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Abstract

A vast amount of structured information associated with unstructured data, such as
images or text, is stored online. This structured information implies different simi-
larity relationships among unstructured data. Recently, embeddings trained using
contrastive learning on web-scraped unstructured data have been shown to have
state-of-the-art performance across computer vision tasks. However, contrastive
learning methods typically use only a single metric of similarity. In this paper,
we propose conditional contrastive networks (CCNs) as a way of using multiple
notions of similarity in structured data. Our novel conditional contrastive loss
is able to learn multiple disjoint similarity notions by projecting each similarity
notion into a different subspace. We show empirically that our CCNs perform better
than single-label trained cross-entropy networks, single-label trained supervised-
contrastive networks, multi-task trained cross-entropy networks, and previously
proposed conditional similarity networks–on both the attributes on which it was
trained and on unseen attributes.

1 Introduction

Structured tabular data associated with unstructured data, such as images and text, is a common
method of data storage [Cafarella et al., 2008, Deng et al., 2022, Bordes et al., 2013]. Often, the
structured tabular data captures important similarity relationships among the unstructured data entries.
Some examples include patient data associated with chest radiographs [Irvin et al., 2019, Johnson
et al., 2020] and relational tables associated with website text [Chen et al., 2000, Bhagavatula et al.,
2015]. One example is given in Figure 1. Each of these images of shoes are associated with distinct
category, closure, and gender attributes. Each of these attributes can define a metric of similarity
between images.

Figure 1: Shoe Example. An example illustrating how structured tabular data can encode different
similarity relationships between three images of shoes.

Contrastive learned embeddings trained on web-scraped unstructured data have been shown to have
state-of-the-art performance on a variety of computer image tasks [Radford et al., 2021, Yuan et al.,
2021, Khosla et al., 2020]. However, neither supervised nor unsupervised contrastive learning
methods are able to leverage multiple metrics of similarity embedded in associated structured data.
In unsupervised contrastive learning, representations are trained to discriminate pairs of similar
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images (positive examples) from a set of dissimilar images (negative examples). Similar images
are generated using label-preserving augmentations (e.g., rotations, changing brightness) [Chen
et al., 2020]. Instead of relying on label-preserving augmentations, supervised contrastive learning
approaches consider all instances with the same label to be positive examples [Khosla et al., 2020].
Neither unsupervised nor supervised contrastive learning are able to leverage different metrics of
similarity where two examples may be similar under one metric and different under another. In this
work, we propose conditional contrastive networks (CCNs). Our framework is shown in Figure 2.
CCNs leverage multiple projection heads to learn embeddings from multiple metrics of similarity. In
this way, we are able to represent examples that may be positive examples in one projected subspace
and negative examples in a different projected subspace.

We compare our method to several existing methods that learn embeddings with different metrics
of similarity. One method to learn many different metrics of similarity is to learn separate networks
for each metric [Khosla et al., 2020]. However, this requires many parameters and multiple models,
resulting in redundant embedding spaces that are not easily combined. A second method is to
learn many different metrics of similarity is through multi-task learning [Ruder, 2017]. Multitask
learning is typically used to leverage information of training signals of different tasks across the
same domain. However, performing multitask learning on heterogeneous tasks can potentially hurt
learning. The most similar method to ours is conditional similarity networks [Veit et al., 2017]. In
conditional similarity networks, weights are learned or assigned to different embedding dimensions
with respect to different metrics of similarity. These weights are learned jointly with the convolutional
neural network parameters during training time. Conditional similarity networks are trained using
triplets selected through similar and dissimilar categorical variables. However, this triplet selection
process strictly reduces the amount of information available from the original full attribute data. This
is because each triplet can only capture single attribute information between three data examples.
Our conditional contrastive networks are able to leverage information that is not available using
conditional similarity networks in order to improve embedding performance. In our experiments,
we find that embeddings learned with CCNs outperform embeddings learned from both single label
trained networks, multi-task trained networks, and conditional similarity networks on both in-domain
and out-of-domain downstream tasks. Our main contributions are:

1. We propose conditional contrastive networks to utilize supervision from multiple different categor-
ical notions of similarity.

2. We empirically demonstrate that a conditional contrastive network performs better than each of
individually trained cross-entropy and supervised-contrastive networks supervised with a single
notion of similarity, a multi-task trained cross-entropy networks, and a conditional similarity
network.

3. We empirically demonstrate that the learned representation is more generalizable to out-of-
distribution categories than any of the other learned representations.

Figure 2: Conditional Contrastive Network. Multiple projection heads are trained to learn from
multiple metrics of similarity. Both the base encoding network and the projection heads are trained
together. The projection heads are discarded and only the encoding network is kept for downstream
tasks.

2



2 Conditional Contrastive Network

Multi-task Setup We assume that during training time, we have access to dataset: D1 =
{xi, y

1
i , ...y

c
i }Mi , where x is the unstructured data (e.g., image pixels) and the ys are the multi-

ple categorical attributes available from the tabular data. We aim to learn an embedding function
f : X → Rd to map input data x to the representation space. We define hi = f(xi) to be the
embedding of xi.

During contrastive training, we select a batch of N randomly sampled data/ {xi}i=1...N . We randomly
sample 2 distinct augmentations for xi, x̃2i, and x̃2i−1 to construct 2N samples, {x̃j}j=1...2N . We
assume that all augmentations are label-preserving. We let A(i) = {1, ...2N}\i be the set of all
samples not including i.

SimCLR A simple framework for contrastive learning representations (SimCLR) represents the
unsupervised loss as follows [Chen et al., 2020]. g is defined as a projection head that maps the
embedding to the surface of the unit sphere Sd = {v ∈ Rd : ||v||2 = 1}. We define vi = g(hi) to be
the mapping of hi on the unit sphere.
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τ ∈ {0,∞} is the temperature hyperparameter. The positive example for each sample consists of
transformed version of that sample. All other samples are considered to be negative samples. The
SimCLR objective achieves state-of-the-art performance for unsupervised learning methods.

SupCon In contrast to SimCLR, supervised contrastive (SupCon) learning considers all samples
with the same label to be positive examples for a given reference. SupCon loss is as follows [Khosla
et al., 2020].

Lsupcon =
∑
i=I

Lsupcon
i =

∑
i=I

−1

|P (i)|
∑

p∈P (i)

log
exp( v

T
i vp
τ

)∑
a∈A(i) exp( v

T
i va
τ

)

where |S| denotes the cardinality of the set S, P (i) is defined as the positive set with all samples
with the same label as xi distinct from itself i.e., P (i) = {j ∈ A(i) : yj = yi}. Similarly, we define
the negative set N(i) to be all samples with a different label from xi, N(i) = {j ∈ A(i) : yj ̸=
yi}. Although supervised contrastive learning is able to learn from labels, neither supervised nor
unsupervised contrastive learning are able to consider multiple metrics of similarity.

CondCon We train the conditional contrastive network with our conditional contrastive loss (Cond-
Con). We define separate projection heads gc that maps the embedding to the surface of the unit
sphere. We define vci = gc(hi) to be the mapping of hi on the unit sphere by projection head gc.
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P c(i) is defined as the positive set with the same label as xi under attribute c.

3 Experiments

Dataset All of our experiments are performed on the Zappos50k dataset [Yu and Grauman, 2014,
2017]. This dataset contains 50,025 catalog images of single shoes collected from Zappos.com.
This dataset also includes rich attribute information. We train our networks with shoe category
(shoes, boots, sandals, slippers), closure mechanism (lace up, slip on, zipper, hook and loop, pull on),
and gender (women, men, girls, boys). We also use the shoe brand information to evaluate model
embeddings on out-of-domain classification tasks. We split the images into 3 parts: 70% for training,
10% for validation, and 20% for testing.

Models All models are trained with a ResNet18 backbone [He et al., 2016] pretrained on ImageNet
[Deng et al., 2009] and an embedding space of 128. All images are resized to 112x112. We train
using standard data augmentations, including random crops, flips, and color jitters. We train and
evaluate the following networks
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Table 1: CCN trained embeddings have the highest performance across all evaluation settings.
We report the mean and the standard deviation of the test set classification accuracy.

Evaluation Settings
Model Category Closure Gender Brand (OOD)

XEnt Category 96.64 (0.61) 74.55 (1.77) 63.78 (2.11) 27.22 (1.18)
XEnt Closure 88.99 (1.47) 92.28 (1.16) 66.59 (1.55) 29.18 (0.58)
XEnt Gender 81.96 (1.58) 73.28 (1.62) 83.09 (2.31) 24.08 (0.38)

XEnt Multi 96.98 (0.92) 93.33 (1.37) 85.07 (1.15) 32.10 (0.74)
SupCon Category 96.95 (1.20) 73.02 (0.91) 61.24 (2.90) 27.87 (1.47)

SupCon Closure 83.62 (1.36) 91.75 (1.65) 65.90 (2.23) 26.78 (0.47)
SupCon Gender 76.40 (1.93) 69.52 (1.40) 85.11 (0.93) 24.30 (0.96)

CSN 83.33 (0.82) 72.12 (1.82) 69.21 (2.40) 16.27 (0.37)
CCN (Ours) 97.30 (0.57) 94.26 (1.02) 86.38 (1.37) 43.49 (0.81)

• Cross-Entropy Networks (XEnt) We train three cross-entropy networks with each of the three
labels (category, closure, gender). We also train a multitask cross-entropy network trained with all
three labels. We train each network for 200 epochs with a batch-size of 64 and a learning rate of
0.01.

• Conditional Similarity Network (CSN) We train a conditional similarity network that learns
the convolutional filters, embedding, and mask parameters together. This network had the best
performance out of all the conditional similarity variants. 10,000 triplets are constructed from the
attributes for training (category, closure, gender) and the network is trained for 200 epochs. We
follow the training procedure specified by Veit et al. [2017].

• Supervised Contrastive Networks (SupCon) We train three supervised contrastive networks with
each of the three labels (category, closure, gender). All contrastive network projection heads have
projection dimensions of 32. We train for 200 epochs with a batch-size of 64 and a learning rate of
0.05 with a stochastic gradient descent optimizer.

• Conditional Contrastive Network (CCN) We train a conditional contrastive network with three
projection heads corresponding to the three training attributes. Hyperparameter settings are the
same as for SupCon networks.

Results We evaluate all networks by training a softmax classifier layer over the frozen embedding. All
networks are trained with a batch-size of 64 and a learning rate of 0.1 for 20 epochs. The checkpoint
with the best validation accuracy is used to evaluate the test set.

For each model we evaluate on three in-domain classification tasks: category, closure, and gender. We
also evaluate on one out-of-domain setting: classifying shoe brands. For the out-of-domain setting,
we limit to only the top 20 brands. We report top-1 classification accuracy and standard deviation
across 5 splits of the test set in Table 1.

The conditional contrastive network trained embeddings have the highest performance for all tasks.
Furthermore, we find that CCN-trained embeddings outperform CSN-trained embeddings by a large
margin. We hypothesize that this is because the conditional contrastive network is trained on strictly
more information that the conditional similarity network. We also find that the greatest benefit of the
conditional contrastive network in comparison to all other networks comes when generalizing to the
out-of-domain classification task.

4 Conclusion

In this work, we propose conditional contrastive networks to leverage different metrics of similarity
available in structured data. We demonstrate that our CCN-learned embeddings perform better than
single-label trained cross-entropy embeddings, single-label trained supervised-contrastive embed-
dings, multi-task trained cross-entropy embeddings, and conditional similarity network embeddings
on a suite of downstream tasks. The most striking improvement is the better generalization to to new
tasks. One limitation of our work is that we only evaluate on a single dataset. We intend to validate
our approach on a variety of domains.
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mental results (either in the supplemental material or as a URL)? [Yes] We will include
this in the supplementary material and provide a GitHub link upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3 for some experimental details. Additional details
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all experiments.
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6


	Introduction
	Conditional Contrastive Network
	Experiments
	Conclusion

