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Abstract

We study the fundamental problem of sequential probability assignment, also1

known as online learning with logarithmic loss, with respect to an arbitrary, pos-2

sibly nonparametric hypothesis class. Our goal is to obtain a complexity measure3

for the hypothesis class that characterizes the minimax regret and to determine4

a general, minimax optimal algorithm. Notably, the sequential ℓ∞ entropy, ex-5

tensively studied in the literature (Rakhlin and Sridharan, 2015, Bilodeau et al.,6

2020, Wu et al., 2023), was shown to not characterize minimax risk in general. In-7

spired by the seminal work of Shtarkov (1987) and Rakhlin, Sridharan, and Tewari8

(2010), we introduce a novel complexity measure, the contextual Shtarkov sum,9

corresponding to the Shtarkov sum after projection onto a multiary context tree,10

and show that the worst case log contextual Shtarkov sum equals the minimax re-11

gret. Using the contextual Shtarkov sum, we derive the minimax optimal strategy,12

dubbed contextual Normalized Maximum Likelihood (cNML). Our results hold13

for sequential experts, beyond binary labels, which are settings rarely considered14

in prior work. To illustrate the utility of this characterization, we provide a short15

proof of a new regret upper bound in terms of sequential ℓ∞ entropy, unifying16

and sharpening state-of-the-art bounds by Bilodeau et al. (2020) and Wu et al.,17

(2023).18

1 Introduction19

Sequential probability assignment is a fundamental problem with connections to information theory20

[Ris84; MF98; XB00], machine learning [CL06; Vov95; RST15; FKLMS18; Sha20], and portfolio21

optimization [Kel56; Cov74; Cov91; CO96; Fed91]. In the original non-contextual setup, the learner22

aims to assign probabilities to a series of labels, which are revealed sequentially. The goal is to offer23

probabilistic forecasts over the label set such that the probability assigned to any observed sequence24

is comparable to that assigned by the best model in any fixed class of models.25

The celebrated work of Shtarkov [Sht87] characterized minimax regret for context-free sequential26

probability assignment in terms of what is now known as the Shtarkov sum, and subsequently de-27

scribed the minimax algorithm, Normalized Maximum Likelihood (NML). NML represents the ideal28

probabilistic forecast in the sense of minimax regret, providing a benchmark for universal coding and29

prediction strategies. While often not used directly due to its computational complexity, NML has30

guided the design of practical algorithms and informed the development of efficient approximation31

methods. The principles underlying NML have inspired advances in both information theory and32

online learning, establishing fundamental limits and serving as critical benchmarks for performance33

evaluation.34
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In this work, we study the problem of sequential probability assignment with contexts, which35

has been analyzed in recent works (e.g. [RS15; BFR20; WHGS23]) under the framework of on-36

line supervised learning formalized by Rakhlin, Sridharan, and Tewari [RST10]. In this setup,37

the problem is modeled as a T - round game between a learner and the nature: On each round38

t = 1, . . . , T , the learner observes a context xt from nature and predicts a distribution p̂t over some39

finite label space Y . Then nature reveals a label yt ∈ Y and the learner incurs a logarithmic loss40

ℓ(p̂t, yt) = − log(p̂t(yt)), where p̂t(yt) is the probability assigned to label yt by p̂t. The perfor-41

mance of the learner is measured by the regret with respect to a class F of experts, defined as the42

difference between the total loss of the learner and that of the best expert in F . The value of primary43

interest is the minimax regret, that is, the worst-case regret by the best learner over arbitrarily adap-44

tive data sequences. The minimax regret serves as a benchmark for all algorithms and as a target for45

studies of adaptivity. Our goal is to address several fundamental questions:46

Can we find a natural complexity measure of F that characterizes the minimax regret, enabling us47

to analyze the minimax regret in new ways? And can we identify, in view of this complexity48

measure, a general, minimax optimal algorithm?49

Notably, the sequential covering number of F , a well studied measure of complexity, has been50

shown not to characterize the minimax regret on its own [RS15; BFR20; WHGS23]. This fact51

distinguishes sequential probability assignment and log loss: while sequential covering numbers52

enable a tight analysis in online learning problems with convex Lipschitz losses, like absolute loss53

[RST15] and square loss [RS14a], they do not yield minimax rates for log loss on some classes.54

Tackling such classes evidently requires new techniques.55

Main contributions.56

1. We introduce a new complexity measure, which we call the contextual Shtarkov sum, that serves57

as a natural generalization of the Shtarkov sum from the context-free setting. We show that the58

minimax regret is characterized by the worst-case contextual Shtarkov sum.59

2. We derive the minimax optimal algorithm, dubbed contextual Normalized Maximum Likelihood60

(cNML), using a data-dependent variant of the contextual Shtarkov sum, thereby generalizing61

NML from the context-free setting.62

3. We apply contextual Shtarkov sums to the study of sequential entropy bounds on the minimax63

regret. Doing so, we provide a short proof of a new regret upper bound in terms of sequential64

entropy that unifies and even improves on state-of-the-arts bounds by [BFR20] and [WHGS23].65

Our results extend beyond the binary label setting studied by recent work to arbitrary finite label66

sets.67

Related work. Sequential probability assignment has been studied extensively. Various aspects68

of this problem have been investigated, including sequences with and without side information69

(contexts), parametric and nonparametric hypothesis classes, and stochastic or adversarial data-70

generating mechanisms. This problem has a long history in the machine learning community, see71

[CL06, Ch. 9] and the references therein. In the information theory community, this problem is also72

known as universal prediction [MF98], where the regret is also referred to as redundancy with respect73

to a set of codes. This has been studied in both stochastic and adversarial settings [Fre96; Ris86;74

Ris96; Sht87; XB97; DS04; MF98; OS04; Sha06; Szp98], where the focus was primarily on the75

parametric classes of experts. Closely related topics include universal source coding [Kol65; Sol64;76

Fit66; Dav73], data compression with arithmetic coding [Ris76; RL81; ZL77; ZL78; FMG92], and77

the minimum description length (MDL) principle [Ris78; Ris84; Ris87; BRY98; Grü05; HY01].78

Lastly, this topic is intimately tied with sequential gambling and portfolio optimization, as pointed79

out by [Kel56; Cov74; Cov91; CO96; Fed91].80

A classical result in context-free sequential probability assignment is that the minimax regret is81

equal to the log contextual Shtarkov sum [Sht87], and the minimax algorithm is the well-known82

Normalized Maximum Likelihood. When the set of contexts is known in advance to the forecaster,83

namely, a fixed design setting, the minimax regret is equivalent to the log Shtarkov sum of the84

function class when projected onto the known set of contexts [JSS21; WHGS23].85

To handle rich hypothesis classes, [CL99; OH99] upper bounded the regret in terms of the (non-86

sequential) uniform covering number of the class. However, this complexity measure proved to be87
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insufficient for obtaining optimal rates. [RS15] improved regret upper bounds by proposing a se-88

quential covering measure. Thereafter, by utilizing the self-concordance property and the curvature89

of the log loss, [BFR20] further improved the upper bound in terms of the sequential covering num-90

ber for nonparametric Lipschitz classes, through a non-constructive proof. [WHGS23] proposed a91

Bayesian algorithmic approach in order to upper bound the regret using a global notion of sequential92

covering. Notably, both the global and local sequential covering numbers do not fully characterize93

the regret, and the algorithm in [WHGS23] is not minimax optimal.94

Online learning with respect to arbitrary hypothesis classes and the zero-one loss, in the realizable95

case, is known to be characterized by the Littlestone dimension [Lit88]. The agnostic case was ad-96

dressed by [BPS09; ABDMNY21]. Understanding sequential complexities in online learning with97

Lipschitz losses was extensively studied by [RST10; RS14a; RS14b; RST15]. Note that the logarith-98

mic loss is neither Lipschitz nor bounded. Recently, [AHKKV23] characterized online regression99

in the realizable case, for any approximate pseudo-metric, such as the ℓp loss.100

2 Preliminaries101

Notation. For a positive integer K, let [K] := {1, 2, . . . ,K}. For a finite set K with |K| = K, we102

use ∆(K) to denote the set of all distributions on K. We may identify K with [K] (under arbitrary103

enumeration of elements in K) and treat elements of ∆(K) as vectors in RK . For a vector p ∈ RK104

and i ∈ [K], let p(i) be the i-th coordinate of p. Let ∆+(K) = {p ∈ ∆(K) : p(k) > 0,∀k ∈ K}.105

For a general finite sequence (ai)Ni=1, we will use an:m to denote the sub-sequence (an, . . . , am) for106

any n ≤ m and the empty sequence for n > m. For any set A, let A∗ = ∪k≥0Ak be the set of all107

finite length sequences over A.108

Sequential probability assignment and minimax regret. Let X be the context space and Y be the109

finite label space. In each round t ∈ [T ] during the game of sequential probability assignment, the110

learner receives a context xt ∈ X from nature and assigns a probability distribution p̂t ∈ ∆(Y) to111

the possible labels. Then nature reveals the true label yt ∈ Y and the learner incurs a loss ℓ(p̂t, yt) =112

− log(p̂t(yt)). Throughout, the learner is required to predict nearly as well as the best expert from113

an expert class, which is modeled as an arbitrary hypothesis class F ⊆ {(X ×Y)∗ ×X → ∆(Y)}.114

More formally, the goal of the learner is make their regret with respect to F ,115

RT (F ; p̂1:T , x1:T , y1:T ) =

T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt),

as small as possible for all sequences x and y generated by nature, possibly in an adversarial manner.116

Here f(x1:t, y1:t−1) ∈ ∆(Y) can be understood as the prediction made by expert f at round t using117

past observations (x1:t−1, y1:t−1) as well as the fresh context xt. The main focus is to study the118

minimax regret RT (F), which can be written as the following extensive form119

RT (F) = sup
x1

inf
p̂1

sup
y1

· · · sup
xT

inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T ),

where xt ∈ X , p̂t ∈ ∆(Y) and yt ∈ Y,∀t ∈ [T ].120

Remark 2.1 (Sequential vs non-sequential experts) Experts f as mappings from (X ×Y)∗×X to121

∆(Y) are sometimes called fully sequential experts [WHGS23] due to their ability to predict based122

on the past history. However, the literature (e.g. [RS15; BFR20; WHGS23]) often considers the123

more limited notion of non-sequential experts, modeled as F ⊆ {X → ∆(Y)}, reflecting the fact124

that prediction made by each expert f is simply f(xt) in each round t. In contrast, our results are125

more general as our novel techniques can be applied to the more flexible sequential experts.126

Multiary trees. The complexity of online learning problems stems from the sequential and adaptive127

nature of the adversary, which we can capture with multiary trees. Formally, for a general space A128

and a finite set K, an A-valued K-ary tree v of depth d is a sequence of mappings vt : Kt−1 → A for129

t ∈ [d]. A path in a depth−d tree is a sequence ε = (ε1, . . . , εd) ∈ Kd. We use the notation vt(ε) to130

denote vt(ε1, . . . , εt−1) for t ∈ [d] and the boldface notation v(ε) to denote (v1(ε), . . . ,vd(ε)) ∈131

Ad. Throughout we will only consider Y-ary trees valued in either X or ∆(Y), where the paths are132

denoted by the boldface y. We refer to X -valued trees as context trees and ∆(Y)-valued trees as133

probabilistic trees.134
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Time-varying context sets. So far we consider the context set X to be constant over time. But135

all of our results can be extended easily to allow for time-varying context spaces. Details of this136

generalization can be found in Appendix C.137

2.1 Prior work: the Shtarkov sum in context-free and fixed designs138

Before introducing our complexity measure that characterizes RT (F), we review some prior set-139

tings where the minimax regret can be characterized by the well-studied Shtarkov sum. First we140

introduce the notion of likelihood of a hypothesis f with respect to a context and label sequence,141

which plays a key role in defining complexity measures and optimal algorithms.142

Definition 2.2 (Likelihood) For f : (X × Y)∗ × X → ∆(Y) and length−d sequences x1:d ∈143

X d, y1:d ∈ Yd, the likelihood Pf (y1:d|x1:d) is defined as144

Pf (y1:d|x1:d) =

d∏
t=1

f(x1:t, y1:t−1)(yt),

where we use the compact notation f(x1:t, y1:t−1) for f(x1, y1, . . . , xt−1, yt−1, xt).145

In the classical context-free setting where X can be thought of as a singleton, any sequential expert146

f degenerates to a joint distribution over label sequences. Indeed, given any label sequence y1:t−1,147

f(y1:t−1) ∈ ∆(Y) can be interpreted as the conditional distribution f assigns to the next label yt.148

We use Pf (y1:d) =
∏d

t=1 f(y1:t−1)(yt) to denote this distribution. Similarly, the learner’s strategy149

is also specified by a joint distribution that is decomposed to a sequence of conditional distributions150

p̂t = p̂t(·|y1:t−1) ∈ ∆(Y). In this setup the minimax regret RT (F) is characterized by the Shtarkov151

sum [Sht87].152

Proposition 2.3 ([Sht87]) In the context-free setting, for any hypothesis class F and horizon T , the153

Shtarkov sum ST (F) is defined as154

ST (F) =
∑

y1:T∈YT

sup
f∈F

Pf (y1:T ).

Moreover, the minimax regret is given by RT (F) = logST (F), and the unique minimax optimal155

strategy is the normalized maximum likelihood (NML) distribution given by156

pnml(y1:T ) =
supf∈F Pf (y1:T )∑

y′
1:T∈YT supf∈F Pf (y′1:T )

, ∀y1:T ∈ YT .

To go beyond this classical context-agnostic setting and incorporate contextual information, prior157

work (e.g. [JSS21]) also considered an easier problem than the aforementioned sequential probabil-158

ity assignment, by forcing nature to reveal the context sequence x1:T to the learner at the start of the159

game. This is known as the fixed design setting or transductive online learning [WHGS23], where160

the goal is to characterize the so-called fixed design maximal minimax regret161

RFD
T (F) := sup

x1:T∈XT

inf
p̂1

sup
y1

· · · inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T ).

It is straightforward to see that after projecting on x1:T , the hypothesis class F again collapses to a162

set of joint distributions over YT specified by the likelihood function in Definition 2.2. Moreover,163

this set of distributions can be accessed by the learner from the start, so the fixed design setting can164

be essentially reduced to the context-free setting. To be more specific, for any f ∈ F , it induces an165

expert in the context-free setting after being projected on x1:T , which is denoted by f |x1:T
and166

f |x1:T
(y1:t−1) := f(x1:t, y1:t−1) ∈ ∆(Y),∀t ∈ [T ], y1:t−1 ∈ Yt−1,

and let F|x1:T
:= {f |x1:T

: f ∈ F}. Then given any predetermined x1:T , the learner is equivalently167

competing with F|x1:T
in the context-free setting. With the following natural variant of the Shtarkov168

sum, we can easily characterize RFD
T (F).169
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Definition 2.4 (Conditional Shtarkov sum) Given a context sequence x1:T ∈ X T , the Shtarkov170

sum of F conditioned on x1:T is171

ST (F|x1:T ) :=
∑

y1:T∈YT

sup
f∈F

Pf (y1:T |x1:T ).

In fact, ST (F|x1:T ) is just the Shtarkov sum of the projected class F|x1:T
in the context-free setting.172

The following result characterizes the fixed-design setting:173

Proposition 2.5 (Minimax regret, fixed design [JSS21]) In the fixed design setting, for any hy-174

pothesis class F and horizon T , the fixed design maximal minimax regret is175

RFD
T (F) = sup

x1:T∈XT

logST (F|x1:T ),

and, given any context sequence x1:T , the minimax optimal response is NML with respect to F|x1:T
.176

3 Minimax regret via contextual Shtarkov sum177

Now we state one of our main results about the characterization of the minimax regret of sequential178

probability assignment. First we introduce the key concept of contextual Shtarkov sum, which is a179

natural generalization of Shtarkov sum in the context-free setting.180

Definition 3.1 (Contextual Shtarkov sum) The contextual Shtarkov sum ST (F|x) of a hypothesis181

class F on a given context tree x of depth T is defined as182

ST (F|x) :=
∑

y∈YT

sup
f∈F

Pf (y|x(y)).

Just like the conditional Shtarkov sum, the contextual Shtarkov sum ST (F|x) can be interpreted as183

the Shtarkov sum of the projected class F|x := {f |x : f ∈ F} where f |x is the induced context-free184

expert specified by185

f |x(y) = Pf (y|x(y)),∀y ∈ YT ,

for any depth−T context tree x. Next we show that the minimax regret RT (F) is characterized by186

the worst-case contextual Shtarkov sum:187

Theorem 3.2 (Main result: minimax regret) For any hypothesis class F ⊆ {(X × Y)∗ × X →188

∆(Y)} and horizon T ,189

RT (F) = sup
x

logST (F|x),

where the supremum is taken over all context trees x (i.e., x is X -valued) of depth T .190

Since any context sequence x1:T can be thought as a special context tree x that is constant in191

each level t ∈ [T ] (i.e., xt(y) = xt,∀y), we can find that the supremum over context trees in192

Theorem 3.2 strictly subsumes the supremum over context sequences in Proposition 2.5. Thus we193

can see the separation between RT (F) and RFD
T (F) is clearly exhibited.194

The proof of Theorem 3.2 is provided in Appendix A but we give a brief sketch of it here.195

Proof sketch. The proof starts from swapping the pairs of inf and sup (after randomizing the labels196

revealed by the nature) in the extensive formulation of RT (F) to move to the dual game, where the197

learner predicts after seeing the action of the nature. Trivially the value of this swapped game is a198

lower bound for RT (F), and after rearranging we get that199

the value of the swapped game = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] ≤ RT (F),

where the supremum is taken over all context trees x and probabilistic trees p, of depth T . Also200

Ey∼p means the nested conditional expectations Ey1∼p1(y) Ey2∼p2(y) · · ·EyT∼pT (y).201

Similar to the proof of Lemma 6 in [BFR20] for the binary label setting, we apply the minimax202

theorem with a tweak that we devise to handle multiary labels to derive that203

RT (F) = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] (1)
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under some mild regularity condition for F . A key observation is that the supremum over depth−T204

probabilistic trees p is equivalent to the supremum over joint distributions P over YT . Based on this205

observation and a few algebraic manipulations, we can re-write supp Ey∼p[RT (F ;p(y),x(y),y)]206

as207

sup
P∈∆(YT )

H(P ) + Ey∼P

[
sup
f∈F

logPf (y|x(y))
]

given any context tree x, and the value of this maximization problem can be easily computed to be208

log
(∑

y supf∈F Pf (y|x(y))
)
= logST (F|x). Thus,209

RT (F) = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)]

= sup
x

sup
P∈∆(YT )

H(P ) + Ey∼P

[
sup
f∈F

logPf (y|x(y))
]
= sup

x
logST (F|x).

However, Eq. (1) is not guaranteed when there is no assumed regularity condition for F . To get210

away from this, prior works would have to add a particular hypothesis to the class F such that the211

enlarged class allows for the minimax swap [RS15; BFR20]. Nevertheless, even adding a mere212

hypothesis may lead to suboptimal analysis for some classes F , say when RT (F) is of constant213

order. To completely get rid of any regularity assumption and obtain a unified characterization of214

the minimax regret for arbitrary class F , we provide a novel argument as follows. For an arbitrary215

class F , we study a smooth truncated version of it, denoted by Fδ for any level δ ∈ (0, 1/2), such216

that Fδ always validates the use of the minimax theorem and hence RT (Fδ) = supx logST (Fδ|x).217

Then we give a series of refined analysis comparing the minimax regrets and contextual Shtarkov218

sums of F and Fδ that yields219

RT (F) ≤ RT (Fδ) + T log(1 + |Y|δ) = sup
x

logST (Fδ|x) + T log(1 + |Y|δ)

≤ log
(
sup
x

ST (F|x) + δ · C(T, |Y|)
)
+ T log(1 + |Y|δ),

where C(T, |Y|) < ∞ is a positive constant that only depends on T and |Y|. Sending δ → 0+220

will conclude that RT (F) ≤ supx logST (F|x), which finishes the whole proof as we already have221

RT (F) ≥ supx logST (F|x) from the start.222

3.1 Applications: an improved regret upper bound in terms of sequential entropy223

To illustrate the utility of our characterization in Theorem 3.2, we walk through some examples224

where we are able to recover and sharpen existing regret upper bounds with relatively short proofs225

via contextual Shtarkov sum. As a start, we provide a short proof in Appendix A.5 of the classical226

regret bound for a finite hypothesis class.227

Proposition 3.3 (Finite classes) For any finite hypothesis class F and horizon T , RT (F) ≤228

log |F|.229

Let us go back to the binary label setting with non-sequential experts, that is, Y = {0, 1} and230

F ⊆ [0, 1]X , and f(x) ∈ [0, 1] is interpreted as the probability assigned to label 1 by this expert f .231

We will show a regret bound that outperforms the state-of-the-art ones in [BFR20; WHGS23] with232

a surprisingly simple proof. To proceed, we need the following notation. Given a context tree x of233

depth T , let F ◦ x = {f ◦ x : f ∈ F}, where f ◦ x is the [0, 1]-valued tree such that234

(f ◦ x)t(y) = f(xt(y)),∀y ∈ YT .

Next we introduce the definitions of sequential ℓ∞ covers and entropy.235

Definition 3.4 (Sequential ℓ∞ cover and entropy) Given a hypothesis class F ⊆ [0, 1]X and a236

context tree x of depth T , we say a collection of R-valued trees Vx,α is a sequential cover of F ◦ x237

at scale α > 0 if for any f ∈ F ,y ∈ YT , there exists some v ∈ Vx,α such that238

|f(xt(y))− vt(y)| ≤ α,∀t ∈ [T ].

Let the sequential ℓ∞ covering number N∞(F ◦x, α, T ) be the size of the smallest such cover. The239

sequential ℓ∞ entropy of F at scale α and depth T is defined as the logarithm of the worst-case240

sequential covering number:241

H∞(F , α, T ) := sup
x

logN∞(F ◦ x, α, T ).
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242

Definition 3.5 (Global sequential ℓ∞ cover and entropy) Given a hypothesis class F ⊆ [0, 1]X ,243

we say a collection of mappings Gα ⊆ [0, 1]X∗ is a global sequential cover of F at scale α > 0 and244

depth T if for any f ∈ F , x1:T ∈ X T , there exists some g ∈ Gα such that245

|f(xt)− g(x1:t)| ≤ α,∀t ∈ [T ].

Let the global sequential ℓ∞ covering number NG(F , α, T ) be the size of the smallest such cover.246

The global sequential ℓ∞ entropy of F at scale α and depth T is defined as247

HG(F , α, T ) := logNG(F , α, T ).

248

Proposition 3.6 ([BFR20; WHGS23]) For any F ⊆ [0, 1]X and horizon T ,249

RT (F) ≤ min

{
inf
α>0

{
4Tα+ cH∞(F , α, T )

}
︸ ︷︷ ︸

[BFR20]

, inf
α>0

{
T log(1 + 2α) +HG(F , α, T )

}
︸ ︷︷ ︸

[WHGS23]

}
,

where c = 2−log(2)
log(3)−log(2) ∈ (3, 4).250

It is easy to show that H∞(F , α, T ) ≤ HG(F , α, T ), but, in general, the two bounds in Propo-251

sition 3.6 are incomparable due to constants and different dependence on α (more discussions on252

these bounds are deferred to Appendix C). Starting from the contextual Shtarkov sum, we are able253

to derive a bound that combines the best of these two bounds :254

Theorem 3.7 (Main result: sequential entropy bound) For any F ⊆ [0, 1]X and horizon T ,255

RT (F) ≤ inf
α>0

{
T log(1 + 2α) +H∞(F , α, T )

}
.

256

Proof of Theorem 3.7 For any scale α > 0 and depth−T context tree x, let Vx,α be a sequential257

cover of F ◦x at scale α with size N∞(F ◦x, α, T ). We can always assume Vx,α to be [0, 1]-valued258

without loss of generality because otherwise we can just truncate it without violating its coverage259

guarantee. Define the smoothed covering set Ṽx,α =
{
ṽ : ∀t ∈ [T ], ṽt(·) = vt(·)+α

1+2α , v ∈ Vx,α

}
,260

inspired by [BFR23; WHGS23]. Then for any f ∈ F ,y ∈ YT , there exists some v ∈ Vx,α such261

that |f(xt(y))− vt(y)| ≤ α,∀t ∈ [T ] and hence ṽ satisfies262

f(xt(y))

ṽt(y)
≤ 1 + 2α,

1− f(xt(y))

1− ṽt(y)
≤ 1 + 2α.

Hence263

Pf (y|x(y)) =
T∏

t=1

f(xt(y))
yt(1− f(xt(y)))

1−yt ≤ (1 + 2α)T
T∏

t=1

ṽt(y)
yt(1− ṽt(y))

1−yt ,

and264 ∑
y

sup
f∈F

Pf (y|x(y)) ≤ (1 + 2α)T
∑
y

sup
ṽ∈Ṽx,α

T∏
t=1

ṽt(y)
yt(1− ṽt(y))

1−yt

≤ (1 + 2α)T
∑

ṽ∈Ṽx,α

∑
y

T∏
t=1

ṽt(y)
yt(1− ṽt(y))

1−yt = (1 + 2α)T |Ṽx,α|,

where the last equality is derived by treating ṽ as sequential experts and applying Lemma D.1.265

Finally,266

RT (F) = sup
x

log

(∑
y

sup
f∈F

Pf (y|x(y))

)
≤ sup

x
log
(
(1 + 2α)T |Ṽx,α|

)
= sup

x
log
(
(1 + 2α)T |Vx,α|

)
= T log(1 + 2α) +H∞(F , α, T ).
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Since our choice of α is arbitrary, we conclude that267

RT (F) ≤ inf
α>0

{
T log(1 + 2α) +H∞(F , α, T )

}
.

■268

3.2 Contextual Shtarkov sums through martingales269

We can relate our characterization of the minimax regret to the more extensively studied sequential270

Rademacher complexity, which arises in online learning problems with hypothesis class F ⊆ [0, 1]X271

and bounded convex losses like absolute loss. Specifically, the (conditional) sequential Rademacher272

complexity [RST15] is defined by273

RT (F ;x) := Eε

[
sup
f∈F

T∑
t=1

εtf(xt(ε))
]
,

where x is a depth−T binary context tree and ε = (ε1, . . . , εT ) ∈ {±1}T is a sequence of i.i.d.274

Rademacher random variables. A notable feature of RT (F ;x) is that it is the expected supremum275

of the sum of a martingale differences, i.e., for any f,E[εtf(xt(ε))|ε1, . . . , εt−1] = 0. Likewise,276

ST (F|x) also admits a martingale interpretation. To see this, let F ⊆ {(X × Y)∗ × X → ∆(Y)}277

and rewrite ST (F|x) for any context tree x:278

ST (F|x) =
∑

y∈YT

sup
f∈F

Pf (y|x(y)) = Ey

[
sup
f∈F

T∏
t=1

(
|Y| · f(x1:t(y), y1:t−1)(yt)

)]
,

where y = (y1, . . . , yT ) is a sequence of i.i.d. variables following the uniform distribution over Y .279

It is easy to check that E[|Y| · f(x1:t(y), y1:t−1)(yt)|y1, . . . , yt−1] = 1, and thus280 { t∏
s=1

(
|Y| · f(x1:s(y), y1:s−1)(ys)

)}
t∈[T ]

is a martingale with respect to filtration Ft = σ(y1, . . . , yt), t ∈ [T ]. It would be of independent281

interest to study the contextual Shtarkov sums more quantitatively by developing new tools for such282

product-type martingales.283

4 Contextual NML, the minimax optimal algorithm284

So far we have settled the minimax regret of sequential probability assignment in a nonconstruc-285

tive way. Now we switch to the algorithmic lens to study the optimal strategy that achieves the286

minimax regret. Remarkably, we show that the minimax optimal algorithm can be described by a287

data-dependent variant of the contextual Shtarkov sum, which is named contextual Shtarkov sum288

with prefix.289

Definition 4.1 (Contextual Shtarkov sum with prefix) Given sequences x1:t ∈ X t, y1:t ∈ Yt, t ∈290

[T ] and a context tree x of depth T − t, the contextual Shtarkov sum Sx1:t,y1:t

T (F|x) of F on x with291

prefix x1:t, y1:t is defined as292

Sx1:t,y1:t

T (F|x) =
∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)).

Now we present our prediction strategy, contextual normalized maximum likelihood (cNML),293

which is summarized in Algorithm 1. In each round t, with x1:t, y1:t−1 as past observations,294

the learner first checks whether supf∈F Pf (y1:t−1|x1:t−1) > 0 since if that is not the case and295

supf∈F Pf (y1:t−1|x1:t−1) = 0, the cumulative losses of all experts in F have already blown up to296

+∞ and the learner only needs to predict any p̂ ∈ ∆+(Y) in all remaining rounds. On the other297

hand, if supf∈F Pf (y1:t−1|x1:t−1) > 0, then298

max
y∈Y

sup
x

S
x1:t,(y1:t−1,y)
f (F|x) > 0

8



Algorithm 1 Contextual Normalized Maximum Likelihood (cNML)
Input: Hypothesis class F , horizon T
For t = 1, 2, ..., T do

1. Observe context xt ∈ X
2. If supf∈F Pf (y1:t−1|x1:t−1) > 0, predict p̂t ∈ ∆(Y) with

p̂t(y) =
supx S

x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y, (2)

and otherwise set p̂t to be an arbitrary member of ∆+(Y)

3. Receive label yt ∈ Y
End for

and the p̂t given by Eq. (2) is indeed a valid member of ∆(Y) (shown in Appendix B) and is used as299

the learner’s prediction. The following theorem shows that cNML is the minimax optimal algorithm,300

with proof deferred to Appendix B.301

Theorem 4.2 (Main result: optimal algorithm) The contextual normalized maximum likelihood302

strategy (Algorithm 1) is minimax optimal.303

To see that cNML is reduced to NML in the context-free setting, it suffices to consider the case304

where supf∈F Pf (y1:T ) > 0 since otherwise NML will simply assign 0 probability on this se-305

quence y1:T and during the actual round-wise implementation of NML, it also predicts an arbitrary306

element from ∆+(Y) in those rounds t where supf Pf (y1:t−1) = 0. Now for any y1:T such that307

supf∈F Pf (y1:T ) > 0, the prediction by cNML in each round t is308

p̂t(y) =

∑
y∈YT−t supf∈F Pf (y1:t−1, y,y)∑
y′∈YT−t+1 supf∈F Pf (y1:t−1,y′)

,∀y ∈ Y

which can be summarized into a joint density over y1:T by309

p̂(y1:T ) =
supf∈F Pf (y1:T )∑

y′
1:T∈YT supf∈F Pf (y′1:T )

.

Recall that this is exactly the NML prediction pnml(y1:T ).310

5 Discussions311

In this paper, we characterize the minimax regret and the optimal prediction strategy for sequen-312

tial probability assignment, generalizing the classical results in the context-free setting. Moreover,313

our results are general enough to subsume the setting of multiary labels and sequential hypothesis314

classes, which has not been sufficiently explored before. Remarkably, our characterization holds315

for arbitrary hypothesis classes that may not admit the regularity assumptions implicitly required by316

prior works (e.g. [RST15; BFR20]).317

For future works, it would be interesting to study the minimax regret of specific classes more quan-318

titatively using our contextual Shtarkov sums. It is also intriguing to consider the setting of infinite319

labels. Although most of our arguments would go through under sufficient regularity conditions, a320

more systematic study is needed. On the practical side, it is important to develop algorithms that are321

more computationally efficient than cNML and with provable guarantees.322
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A Proofs for Section 3453

Notations. When the context and label sequences x1:T , y1:T are clear from the context, we may454

use ft to denote the probability vector f(x1:t, y1:t−1) ∈ ∆(Y) produced by hypothesis f at time t455

for notational convenience. We also adopt the notation for repeated operators in [RST15; BFR20],456

denoting Opt1 · · ·OptT [· · · ] by
〈〈

Optt

〉〉T
t=1

[
· · ·
]
. For any discrete distribution P and discrete457

random variables X,Y , let H(P ) be the entropy of P and H(X|Y ) be the conditional entropy of458

X given Y .459

A.1 Minimax swap460

As standard in online learning literature, we will first move to a dual game after applying a minimax461

swap at each round of the game. Under mild assumptions, the value of the original game coincides462

with the that of the swapped game. More specifically, we have:463

Lemma A.1 Whenever F satisfies that for every sequence x1:T ∈ X T , y1:T ∈ YT ,464

inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt) < ∞, (3)

we have that465

RT (F) = sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)], (4)

where the supremum is taken over all X -valued Y-ary trees x and ∆(Y)-valued Y-ary trees p, of466

depth T . Also Ey∼p means the nested conditional expectations Ey1∼p1(y) Ey2∼p2(y) · · ·EyT∼pT (y).467

To deal with the unboundedness of log loss in the proof, we introduce the following truncation468

method inspired by [BFR23; WHGS23], generalizing the one in [BFR20] which was specific to469

binary labels.470

Definition A.2 (Smooth truncation) The general smooth truncation map τδ : ∆(Y) → ∆(Y) is471

defined such that for all p ∈ ∆(Y) and y ∈ Y ,472

τδ(p)(y) =
p(y) + δ

1 + |Y|δ
,

given threshold δ ∈ (0, 1/2).473

It is easy to check that τδ(p) is indeed a valid member in ∆(Y) and τδ(p)(y) ∈ [δ/(1 + |Y|δ), (1 +474

δ)/(1 + |Y|δ)]. Moreover, it is not hard to verify that τδ(∆(Y)) = {p ∈ ∆(Y) : p(y) ∈ [δ/(1 +475

|Y|δ), (1 + δ)/(1 + |Y|δ)],∀y ∈ Y}. We will use ∆δ(Y) to denote this image set τδ(∆(Y)).476
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Proof of Lemma A.1 Fix δ ∈ (0, 1/2). By restricting the learner’s prediction p̂t to ∆δ(Y), we get477

an upper bound on RT (F):478

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−1

t=1
sup
xT

inf
p̂T∈∆δ(Y)

sup
pT

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]
.

Now we can apply Sion’s minimax theorem [Sio58] to the function479

A(p̂T , pT ) = EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

to derive that480
inf

p̂T∈∆δ(Y)
sup

pT∈∆(Y)

A(p̂T , pT ) = sup
pT∈∆(Y)

inf
p̂T∈∆δ(Y)

A(p̂T , pT ).

This is because:481

1. A(p̂T , pT ) is convex and continuous in p̂T ∈ ∆δ(Y) and482

2. A(p̂T , pT ) is concave and continuous in pT ∈ ∆(Y), which is further due to that A(p̂T , pT )483

is linear in pT and is bounded given Eq. (3).484

Hence485

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−1

t=1
sup
xT

sup
pT

inf
p̂T∈∆δ(Y)

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−2

t=1
sup
xT−1

inf
p̂T−1∈∆δ(Y)

sup
pT−1

EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]
.

Again the order of inf p̂T−1∈∆δ(Y) and suppT−1∈∆(Y) with respect to486

B(p̂T−1, pT−1) = EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]

can be swapped due to the same reason as above, leading to487

RT (F) ≤
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−2

t=1
sup
xT−1

sup
pT−1

inf
p̂T−1∈∆δ(Y)

EyT−1∼pT−1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]

=
〈〈

sup
xt

inf
p̂t∈∆δ(Y)

sup
yt

〉〉T−3

t=1
sup
xT−2

inf
p̂T−2∈∆δ(Y)

sup
pT−2

EyT−2∼pT−2

{ T−2∑
t=1

ℓ(p̂t, yt) + sup
xT−1

sup
pT−1

[
inf

p̂T−1∈∆δ(Y)
EyT−1∼pT−1

ℓ(p̂T−1, yT−1)

+ EyT−1∼pT−1
sup
xT

sup
pT

[
inf

p̂T∈∆δ(Y)
EyT∼pT

ℓ(p̂T , yT )− EyT∼pT
inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]}

.

Repeating this procedure through all T rounds yields488

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t∈∆δ(Y)

Eyt∼pt [ℓ(p̂t, yt)]− ℓ(ft, yt)
]
.
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By Lemma A.7, we know that we do not lose too much by restricting learner’s prediction to ∆δ(Y):489

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
+ |Y|δT.

Sending δ → 0+ on the RHS of the above inequality, we get490

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
.

It is easy to see that on the RHS of the above inequality, the inner infimum over p̂t ∈ ∆(Y) is491

achieved at p̂t = pt due to the nature of log loss. So492

RT (F) ≤
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

Eyt∼pt
[ℓ(pt, yt)]− ℓ(ft, yt)

]
= sup

x,p
Ey∼p[RT (F ;p(y),x(y),y)],

where in the last equality we use the compact notation of trees to further simplify our expression493

and this concludes the proof. ■494

Lemma A.3 For any hypothesis class F and horizon T ,495

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x

logST (F|x). (5)

It is implied that whenever F satisfies Eq. (4), we have496

RT (F) = sup
x

logST (F|x).

497

Proof of Lemma A.3 First we can see that the outcome sequence y1:T generated under any tree498

p is the same thing as y1:T generated by its associated joint distribution over YT , and vice versa.499

So we can replace the supremum over trees p in the LHS of Eq. (5) by the supremum over joint500

distributions P over YT . Hence,501

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x,P

Ey∼P [RT (F ;p(y),x(y),y)]

= sup
x,P

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]
,

where Pt denotes the conditional distribution Pt(·|y1:t−1) ∈ ∆(Y) of yt under P given y1:t−1.502

Now fix the context tree x and distribution P . Then we can see that Ey∼P [ℓ(Pt, yt)] =503

H(yt|y1:t−1). So Ey∼P [
∑T

t=1 ℓ(Pt, yt)] =
∑T

t=1 H(yt|y1:t−1) = H(P ). Further notice that504

inf
f∈F

T∑
t=1

ℓ(ft, yt) = inf
f∈F

(− logPf (y1:T |x1:T )) = − sup
f∈F

logPf (y1:T |x1:T ).

So naturally we define the map Fx : YT → R ∪ {−∞} by505

Fx(y) = sup
f∈F

logPf (y|x(y)),

and then we see that506

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ((f(xt(y)), yt)
]
= H(P ) + Ey∼P [Fx(y)].

For any given tree x, the optimization problem507

sup
P∈∆(YT )

H(P ) + Ey∼P [Fx(y)]

14



is actually a maximization problem, for which the optimal P ∗ is given by508

P ∗(y) =
exp(Fx(y))∑
y′ exp(Fx(y′))

=
supf∈F Pf (y|x(y))∑
y′ supf∈F Pf (y′|x(y′))

,∀y ∈ YT .

Note that the above formula for P ∗ is also valid when Fx(y) = −∞ for some y, since P ∗ should509

be supported on {y ∈ YT : Fx(y) > −∞}, and Fx(y) cannot be −∞ for all y due to Lemma D.1.510

The associated value of this maximization problem is511

log

(∑
y

exp(Fx(y))

)
= log

(∑
y

sup
f∈F

Pf (y|x(y))

)
.

Therefore,512

sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)] = sup
x,P

Ey∼P

[ T∑
t=1

ℓ(Pt, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

= sup
x

sup
P

{
H(P ) + Ey∼P [Fx(y)]

}
= sup

x
log

(∑
y

sup
f∈F

Pf (y|x(y))

)
= sup

x
logST (F|x).

■513

In the proof of Lemma A.1, if we do not restrict the learner’s prediction and simply swap the order514

of inf and sup to produce an inequality at each time t, we will reach the following folklore result.515

Lemma A.4 For any hypothesis class F and horizon T ,516

RT (F) ≥ sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)]. (6)

517

Proof of Lemma A.4 To get Eq. (6), we simply need to reverse the order of sup and inf at each time518

in the extensive formulation of minimax regret and produce an inequality:519

RT (F) = sup
x1

inf
p̂1

sup
y1

· · · sup
xT

inf
p̂T

sup
yT

RT (F ; p̂1:T , x1:T , y1:T )

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt)
]

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1
sup
xT

inf
p̂T

sup
pT

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

≥
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1
sup
xT

sup
pT

inf
p̂T

EyT∼pT

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)
]

=
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T−1

t=1

[ T−1∑
t=1

ℓ(p̂t, yt) + sup
xT

sup
pT

[
inf
p̂T

EyT∼pT
ℓ(p̂T , yT )− EyT∼pT

inf
f∈F

T∑
t=1

ℓ(ft, yt)
]]
.

Iterating the argument and rearranging terms as above, we will get that520

RT (F) ≥
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

inf
p̂t

Eyt∼pt
[ℓ(p̂t, yt)]− ℓ(ft, yt)

]
=
〈〈

sup
xt

sup
pt

Eyt∼pt

〉〉T
t=1

sup
f∈F

[ T∑
t=1

Eyt∼pt [ℓ(pt, yt)]− ℓ(ft, yt)
]

= sup
x,p

Ey∼p[RT (F ;p(y),x(y),y)].

■521
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A.2 Smooth truncated hypothesis class522

To remove the reliance on Eq. (3), we introduce a smooth truncated version of F that always satisfies523

Eq. (3) and study its minimax regret as well as contextual Shtarkov sums, compared to those of the524

untruncated class F . To be more specific, we will apply the smooth truncation map to hypotheses:525

for any δ ∈ (0, 1/2) and f : (X × Y)∗ × X → ∆(Y), we use fδ to denote its smooth truncated526

counterpart τδ ◦ f ; for any hypothesis class F , we use Fδ to denote the corresponding smooth527

truncated class τδ ◦ F = {τδ ◦ f : f ∈ F}. It is easy to verify that any smooth truncated class Fδ528

satisfies Eq. (3) and hence529

RT (Fδ) = sup
x

logST (Fδ|x).

Next we control the effect of truncation on the minimax regret.530

Lemma A.5 For any F , T and δ ∈ (0, 1/2),531

RT (F) ≤ RT (Fδ) + T · log(1 + |Y|δ).

532

Proof of Lemma A.5 Fix threshold δ ∈ (0, 1/2) and hypothesis f . By Lemma A.7, for any given533

sequences x1:T , y1:T , there is534

T∑
t=1

ℓ(fδ(x1:t, y1:t−1), yt)−
T∑

t=1

ℓ(f(x1:t, y1:t−1), yt) ≤ T · log(1 + |Y|δ). (7)

Then, for any sequence of predictions p̂1:T ,535

RT (F ; p̂1:T , x1:T , y1:T ) =

T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(ft, yt)

≤
T∑

t=1

ℓ(p̂t, yt)− inf
fδ∈Fδ

T∑
t=1

ℓ(fδ
t , yt) + T · log(1 + |Y|δ)

= RT (Fδ; p̂1:T , x1:T , y1:T ) + T · log(1 + |Y|δ),

which concludes the proof. ■536

Lemma A.6 There exists a constant M(T ) < ∞ that only depends on T such that for any f, x1:T ∈537

X T , y1:T ∈ YT and δ ∈ (0, 1/2),538

Pfδ(y1:T |x1:T ) ≤ Pf (y1:T |x1:T ) + δ ·M(T ).

539

Proof of Lemma A.6 Fix threshold δ ∈ (0, 1/2), hypothesis f and sequences x1:T , y1:T . Then540

Pfδ(y1:T |x1:T ) =

T∏
t=1

fδ
t (yt) =

∏
t

(
ft(yt) + δ

1 + |Y|δ

)
≤
∏
t

(ft(yt) + δ)

=
∏
t

ft(yt) + δ ·
∑
t

∏
t′ ̸=t

ft′(yt′) + · · ·+ δT

≤
∏
t

ft(yt) + δ ·M(T )

= Pf (y1:T |y1:T ) + δ ·M(T ),

where we can set M(T ) = T +
(
T
2

)
+
(
T
3

)
+ · · ·+

(
T
T

)
since ft(yt)’s are bounded by 1. ■541
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A.3 Putting together542

Now we are fully prepared to finish the proof of Theorem 3.2, our main result in Section 3.543

Proof of Theorem 3.2 By Lemma A.6, we have that for any context tree x of depth T ,544 ∑
y∈YT

sup
fδ∈Fδ

Pfδ(y|x(y)) ≤
∑

y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T .

Thus545

RT (Fδ) = sup
x

logST (Fδ|x)

= sup
x

log

 ∑
y∈YT

sup
fδ∈Fδ

Pfδ(y|x(y))


≤ sup

x
log

 ∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T


= log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T
 .

Together with Lemma A.5, we get that for any δ ∈ (0, 1/2),546

RT (F) ≤ log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y)) + δ ·M(T ) · |Y|T
+ T · log(1 + |Y|δ). (8)

After sending δ → 0+ on the RHS of Eq. (8),547

RT (F) ≤ log

sup
x

∑
y∈YT

sup
f∈F

Pf (y|x(y))

 = sup
x

logST (F|x).

Recall that we have RT (F) ≥ supx logST (F|x) from Lemma A.4 and Lemma A.3. So finally,548

RT (F) = sup
x

logST (F|x).

■549

A.4 Additional proofs550

Lemma A.7 For any p ∈ ∆(Y) and δ ∈ (0, 1/2),551

ℓ(τδ(p), y) ≤ ℓ(p, y) + log(1 + |Y|δ) ≤ ℓ(p, y) + |Y|δ, ∀y ∈ Y.

552

Proof of Lemma A.7 By direct computation, for any y ∈ Y ,553

ℓ(τδ(p), y)− ℓ(p, y) = log
( p(y)

p(y) + δ
· (1 + |Y|δ)

)
≤ log(1 + |Y|δ)
≤ |Y|δ.

■554
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A.5 Proof of Proposition 3.3555

Starting from Theorem 3.2 that RT (F) = supx logST (F|x), we have556

RT (F) = sup
x

log

(∑
y

sup
f∈F

Pf (y|x(y))

)

≤ sup
x

log

∑
y

∑
f∈F

Pf (y|x(y))


= sup

x
log

∑
f∈F

∑
y

Pf (y|x(y))

 = log |F|,

where the last equality is due to Lemma D.1.557

B Proofs for Section 4558

Notations. Again we may use ft to denote the probability vector f(x1:t, y1:t−1) ∈ ∆(Y) produced559

by hypothesis f at time t when the context and label sequences x1:T , y1:T are clear from the context.560

For a context tree x of depth T−t and a path y ∈ YT−t, we re-index x(y) as (xt+1(y), . . . ,xT (y))561

whenever it takes the last T − t entries of the entire context sequence. And we do the same for the562

probabilistic tree p as well. That is, whenever y = (yt+1, . . . , yT ) ∈ YT−t takes the last T − t563

entries of the whole label sequence and y ∼ p, then we will denote this label generating process by564

yt+1 ∼ pt+1(y), . . . , yT ∼ pT (y).565

B.1 Proof of Theorem 4.2566

Proof of Theorem 4.2 Recall that the minimax regret is567

RT (F) =
〈〈

sup
xt

inf
p̂t

sup
yt

〉〉T
t=1

[ T∑
t=1

ℓ(p̂t, yt)− inf
f∈F

T∑
t=1

ℓ(f(x1:t, y1:t−1), yt)
]
.

Through this extensive form of the minimax regret, we know that given x1:t, y1:t−1, the minimax568

prediction p̂∗t at round t is the one that minimizes the following expression over all p̂t ∈ ∆(Y):569

sup
yt

〈〈
sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
. (9)

Define570

G(F , x1:t, y1:t) =
〈〈

sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
,

and now571

p̂∗t = argmin
p̂t∈∆(Y)

sup
yt

{
ℓ(p̂t, yt) +G(F , x1:t, y1:t)

}
.

The crux of the proof is to show the following:572

Lemma B.1 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,573

G(F , x1:t, y1:t) = sup
x

logSx1:t,y1:t

T (F|x).

The proof of Lemma B.1 is done by essentially following the same strategy in Appendix A since574

G(F , x1:t, y1:t) admits a similar extensive form with the minimax regret RT (F). For completeness575

we provide its proof in Appendix B.2. Given Lemma B.1, we have576

p̂∗t = argmin
p̂t∈∆(Y)

sup
yt

{
ℓ(p̂t, yt) + sup

x
logSx1:t,y1:t

T (F|x)
}

= argmin
p̂t∈∆(Y)

sup
yt

log
( supx Sx1:t,y1:t

T (F|x)
p̂t(yt)

)
.

We apply the following result to solve the above program:577

18



Lemma B.2 [MG22, Lemma 15] Let g : Y → [0,+∞] be a measurable function such that578 ∫
Y g(y)dµ ∈ (0,+∞). Then,579

inf
p

sup
y∈Y

log
g(y)

p(y)
= log

(∫
Y
g(y)µ(dy)

)
, (10)

where the infimum in Eq. (10) spans over all probability densities p : Y → [0,+∞) with respect to580

µ, and the infimum is reached at581

p∗ =
g∫

Y g(y)dµ
.

Letting g(y) = supx S
x1:t,(y1:t−1,y)
T (F|x) ∈ [0, 1] and µ be the counting measure on the finite space582

Y , we can apply Lemma B.2 whenever not all g(y)’s are 0. In this case, we solve that583

p̂∗t (y) =
g(y)∑

y′∈Y g(y′)
=

supx S
x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y.

On the other hand, if g(y) = 0,∀y ∈ Y , then any p̂t such that p̂t(y) > 0,∀y ∈ Y , is an minimax584

optimal prediction. Moreover, it implies that Pf (y1:t−1|x1:t−1) = 0,∀f ∈ F . This is because for585

arbitrary context tree x,586

0 =
∑
yt

∑
y∈YT−t

Pf (y1:t,y|x1:t,x(y))

=
∑
yt

Pf (y1:t|x1:t)

= Pf (y1:t−1|x1:t−1).

So the cumulative loss for each expert f up to round t − 1 already blows up to +∞ and587

the learner only needs to predict an arbitrary p̂ ∈ ∆+(Y) in all remaining rounds to achieve588

RT (F ; p̂1:T , x1:T , y1:T ) = −∞.589

Overall, we can see that the minimax optimal prediction p̂∗t ∈ ∆(Y) at round t given x1:t, y1:t−1 is590

p̂∗t (y) =
supx S

x1:t,(y1:t−1,y)
T (F|x)∑

y′∈Y supx S
x1:t,(y1:t−1,y′)
T (F|x)

,∀y ∈ Y,

if there exists y ∈ Y such that supx S
x1:t,(y1:t−1,y)
T (F|x) > 0. Otherwise, select p̂∗t to be an arbitrary591

element in ∆+(Y) (and so do all remaining rounds). ■592

B.2 Auxiliary lemmas593

Recall that for any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,594

G(F , x1:t, y1:t) =
〈〈

sup
xs

inf
p̂s

sup
ys

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]

=
〈〈

sup
xs

inf
p̂s

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

ℓ(p̂s, ys)− inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys)
]
.

To prove Lemma B.1, we need the following lemmas.595

Lemma B.3 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,596

G(F , x1:t, y1:t) ≥ sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
. (11)

And whenever for every xt+1:T ∈ X T−t, yt+1:T ∈ YT−t, it holds597

inf
f∈F

T∑
s=1

ℓ(f(x1:s, y1:s−1), ys) < ∞, (12)
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then598

G(F , x1:t, y1:t) = sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
. (13)

599

Proof of Lemma B.3 First we see that similar to the proof of Lemma A.4, we can reverse every pair600

of sup over ps and inf over p̂s in the extensive formulation of G(F , x1:t, y1:t) and rearrange terms601

to obtain602

G(F , x1:t, y1:t) ≥
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
,

and again due to the nature of log loss,603

G(F , x1:t, y1:t) ≥
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

Eys∼ps
[ℓ(ps, ys)]− inf

f∈F

T∑
s=1

ℓ(fs, ys)
]

= sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
,

where in the last step we compress the expression using trees (of depth T −t) and Eq. (11) is proved.604

To show that the minimax swap is valid under Eq. (12), we follow the same strategy as in the proof605

of Lemma A.1 by restricting the learner’s prediction p̂s to ∆δ(Y) for any threshold δ ∈ (0, 1/2)606

which yields607

G(F , x1:t, y1:t) ≤
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s∈∆δ(Y)

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

≤
〈〈

sup
xs

sup
ps

Eys∼ps

〉〉T
s=t+1

[ T∑
s=t+1

inf
p̂s

Eys∼ps [ℓ(p̂s, ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
+ |Y|δT.

So Eq. (13) is proved by sending δ → 0+ on the RHS of the last inequality and the established608

Eq. (11). ■609

Lemma B.4 For any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt,610

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]
= sup

x
logSx1:t,y1:t

T (F|x).

611

Proof of Lemma B.4 The proof follows that of Lemma A.3. By replacing the probabilistic tree p612

by the joint distribution P ∈ ∆(YT−t), we get613

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x,P

Ey∼P

[ T∑
s=t+1

ℓ(Ps, ys)− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P

[
sup
f∈F

logPf (y1:t,y|x1:t,x(y))
]
.

Similarly, for any fixed x, define the map F x1:t,y1:t
x : YT−t → R ∪ {−∞} by614

F x1:t,y1:t
x (y) = sup

f∈F
logPf (y1:t,y|x1:t,x(y)),
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and now we solve615
sup

P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)].

If there exists some y ∈ YT−t such that F x1:t,y1:t
x (y) > −∞, then the optimal P ∗ is given by616

P ∗(y) =
exp(F x1:t,y1:t

x (y))∑
y′ exp(F

x1:t,y1:t
x (y′))

=
supf∈F Pf (y1:t,y|x1:t,x(y))∑
y′ supf∈F Pf (y1:t,y′|x1:t,x(y′))

,∀y ∈ YT−t,

and then617

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)]

= sup
x

log
(∑

y

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)

=sup
x

logSx1:t,y1:t

T (F|x).

However, if F x1:t,y1:t
x (y) = −∞ for all y, then it implies that for any context tree x, path y, and618

f ∈ F , Pf (y1:t,y|x1:t,x(y)) = 0 and hence,619

sup
x,p

Ey∼p

[ T∑
s=t+1

Eys∼ps(y)[ℓ(ps(y), ys)]− inf
f∈F

T∑
s=1

ℓ(fs, ys)
]

=sup
x

sup
P∈∆(YT−t)

H(P ) + Ey∼P [F
x1:t,y1:t
x (y)]

=−∞

=sup
x

log
(∑

y

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)

=sup
x

logSx1:t,y1:t

T (F|x),

which finishes our proof. ■620

Now we are able to prove the key result Lemma B.1.621

Proof of Lemma B.1 Fix any hypothesis class F and sequences x1:t ∈ X t, y1:t ∈ Yt. First we622

know623
G(F , x1:t, y1:t) ≥ sup

x
logSx1:t,y1:t

T (F|x)

due to Eq. (11) and Lemma B.4. For the other direction, let us fix any threshold value δ ∈ (0, 1/2)624

and then625

G(F , x1:t, y1:t) ≤ G(Fδ, x1:t, y1:t) + T · log(1 + |Y|δ)
= sup

x
logSx1:t,y1:t

T (Fδ|x) + T · log(1 + |Y|δ)

= sup
x

log
( ∑

y∈YT−t

sup
fδ∈Fδ

Pfδ(y1:t,y|x1:t,x(y))
)
+ T · log(1 + |Y|δ)

≤ sup
x

log
( ∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)) + δ ·M(T ) · |Y|T
)
+ T · log(1 + |Y|δ)

= log
(
sup
x

∑
y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y)) + δ ·M(T ) · |Y|T
)
+ T · log(1 + |Y|δ),

where we have applied Lemma A.7, Lemma B.3, Lemma B.4, and Lemma A.6 accordingly. Simi-626

larly, we send δ → 0+ on the RHS of the last inequality and get627

G(F , x1:t, y1:t) ≤ sup
x

log
( ∑

y∈YT−t

sup
f∈F

Pf (y1:t,y|x1:t,x(y))
)
= sup

x
logSx1:t,y1:t

T (F|x),

which concludes the proof. ■628
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C Additional discussions629

C.1 On the time-variant context space630

In this section we generalize our analysis to the setting where the context space can evolve over time.631

We model time-varying context sets by a sequence of maps Xt : X t−1 × Yt−1 → 2X , t ∈ [T ] as in632

[RS15; BFR20]. In each round t, instead of picking any context from X , the nature is now required633

to only choose xt from Xt(x1:t−1, y1:t−1) ⊆ X . Then the minimax regret with respect to (Xt)t∈[T ]634

is rewritten as635

RT (F) =
〈〈

sup
xt∈Xt(x1:t−1,y1:t−1)

inf
p̂t

sup
yt

〉〉T
t=1

RT (F ; p̂1:T , x1:T , y1:T ).

A context tree x is consistent with respect to (Xt)t∈[T ] if for all t ∈ [T ] and y ∈ YT , xt(y) ∈636

Xt(x1:t−1, y1:t−1). Then our results in Section 3 and Section 4 can be generalized simply by replac-637

ing the supremum over all context trees (of depth-T ) by the supremum over all consistent context638

trees. For example, we will have639

RT (F) = sup
x:x is consistent

logST (F|x).

C.2 On the global and non-global sequential cover640

Now we go back to consider the usual setting of binary label and constant experts, i.e., Y = {0, 1}641

and F ⊆ [0, 1]X . As mentioned in Section 3, previous works [BFR20; WHGS23] provided re-642

gret upper bounds based on ℓ∞ sequential entropy. More specifically, both of their bounds are in643

the form of O(infα>0{αT + H(F , α, T )}), with H(F , α, T ) being either the non-global entropy644

H∞(F , α, T ) or the global entropy HG(F , α, T ). It is then natural to ask which one of these645

two bounds is tighter. Although it is straightforward to prove that H∞(F , α, T ) is no larger than646

HG(F , α, T ), the gap between them is at most a polylog factor, as shown below. The proof of647

H∞(F , α, T ) ≤ HG(F , α, T ) is also included for completeness.648

Proposition C.1 For any scale α > 0, we have649

H∞(F , α, T ) ≥ min{T, sup
α′>α

sfat2α′(F)} · log(2).

Therefore, together with H∞(F , α, T ) ≤ HG(F , α, T ) and the folklore HG(F , α, T ) ≤650

O(sfatα(F) log(T/α)), we conclude that the regret upper bounds O(infα>0{αT +651

H(F , α, T )}),H ∈ {H∞,HG}, differ by at most a polylog factor.652

653

Proof of Proposition C.1 Fix any α′ > α > 0 and let dα′ denote min{T, sfat2α′(F)}. Then654

there exists a context tree x and a witness tree s, both of depth dα′ , satisfying that for any path655

y ∈ {0, 1}dα′ , there exists an f ∈ F such that656

∀t ∈ [dα′ ], (2yt − 1) · (f(xt(y))− st(y)) ≥ α′ > α. (14)

Let Vx,α be an arbitrary sequential ℓ∞ covering of F on x. Now we select a path y and a sequence657

of subsets V
(t)
x,α ⊆ Vx,α, t ∈ [dα′ ] in the following recursive way. Define V

(0)
x,α = Vx,α. For658

each t ∈ [dα′ ], choose yt ∈ {0, 1} such that 2yt − 1 ∈ {−1,+1} is the minority among all659

sgn(vt(y1:t−1) − st(y1:t−1)), v ∈ V
(t−1)
x,α (ignoring those of 0’s). Finally update V

(t)
x,α = {v ∈660

V
(t−1)
x,α : sgn(vt(y1:t−1)− st(y1:t−1)) = 2yt − 1}.661

First we argue that, if there is any time t′ ∈ [dα′ ] such that V (t′−1)
x,α ̸= ∅, V (t′)

x,α = ∅, then Vx,α662

is not a valid cover of F on x. Otherwise, recall we have selected y1, . . . , yt′−1. Now pick an663

arbitrary yt′ ∈ {0, 1}. By Eq. (14) we can find some f ∈ F such that (2yt − 1) · (f(xt(y1:t−1))−664

st(y1:t−1)) > α,∀t ∈ [t′]. Since Vx,α is a covering at scale α, there is v ∈ Vx,α such that |vt(y)−665

f(xt(y))| ≤ α,∀t ∈ [t′]. This implies that sgn(f(xt(y)) − st(y)) = sgn(vt(y) − st(y)) =666

2yt − 1,∀t ∈ [t′]. So we can always find some member of V (t′−1)
x,α to match the minority sign of667

vt′(y1:t′−1)− st′(y1:t′−1), v ∈ V
(t′−1)
x,α , which means that V (t′)

x,α ̸= ∅ and yields a contradiction.668
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Now we know that |V (t)
x,α| ≥ 1,∀t ∈ [dα′ ]. By design |V (t)

x,α| ≤ |V (t−1)
x,α |/2,∀t ∈ [dα′ ], so we669

must have |Vx,α| = |V (0)
x,α| ≥ 2dα′ . As the choice of covering is arbitrary, the covering number670

N∞(F ◦ x, α, dα′) is also lower bounded by 2dα′ and hence H∞(F , α, dα′) ≥ dα′ · log(2). If671

supα′>α sfat2α′(F) ≤ T , then we get that672

H∞(F , α, T ) ≥ sup
α′>α

H∞(F , α, sfat2α′(F)) ≥ sup
α′>α

sfat2α′(F) · log(2).

If there is some α′ > α such that sfat2α′(F) ≥ T , then673

H∞(F , α, T ) = H∞(F , α, dα′) ≥ T · log(2).

Combining these two cases together, we have674

H∞(F , α, T ) ≥ min{T, sup
α′>α

sfat2α′(F)} · log(2).

■675

676

Proposition C.2 Let Gα be a global sequential α-covering of F as defined in [WHGS23]. Then for677

any context tree x, there exists a sequential cover Vx,α of F ◦ x at scale α with |Vx,α| ≤ |Gα|. This678

implies that H∞(F , α, T ) ≤ log |Gα|.679

680

Proof of Proposition C.2 Fix arbitrary context tree x. For any g ∈ Gα, define the [0, 1]-valued tree681

vg by vgt (y) = g(x1:t(y)),∀t ∈ [T ],y ∈ YT . Now let Vx,α = {vg : g ∈ Gα} and we will show that682

Vx,α is indeed a sequential cover of F ◦ x at scale α.683

For any f ∈ F and y ∈ YT , tree x yields a length−T sequence x1:T (y) and by definition of the684

global sequential covering, there exists g ∈ Gα such that685

|f(xt(y))− g(x1:t(y))| ≤ α,∀t ∈ [T ].

So by our construction of Vx,α, vg ∈ Vx,α holds686

|f(xt(y))− vgt (y)| = |f(xt(y))− g(x1:t(y))| ≤ α,∀t ∈ [T ],

which yields our claim after observing |Vx,α| ≤ |Gα|. ■687

D Additional proofs688

Lemma D.1 For any X -valued Y-ary context tree x of depth T , and f : (X × Y)∗ × X → ∆(Y),689

we have690 ∑
y∈YT

Pf (y|x(y)) = 1, (15)

where we recall that x(y) denotes the context sequence (x1(y), . . . ,xT (y)).691

692

Proof of Lemma D.1 This is done by induction on the depth T . The key observation is that for any693

label sequence y, xt(y) = xt(y1, . . . , yt−1) only depends on the first t − 1 labels. For T = 1, any694

context tree x is represented by its root node x1(·) = x1 ∈ X and hence695 ∑
y1

Pf (y1|x1) =
∑
y1

f(x1)(y1) = 1.

Suppose Eq. (15) holds for all context trees x of depth T ≤ d and all sequential functions f . Now696

given any context tree x = (x1, . . . ,xd+1) of depth T = d + 1, we denote its depth d subtree697
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(x1, . . . ,xd) by x[d]. Then698 ∑
y∈Yd+1

Pf (y|x(y)) =
∑
y1:d

∑
yd+1

Pf (y1:d+1|x1,x2(y1), . . . ,xd+1(y1:d))

=
∑
y1:d

∑
yd+1

Pf (y1:d|x1, . . . ,xd(y1:d−1)) · f(x1, . . . ,xd+1(y1:d), y1:d)(yd+1)

=
∑
y1:d

Pf (y1:d|x1, . . . ,xd(y1:d−1))
∑
yd+1

f(x1, . . . ,xd+1(y1:d), y1:d)(yd+1)

=
∑
y1:d

Pf (y1:d|x1, . . . ,xd(y1:d−1))

=
∑
y∈Yd

Pf (y|x[d](y)) = 1,

where the last step is due to induction. We are done. ■699
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NeurIPS Paper Checklist700

The checklist is designed to encourage best practices for responsible machine learning research, ad-701

dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove702

the checklist: The papers not including the checklist will be desk rejected. The checklist should703

follow the references and precede the (optional) supplemental material. The checklist does NOT704

count towards the page limit.705

Please read the checklist guidelines carefully for information on how to answer these questions. For706

each question in the checklist:707

• You should answer [Yes] , [No] , or [NA]708

• [NA] means either that the question is Not Applicable for that particular paper or the709

relevant information is Not Available.710

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).711

The checklist answers are an integral part of your paper submission. They are visible to the712

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it713

(after eventual revisions) with the final version of your paper, and its final version will be published714

with the paper.715

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-716

ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]717

" provided a proper justification is given (e.g., "error bars are not reported because it would be too718

computationally expensive" or "we were unable to find the license for the dataset we used"). In719

general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased720

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your721

best judgment and write a justification to elaborate. All supporting evidence can appear either in the722

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,723

in the justification please point to the section(s) where related material for the question can be found.724

IMPORTANT, please:725

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",726

• Keep the checklist subsection headings, questions/answers and guidelines below.727

• Do not modify the questions and only use the provided macros for your answers.728

1. Claims729

Question: Do the main claims made in the abstract and introduction accurately reflect the730

paper’s contributions and scope?731

Answer: [Yes]732

Justification: Abstract summarizes theorems we have proven.733

Guidelines:734

• The answer NA means that the abstract and introduction do not include the claims735

made in the paper.736

• The abstract and/or introduction should clearly state the claims made, including the737

contributions made in the paper and important assumptions and limitations. A No or738

NA answer to this question will not be perceived well by the reviewers.739

• The claims made should match theoretical and experimental results, and reflect how740

much the results can be expected to generalize to other settings.741

• It is fine to include aspirational goals as motivation as long as it is clear that these742

goals are not attained by the paper.743

2. Limitations744

Question: Does the paper discuss the limitations of the work performed by the authors?745

Answer: [Yes]746
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Justification: We discuss limitations in the Discussion section.747

Guidelines:748

• The answer NA means that the paper has no limitation while the answer No means749

that the paper has limitations, but those are not discussed in the paper.750

• The authors are encouraged to create a separate "Limitations" section in their paper.751

• The paper should point out any strong assumptions and how robust the results are to752

violations of these assumptions (e.g., independence assumptions, noiseless settings,753

model well-specification, asymptotic approximations only holding locally). The au-754

thors should reflect on how these assumptions might be violated in practice and what755

the implications would be.756

• The authors should reflect on the scope of the claims made, e.g., if the approach was757

only tested on a few datasets or with a few runs. In general, empirical results often758

depend on implicit assumptions, which should be articulated.759

• The authors should reflect on the factors that influence the performance of the ap-760

proach. For example, a facial recognition algorithm may perform poorly when image761

resolution is low or images are taken in low lighting. Or a speech-to-text system might762

not be used reliably to provide closed captions for online lectures because it fails to763

handle technical jargon.764

• The authors should discuss the computational efficiency of the proposed algorithms765

and how they scale with dataset size.766

• If applicable, the authors should discuss possible limitations of their approach to ad-767

dress problems of privacy and fairness.768

• While the authors might fear that complete honesty about limitations might be used by769

reviewers as grounds for rejection, a worse outcome might be that reviewers discover770

limitations that aren’t acknowledged in the paper. The authors should use their best771

judgment and recognize that individual actions in favor of transparency play an impor-772

tant role in developing norms that preserve the integrity of the community. Reviewers773

will be specifically instructed to not penalize honesty concerning limitations.774

3. Theory Assumptions and Proofs775

Question: For each theoretical result, does the paper provide the full set of assumptions and776

a complete (and correct) proof?777

Answer: [Yes]778

Justification: We don’t see how to justify this without machine checkable proofs, which we779

have not provided.780

Guidelines:781

• The answer NA means that the paper does not include theoretical results.782

• All the theorems, formulas, and proofs in the paper should be numbered and cross-783

referenced.784

• All assumptions should be clearly stated or referenced in the statement of any theo-785

rems.786

• The proofs can either appear in the main paper or the supplemental material, but if787

they appear in the supplemental material, the authors are encouraged to provide a788

short proof sketch to provide intuition.789

• Inversely, any informal proof provided in the core of the paper should be comple-790

mented by formal proofs provided in appendix or supplemental material.791

• Theorems and Lemmas that the proof relies upon should be properly referenced.792

4. Experimental Result Reproducibility793

Question: Does the paper fully disclose all the information needed to reproduce the main794

experimental results of the paper to the extent that it affects the main claims and/or conclu-795

sions of the paper (regardless of whether the code and data are provided or not)?796

Answer: [NA]797

Justification: There are no experiments.798

Guidelines:799
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• The answer NA means that the paper does not include experiments.800

• If the paper includes experiments, a No answer to this question will not be perceived801

well by the reviewers: Making the paper reproducible is important, regardless of802

whether the code and data are provided or not.803

• If the contribution is a dataset and/or model, the authors should describe the steps804

taken to make their results reproducible or verifiable.805

• Depending on the contribution, reproducibility can be accomplished in various ways.806

For example, if the contribution is a novel architecture, describing the architecture807

fully might suffice, or if the contribution is a specific model and empirical evaluation,808

it may be necessary to either make it possible for others to replicate the model with809

the same dataset, or provide access to the model. In general. releasing code and data810

is often one good way to accomplish this, but reproducibility can also be provided via811

detailed instructions for how to replicate the results, access to a hosted model (e.g., in812

the case of a large language model), releasing of a model checkpoint, or other means813

that are appropriate to the research performed.814

• While NeurIPS does not require releasing code, the conference does require all sub-815

missions to provide some reasonable avenue for reproducibility, which may depend816

on the nature of the contribution. For example817

(a) If the contribution is primarily a new algorithm, the paper should make it clear818

how to reproduce that algorithm.819

(b) If the contribution is primarily a new model architecture, the paper should describe820

the architecture clearly and fully.821

(c) If the contribution is a new model (e.g., a large language model), then there should822

either be a way to access this model for reproducing the results or a way to re-823

produce the model (e.g., with an open-source dataset or instructions for how to824

construct the dataset).825

(d) We recognize that reproducibility may be tricky in some cases, in which case au-826

thors are welcome to describe the particular way they provide for reproducibility.827

In the case of closed-source models, it may be that access to the model is limited in828

some way (e.g., to registered users), but it should be possible for other researchers829

to have some path to reproducing or verifying the results.830

5. Open access to data and code831

Question: Does the paper provide open access to the data and code, with sufficient instruc-832

tions to faithfully reproduce the main experimental results, as described in supplemental833

material?834

Answer: [NA]835

Justification: There is no data or code.836

Guidelines:837

• The answer NA means that paper does not include experiments requiring code.838

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/839

public/guides/CodeSubmissionPolicy) for more details.840

• While we encourage the release of code and data, we understand that this might not841

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not842

including code, unless this is central to the contribution (e.g., for a new open-source843

benchmark).844

• The instructions should contain the exact command and environment needed to run to845

reproduce the results. See the NeurIPS code and data submission guidelines (https:846

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.847

• The authors should provide instructions on data access and preparation, including how848

to access the raw data, preprocessed data, intermediate data, and generated data, etc.849

• The authors should provide scripts to reproduce all experimental results for the new850

proposed method and baselines. If only a subset of experiments are reproducible, they851

should state which ones are omitted from the script and why.852

• At submission time, to preserve anonymity, the authors should release anonymized853

versions (if applicable).854
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• Providing as much information as possible in supplemental material (appended to the855

paper) is recommended, but including URLs to data and code is permitted.856

6. Experimental Setting/Details857

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-858

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the859

results?860

Answer: [NA]861

Justification: There are no experiments.862

Guidelines:863

• The answer NA means that the paper does not include experiments.864

• The experimental setting should be presented in the core of the paper to a level of865

detail that is necessary to appreciate the results and make sense of them.866

• The full details can be provided either with the code, in appendix, or as supplemental867

material.868

7. Experiment Statistical Significance869

Question: Does the paper report error bars suitably and correctly defined or other appropri-870

ate information about the statistical significance of the experiments?871

Answer: [NA]872

Justification: There are no experiments.873

Guidelines:874

• The answer NA means that the paper does not include experiments.875

• The authors should answer "Yes" if the results are accompanied by error bars, confi-876

dence intervals, or statistical significance tests, at least for the experiments that support877

the main claims of the paper.878

• The factors of variability that the error bars are capturing should be clearly stated (for879

example, train/test split, initialization, random drawing of some parameter, or overall880

run with given experimental conditions).881

• The method for calculating the error bars should be explained (closed form formula,882

call to a library function, bootstrap, etc.)883

• The assumptions made should be given (e.g., Normally distributed errors).884

• It should be clear whether the error bar is the standard deviation or the standard error885

of the mean.886

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-887

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of888

Normality of errors is not verified.889

• For asymmetric distributions, the authors should be careful not to show in tables or890
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