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Abstract: Reinforcement learning often suffer from the sparse reward issue in1

real-world robotics problems. Learning from demonstration (LfD) is an effec-2

tive way to eliminate this problem, which leverages collected expert data to aid3

online learning. Prior works often assume that the learning agent and the expert4

aim to accomplish the same task, which requires collecting new data for every5

new task. In this paper, we consider the case where the target task is mismatched6

from but similar with that of the expert. Such setting can be challenging and we7

found existing LfD methods can not effectively guide learning in mismatched new8

tasks with sparse rewards. We propose conservative reward shaping from demon-9

stration (CRSfD), which shapes the sparse rewards using estimated expert value10

function. To accelerate learning processes, CRSfD guides the agent to conserva-11

tively explore around demonstrations. Experimental results of robot manipulation12

tasks show that our approach outperforms baseline LfD methods when transfer-13

ring demonstrations collected in a single task to other different but similar tasks.14

Keywords: Sparse Reward Reinforcement Learning, Learn from Demonstration,15

Task Mismatch16

1 Introduction17

Reinforcement learning has been applied to various real-world tasks, including robotic manipulation18

with large state-action spaces and sparse reward signals [1]. In these tasks, standard reinforcement19

learning tends to perform a lot of useless exploration and easily fall into local optimal solutions.20

To eliminate this problem, previous works often use expert demonstrations to aid online learning,21

which adopt some successful trajectories to guide the exploration process [2, 3].22

However, standard learning from demonstration algorithms often assume that the target leaning task23

is exactly same with the task where demonstrations are collected [4, 5, 6]. Under this assumption,24

experts need to collect the corresponding demonstration for each new task, which can be expensive25

and inefficient. In this paper, we consider a new learning setting where expert data is collected26

under a single task, while the agent is required to solve different new tasks. For instance as shown27

in Figure 1, a robot arm aims to solve peg-in-hole tasks.The demonstration is collected on a certain28

type of hole while the target tasks have different hole shapes (changes in environmental dynamics)29

or position shifts (changes in reward function). This can be challenging as agents cannot directly30

imitate those demonstrations from mismatched tasks due to dynamics and reward function changes.31

However, compared to learning from scratch, those demonstrations should still be able to provide32

some useful information to help exploration.33

To address the issue of learning with demonstrations from mismatched task, previous works in34

imitation learning consider agent dynamics mismatch and rely on state-only demonstrations [7, 8, 9].35

However, this approach has an implicit assumption that the new task share the same reward function36

as the original task [10]. Hester et al. and Vecerik et al. [11, 3] receive sparse rewards in the37
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Figure 1: Illustration of our motivation. Demonstrations collected on a single original task are
transferred to other similar but different tasks with either environmental dynamics changes (shape
change) or reward function change (position shift), and aid the learning of these tasks.

environment and add demos into a prioritized replay buffer. Sparse reward signal can be backward38

propagated during the Bellman update and thus guide the exploration. However, this propagation39

flow may be blocked due to the mismatch in new tasks. Another class of work [12, 13, 14] also40

considers that we have expert data on multitasks and utilize meta-learning methods to obtain diverse41

skills, and then transfer skills to new tasks. However, such a strategy requires to collect a huge42

expert dataset, which is expensive and inefficient. In our setting, we are only provided with a few43

demonstrations collected under a single task.44

In this paper, we propose Conservative Reward Shaping from Demonstration (CRSfD), which learns45

policies for new tasks accelerated by demonstrations collected in a single mismatched task. We use46

reward shaping [15, 16] to incorporate future information into single-step rewards while keeping47

the optimal policy unchanged. Moreover, we explicitly deal with out-of-distribution problem to48

encourage agent to explore around demonstrations. Experimental results of robot manipulation49

tasks show that our approach outperforms baseline LfD methods when learning in new tasks with50

mismatched demonstrations.51

Our contributions can be summarized as follows:52

• We proposed a reward shaping scheme for reinforcement learning with demonstration from53

mismatched task, which use estimated value function from expert demonstrations to re-54

shape sparse reward in new tasks.55

• Built upon such scheme, we propose the conservative reward shaping from demonstration56

(CRSfD) algorithm to overcome the out-of-distribution problem, we regress value function57

of OOD states to zero and use a larger discount factor in new tasks, which guides the agent58

to conservatively explore around expert data.59

• We conduct simulation and real world experiments of robot insertion tasks with mis-60

matched demonstrations. The results show that CRSfD effectively guide the exploration61

process in new tasks and reach a higher sample efficiency and convergence performance.62

2 Related Works63

Learning from demonstration A prominent research subject is how to leverage expert data to as-64

sist reinforcement learning. Imitation learning (IL) is a broad family of such algorithms that enforce65

agents to directly imitate the expert. Behavior cloning (BC) is the simplest IL algorithm which66

greedily imitates the step-wise action of the expert and can fall into the problem of distributional67

shift [17]. Inverse reinforcement learning [18, 4] and adversarial imitation learning [6] infer the ex-68

pert’s reward function and learn the corresponding optimal policy jointly. The above IL algorithms69

assume environment rewards are not available, hence their performances are upper-bounded by that70
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of experts [19]. Another line of work makes use of reward feedback from environment and lever-71

ages expert demonstration data to overcome the sparse reward issue or learn more natural behaviors.72

Vecerik et al. [3] add demonstration into a prioritized replay buffer. Rajeswaran et al. [20] add73

a behavioral cloning loss to the policy to speed up exploration and learn more natural and robust74

behaviors. Chen et al. [21] use generative models on single step transition to reshape reward of the75

original task. However, standard learning from demonstration algorithms always requires demon-76

strations to be collected under the same task and act nearly optimal under this task, which is not77

suitable for our setting.78

Generalization of demonstrations There are a few works relaxing the requirements for demonstra-79

tions to achieve generalization of demonstrations from different aspects. Some works assume that80

demonstrations are collected by a sub-optimal policy under the same task [22, 23], early work [23]81

requires manually ranking of trajectories and later works [24, 25] move the needs for rankings by82

actively adding noise to demonstrations along with automatical ranking. Cao et al. [26, 27] assume83

that the demonstrations are a mixture of different experts and use a classifier to separate out the84

more feasible expert data for the new task. Other works [10, 28, 29] assume that the target task85

has different agent dynamics to the task where demonstrations are collected, so they only match the86

state sequence of demonstrations or use an inverse dynamic model to recover the action between two87

states in the new task. In our work, we further consider new tasks with the environment dynamics88

mismatch as well as reward function mismatch. Another branch of related works are meta imitation89

learning algorithms, which assume that we have expert data on multitasks and utilize meta-learning90

methods to solve new tasks in zero-shot or few shots adaption [12, 13]. However, such a strategy91

usually necessitates a huge expert dataset which may be expensive and inefficient. Differently, we92

consider the problem where only a small number of demonstrations collected in a single task are93

provided, and the agent needs to use them to accelerate the learning of other similar but different94

tasks.95

3 Problem Statement96

In our problem setting, we have collected a few demonstrations under a single task and want to utilize97

these data in reinforcement learning for other similar but different tasks. A task can be formalized98

as a standard Markov decision process MDP, which is modeled as Mi = (S,A, Pi, Ri, γi). The99

task where demonstrations are collected is denoted as M0 = (S,A, P0, R0, γ0), and the new tasks100

we target to solve are denoted as Mi = (S,A, Pi, Ri, γi), i ≥ 1. S and A are the shared state101

space and action space for each task. Pi : S × A × S → [0, 1] are state transition probability102

functions of each task, Ri : S × A × S → R are reward functions for task Mi, describing the103

natural reward signal in each task. Due to differences of environment and agent dynamics, Pi104

and Ri often varied between different tasks. γi is discounted factor of Mi which reflects how105

much we care about future, typically set to a constant slightly lower than 1. A policy πi : S →106

A defines a probability distribution in action space. For a task Mi and a policy πi, state value107

function V πi
i (s) = Es0=s,πi

[Σγt
iRt(st, a, st+1)] estimates the discounted cumulative reward of the108

task under this policy πi. V ∗
i (s) estimates the discounted cumulative rewards for state s under the109

optimal policy πi.110

As many works [30, 31] point out, directly applying RL in a sparse reward environment can be111

sample inefficient and fail to find a good solution. In this work, we want to make use of the demon-112

strations D : (τ0, τ1, ...) collected in task M0 to facilitate reinforcement learning for the different113

but similar new tasks Mi. Note each trajectory τk contains a sequence of state action transitions114

[s0, a0, s1, a1, ...st, at] in task M0.115

Challenges There are two key issues when leveraging demonstrations from mismatched tasks. First,116

how to get effective guidance from these mismatched demonstrations? Although we should not117

purely imitate these demonstrations, we do need to obtain some useful guidance from them to ac-118

celeration exploration in new tasks with sparse rewards. Second, since our goal is to maximize the119

reward defined under the new task, guidance from mismatched demonstrations should not influence120

the optimality of the learned policy in new tasks.121
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4 Conservative Reward Shaping from Demonstrations122

Provided with demonstrations in a particular task M0 : (S,A, P0, R0, γ0), we aim to help the re-123

inforcement learning process of different tasks M1,M2...MK , which may have different transition124

functions Pk(s
′|s, a) and reward functions Rk(s, a, s

′). In this work, we use SAC [32] as our base125

reinforcement learning algorithm as it holds an excellent exploration mechanism which leads to126

higher sample efficiency than policy gradient algorithms [33, 34] and is shown to perform well on127

continuous action tasks [32]. Nevertheless, it is also possible to base our method on other RL al-128

gorithms including on-policy ones. To make use of expert demonstrations, DDPGfD [3] proposes129

a mechanism compatible with the off-policy method, which adds the demonstration data into the130

replay buffer with prioritized sampling. Under such framework, the sparse reward signal can prop-131

agate back along the expert trajectory to guide the agent. By combining SAC and DDPGfD [3], we132

obtain the backbone of our method and labeled as SACfD, which is also our best baseline method.133

4.1 Reward Conflict under Mismatched Task Setting134

Although LfD methods such as SACfD benefit from demonstrations in sparse reward reinforcement135

learning, they may not benefit from demonstrations when the target tasks are mismatched from that136

of the expert. When following the demonstrations, agent may consistently fail and can not get any137

sparse rewards signals. As failure time increases, agent may consider expert trajectories to have138

low value since few rewards are received. The agent will then avoid following the expert and the139

demonstrations cannot provide effective guidance, resulting in inefficient exploration in the whole140

free space.141

Although totally following the demonstrations may not be able to receive any sparse reward in new142

tasks, it can still provide useful exploration directions since in our settings the new tasks are similar143

to the original one. We formally introduce our method as conservative reward shaping from demon-144

stration (CRSfD). Intuitively, CRSfD assigns appropriate reward signals along the demonstrations145

to efficiently guide the agent towards the goal, and allows exploration around the goal to maintain146

optimally. Details are described in the following subsection.147

4.2 Conservative Reward Shaping from Demonstrations(CRSfD)148

Reward Shaping with Value Function Reward shaping [15] provides an elegant way to modify re-149

ward function while keeping the optimal policy unchanged. Given original MDP M and an arbitrary150

potential function Φ : S → R, we can reshape the reward function to be:151

R′(s, a, s′) = R(s, a, s′) + γΦ(s′)− Φ(s), s′ ∼ P (.|s, a) (1)
Denote the new MDP as M ′ = (S,A, P,R′, γ) obtained by replacing reward function R in M to R′.152

Ng et al. [15] proved that the optimal policy π∗
M ′ on M ′ and the optimal policy π∗

M on the original153

MDP M0 are the same: π∗
M ′ = π∗

M . Furthermore, the optimal state-action function Q∗
M ′(s, a) and154

value function V ∗
M ′(s) are shifted by Φ(s):155

Q∗
M ′(s, a) = Q∗

M (s, a)− Φ(s), V ∗
M ′(s) = V ∗

M (s)− Φ(s) (2)
In particular, Ng et al. [15] pointed out that when the potential function is chosen as the optimal156

value function of the original MDP Φ(s) = V ∗
M (s), then the new MDP M ′ becomes trivial to solve.157

What remained for the agent is to choose each time-step’s action greedily, because the transformed158

single-step reward already contains all the long-term information for decision making.159

Conservative Value Function Estimation The reward shaping method provides a principled way160

to guide the agent with useful future information and keep the optimal policy unchanged. Ideally,161

an accurate Φi(s) = V ∗
Mi

(s) will lead to simple and optimal policy in new MDP M ′, but a perfect162

Φi(s) = V ∗
Mi

(s) is unavailable in advance. Practically, we estimate a Ṽ D
M0

≈ V ∗
M0

(s) using demon-163

strations from task M0 by Monte-Carlo regression and treat Ṽ D
M0

(s) as a prior guess of V ∗
Mi

(s). We164

then shape the sparse reward in the new task Mi to:165

R′
i(s, a, s

′) = Ri(s, a, s
′) + γṼ D

M0
(s′)− Ṽ D

M0
(s) (3)

However, demonstration trajectories only cover a small part of the state space. For out-of-166

distribution states, estimated Ṽ D
M0

may output random values and lead to random single-step re-167

ward after reward shaping, which may mislead the agent. We make two improvements over the168
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above reward shaping method to encourage the agent to explore around the demonstrations conser-169

vatively: (1) Regress value function Ṽ ∗
M0

(s) of the out-of-distribution states to 0, thus discouraging170

exploration far from demonstrations. The OOD states are sampled randomly from free space. (2) In-171

creasing the discount factor γi in new tasks. From equation 3, we can find that increasing γi will give172

higher single-step reward for state with large Vθ(s
′) in the original task, thus encourages exploration173

around demonstrations. Our method can be summarized as follows: (D stands for demonstration174

buffer, S stands for free space, γi > γ0):175

Algorithm 1 Conservative Value Function Estimation
Input: Demonstration transitions, demo discount factor γ0, new task discount factor γk(γk >
γ0), regression steps nr,scale factor λ.
Initialization: Initialize value function Vθ(s)
Monte-Carlo policy evaluation on demonstrations, Calculate cumulative reward for states in de-
mos using γ0: V D

M0
(s) = ΣT

i=tγ
i−t
0 ri

for n in regression steps nr do
Sample minibatch B1 from demo buffer D with regression target V D

M0
(s) = ΣT

i=tγ
i−t
0 ri. Sam-

ple minibatch B2 from whole free space S with regression target 0.
perform regression: θ = argmin

θ

[
Est∼B1

(
Vθ(st)− ΣT

i=tγ
i−t
0 ri

)2
+ λEst∼B2

(Vθ(st)− 0)
2
]

end for
Shaping reward with γk: R′

i(s, a, s
′) = Ri(s, a, s

′) + γkVθ(s
′)− Vθ(s).

Perform SACfD update. (detalis can be found in appendix.)

Conservative Properties In the last paragraph, we introduced some conservative techniques and176

give some intuitively explanations why those improvements can encourage exploration around177

demonstrations under the proposed reward shaping framework. The following theorem can quantize178

the benefits of proposed methods.179

Theorem 1 For task M0 with transition T0 and new task Mk with transition Tk, define to-180

tal variation divergence DTV (s, a) = Σs′ |T0(s
′|s, a) − Tk(s

′|s, a)| = δ. If we have δ <181

(γk − γ0)ET2(s′|s,a)[V
D
M0

(s′)]/γ0 maxs′ V
D
M0

(s′), then following the expert policy in new task will182

result in immediate reward greater then 0:183

Ea∼π(.|s)r
′(s, a) ≥ (γk − γ0)ETk(s′|s)[V

D
M0

(s′)]− γ0δmax
s′

V D
M0

(s′) > 0 (4)

Detailed proof can be found in Appendix 7.5. The above theorem indicates that for similar but184

different tasks (δ smaller than the threshold), exploration along demonstrations will lead to positive185

immediate rewards which guide the learning process.186

Conservative Reward Shaping from Demonstrations After reward shaping by demonstrations187

from mismatched task, we perform online learning based on SACfD as described in Section 4. Pseu-188

docode can be found in supplementary materials. Although the estimated Ṽ D
M0

(s) can be inaccurate,189

it still provides enough future information, thus facilitates exploration for the agent. Moreover, nice190

theoretical properties of reward shaping guarantees that we will not introduce bias to the learned191

policy in new tasks.192
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Figure 2: Evaluation of algorithms on 4 new tasks with demonstrations from task “0”. The solid line
corresponds to the mean of success rate over 5 random seeds and the shaded region corresponds to
the standard deviation. Y-axis reflects success rate range in [0, 1], X-axis reflects interaction steps
range in [0, 3e5].
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5 Experimental Results193

We perform experimental evaluations of the proposed CRSfD method and try to answer the follow-194

ing two questions: Can CRSfD help the exploration of similar sparse-rewarded tasks with demon-195

strations from a mismatched task? Will CRSfD introduce bias to the learned policy in new tasks?196

We choose the robot insertion tasks for our experiments, which has natural sparse reward signals:197

successfully inserting peg into hole get a reward +1, otherwise 0. We perform both simulation and198

real world experiments. The simulation environment is built under robosuite framework [35] pow-199

ered by Mujoco physics simulator [36]. We construct a series of similar tasks where the holes have200

different shapes and unknown position shifts, reflecting changes in dynamics and reward functions201

respectively, as shown in Figure 1. Then we verify the effectiveness of CRSfD under the following 2202

settings: (1) Transfer collected demonstrations to similar insertion tasks with environment dynamics203

mismatch. (2) Transfer collected demonstrations to similar tasks with both environment dynamics204

and reward function mismatch. Finally, we address the sim-to-real issue and deploy the learned pol-205

icy on a real robot arm to perform insertion tasks with various shapes of holes in the real world. We206

use Franka Panda robot arm in both simulation and real world. The comparison baseline algorithms207

are chosen as follows:208

• Behavior Cloning [17]: Just ignore the task mismatch and directly perform behavior209

cloning of the demonstrations.210

• SAC [32]: A SOTA standard RL method which does not use the demonstrations and di-211

rectly learn from scratch in the target tasks.212

• GAIL [6]: Use adversarial training to recover the policy that generates the demonstrations,213

which allieviates the distributional shift problem of behavior cloning.214

• GAIfO [8]: A variant of GAIL which trains a discriminator with state transitions (s, s′)215

instead of (s, a) in GAIL to alleviate dynamics mismatch.216

• POfD [37]: A variant of GAIL which combines the intrinsic reward from discriminator217

and extrinsic reward from the new task.218

• SQIL [38]: An effective off-policy imitation learning algorithm that adds demonstrations219

with reward +1 to the buffer and assign reward 0 to all agent experiences.220

• SACfD [32, 3]: Incorporate effective demonstration replay mechanism from [3] with SAC221

as described in Section 4, which is also the best baseline as well as the backbone of our222

method.223

• RS-GM [21]: Reward Shaping using Generative Models, which is an extension on discrete224

reward shaping methods [39, 40]. After learning a discriminator Dϕ(s, a), they shape the225

reward into R′(s, a) = R(s, a) + γλDϕ(s
′, a′)− λDϕ(s, a).226

5.1 Simulation experiments227

We set a nominal hole position as the original-point of our Cartesian coordination. Observable states228

include robot proprioceptive information such as joint and end-effector position and velocity. Action229

space includes the 6d pose change of the robot end-effector in 10 Hz, followed with a Cartesian230

impedance PD controller running at a high frequency. Only a sparse reward +1 is provided when231

the peg is totally inserted inside the hole. Demonstrations are collected by a sub-optimal RL policy232

trained with SAC in task M0 under carefully designed dense reward, where the hole has shape ”0”.233

This process can be replaced by manual collection in the real world. Then demonstrations are tagged234

with the corresponding sparse reward. We collected 40 demonstration trails with 50 time steps each.235

236 Setting 1: Tasks with environment dynamics mismatch. To reflect environment dynamics237

changes of the tasks, we create experiments domain on insertion tasks with holes of various shapes238

in the simulator, represented by different digit numbers, as shown in Figure 1. Different shapes239

of holes will encounter different contact mode thus lead to different environmental dynamics. We240
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collect demonstrations from hole ”0”, and our method use them to help training similar new tasks241

with various hole shapes from digit 1 to 4.242

Analysis 1: The comparison results of CRSfD and baseline algorithms under the above setting are243

show in Figure 2 . As we expected, the simplest BC algorithm simply imitates the expert action244

of the original task and can only complete the insertion with a small chance. The SAC algorithm245

does not make use of the demonstration data and conducts a lot of useless exploration, which leads246

to poor performance. GAIL algorithm and its variants GAIfO, POfD also fail for most of times as247

they try to purely imitate the demonstration collected in the mismatched task. SQIL ignores the248

reward in the new task and only obtains a limited success rate. SACfD can not be effectively guided249

by demonstrations from the mismatched task under sparse reward. Our proposed CRSfD provide250

guidance through reward shaping, and consistently achieves the best performance on all the four251

insertion tasks with different hole shapes.252

Setting 2: Tasks with both dynamics and reward function mismatch Next, we consider more253

challenging scenarios where we aim to transfer the demonstrations to new tasks with both environ-254

mental dynamics mismatch and reward function mismatch. We assume that the hole has unknown255

random shifts relative to the nominal position, thus the reward function changes. At the beginning256

of each episode, the hole is uniformly initialized in a square area centered at the nominal position.257

This can be challenging because the robot is ‘blind’ to these unknown offsets and requires further258

search for the entrance of the hole. Practically, we collected demonstrations from task with hole ”0”259

with fixed hole position, and transfer to new tasks with random hole shifts and different hole shapes.260

 Environmental
     dynamics 
      changes

Reward function
       changes

     Shape “2”

     Shape “0”

4mm*4mm 
random shift

6mm*6mm
random shift

8mm*8mm
random shift

     Original task

     Original task      New tasks

10mm*10mm
random shift

12mm*12mm
random shift

CRSfD(ours)

SACfD

Figure 3: Evaluations of CRSfD and the best baseline SACfD. The solid line corresponds to the
mean of success rate over 3 random seeds and the shaded region corresponds to the standard de-
viation. X-coordinate reflects changes in reward functions and Y-coordinate reflects changes in
environmental dynamics. Our algorithm outperforms baseline with increasing margins as the task
changes become larger.
Analysis 2: We compare our algorithm with the best baseline algorithm SACfD under varying de-261

grees of environmental dynamics and reward function changes, as shown in the Figure 3. Due to262

space limit, more comparison can be found in Figure 7 in appendix. The x-coordinate represents263

the increasing changes of the reward function, where the random range of the holes becomes larger264

(from 4mm*4mm, 6mm*6mm, to 8mm*8mm). The y-coordinate represents increasing environmen-265

tal dynamics change, from hole ”0” in its original shape to hole ”2” in a different shape. Straight-266

forwardly, coordinate origin can represent the original task where demonstrations are collected, and267

a 2d coordinates [x, y] represents a new task with varying degree of mismatch.268

From Figure 3, we can observe that when applying to the original task or very similar task such as269

[4mm, shape ’0’], our method has a similar performance to the SACfD baseline. When the task270

changes become greater (e.g, [8mm, shape ’0’], [4mm, shape ’2’], [6mm, shape ’2’], [8mm, shape271

’2’]), SACfD gradually lose the guidance from original demonstrations as task mismatched more272

significantly, while CRSfD achieves significant performance gains with help of the conservative273

reward shaping using estimated value function.274
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Figure 4: Ablation stud-
ies of the conservative-
ness techniques. (1)
means regressing value
function to zero for OOD
states. (2) means setting
larger discount factors.

Ablation study As mentioned in section 4.2, we make two improve-275

ments over the reward shaping method to encourage the agent to explore276

around the demonstrations conservatively. (1) Regress value function of277

OOD states to zero. (2) Use a larger discount factor in new tasks. We278

ablate these 2 improvements and compare their performance. Ablations279

are tested under new task with hole shape “3”, results for other shapes280

can be found in the supplementary materials. As shown in Figure 5.1,281

compared to original CRSfD algorithm, moving away either of these 2282

techniques will lead to a performance drop, where the agent needs to283

take more effort in exploration.284

5.2 Real World Experiments285

After completing the insertion tasks of various-shaped holes in the sim-286

ulator, we deploy the policy to the real robotic arm. To overcome the287

sim-to-real problem, we use domain randomization in the simulation.288

The initial position of the robot arm end-effector and holes are randomized in a 6cm*6cm*6cm289

space and 2mm*2mm plane respectively, and the friction coefficient of the object is also random-290

ized in [1, 2]. We use a real Franka Panda robot arm and 3d print the holes corresponding to digit291

numbers “0-4”. Holes are roughly in sizes of 4cm*4cm, with a 1mm clearance between the peg and292

the hole. We performed 25 insertion trials under each shape of hole, and counted their success rates293

separately, as shown in the table 1. The robot achieves high success rate in all tasks.294

3D Print Initial

  Start 
 contact

 During 
insertion

Finish

Hole in simulation

Figure 5: Real world robot insertion experiments.

Hole Success
Shape Rate

Digit ”0” 1.0
Digit ”1” 1.0
Digit ”2” 0.92
Digit ”3” 0.92
Digit ”4” 0.96

Table 1: Success rate
for real world robot in-
sertion tasks.6 Conclusion295

Summary. In this paper, we studied the problem of reinforcement learning with demonstrations296

from mismatched tasks under sparse rewards. Our key insight is that, although we should not purely297

imitate the mismatched demonstrations, we can still get useful guidance from the demonstrations298

collected in a similar task. Concretely, we proposed conservative reward shaping from demonstra-299

tions (CRSfD) which uses reward shaping by estimated value function of a mismatched expert to300

incorporate useful future information to augment the sparse reward, with conservativeness tech-301

niques to handle out-of-distribution issues. Simulation and real world robot insertion experiments302

show the effective of proposed method under tasks varied in environmental dynamics and reward303

functions.304

Limitations and Future works. Provided with demonstrations from a mismatched task, our pro-305

posed method aids the online learning process for each new task separately. However, one may need306

to learn a policy to solve multiple new tasks at the same time, and exploration in these tasks may307

benefit each other. So future works include using demonstrations to accelerate the joint learning pro-308

cess of multiple tasks. Another limitation is that our method is only applicable to new tasks similar309

to original task. The effectiveness of CRSfD gradually decays when the tasks differ too much from310

the original task so that the demonstrations do not contain any useful information. It also worth to311

mention that the whole algorithm pipeline should be able to be implemented directly on hardware,312

which is a promising research direction.313
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7 Appendix415

7.1 Algorithm416

Algorithm 2 CRSfD
Input: Env Environment for the new task Mi; θπ initial policy parameters; θQ initial action-
value function parameters; θQ

′
initial target action-value function parameters; N target network

update frequency.
Input: BE replay buffer initialized with demonstrations. B replay buffer initialized empty. K
number of pre-training gradient updates. d expert buffer sample ratio. batch mini batch size.
Input: θV initial value function (potential function), original task discount factor γ0.
Output: Qθ(s, a) action-value function (critic) and π(.|s) the policy (actor).
# Estimate value function from demonstration.
for step t in {0,1,2,...T} do

Sample with batch transitions from BE , calculate their Monte-Carlo return with discount factor
γ0.
Estimate Vθ(s) conservatively by equation ??

end for
# Interact with Env.
for episode e in {0,1,2,...M} do

Initialize state s0 ∼ Env
for step t in episode length {0,1,2,...T} do

Sample action from π(.|st)
Get next state and natural sparse reward st+1, rt
Shape reward by: r′t = rt + γiV (st+1, θ

V )− V (st, θ
V )

Add single step transition (st, at, r
′
t, st+1) to replay buffer B.

end for
for update step l in {0,1,2,...L} do

Sample with prioritization: d ∗ batch transitions from BE , (1− d) ∗ batch transitions from
B. Concatenate them into a single batch.
Perform SAC update for actor and critic:LActor(θ

π), LCritic(θ
Q).

if step l ≡ 0 (mod N) then
Update target critic using moving average:θQ

′
= (1− τ)θQ

′
+ τθQ

Decrease expert buffer sample ratio: d = d− δ if d > 0.
end if

end for
end for

7.2 Implementation Details417

We implemented our CRSfD algorithm and the baseline algorithms in PyTorch and the implemen-418

tation can be found in the supplementary materials. Simulated environments are based on ro-419

bosuite framework https://github.com/ARISE-Initiative/robosuite. Our CRSfD algo-420

rithm is based on https://github.com/denisyarats/pytorch_sac_ae while baseline algo-421

rithms are based on https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and422

https://github.com/ku2482/gail-airl-ppo.pytorch.423

7.3 Videos424

Videos for simulated environments and real world environments can be found in the supplementary425

materials.426
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7.4 Ablations427

As mentioned in section 5.1, we make two improvements over the reward shaping method to en-428

courage the agent to explore around the demonstrations conservatively. (1) Regress value function429

of OOD states to zero. (2) Use a larger discount factor in new tasks.430

We ablate these 2 improvements and compare their performance on more environments, as show in431

Figure 6.432

CRSfD w/o (1) w/o (2) w/o (1)(2)
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Figure 6: Ablation studies of the conservativeness techniques. (1) means regressing value function
to zero for OOD states. (2) means setting larger discount factors.

7.5 Proof for theorem433

Theorem 1 For task M0 with transition T0 and new task Mk with transition Tk, define to-434

tal variation divergence DTV (s, a) = Σs′ |T0(s
′|s, a) − Tk(s

′|s, a)| = δ. If we have δ <435

(γk − γ0)ET2(s′|s,a)[V
D
M0

(s′)]/γ0 maxs′ V
D
M0

(s′), then following the expert policy in new task will436

result in immediate reward greater then 0:437

Ea∼π(.|s)r
′(s, a) ≥ (γk − γ0)ETk(s′|s)[V

D
M0

(s′)]− γ0δmax
s′

V D
M0

(s′) > 0 (5)

Proof: For simplify, denote demonstration state value function in original task V D
M0

= V1(s). Start438

from the reward shaping equations, and extend V1(s) for one more time step:439

r′(s, a, s′) =r(s, a, s′) + γkV1(s
′)− V1(s)

r′(s, a) =r(s, a) + γkETk(s′|s,a)[V1(s
′)]− V1(s)

=(γk − γ0)ETk(s′|s,a)[V1(s
′)] +

(
r(s, a) + γ0ETk(s′|s,a)[V1(s

′)]− V1(s)
)

≥(γk − γ0)ETk(s′|s,a)[V1(s
′)] + (Qπ1(s, a)− V1(s))− γ0δmax

s′
V1(s

′)

(6)

Take expectation on demonstration policies:440

Ea∼π(.|s)r
′(s, a) ≥Ea∼π(.|s)

[
(γk − γ0)ETk(s′|s,a)[V1(s

′)]
]
− γ0δmax

s′
V1(s

′) (7)

For a sparse reward environment, we have r(s, a) = 0 almost everywhere:441

Ea∼π(.|s)r
′(s, a) ≥Ea∼π(.|s)

[
(γk − γ0)ETk(s′|s,a)[V1(s

′)]
]
− γ0δmax

s′
V1(s

′)

=(γk − γ0)ETk(s′|s)[V1(s
′)]− γ0δmax

s′
V1(s

′)
(8)
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7.6 Increasingly Larger Task Mismatch442

Figure 7: Increasingly larger task mismatch. Experiments are done on hole shape 0 with increasing
random hole position.

We can observe that as task difference increases, our method first gradually outperforms baseline443

methods. When task mismatch are too large, our method gradually loss some performance and has444

similar performance with baselines.445
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