect to a class F of experts, defined as the
difference between the total loss of the learner and that of the best expert in F . The value of primary
interest is the minimax regret, that is, the worst-case regret by the best learner over arbitrarily adap-
tive data sequences. The minimax regret serves as a benchmark for all algorithms and as a target for
studies of adaptivity. Our goal is to address several fundamental questions:

Can we find a natural complexity measure of F that characterizes the minimax regret, enabling us
to analyze the minimax regret in new ways? And can we identify, in view of this complexity

measure, a general, minimax optimal algorithm?

Notably, the sequential covering number of F , a well studied measure of complexity, has been
shown not to characterize the minimax regret on its own [RS15; BFR20; WHGS23]. This fact
distinguishes sequential probability assignment and log loss: while sequential covering numbers
enable a tight analysis in online learning problems with convex Lipschitz losses, like absolute loss
[RST15] and square loss [RS14a], they do not yield minimax rates for log loss on some classes.
Tackling such classes evidently requires new techniques.

Main contributions.

1. We introduce a new complexity measure, which we call the contextual Shtarkov sum, that serves
as a natural generalization of the Shtarkov sum from the context-free setting. We show that the
minimax regret is characterized by the worst-case contextual Shtarkov sum.

2. We derive the minimax optimal algorithm, dubbed contextual Normalized Maximum Likelihood
(cNML), using a data-dependent variant of the contextual Shtarkov sum, thereby generalizing
NML from the context-free setting.

3. We apply contextual Shtarkov sums to the study of sequential entropy bounds on the minimax
regret. Doing so, we provide a short proof of a new regret upper bound in terms of sequential
entropy that unifies and even improves on state-of-the-arts bounds by [BFR20] and [WHGS23].
Our results extend beyond the binary label setting studied by recent work to arbitrary finite label
sets.

Related work. Sequential probability assignment has been studied extensively. Various aspects
of this problem have been investigated, including sequences with and without side information
(contexts), parametric and nonparametric hypothesis classes, and stochastic or adversarial data-
generating mechanisms. This problem has a long history in the machine learning community, see
[CL06, Ch. 9] and the references therein. In the information theory community, this problem is also
known as universal prediction [MF98], where the regret is also referred to as redundancy with respect
to a set of codes. This has been studied in both stochastic and adversarial settings [Fre96; Ris86;
Ris96; Sht87; XB97; DS04; MF98; OS04; Sha06; Szp98], where the focus was primarily on the
parametric classes of experts. Closely related topics include universal source coding [Kol65; Sol64;
Fit66; Dav73], data compression with arithmetic coding [Ris76; RL81; ZL77; ZL78; FMG92], and
the minimum description length (MDL) principle [Ris78; Ris84; Ris87; BRY98; Grü05; HY01].
Lastly, this topic is intimately tied with sequential gambling and portfolio optimization, as pointed
out by [Kel56; Cov74; Cov91; CO96; Fed91].

A classical result in context-free sequential probability assignment is that the minimax regret is
equal to the log contextual Shtarkov sum [Sht87], and the minimax algorithm is the well-known
Normalized Maximum Likelihood. When the set of contexts is known in advance to the forecaster,
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namely, a fixed design setting, the minimax regret is equivalent to the log Shtarkov sum of the
function class when projected onto the known set of contexts [JSS21; WHGS23].

To handle rich hypothesis classes, [CL99; OH99] upper bounded the regret in terms of the (non-
sequential) uniform covering number of the class. However, this complexity measure proved to be
insufficient for obtaining optimal rates. [RS15] improved regret upper bounds by proposing a se-
quential covering measure. Thereafter, by utilizing the self-concordance property and the curvature
of the log loss, [BFR20] further improved the upper bound in terms of the sequential covering num-
ber for nonparametric Lipschitz classes, through a non-constructive proof. [WHGS23] proposed a
Bayesian algorithmic approach in order to upper bound the regret using a global notion of sequential
covering. Notably, both the global and local sequential covering numbers do not fully characterize
the regret, and the algorithm in [WHGS23] is not minimax optimal.

Online learning with respect to arbitrary hypothesis classes and the zero-one loss, in the realizable
case, is known to be characterized by the Littlestone dimension [Lit88]. The agnostic case was ad-
dressed by [BPS09; ABDMNY21]. Understanding sequential complexities in online learning with
Lipschitz losses was extensively studied by [RST10; RS14a; RS14b; RST15]. Note that the logarith-
mic loss is neither Lipschitz nor bounded. Recently, [AHKKV23] characterized online regression
in the realizable case, for any approximate pseudo-metric, such as the ℓp loss.

2 Preliminaries

Notation. For a positive integer K, let [K] := {1, 2, . . . ,K}. For a finite set K with |K| = K, we
use ∆(K) to denote the set of all distributions on K. We may identify K with [K] (under arbitrary
enumeration of elements in K) and treat elements of ∆(K) as vectors in RK . For a vector p ∈ RK

and i ∈ [K], let p(i) be the i-th coordinate of p. Let ∆+(K) = {p ∈ ∆(K) : p(k) > 0,∀k ∈ K}.
For a general finite sequence (ai)Ni=1, we will use an:m to denote the sub-sequence (an, . . . , am) for
any n ≤ m and the empty sequence for n > m. For any set A, let A∗ = ∪k≥0Ak be the set of all
finite length sequences over A.

Sequential probability assignment and minimax regret. Let X be the context space and Y be the
finite label space. In each round t ∈ [T ] during the game of sequential probability assignment, the
learner receives a context xt ∈ X from nature and assigns a probability distribution p̂t ∈ ∆(Y) to
the possible labels. Then nature reveals the true label yt ∈ Y and the learner incurs a loss ℓ(p̂t, yt) =
− log(p̂t(yt)). Throughout, the learner is required to predict nearly as well as the best expert from
an expert class, which is modeled as an arbitrary hypothesis class F ⊆ {(X ×Y)∗ ×X → ∆(Y)}.
More formally, the goal of the learner is make their regret with respect to F ,

RT (F ; p̂1:T , x1:T , y1:T ) =

T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt),

as small as possible for all sequences x and y generated by nature, possibly in an adversarial manner.
Here f(x1:t, y1:t−1) ∈ ∆(Y) can be understood as the prediction made by expert f at round t using
past observations (x1:t−1, y1:t−1) as well as the fresh context xt. The main focus is to study the
minimax regret RT (F), which can be written as the following extensive form

RT (F) = sup
x1

inf
p̂1

sup
y1

· · · sup
xT

inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T ),

where xt ∈ X , p̂t ∈ ∆(Y) and yt ∈ Y,∀t ∈ [T ].

Remark 2.1 (Sequential vs non-sequential experts) Experts f as mappings from (X ×Y)∗×X to
∆(Y) are sometimes called fully sequential experts [WHGS23] due to their ability to predict based
on the past history. However, the literature (e.g. [RS15; BFR20; WHGS23]) often considers the
more limited notion of non-sequential experts, modeled as F ⊆ {X → ∆(Y)}, reflecting the fact
that prediction made by each expert f is simply f(xt) in each round t. In contrast, our results are
more general as our novel techniques can be applied to the more flexible sequential experts.

Multiary trees. The complexity of online learning problems stems from the sequential and adaptive
nature of the adversary, which we can capture with multiary trees. Formally, for a general space A
and a finite set K, an A-valued K-ary tree v of depth d is a sequence of mappings vt : Kt−1 → A for
t ∈ [d]. A path in a depth−d tree is a sequence ε = (ε1, . . . , εd) ∈ Kd. We use the notation vt(ε) to
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denote vt(ε1, . . . , εt−1) for t ∈ [d] and the boldface notation v(ε) to denote (v1(ε), . . . ,vd(ε)) ∈
Ad. Throughout we will only consider Y-ary trees valued in either X or ∆(Y), where the paths are
denoted by the boldface y. We refer to X -valued trees as context trees and ∆(Y)-valued trees as
probabilistic trees.

Time-varying context sets. So far we consider the context set X to be constant over time. But
all of our results can be extended easily to allow for time-varying context spaces. Details of this
generalization can be found in Appendix C.

2.1 Prior work: the Shtarkov sum in context-free and fixed designs

Before introducing our complexity measure that characterizes RT (F), we review some prior set-
tings where the minimax regret can be characterized by the well-studied Shtarkov sum. First we
introduce the notion of likelihood of a hypothesis f with respect to a context and label sequence,
which plays a key role in defining complexity measures and optimal algorithms.

Definition 2.2 (Likelihood) For f : (X × Y)∗ × X → ∆(Y) and length−d sequences x1:d ∈
X d, y1:d ∈ Yd, the likelihood Pf (y1:d|x1:d) is defined as

Pf (y1:d|x1:d) =
d∏

t=1

f(x1:t, y1:t−1)(yt),

where we use the compact notation f(x1:t, y1:t−1) for f(x1, y1, . . . , xt−1, yt−1, xt).

In the classical context-free setting where X can be thought of as a singleton, any sequential expert
f degenerates to a joint distribution over label sequences. Indeed, given any label sequence y1:t−1,
f(y1:t−1) ∈ ∆(Y) can be interpreted as the conditional distribution f assigns to the next label yt.
We use Pf (y1:d) =

∏d
t=1 f(y1:t−1)(yt) to denote this distribution. Similarly, the learner’s strategy

is also specified by a joint distribution that is decomposed to a sequence of conditional distributions
p̂t = p̂t(·|y1:t−1) ∈ ∆(Y). In this setup the minimax regret RT (F) is characterized by the Shtarkov
sum [Sht87].

Proposition 2.3 ([Sht87]) In the context-free setting, for any hypothesis class F and horizon T , the
Shtarkov sum ST (F) is defined as

ST (F) =
∑

y1:T∈YT

sup
f∈F

Pf (y1:T ).

Moreover, the minimax regret is given by RT (F) = logST (F), and the unique minimax optimal
strategy is the normalized maximum likelihood (NML) distribution given by

pnml(y1:T ) =
supf∈F Pf (y1:T )∑

y′
1:T∈YT supf∈F Pf (y′1:T )

, ∀y1:T ∈ YT .

To go beyond this classical context-agnostic setting and incorporate contextual information, prior
work (e.g. [JSS21]) also considered an easier problem than the aforementioned sequential probabil-
ity assignment, by forcing nature to reveal the context sequence x1:T to the learner at the start of the
game. This is known as the fixed design setting or transductive online learning [WHGS23], where
the goal is to characterize the so-called fixed design maximal minimax regret

RFD
T (F) := sup

x1:T∈XT

inf
p̂1

sup
y1

· · · inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T ).

It is straightforward to see that after projecting on x1:T , the hypothesis class F again collapses to a
set of joint distributions over YT specified by the likelihood function in Definition 2.2. Moreover,
this set of distributions can be accessed by the learner from the start, so the fixed design setting can
be essentially reduced to the context-free setting. To be more specific, for any f ∈ F , it induces an
expert in the context-free setting after being projected on x1:T , which is denoted by f |x1:T

and

f |x1:T
(y1:t−1) := f(x1:t, y1:t−1) ∈ ∆(Y),∀t ∈ [T ], y1:t−1 ∈ Yt−1,

and let F|x1:T
:= {f |x1:T

: f ∈ F}. Then given any predetermined x1:T , the learner is equivalently
competing with F|x1:T

in the context-free setting. With the following natural variant of the Shtarkov
sum, we can easily characterize RFD

T (F).
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Definition 2.4 (Conditional Shtarkov sum) Given a context sequence x1:T ∈ X T , the Shtarkov
sum of F conditioned on x1:T is

ST (F|x1:T ) :=
∑

y1:T∈YT

sup
f∈F

Pf (y1:T |x1:T ).

In fact, ST (F|x1:T ) is just the Shtarkov sum of the projected class F|x1:T
in the context-free setting.

The following result characterizes the fixed-design setting:

Proposition 2.5 (Minimax regret, fixed design [JSS21]) In the fixed design setting, for any hy-
pothesis class F and horizon T , the fixed design maximal minimax regret is

RFD
T (F) = sup

x1:T∈XT

logST (F|x1:T ),

and, given any context sequence x1:T , the minimax optimal response is NML with respect to F|x1:T
.

3 Minimax regret via contextual Shtarkov sum

Now we state one of our main results about the characterization of the minimax regret of sequential
probability assignment. First we introduce the key concept of contextual Shtarkov sum, which is a
natural generalization of Shtarkov sum in the context-free setting.

Definition 3.1 (Contextual Shtarkov sum) The contextual Shtarkov sum ST (F|x) of a hypothesis
class F on a given context tree x of depth T is defined as

ST (F|x) :=
∑

y∈YT

sup
f∈F

Pf (y|x(y)).

Just like the conditional Shtarkov sum, the contextual Shtarkov sum ST (F|x) can be interpreted as
the Shtarkov sum of the projected class F|x := {f |x : f ∈ F} where f |x is the induced context-free
expert specified by

f |x(y) = Pf (y|x(y)),∀y ∈ YT ,

for any depth−T context tree x. Next we show that the minimax regret RT (F) is characterized by
the worst-case contextual Shtarkov sum:

Theorem 3.2 (Main result: minimax regret) For any hypothesis class F ⊆ {(X × Y)∗ × X →
∆(Y)} and horizon T ,

RT (F) = sup
x

logST (F|x),

where the supremum is taken over all context trees x (i.e., x is X -valued) of depth T .

Since any context sequence x1:T can be thought as a special context tree x that is constant in
each level t ∈ [T ] (i.e., xt(y) = xt,∀y), we can find that the supremum over context trees in
Theorem 3.2 strictly subsumes the supremum over context sequences in Proposition 2.5. Thus we
can see the separation between RT (F) and RFD

T (F) is clearly exhibited.

The proof of Theorem 3.2 is provided in Appendix A but we give a brief sketch of it here.

Proof sketch. The proof starts from swapping the pairs of inf and sup (after randomizing the labels
revealed by the nature) in the extensive formulation of RT (F) to move to the dual game, where the
learner predicts after seeing the action of the nature. Trivially the value of this swapped game is a
lower bound for RT (F), and after rearranging we get that

the value of the swapped game = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] ≤ RT (F),

where the supremum is taken over all context trees x and probabilistic trees p, of depth T . Also
Ey∼p means the nested conditional expectations Ey1∼p1(y) Ey2∼p2(y) · · ·EyT∼pT (y).

Similar to the proof of Lemma 6 in [BFR20] for the binary label setting, we apply the minimax
theorem with a tweak that we devise to handle multiary labels to derive that

RT (F) = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] (1)
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under some mild regularity condition for F . A key observation is that the supremum over depth−T
probabilistic trees p is equivalent to the supremum over joint distributions P over YT . Based on this
observation and a few algebraic manipulations, we can re-write supp Ey∼p[RT (F ;p(y),x(y),y)]
as

sup
P∈∆(YT )

H(P ) + Ey∼P

[
sup
f∈F

logPf (y|x(y))
]

given any context tree x, and the value of this maximization problem can be easily computed to be
log
(∑

y supf∈F Pf (y|x(y))
)
= logST (F|x). Thus,

RT (F) = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)]

= sup
x

sup
P∈∆(YT )

H(P ) + Ey∼P

[
sup
f∈F

logPf (y|x(y))
]
= sup

x
logST (F|x).

However, Eq. (1) is not guaranteed when there is no assumed regularity condition for F . To get
away from this, prior works would have to add a particular hypothesis to the class F such that the
enlarged class allows for the minimax swap [RS15; BFR20]. Nevertheless, even adding a mere
hypothesis may lead to suboptimal analysis for some classes F , say when RT (F) is of constant
order. To completely get rid of any regularity assumption and obtain a unified characterization of
the minimax regret for arbitrary class F , we provide a novel argument as follows. For an arbitrary
class F , we study a smooth truncated version of it, denoted by Fδ for any level δ ∈ (0, 1/2), such
that Fδ always validates the use of the minimax theorem and hence RT (Fδ) = supx logST (Fδ|x).
Then we give a series of refined analysis comparing the minimax regrets and contextual Shtarkov
sums of F and Fδ that yields

RT (F) ≤ RT (Fδ) + T log(1 + |Y|δ) = sup
x

logST (Fδ|x) + T log(1 + |Y|δ)

≤ log
(
sup
x

ST (F|x) + δ · C(T, |Y|)
)
+ T log(1 + |Y|δ),

where C(T, |Y|) < ∞ is a positive constant that only depends on T and |Y|. Sending δ → 0+

will conclude that RT (F) ≤ supx logST (F|x), which finishes the whole proof as we already have
RT (F) ≥ supx logST (F|x) from the start.

3.1 Applications: an improved regret upper bound in terms of sequential entropy

To illustrate the utility of our characterization in Theorem 3.2, we walk through some examples
where we are able to recover and sharpen existing regret upper bounds with relatively short proofs
via contextual Shtarkov sum. As a start, we provide a short proof in Appendix A.5 of the classical
regret bound for a finite hypothesis class.

Proposition 3.3 (Finite classes) For any finite hypothesis class F and horizon T , RT (F) ≤
log |F|.

Let us go back to the binary label setting with non-sequential experts, that is, Y = {0, 1} and
F ⊆ [0, 1]X , and f(x) ∈ [0, 1] is interpreted as the probability assigned to label 1 by this expert f .
We will show a regret bound that outperforms the state-of-the-art ones in [BFR20; WHGS23] with
a surprisingly simple proof. To proceed, we need the following notation. Given a context tree x of
depth T , let F ◦ x = {f ◦ x : f ∈ F}, where f ◦ x is the [0, 1]-valued tree such that

(f ◦ x)t(y) = f(xt(y)),∀y ∈ YT .

Next we introduce the definitions of sequential ℓ∞ covers and entropy.

Definition 3.4 (Sequential ℓ∞ cover and entropy) Given a hypothesis class F ⊆ [0, 1]X and a
context tree x of depth T , we say a collection of R-valued trees Vx,α is a sequential cover of F ◦ x
at scale α > 0 if for any f ∈ F ,y ∈ YT , there exists some v ∈ Vx,α such that

|f(xt(y))− vt(y)| ≤ α,∀t ∈ [T ].

Let the sequential ℓ∞ covering number N∞(F ◦x, α, T ) be the size of the smallest such cover. The
sequential ℓ∞ entropy of F at scale α and depth T is defined as the logarithm of the worst-case
sequential covering number:

H∞(F , α, T ) := sup
x

logN∞(F ◦ x, α, T ).
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Definition 3.5 (Global sequential ℓ∞ cover and entropy) Given a hypothesis class F ⊆ [0, 1]X ,
we say a collection of mappings Gα ⊆ [0, 1]X∗ is a global sequential cover of F at scale α > 0 and
depth T if for any f ∈ F , x1:T ∈ X T , there exists some g ∈ Gα such that

|f(xt)− g(x1:t)| ≤ α,∀t ∈ [T ].

Let the global sequential ℓ∞ covering number NG(F , α, T ) be the size of the smallest such cover.
The global sequential ℓ∞ entropy of F at scale α and depth T is defined as

HG(F , α, T ) := logNG(F , α, T ).

Proposition 3.6 ([BFR20; WHGS23]) For any F ⊆ [0, 1]X and horizon T ,

RT (F) ≤ min

{
inf
α>0

{
4Tα+ cH∞(F , α, T )

}
︸ ︷︷ ︸

[BFR20]

, inf
α>0

{
T log(1 + 2α) +HG(F , α, T )

}
︸ ︷︷ ︸

[WHGS23]

}
,

where c = 2−log(2)
log(3)−log(2) ∈ (3, 4).

It is easy to show that H∞(F , α, T ) ≤ HG(F , α, T ), but, in general, the two bounds in Propo-
sition 3.6 are incomparable due to constants and different dependence on α (more discussions on
these bounds are deferred to Appendix C). Starting from the contextual Shtarkov sum, we are able
to derive a bound that combines the best of these two bounds :

Theorem 3.7 (Main result: sequential entropy bound) For any F ⊆ [0, 1]X and horizon T ,

RT (F) ≤ inf
α>0

{
T log(1 + 2α) +H∞(F , α, T )

}
.

Proof of Theorem 3.7 For any scale α > 0 and depth−T context tree x, let Vx,α be a sequential
cover of F ◦x at scale α with size N∞(F ◦x, α, T ). We can always assume Vx,α to be [0, 1]-valued
without loss of generality because otherwise we can just truncate it without violating its coverage
guarantee. Define the smoothed covering set Ṽx,α =

{
ṽ : ∀t ∈ [T ], ṽt(·) = vt(·)+α

1+2α , v ∈ Vx,α

}
,

inspired by [BFR23; WHGS23]. Then for any f ∈ F ,y ∈ YT , there exists some v ∈ Vx,α such
that |f(xt(y))− vt(y)| ≤ α,∀t ∈ [T ] and hence ṽ satisfies

f(xt(y))

ṽt(y)
≤ 1 + 2α,

1− f(xt(y))

1− ṽt(y)
≤ 1 + 2α.

Hence

Pf (y|x(y)) =
T∏

t=1

f(xt(y))
yt(1− f(xt(y)))

1−yt ≤ (1 + 2α)T
T∏

t=1

ṽt(y)
yt(1− ṽt(y))

1−yt ,

and∑
y

sup
f∈F

Pf (y|x(y)) ≤ (1 + 2α)T
∑
y

sup
ṽ∈Ṽx,α

T∏
t=1

ṽt(y)
yt(1− ṽt(y))

1−yt

≤ (1 + 2α)T
∑

ṽ∈Ṽx,α

∑
y

T∏
t=1

ṽt(y)
yt(1− ṽt(y))

1−yt = (1 + 2α)T |Ṽx,α|,

where the last equality is derived by treating ṽ as sequential experts and applying Lemma D.1.
Finally,

RT (F) = sup
x

log

(∑
y

sup
f∈F

Pf (y|x(y))

)
≤ sup

x
log
(
(1 + 2α)T |Ṽx,α|

)
= sup

x
log
(
(1 + 2α)T |Vx,α|

)
= T log(1 + 2α) +H∞(F , α, T ).
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Since our choice of α is arbitrary, we conclude that

RT (F) ≤ inf
α>0

{
T log(1 + 2α) +H∞(F , α, T )

}
.

■

3.2 Contextual Shtarkov sums through martingales

We can relate our characterization of the minimax regret to the more extensively studied sequential
Rademacher complexity, which arises in online learning problems with hypothesis class F ⊆ [0, 1]X

and bounded convex losses like absolute loss. Specifically, the (conditional) sequential Rademacher
complexity [RST15] is defined by

RT (F ;x) := Eε

[
sup
f∈F

T∑
t=1

εtf(xt(ε))
]
,

where x is a depth−T binary context tree and ε = (ε1, . . . , εT ) ∈ {±1}T is a sequence of i.i.d.
Rademacher random variables. A notable feature of RT (F ;x) is that it is the expected supremum
of the sum of a martingale differences, i.e., for any f,E[εtf(xt(ε))|ε1, . . . , εt−1] = 0. Likewise,
ST (F|x) also admits a martingale interpretation. To see this, let F ⊆ {(X × Y)∗ × X → ∆(Y)}
and rewrite ST (F|x) for any context tree x:

ST (F|x) =
∑

y∈YT

sup
f∈F

Pf (y|x(y)) = Ey

[
sup
f∈F

T∏
t=1

(
|Y| · f(x1:t(y), y1:t−1)(yt)

)]
,

where y = (y1, . . . , yT ) is a sequence of i.i.d. variables following the uniform distribution over Y .
It is easy to check that E[|Y| · f(x1:t(y), y1:t−1)(yt)|y1, . . . , yt−1] = 1, and thus{ t∏

s=1

(
|Y| · f(x1:s(y), y1:s−1)(ys)

)}
t∈[T ]

is a martingale with respect to filtration Ft = σ(y1, . . . , yt), t ∈ [T ]. It would be of independent
interest to study the contextual Shtarkov sums more quantitatively by developing new tools for such
product-type martingales.

4 Contextual NML, the minimax optimal algorithm

So far we have settled the minimax regret of sequential probability assignment in a nonconstruc-
tive way. Now we switch to the algorithmic lens to study the optimal strategy that achieves the
minimax regret. Remarkably, we show that the minimax optimal algorithm can be described by a
data-dependent variant of the contextual Shtarkov sum, which is named contextual Shtarkov sum
with prefix.

Definition 4.1 (Contextual Shtarkov sum with prefix) Given sequences x1:t ∈ X t, y1:t ∈ Yt, t ∈
[T ] and a context tree x of depth T − t, the contextual Shtarkov sum Sx1:t,y1:t

T (F|x) of F on x with
prefix x1:t, y1:t is defined as

Sx1:t,y1:t

T (F|x) =
∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)).

Now we present our prediction strategy, contextual normalized maximum likelihood (cNML),
which is summarized in Algorithm 1. In each round t, with x1:t, y1:t−1 as past observations,
the learner first checks whether supf∈F Pf (y1:t−1|x1:t−1) > 0 since if that is not the case and
supf∈F Pf (y1:t−1|x1:t−1) = 0, the cumulative losses of all experts in F have already blown up to
+∞ and the learner only needs to predict any p̂ ∈ ∆+(Y) in all remaining rounds. On the other
hand, if supf∈F Pf (y1:t−1|x1:t−1) > 0, then

max
y∈Y

sup
x

S
x1:t,(y1:t−1,y)
f (F|x) > 0

8



Algorithm 1 Contextual Normalized Maximum Likelihood (cNML)
Input: Hypothesis class F , horizon T
For t = 1, 2, ..., T do

1. Observe context xt ∈ X
2. If supf∈F Pf (y1:t−1|x1:t−1) > 0, predict p̂t ∈ ∆(Y) with

p̂t(y) =
supx S

x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y, (2)

and otherwise set p̂t to be an arbitrary member of ∆+(Y)

3. Receive label yt ∈ Y
End for

and the p̂t given by Eq. (2) is indeed a valid member of ∆(Y) (shown in Appendix B) and is used as
the learner’s prediction. The following theorem shows that cNML is the minimax optimal algorithm,
with proof deferred to Appendix B.

Theorem 4.2 (Main result: optimal algorithm) The contextual normalized maximum likelihood
strategy (Algorithm 1) is minimax optimal.

To see that cNML is reduced to NML in the context-free setting, it suffices to consider the case
where supf∈F Pf (y1:T ) > 0 since otherwise NML will simply assign 0 probability on this se-
quence y1:T and during the actual round-wise implementation of NML, it also predicts an arbitrary
element from ∆+(Y) in those rounds t where supf Pf (y1:t−1) = 0. Now for any y1:T such that
supf∈F Pf (y1:T ) > 0, the prediction by cNML in each round t is

p̂t(y) =

∑
y∈YT−t supf∈F Pf (y1:t−1, y,y)∑
y′∈YT−t+1 supf∈F Pf (y1:t−1,y′)

,∀y ∈ Y

which can be summarized into a joint density over y1:T by

p̂(y1:T ) =
supf∈F Pf (y1:T )∑

y′
1:T∈YT supf∈F Pf (y′1:T )

.

Recall that this is exactly the NML prediction pnml(y1:T ).

5 Discussions

In this paper, we characterize the minimax regret and the optimal prediction strategy for sequen-
tial probability assignment, generalizing the classical results in the context-free setting. Moreover,
our results are general enough to subsume the setting of multiary labels and sequential hypothesis
classes, which has not been sufficiently explored before. Remarkably, our characterization holds
for arbitrary hypothesis classes that may not admit the regularity assumptions implicitly required by
prior works (e.g. [RST15; BFR20]).

For future works, it would be interesting to study the minimax regret of specific classes more quan-
titatively using our contextual Shtarkov sums. It is also intriguing to consider the setting of infinite
labels. Although most of our arguments would go through under sufficient regularity conditions, a
more systematic study is needed. On the practical side, it is important to develop algorithms that are
more computationally efficient than cNML and with provable guarantees.
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A Proofs for Section 3

Notations. When the context and label sequences x1:T , y1:T are clear from the context, we may
use ft to denote the probability vector f(x1:t, y1:t−1) ∈ ∆(Y) produced by hypothesis f at time t
for notational convenience. We also adopt the notation for repeated operators in [RST15; BFR20],

denoting Opt1 · · ·OptT [· · · ] by
〈〈

Optt

〉〉T
t=1

[
· · ·
]
. For any discrete distribution P and discrete

random variables X,Y , let H(P ) be the entropy of P and H(X|Y ) be the conditional entropy of
X given Y .

A.1 Minimax swap

As standard in online learning literature, we will first move to a dual game after applying a minimax
swap at each round of the game. Under mild assumptions, the value of the original game coincides
with the that of the swapped game. More specifically, we have:

Lemma A.1 Whenever F satisfies that for every sequence x1:T ∈ X T , y1:T ∈ YT ,

inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt) < ∞, (3)

we have that
RT (F) = sup

x,p
Ey∼p[RT (F ;p(y),x(y),y)], (4)

where the supremum is taken over all X -valued Y-ary trees x and ∆(Y)-valued Y-ary trees p, of
depth T . Also Ey∼p means the nested conditional expectations Ey1∼p1(y) Ey2∼p2(y) · · ·EyT∼pT (y).

To deal with the unboundedness of log loss in the proof, we introduce the following truncation
method inspired by [BFR23; WHGS23], generalizing the one in [BFR20] which was specific to
binary labels.

Definition A.2 (Smooth truncation) The general smooth truncation map τδ : ∆(Y) → ∆(Y) is
defined such that for all p ∈ ∆(Y) and y ∈ Y ,

τδ(p)(y) =
p(y) + δ

1 + |Y|δ
,

given threshold δ ∈ (0, 1/2).

It is easy to check that τδ(p) is indeed a valid member in ∆(Y) and τδ(p)(y) ∈ [δ/(1 + |Y|δ), (1 +
δ)/(1 + |Y|δ)]. Moreover, it is not hard to verify that τδ(∆(Y)) = {p ∈ ∆(Y) : p(y) ∈ [δ/(1 +
|Y|δ), (1 + δ)/(1 + |Y|δ)],∀y ∈ Y}. We will use ∆δ(Y) to denote this image set τδ(∆(Y)).
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Proof of Lemma A.1 Fix δ ∈ (0, 1/2). By restricting the learner’s prediction p̂t to ∆δ(Y), we get
an upper bound on RT (F):

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−1

t=1
sup
xT

inf
p̂T∈∆δ(Y)

sup
pT

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]
.

Now we can apply Sion’s minimax theorem [Sio58] to the function

A(p̂T , pT ) = EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

to derive that
inf

p̂T∈∆δ(Y)
sup

pT∈∆(Y)

A(p̂T , pT ) = sup
pT∈∆(Y)

inf
p̂T∈∆δ(Y)

A(p̂T , pT ).

This is because:

1. A(p̂T , pT ) is convex and continuous in p̂T ∈ ∆δ(Y) and

2. A(p̂T , pT ) is concave and continuous in pT ∈ ∆(Y), which is further due to that A(p̂T , pT )
is linear in pT and is bounded given Eq. (3).

Hence

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−1

t=1
sup
xT

sup
pT

inf
p̂T∈∆δ(Y)

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−2

t=1
sup
xT−1

inf
p̂T−1∈∆δ(Y)

sup
pT−1

EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]
.

Again the order of inf p̂T−1∈∆δ(Y) and suppT−1∈∆(Y) with respect to

B(p̂T−1, pT−1) = EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]

can be swapped due to the same reason as above, leading to

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−2

t=1
sup
xT−1

sup
pT−1

inf
p̂T−1∈∆δ(Y)

EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−3

t=1
sup
xT−2

inf
p̂T−2∈∆δ(Y)

sup
pT−2

EyT−2∼pT−2

{ T−2∑
t=1

ℓ(p̂t, yt) + sup
xT−1

sup
pT−1

[
inf

p̂T−1∈∆δ(Y)
EyT−1∼pT−1

ℓ(p̂T−1, yT−1)

+ EyT−1∼pT−1
sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]}

.

Repeating this procedure through all T rounds yields

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t∈∆δ(Y)

Eyt∼pt [ℓ(p̂t, yt)]− ℓ(ft, yt)
]
.
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By Lemma A.7, we know that we do not lose too much by restricting learner’s prediction to ∆δ(Y):

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
+ |Y|δT.

Sending δ → 0+ on the RHS of the above inequality, we get

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
.

It is easy to see that on the RHS of the above inequality, the inner infimum over p̂t ∈ ∆(Y) is
achieved at p̂t = pt due to the nature of log loss. So

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

Eyt∼pt
[ℓ(pt, yt)]− ℓ(ft, yt)

]
= sup

x,p
Ey∼p[RT (F ;p(y),x(y),y)],

where in the last equality we use the compact notation of trees to further simplify our expression
and this concludes the proof. ■

Lemma A.3 For any hypothesis class F and horizon T ,

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x

logST (F|x). (5)

It is implied that whenever F satisfies Eq. (4), we have

RT (F) = sup
x

logST (F|x).

Proof of Lemma A.3 First we can see that the outcome sequence y1:T generated under any tree
p is the same thing as y1:T generated by its associated joint distribution over YT , and vice versa.
So we can replace the supremum over trees p in the LHS of Eq. (5) by the supremum over joint
distributions P over YT . Hence,

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x,P

Ey∼P [RT (F ;p(y),x(y),y)]

= sup
x,P

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]
,

where Pt denotes the conditional distribution Pt(·|y1:t−1) ∈ ∆(Y) of yt under P given y1:t−1.

Now fix the context tree x and distribution P . Then we can see that Ey∼P [ℓ(Pt, yt)] =

H(yt|y1:t−1). So Ey∼P [
∑T

t=1 ℓ(Pt, yt)] =
∑T

t=1 H(yt|y1:t−1) = H(P ). Further notice that

inf
f∈F

T∑
t=1

ℓ(ft, yt) = inf
f∈F

(− logPf (y1:T |x1:T )) = − sup
f∈F

logPf (y1:T |x1:T ).

So naturally we define the map Fx : YT → R ∪ {−∞} by

Fx(y) = sup
f∈F

logPf (y|x(y)),

and then we see that

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ((f(xt(y)), yt)
]
= H(P ) + Ey∼P [Fx(y)].

For any given tree x, the optimization problem

sup
P∈∆(YT )

H(P ) + Ey∼P [Fx(y)]

14



is actually a maximization problem, for which the optimal P ∗ is given by

P ∗(y) =
exp(Fx(y))∑
y′ exp(Fx(y′))

=
supf∈F Pf (y|x(y))∑
y′ supf∈F Pf (y′|x(y′))

,∀y ∈ YT .

Note that the above formula for P ∗ is also valid when Fx(y) = −∞ for some y, since P ∗ should
be supported on {y ∈ YT : Fx(y) > −∞}, and Fx(y) cannot be −∞ for all y due to Lemma D.1.
The associated value of this maximization problem is

log

(∑
y

exp(Fx(y))

)
= log

(∑
y

sup
f∈F

Pf (y|x(y))

)
.

Therefore,

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x,P

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

= sup
x

sup
P

{
H(P ) + Ey∼P [Fx(y)]

}
= sup

x
log

(∑
y

sup
f∈F

Pf (y|x(y))

)
= sup

x
logST (F|x).

■

In the proof of Lemma A.1, if we do not restrict the learner’s prediction and simply swap the order
of inf and sup to produce an inequality at each time t, we will reach the following folklore result.

Lemma A.4 For any hypothesis class F and horizon T ,
RT (F) ≥ sup

x,p
Ey∼p[RT (F ;p(y),x(y),y)]. (6)

Proof of Lemma A.4 To get Eq. (6), we simply need to reverse the order of sup and inf at each time
in the extensive formulation of minimax regret and produce an inequality:
RT (F) = sup

x1

inf
p̂1

sup
y1

· · · sup
xT

inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T )

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt)
]

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1
sup
xT

inf
p̂T

sup
pT

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

≥
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1
sup
xT

sup
pT

inf
p̂T

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf
p̂T

EyT∼pT
ℓ(p̂T , yT )− EyT∼pT

inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]
.

Iterating the argument and rearranging terms as above, we will get that

RT (F) ≥
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
=
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

Eyt∼pt [ℓ(pt, yt)]− ℓ(ft, yt)
]

= sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)].

■
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A.2 Smooth truncated hypothesis class

To remove the reliance on Eq. (3), we introduce a smooth truncated version of F that always satisfies
Eq. (3) and study its minimax regret as well as contextual Shtarkov sums, compared to those of the
untruncated class F . To be more specific, we will apply the smooth truncation map to hypotheses:
for any δ ∈ (0, 1/2) and f : (X × Y)∗ × X → ∆(Y), we use fδ to denote its smooth truncated
counterpart τδ ◦ f ; for any hypothesis class F , we use Fδ to denote the corresponding smooth
truncated class τδ ◦ F = {τδ ◦ f : f ∈ F}. It is easy to verify that any smooth truncated class Fδ

satisfies Eq. (3) and hence
RT (Fδ) = sup

x
logST (Fδ|x).

Next we control the effect of truncation on the minimax regret.

Lemma A.5 For any F , T and δ ∈ (0, 1/2),

RT (F) ≤ RT (Fδ) + T · log(1 + |Y|δ).

Proof of Lemma A.5 Fix threshold δ ∈ (0, 1/2) and hypothesis f . By Lemma A.7, for any given
sequences x1:T , y1:T , there is

T∑
t=1

ℓ(fδ(x1:t, y1:t−1), yt)−
T∑

t=1

ℓ(f(x1:t, y1:t−1), yt) ≤ T · log(1 + |Y|δ). (7)

Then, for any sequence of predictions p̂1:T ,

RT (F ; p̂1:T , x1:T , y1:T ) =

T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)

≤
T∑

t=1

ℓ(p̂t, yt)− inf
fδ∈Fδ

T∑
t=1

ℓ(fδ
t , yt) + T · log(1 + |Y|δ)

= RT (Fδ; p̂1:T , x1:T , y1:T ) + T · log(1 + |Y|δ),

which concludes the proof. ■

Lemma A.6 There exists a constant M(T ) < ∞ that only depends on T such that for any f, x1:T ∈
X T , y1:T ∈ YT and δ ∈ (0, 1/2),

Pfδ(y1:T |x1:T ) ≤ Pf (y1:T |x1:T ) + δ ·M(T ).

Proof of Lemma A.6 Fix threshold δ ∈ (0, 1/2), hypothesis f and sequences x1:T , y1:T . Then

Pfδ(y1:T |x1:T ) =

T∏
t=1

fδ
t (yt) =

∏
t

(
ft(yt) + δ

1 + |Y|δ

)
≤
∏
t

(ft(yt) + δ)

=
∏
t

ft(yt) + δ ·
∑
t

∏
t′ ̸=t

ft′(yt′) + · · ·+ δT

≤
∏
t

ft(yt) + δ ·M(T )

= Pf (y1:T |y1:T ) + δ ·M(T ),

where we can set M(T ) = T +
(
T
2

)
+
(
T
3

)
+ · · ·+

(
T
T

)
since ft(yt)’s are bounded by 1. ■
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A.3 Putting together

Now we are fully prepared to finish the proof of Theorem 3.2, our main result in Section 3.

Proof of Theorem 3.2 By Lemma A.6, we have that for any context tree x of depth T ,∑
y∈YT

sup
fδ∈Fδ

Pfδ(y|x(y)) ≤
∑

y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T .

Thus
RT (Fδ) = sup

x
logST (Fδ|x)

= sup
x

log

 ∑
y∈YT

sup
fδ∈Fδ

Pfδ(y|x(y))


≤ sup

x
log

 ∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T


= log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T
 .

Together with Lemma A.5, we get that for any δ ∈ (0, 1/2),

RT (F) ≤ log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T
+ T · log(1 + |Y|δ). (8)

After sending δ → 0+ on the RHS of Eq. (8),

RT (F) ≤ log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y))

 = sup
x

logST (F|x).

Recall that we have RT (F) ≥ supx logST (F|x) from Lemma A.4 and Lemma A.3. So finally,

RT (F) = sup
x

logST (F|x).

■

A.4 Additional proofs

Lemma A.7 For any p ∈ ∆(Y) and δ ∈ (0, 1/2),

ℓ(τδ(p), y) ≤ ℓ(p, y) + log(1 + |Y|δ) ≤ ℓ(p, y) + |Y|δ, ∀y ∈ Y.

Proof of Lemma A.7 By direct computation, for any y ∈ Y ,

ℓ(τδ(p), y)− ℓ(p, y) = log
( p(y)

p(y) + δ
· (1 + |Y|δ)

)
≤ log(1 + |Y|δ)
≤ |Y|δ.

■
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A.5 Proof of Proposition 3.3

Starting from Theorem 3.2 that RT (F) = supx logST (F|x), we have

RT (F) = sup
x

log

(∑
y

sup
f∈F

Pf (y|x(y))

)

≤ sup
x

log

∑
y

∑
f∈F

Pf (y|x(y))


= sup

x
log

∑
f∈F

∑
y

Pf (y|x(y))

 = log |F|,

where the last equality is due to Lemma D.1.

B Proofs for Section 4

Notations. Again we may use ft to denote the probability vector f(x1:t, y1:t−1) ∈ ∆(Y) produced
by hypothesis f at time t when the context and label sequences x1:T , y1:T are clear from the context.
For a context tree x of depth T−t and a path y ∈ YT−t, we re-index x(y) as (xt+1(y), . . . ,xT (y))
whenever it takes the last T − t entries of the entire context sequence. And we do the same for the
probabilistic tree p as well. That is, whenever y = (yt+1, . . . , yT ) ∈ YT−t takes the last T − t
entries of the whole label sequence and y ∼ p, then we will denote this label generating process by
yt+1 ∼ pt+1(y), . . . , yT ∼ pT (y).

B.1 Proof of Theorem 4.2

Proof of Theorem 4.2 Recall that the minimax regret is

RT (F) =
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt)
]
.

Through this extensive form of the minimax regret, we know that given x1:t, y1:t−1, the minimax
prediction p̂∗t at round t is the one that minimizes the following expression over all p̂t ∈ ∆(Y):

sup
yt

〈〈
sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
. (9)

Define

G(F , x1:t, y1:t) =
〈〈

sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
,

and now
p̂∗t = argmin

p̂t∈∆(Y)

sup
yt

{
ℓ(p̂t, yt) +G(F , x1:t, y1:t)

}
.

The crux of the proof is to show the following:

Lemma B.1 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,
G(F , x1:t, y1:t) = sup

x
logSx1:t,y1:t

T (F|x).

The proof of Lemma B.1 is done by essentially following the same strategy in Appendix A since
G(F , x1:t, y1:t) admits a similar extensive form with the minimax regret RT (F). For completeness
we provide its proof in Appendix B.2. Given Lemma B.1, we have

p̂∗t = argmin
p̂t∈∆(Y)

sup
yt

{
ℓ(p̂t, yt) + sup

x
logSx1:t,y1:t

T (F|x)
}

= argmin
p̂t∈∆(Y)

sup
yt

log
( supx Sx1:t,y1:t

T (F|x)
p̂t(yt)

)
.

We apply the following result to solve the above program:
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Lemma B.2 [MG22, Lemma 15] Let g : Y → [0,+∞] be a measurable function such that∫
Y g(y)dµ ∈ (0,+∞). Then,

inf
p

sup
y∈Y

log
g(y)

p(y)
= log

(∫
Y
g(y)µ(dy)

)
, (10)

where the infimum in Eq. (10) spans over all probability densities p : Y → [0,+∞) with respect to
µ, and the infimum is reached at

p∗ =
g∫

Y g(y)dµ
.

Letting g(y) = supx S
x1:t,(y1:t−1,y)
T (F|x) ∈ [0, 1] and µ be the counting measure on the finite space

Y , we can apply Lemma B.2 whenever not all g(y)’s are 0. In this case, we solve that

p̂∗t (y) =
g(y)∑

y′∈Y g(y′)
=

supx S
x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y.

On the other hand, if g(y) = 0,∀y ∈ Y , then any p̂t such that p̂t(y) > 0,∀y ∈ Y , is an minimax
optimal prediction. Moreover, it implies that Pf (y1:t−1|x1:t−1) = 0,∀f ∈ F . This is because for
arbitrary context tree x,

0 =
∑
yt

∑
y∈YT−t

Pf (y1:t,y|x1:t,x(y))

=
∑
yt

Pf (y1:t|x1:t)

= Pf (y1:t−1|x1:t−1).

So the cumulative loss for each expert f up to round t − 1 already blows up to +∞ and
the learner only needs to predict an arbitrary p̂ ∈ ∆+(Y) in all remaining rounds to achieve
RT (F ; p̂1:T , x1:T , y1:T ) = −∞.

Overall, we can see that the minimax optimal prediction p̂∗t ∈ ∆(Y) at round t given x1:t, y1:t−1 is

p̂∗t (y) =
supx S

x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y,

if there exists y ∈ Y such that supx S
x1:t,(y1:t−1,y)
T (F|x) > 0. Otherwise, select p̂∗t to be an arbitrary

element in ∆+(Y) (and so do all remaining rounds). ■

B.2 Auxiliary lemmas

Recall that for any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,

G(F , x1:t, y1:t) =
〈〈

sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]

=
〈〈

sup
xs

inf
p̂s

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
.

To prove Lemma B.1, we need the following lemmas.

Lemma B.3 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,

G(F , x1:t, y1:t) ≥ sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
. (11)

And whenever for every xt+1:T ∈ X T−t, yt+1:T ∈ YT−t, it holds

inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys) < ∞, (12)
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then

G(F , x1:t, y1:t) = sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
. (13)

Proof of Lemma B.3 First we see that similar to the proof of Lemma A.4, we can reverse every pair
of sup over ps and inf over p̂s in the extensive formulation of G(F , x1:t, y1:t) and rearrange terms
to obtain

G(F , x1:t, y1:t) ≥
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
,

and again due to the nature of log loss,

G(F , x1:t, y1:t) ≥
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

Eys∼ps
[ℓ(ps, ys)]− inf

f∈F

T∑
s=1

ℓ(fs, ys)
]

= sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
,

where in the last step we compress the expression using trees (of depth T −t) and Eq. (11) is proved.

To show that the minimax swap is valid under Eq. (12), we follow the same strategy as in the proof
of Lemma A.1 by restricting the learner’s prediction p̂s to ∆δ(Y) for any threshold δ ∈ (0, 1/2)
which yields

G(F , x1:t, y1:t) ≤
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s∈∆δ(Y)

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

≤
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
+ |Y|δT.

So Eq. (13) is proved by sending δ → 0+ on the RHS of the last inequality and the established
Eq. (11). ■

Lemma B.4 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
= sup

x
logSx1:t,y1:t

T (F|x).

Proof of Lemma B.4 The proof follows that of Lemma A.3. By replacing the probabilistic tree p
by the joint distribution P ∈ ∆(YT−t), we get

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x,P

Ey∼P

[ T∑
s=t+1

ℓ(Ps, ys)− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P

[
sup
f∈F

logPf (y1:t,y|x1:t,x(y))
]
.

Similarly, for any fixed x, define the map F x1:t,y1:t
x : YT−t → R ∪ {−∞} by

F x1:t,y1:t
x (y) = sup

f∈F
logPf (y1:t,y|x1:t,x(y)),
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and now we solve
sup

P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)].

If there exists some y ∈ YT−t such that F x1:t,y1:t
x (y) > −∞, then the optimal P ∗ is given by

P ∗(y) =
exp(F x1:t,y1:t

x (y))∑
y′ exp(F

x1:t,y1:t
x (y′))

=
supf∈F Pf (y1:t,y|x1:t,x(y))∑
y′ supf∈F Pf (y1:t,y′|x1:t,x(y′))

,∀y ∈ YT−t,

and then

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)]

= sup
x

log
(∑

y

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)

=sup
x

logSx1:t,y1:t

T (F|x).

However, if F x1:t,y1:t
x (y) = −∞ for all y, then it implies that for any context tree x, path y, and

f ∈ F , Pf (y1:t,y|x1:t,x(y)) = 0 and hence,

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)]

=−∞

=sup
x

log
(∑

y

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)

=sup
x

logSx1:t,y1:t

T (F|x),

which finishes our proof. ■

Now we are able to prove the key result Lemma B.1.

Proof of Lemma B.1 Fix any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt. First we
know

G(F , x1:t, y1:t) ≥ sup
x

logSx1:t,y1:t

T (F|x)

due to Eq. (11) and Lemma B.4. For the other direction, let us fix any threshold value δ ∈ (0, 1/2)
and then
G(F , x1:t, y1:t) ≤ G(Fδ, x1:t, y1:t) + T · log(1 + |Y|δ)

= sup
x

logSx1:t,y1:t

T (Fδ|x) + T · log(1 + |Y|δ)

= sup
x

log
( ∑

y∈YT−t

sup
fδ∈Fδ

Pfδ(y1:t,y|x1:t,x(y))
)
+ T · log(1 + |Y|δ)

≤ sup
x

log
( ∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)) + δ ·M(T ) · |Y|T
)
+ T · log(1 + |Y|δ)

= log
(
sup
x

∑
y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)) + δ ·M(T ) · |Y|T
)
+ T · log(1 + |Y|δ),

where we have applied Lemma A.7, Lemma B.3, Lemma B.4, and Lemma A.6 accordingly. Simi-
larly, we send δ → 0+ on the RHS of the last inequality and get

G(F , x1:t, y1:t) ≤ sup
x

log
( ∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)
= sup

x
logSx1:t,y1:t

T (F|x),

which concludes the proof. ■
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C Additional discussions

C.1 On the time-variant context space

In this section we generalize our analysis to the setting where the context space can evolve over time.
We model time-varying context sets by a sequence of maps Xt : X t−1 × Yt−1 → 2X , t ∈ [T ] as in
[RS15; BFR20]. In each round t, instead of picking any context from X , the nature is now required
to only choose xt from Xt(x1:t−1, y1:t−1) ⊆ X . Then the minimax regret with respect to (Xt)t∈[T ]

is rewritten as

RT (F) =
〈〈

sup
xt∈Xt(x1:t−1,y1:t−1)

inf
p̂t

sup
yt

〉〉T
t=1

RT (F ; p̂1:T , x1:T , y1:T ).

A context tree x is consistent with respect to (Xt)t∈[T ] if for all t ∈ [T ] and y ∈ YT , xt(y) ∈
Xt(x1:t−1, y1:t−1). Then our results in Section 3 and Section 4 can be generalized simply by replac-
ing the supremum over all context trees (of depth-T ) by the supremum over all consistent context
trees. For example, we will have

RT (F) = sup
x:x is consistent

logST (F|x).

C.2 On the global and non-global sequential cover

Now we go back to consider the usual setting of binary label and constant experts, i.e., Y = {0, 1}
and F ⊆ [0, 1]X . As mentioned in Section 3, previous works [BFR20; WHGS23] provided re-
gret upper bounds based on ℓ∞ sequential entropy. More specifically, both of their bounds are in
the form of O(infα>0{αT + H(F , α, T )}), with H(F , α, T ) being either the non-global entropy
H∞(F , α, T ) or the global entropy HG(F , α, T ). It is then natural to ask which one of these
two bounds is tighter. Although it is straightforward to prove that H∞(F , α, T ) is no larger than
HG(F , α, T ), the gap between them is at most a polylog factor, as shown below. The proof of
H∞(F , α, T ) ≤ HG(F , α, T ) is also included for completeness.

Proposition C.1 For any scale α > 0, we have

H∞(F , α, T ) ≥ min{T, sup
α′>α

sfat2α′(F)} · log(2).

Therefore, together with H∞(F , α, T ) ≤ HG(F , α, T ) and the folklore HG(F , α, T ) ≤
O(sfatα(F) log(T/α)), we conclude that the regret upper bounds O(infα>0{αT +
H(F , α, T )}),H ∈ {H∞,HG}, differ by at most a polylog factor.

Proof of Proposition C.1 Fix any α′ > α > 0 and let dα′ denote min{T, sfat2α′(F)}. Then
there exists a context tree x and a witness tree s, both of depth dα′ , satisfying that for any path
y ∈ {0, 1}dα′ , there exists an f ∈ F such that

∀t ∈ [dα′ ], (2yt − 1) · (f(xt(y))− st(y)) ≥ α′ > α. (14)

Let Vx,α be an arbitrary sequential ℓ∞ covering of F on x. Now we select a path y and a sequence
of subsets V

(t)
x,α ⊆ Vx,α, t ∈ [dα′ ] in the following recursive way. Define V

(0)
x,α = Vx,α. For

each t ∈ [dα′ ], choose yt ∈ {0, 1} such that 2yt − 1 ∈ {−1,+1} is the minority among all
sgn(vt(y1:t−1) − st(y1:t−1)), v ∈ V

(t−1)
x,α (ignoring those of 0’s). Finally update V

(t)
x,α = {v ∈

V
(t−1)
x,α : sgn(vt(y1:t−1)− st(y1:t−1)) = 2yt − 1}.

First we argue that, if there is any time t′ ∈ [dα′ ] such that V (t′−1)
x,α ̸= ∅, V (t′)

x,α = ∅, then Vx,α

is not a valid cover of F on x. Otherwise, recall we have selected y1, . . . , yt′−1. Now pick an
arbitrary yt′ ∈ {0, 1}. By Eq. (14) we can find some f ∈ F such that (2yt − 1) · (f(xt(y1:t−1))−
st(y1:t−1)) > α,∀t ∈ [t′]. Since Vx,α is a covering at scale α, there is v ∈ Vx,α such that |vt(y)−
f(xt(y))| ≤ α,∀t ∈ [t′]. This implies that sgn(f(xt(y)) − st(y)) = sgn(vt(y) − st(y)) =

2yt − 1,∀t ∈ [t′]. So we can always find some member of V (t′−1)
x,α to match the minority sign of

vt′(y1:t′−1)− st′(y1:t′−1), v ∈ V
(t′−1)
x,α , which means that V (t′)

x,α ̸= ∅ and yields a contradiction.
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Now we know that |V (t)
x,α| ≥ 1,∀t ∈ [dα′ ]. By design |V (t)

x,α| ≤ |V (t−1)
x,α |/2,∀t ∈ [dα′ ], so we

must have |Vx,α| = |V (0)
x,α| ≥ 2dα′ . As the choice of covering is arbitrary, the covering number

N∞(F ◦ x, α, dα′) is also lower bounded by 2dα′ and hence H∞(F , α, dα′) ≥ dα′ · log(2). If
supα′>α sfat2α′(F) ≤ T , then we get that

H∞(F , α, T ) ≥ sup
α′>α

H∞(F , α, sfat2α′(F)) ≥ sup
α′>α

sfat2α′(F) · log(2).

If there is some α′ > α such that sfat2α′(F) ≥ T , then

H∞(F , α, T ) = H∞(F , α, dα′) ≥ T · log(2).

Combining these two cases together, we have

H∞(F , α, T ) ≥ min{T, sup
α′>α

sfat2α′(F)} · log(2).

■

Proposition C.2 Let Gα be a global sequential α-covering of F as defined in [WHGS23]. Then for
any context tree x, there exists a sequential cover Vx,α of F ◦ x at scale α with |Vx,α| ≤ |Gα|. This
implies that H∞(F , α, T ) ≤ log |Gα|.

Proof of Proposition C.2 Fix arbitrary context tree x. For any g ∈ Gα, define the [0, 1]-valued tree
vg by vgt (y) = g(x1:t(y)),∀t ∈ [T ],y ∈ YT . Now let Vx,α = {vg : g ∈ Gα} and we will show that
Vx,α is indeed a sequential cover of F ◦ x at scale α.

For any f ∈ F and y ∈ YT , tree x yields a length−T sequence x1:T (y) and by definition of the
global sequential covering, there exists g ∈ Gα such that

|f(xt(y))− g(x1:t(y))| ≤ α,∀t ∈ [T ].

So by our construction of Vx,α, vg ∈ Vx,α holds

|f(xt(y))− vgt (y)| = |f(xt(y))− g(x1:t(y))| ≤ α,∀t ∈ [T ],

which yields our claim after observing |Vx,α| ≤ |Gα|. ■

D Additional proofs

Lemma D.1 For any X -valued Y-ary context tree x of depth T , and f : (X × Y)∗ × X → ∆(Y),
we have ∑

y∈YT

Pf (y|x(y)) = 1, (15)

where we recall that x(y) denotes the context sequence (x1(y), . . . ,xT (y)).

Proof of Lemma D.1 This is done by induction on the depth T . The key observation is that for any
label sequence y, xt(y) = xt(y1, . . . , yt−1) only depends on the first t − 1 labels. For T = 1, any
context tree x is represented by its root node x1(·) = x1 ∈ X and hence∑

y1

Pf (y1|x1) =
∑
y1

f(x1)(y1) = 1.

Suppose Eq. (15) holds for all context trees x of depth T ≤ d and all sequential functions f . Now
given any context tree x = (x1, . . . ,xd+1) of depth T = d + 1, we denote its depth d subtree
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(x1, . . . ,xd) by x[d]. Then∑
y∈Yd+1

Pf (y|x(y)) =
∑
y1:d

∑
yd+1

Pf (y1:d+1|x1,x2(y1), . . . ,xd+1(y1:d))

=
∑
y1:d

∑
yd+1

Pf (y1:d|x1, . . . ,xd(y1:d−1)) · f(x1, . . . ,xd+1(y1:d), y1:d)(yd+1)

=
∑
y1:d

Pf (y1:d|x1, . . . ,xd(y1:d−1))
∑
yd+1

f(x1, . . . ,xd+1(y1:d), y1:d)(yd+1)

=
∑
y1:d

Pf (y1:d|x1, . . . ,xd(y1:d−1))

=
∑
y∈Yd

Pf (y|x[d](y)) = 1,

where the last step is due to induction. We are done. ■
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