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ABSTRACT

Commonsense reasoning in large language models (LLMs) bridges the gap to
physical world, thus allowing them to think and behave more like humans. Pre-
vious research has shown that LLMs acquire the underlying factual knowledge
from extensive training corpora and store it within their parameters. However, how
LLMs apply this knowledge during the inference phase remains unclear. This lack
of transparency makes it difficult to determine whether shortcomings in LLMs
are due to a lack of factual knowledge or insufficient reasoning capabilities. In
this work, we aim to decipher the commonsense reasoning process into human-
understandable steps. By interpreting the hidden states in different transformer
layers and token positions, we uncover a specific mechanism by which LLMs
execute reasoning. Our extensive experiments indicate: 1) both attention head
and multi-layer perceptron (MLP) contribute to the generation of factual knowl-
edge from different perspective. 2) The process of commonsense reasoning in
LLMs involves a clear sequence of knowledge augmentation, broadcast, retrieval,
reranking, and answer generation. Building on these findings, we have discovered
that LLMs often contain relevant facutal knowledge but fail to retrieve the correct
knowledge at top. To address this issure, we selectively fine-tuned the key heads
and MLPs, resulting in notably improvements in reasoning performance in both
in-domain and out-of-domain settings.

1 INTRODUCTION

Commonsense reasoning is a human-like ability to make presumptions about the type and essence
of ordinary situations humans encounter every day (Wikipedia contributors| |2023). It is the key for
human to interact with the world, and also the bridge for Al systems to reason about the world as hu-
mans (Wei et al.,[2022} Talmor et al., 2022; Bhargava & Ng||2022a)). Recent Large Language Models
(LLMs) have demonstrated impressive abilities in commonsense reasoning, particularly when em-
ploying the chain-of-thought technique (Wei et al., [2022; [Wang et al.l 2022} |Saparov & He, 2022)).
These models can answer complex questions about world knowledge with high accuracy and even
offer suggestions for everyday human activities. However, they often struggle with some basic com-
monsense aspects, such as reversing curses (Berglund et al.|2023)), which poses challenges to users
trusting their results. Therefore, understanding how models perform commonsense reasoning is vital
for developing Al that is both transparent and reliable.

To unravel the commonsense reasoning capabilities of LLMs, existing studies have explored how
the parameters of these models encode factual knowledge, which is derived from extensive training
corpora (Akyitirek et al., 2022; L1 et al., 2022; |Petroni et al., 2019; Roberts et al., 2020; |Allen-Zhu &
Li,|2023). However, the underlying mechanism of how this knowledge is applied during inference
is still a mystery. This uncertainty makes it difficult to determine whether errors in commonsense
reasoning stem from a lack of knowledge or from flawed understanding. For instance, if a model
mistaken that Raclette and Switzerland are unrelated. This could either be because it lacks the
knowledge that Raclette is a Swiss dish or because it favors the perception of Raclette is a cheese,
and cheese originates from Middle East. Motivated by this, we aim to reverse engineer the intrinsic
mechanism in LLM, and decipher the commonsense reasoning process of LLMs into steps that
are understandable to humans. In this way, we can better understand why models produce certain
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Figure 1: Deciphered commonsense reasoning process in LLMs. The five stages of the process
are depicted through the example of addressing a reasoning question, as presented in the leftmost
column, while the corresponding generated answer is showcased in the rightmost column, utilizing
the Gemma2-9B model. The detailed depiction of these stages is presented sequentially from left to
right in the central columns, corresponding to the processing order along with the associated layers.
This figure is best viewed when zoomed in.

outputs or fail to generate correct answers, and we can enhance the model’s reasoning capabilities
in a targeted and rational manner.

In this study, we leverage a variety of analytical methods including path patching (Wang et al.,
2023al), the Logit Lens (nostalgebraist, [2021), and SAE (Lieberum et al., 2024)) to analyze the be-
havior of models from multiple dimensions. Given that commonsense reasoning is integral to the
whole sequence of the rationale, our focus shifts toward examining the interrelationships between
different tokens rather than delving into the details of individual token generation. To achieve this,
we have designed an “Interpreting Module” that automates the analysis of how models produce in-
dividual tokens. Inspired by [Bills et al.|(2023) on interpreting GPT-2 using GPT-4, we also utilize
GPT-4 to analyze results from Path Patching, Logit Lens, and SAE. Through comprehensive experi-
ments, we summarized a five-stage reasoning process for factual knowledge recall, shown in Fig.[T]
including knowledge augmentation, broadcast, retrieval, reranking, and finally answer generation.
Specifically, LLMs first evoke related factual knowledge for augmentation. The knowledge is re-
tained within the hidden states at each token position in the whole rationale. When predicting the
key content in rationale that require commonsense reasoning, the knowledge is retrieved to provide
supporting evidence. It is first recalled by attention heads and then re-ranked by multi-layer percep-
trons (MLPs). At the end of rationale, the conclusion such as --yes/no” is derived and stored in the
hidden states. Finally, the answer is transferred through the heads into the output.

Building on these five stages, we identified that LLMs’ failing to answer correlates with the issue of
knowledge retrieval and reranking. The models misinterpret key words in the context, leading to the
failure of attention heads to recall and MLPs to re-rank the correct factual knowledge at the top po-
sition. To address this problem, we fine-tuned specific heads for knowledge retrieval and MLPs for
reranking, enhancing the model’s ability to recall the correct knowledge, and thereby improving its
reasoning performance. Experimental results demonstrate that fine-tuning less than 10% of param-
eters, compared to a full model fine-tuning, leads to a notable performance enhancement, especially
for out-of-domain settings. This selective adjustment strategy exhibits superior performance, further
validating the understanding and explaining of the reasoning process in models.

We summarize our contributions as follows: (1) We focus on interpreting the process of common-
sense reasoning within LLMs into steps that are comprehensible to humans. Through experimental
analysis, we found that LLMs augment related factual knowledge as a form of database, subse-
quently retrieving and re-ranking key tokens during prediction, and finally generating conclusions
and answers. (2) Building on the above observations, we further identify that on commonsense
reasoning tasks, LLMs often fail to retrieve correct knowledge, leading to erroneous reasoning or
conclusions. By selectively fine-tuning key heads and MLPs, the performance of reasoning is en-
hanced, especially for out-of-domain samples. It validates the reliability of the interpreting results.
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2 RELATED WORK

Commonsense reasoning. Machine common sense, or the ability to comprehend and reason about
an open-ended world, has long been recognized as a crucial aspect of natural language understand-
ing (Bhargava & Ng| 2022b; |Sap et al., |2020). With the advent of large language models, there
has been a significant leap in the reasoning capabilities of deep learning models, especially with
the adoption of Chain of Thought (CoT) techniques. This has propelled the enthusiasm for under-
standing and advancing reasoning abilities to new heights. In this paper, we focus specifically on
commonsense reasoning. Unlike temporal and numerical reasoning, which often emphasize a more
symbolic approach, commonsense reasoning explores the connections between events or entities,
enhancing our understanding of how large language models perceive and interpret the world.

Large language models (LLMs). Recent advancements in Large Language Models (LLMs) have
led to remarkable performance across various Natural Language Processing (NLP) tasks. Although
some commercial LLMs, such as GPT-3.5 (Brown et al., 2020) and GPT-4 (OpenAll 2023), are
closed-source, the growing number of open-source LLMs is achieving comparable results. Llama
series (Touvron et al.l2023)) and Gemma series (Team et al.l 2024) are two families of open-source
LLMs that exhibit remarkable proficiency in NLP tasks. Our experiments are conducted on four pre-
trained language models, Llama2-7B, Llama2-13B, Gemma2-9B, and Qwen2.5-72B (Qwen Team)
2024). The model weights for these architectures are openly accessible on HuggingFace. In perfor-
mance evaluation, all these models exhibit remarkable proficiency in reasoning NLP tasks.

Mechanistic interpretability of Large Language models. Despite their impressive capabilities,
large language models’ internal mechanisms remain largely underexplored. A predominant theme
is the identification of specific layers and neurons responsible for knowledge storage (Meng et al.,
2022; Dai et all 2021} |Geva et al., |2023). Recent studies have introduced and refined the “path
patching” approach to identify critical components in models, including GPT-2 small (0.1 billion
parameters) and Chinchilla, for tasks like indirect object identification and multiple-choice ques-
tions (Wang et al.,2023b). This method, inspired by causal mediation analysis, involves perturbing
component inputs and observing the resulting changes in model behavior, has been successfully
extended to various tasks and larger models, demonstrating its broad applicability and scalability
(Goldowsky-Dill et al.| 2023} Hanna et al.| [2023; [Lieberum et al., 2023} |Conmy et al., 2023).

A significant gap exists in LLM interpretability research, particularly in understanding the key com-
ponents enabling complex tasks like reasoning. The complexity of CoT reasoning tasks makes it
challenging to design a unified symbolic causal model (Geiger et al.l |2023). This work uses the
path patching method to identify crucial attention heads/MLPs responsible for CoT reasoning in
LLMs. To validate these findings, we employ a “knockout” experiment, comparing the full model’s
behavior to a model without the specific head, as inspired by previous work (Wang et al.| 2023b). t

3 METHOD

3.1 PRELIMINARY

In LLMs, commonsense reasoning is a multi-token generation process, including rationale and an-
swer. Based on the construction of Subject-Verb-Object triplets (SVO) (Speer et al., 2017) used in
the StrategyQA (Geva et al., [2021)) and CSQA (Wikipedia contributors, [2023) datasets, we identify
three key positions in the model generation: Concept, Attribute, and Response tokens. These tokens
are observed special in experiments, and therefore we highlight them for better comprehension.

Concept (C): The subject of inquiry in the question; this is a concept node in a knowledge graph,
representing any entity, idea, or object relevant to commonsense (e.g., “Ganesha” in Figure[2])

Attribute (A): The object, which is paired with C as SVO to contain some knowledge, is also a con-
cept node. These attributes, according to their relevance as accurate knowledge for the question, can
be categorized into predicted attributes A, (e.g., “Ganesha is a Hindu god”) and general attributes
A, (e.g., “Ganesha is recognized by his elephant head and four arms”).

Response (R): The answer to the question, which can vary depending on the type of question. It
may be a binary judgment (e.g., “yes/no”), a selection (e.g., “(2) Kayla”), or a free-form text.
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Figure 2: Overview of interpreting pipeline.

To understand how the answer is generated, we begin by extracting information from the evaluated
data and the interpreted LLM, including R, C, A, and A,. These tokens serve as the observed an-
chors to assist the understanding of the mechanism within LLMs. This extraction can be performed
using GPT-4 (prompt in Appendix[A:3:2) or manual methods. (see Appendix [A-4]for examples.)

Since the rationale and the answer are recursively generated, it is hard to investigate both the rela-
tion across different tokens and the patterns in the token generation simultaneously. Therefore, as
illustrated in Figure[2] we divide our interpretation process into two orthogonal pipelines.

Trace token-to-token path: The first is the horizontal pipeline, which traces the path of tokens,
from the end to the start. For example, tracing from R to A then to C. Through causal back tracing
within LLMs, it reveals the relationships across the sequence of tokens.

Decode parametric concept or attribute: The second pipeline, shown vertically, analyzes the
patterns within LLMs when generating a specific token, including inner behaviors and activation
characteristics. It first identifies and localizes the modules (e.g., attention heads and MLPs) that
are related to the target content (e.g., R, C, A, and A,). Subsequently, it decodes the semantic
information and patterns encoded in these modules into human understandable formats.

3.3 INSTANTIATION OF INTERPRETING MODULE

Instantiation of tracing token-to-token path. We employ Path Patching (Wang et al.} 2023al) as an
effective tool for causal back tracing. This method originates from causal mediation analysis
2020), where the results of direct effect enable us to identify the significant heads. Heads
with the Top-10 direct effect are considered contributors to generating a token. By examining the
attention patterns in these important heads, previous tokens with attention scores greater than 0.2 are
regarded to have high correlation with current token. These tokens are the targets for tracing. This
process can then be iteratively applied to discover the transition path across tokens. Path Patching
relies on high-quality counterfactual data, which is paired with original data to calculate the direct
effect for each head. It must be carefully designed to change specific semantics within a sentence
minimally, without disrupting other narrative settings. We automatically generate this counterfactual
data by GPT-4 (Further details are available in Appendix [A.3)), achieving consistency comparable to
human-generated data. (See Appendix [AJ3) for comparison results.)

Instantiation of decoding parametric concept or attribute. We use Logit Lens
to localize the modules that contain target information. This approach is able to project hid-
den states directly into the vocabulary space using the model’s pretrained unembedding matrix. It
reveals the information contained in current hidden states and explains the contribution of specific
heads or MLPs or residual blocks to the predicted token. Specifically, we calculate the softmax
probability of the observed tokens (A,, A, or R) after projecting the hidden states to vocabulary
space. The probabilities across layers will form the curves (see examples in Figure ), where layers
exhibiting extreme values are identified for further analysis. For MLP, we adopt Sparse Autoen-
coder (SAE) 2024) to decode the semantic information embedded in the parameters
and activations. (e.g., Information related to “Hindu” is decoded in MLP of layer 8 when feeding
“Ganesha” to the model.) Based on dictionary learning, SAE translates the internal hidden states of
LLMs into several interpretable pieces, or termed latents. These latents are activated by specific to-
ken sequences, and most can be translated by GPT-4 into concrete semantic descriptions. Regarding
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attention heads, we use probing to decode the semantic information. We project the outputs of the
heads into the vocabulary space and examine the top-K tokens in the head’s output distribution to
decode the semantic information. Specifically, we calculate the proportion of tokens in the top-K
that are correlated with the observed token.(e.g. “elephant” and “deity” are considered correlated
with the observed token "Hindu”). If the proportion exceeds a pre-set threshold, we presume this
head encodes concept-related attributes.

3.4 VERIFICATION OF INTERPRETING RESULTS

To verify the mechanism found by interpreting module, we adopt selectively supervised fine-tuning
on the identified modules. Following the method proposed in Zhang et al.[(2024), we directly use the
same settings without modification for effective verifications. Given a sequence of attention heads
ordered by their significance, denoted as (11, h1), (I2, h2), . . ., where [; represents the layer index and
h; represents the head index of the i*" ranked head, only top K heads are exclusively updated during
fine-tuning. We optimize both the corresponding input mapping matrix {Wfl“, lez, N VV{;( X1} and
the output mapping matrix {Olhl1 , Olh;, e Olhlf} in top K heads simultaneously. For the selected
MLP layer, we update all parameters in this layer.

4 EXPERIMENTS

4.1 EXPERIMENTS OVERVIEW

As presented in Section[3.2] we start from the end token position (i.e., the position of Response R).
At the position of R, we decode the parametric concept during response generation and causally
trace back to the previous token position (i.e., the position of attribute A). We term this process
as answer generation(§4.2). Trace back to the position of A, where an analysis of the predicted
attribute’s generation revealed the mechanisms of knowledge retrieval and reranking (§4.3). Fur-
ther tracing the source of attribute information led to the position of concept C, uncovering the
mechanisms of knowledge augmentation and knowledge broadcast(§4.4). After interpreting the
mechanism behind commonsense reasoning, we employed SSFT (§4.6) to validate the mechanism.

Models To explore the internal mechanisms of large language models (LLMs), we conducted ex-
periments on open-source models, selecting diverse architectures and sizes to ensure the robustness
and generalizability of our findings. Specifically, we employed Gemma2-9B (Team et al. [2024),
Llama2-7B (Touvron et al.| [2023)), and Qwen2.5-72B (Qwen Team) [2024) The results in the Sec-
tion [] primarily focus on Gemma2-9B, as Sparse Autoencoders (SAEs) have been trained for all
its layers (including residual and MLP layers) (Lieberum et all} [2024), enabling comprehensive
validation of our analyses. Additional results for Llama2-7B and Qwen2.5-72B are provided in

Appendix [A:8]and Appendix[AZ7] respectively.

Datasets Commonsense reasoning is inherently abstract, encompassing diverse question types and
linguistic expressions. To explore the factual knowledge recall mechanism of large language mod-
els (LLMs), we selected four widely used commonsense reasoning benchmark datasets: Strate-
gyQA 2021)), CommonsenseQA (Talmor et al.|[2018), WinoGrande
[2021), and SocialIQA 2019). The results are primarily reported on the StrategyQA

dataset, with results for the other three datasets provided in Appendix [A.6] All metrics and curves
are averaged over 100 samples. Few-shot prompts from |Wei et al.| (2022) and |Li et al|(2024) are
adopted to elicit model’s reasoning abilities.

4.2 ANSWER GENERATION

Considering examples from StrategyQA where the response R is “yes” or “no”, we decode the
correct answer and incorrect answer information in MLP outputs. As shown in Figure[3|(a), the curve
of MLP in layers 0—33 contain almost no information related to the R. However, in layers 34 and
37, the probability of the correct response exhibits a sharp increase, with two distinct spikes, while
the probability of incorrect response remains unchanged. Similarly, we analyzed the attention curve
(Figure[3](b)) and found that in layers 0-31, there is minimal response-related information. However,
in layers 32-35, the probabilities of both correct and incorrect responses increase significantly and
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Figure 3: Probing resul(t )at answer generation position: (a) Probabilities of correct and incorrect
answer of MLP outputs across layers, showing dominant information of correct answer in deep
layers. (b) Probabilities from attention layers show entangled information of different types of
answers in the output. (c) Information decoded in the key MLP is directly related to the correct
answer. (d) Key attention head for answer generation mainly attends to the position of A. (e)
Key attention heads for answer generation are located in layers 25-37. These findings highlight the
answer generation process, where head aggregate options and MLP select the answer to output.

are relatively close in magnitude. Based on these observations, we conclude that during response
generation, the attention mechanism is responsible for aggregating all plausible answer options,
while the MLP ultimately selects the final response to output.

Then we used Sparse Autoencoder (SAE) to analyze the information encoded in layers 34, 37. As
for the sample of “Ganesha is a Hindu god ...” with correct response as “no”, we discovered nu-
merous latents related to negation. Specifically, in layer 34, we identified a latent corresponding
to References to expressions of negation in natural language, such as “no” and “not”, shown in
Figure 3] (¢). These findings provide additional evidence supporting the critical role of the MLP in
the answer generation process.

At last, we identified the key attention heads responsible for generating the conclusion and traced
their information sources. These heads are concentrated in layers 25-37 (Figure[3|(e)) and primarily
focus on the position of A (e.g. “Hindu™) within the rationale (Figure [3] (d)). Despite the primary
focus, we also observed some minor attentions concentrated on reasoning-related tokens (e.g., “thus”
and “so”). We probe these positions through Logit Lens and found they already contain information
about the correct answer (i.e., “no”). In addition, back tracing these reasoning-related tokens, the
primary focuses are also “Hindu”. Therefore, our investigation continuously traces back to the
position of A prediction.

4.3 KNOWLEDGE RERANK AND RETRIEVAL

Probing Atibute of Residual Sweam on Atribute Prediction

0.4
03
g 02
01

0 10 20 30 40 0 10 20 30 40
Layer Layer

(a) (b) ©
Figure 4: Probing results at the attribute prediction position: (a) Probabilities of the predicted at-
tribute A,, and general attributes A, of residual block outputs across layers, showing an alternating
pattern in their relative importance in layers 28—40. (b) Probabilities from MLP outputs, primarily
aligned with A,. (c) Probabilities from attention outputs, contain both A, and A,. These results
highlight the reranking mechanism, where MLP layers in the mid-to-late stages (28—38) dominate
attribute selection.

The attribute information A decoded in residual block outputs, MLP outputs and attention outputs
are shown in Figure[d} In residual block curve, the attribute information begins to emerge at around
layer 30. However, the predicted attribute .4,, is not dominant in the first place, as the probabilities
of A, and general attribute A, increase alternately, with A, gradually surpassing A, at around
layer 37. In MLP curve, attribute information is only evident in layers 30-37 (with probabilities
close to 0 in the rest of the layers). Within these layers, it’s clearly observed that .A,, is prominently
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represented, while .4, remains minimal. For the attention curve, in layers 25-40, A, and A, starts
to interleave, showing no explicit dominance in between.

From the observations above, we can conclude a key finding: the MLP is responsible for enhancing
the probability of .4, (which we termed knowledge reranking.) and finally generating 4,, in at-
tribute prediction. To validate our finding, we look into the MLP output using SAE. Specifically, we
examine the features whose explanations are semantically related to both .A,, and A,. The results are
shown in Figure[5](a). These features strongly represent Hindu-related attributes, but none of which
is related to the general attribute A,. This further verifies our finding that the MLP contributes to
answer generation by amplifying .A,, only.

Latent ID  Latent Explanation Attention head  Top10 tokens in vocabulary space

31.1376 references to Indian 25.1 elephant, Ganes, elephant, #, Elephant, Elephant,
institutions or entities clefante, religione, estatua, Elephants

31.3694 references to Indian cuisine 252 India, India, INDIA, Hindu, Indian, india, Indians,
and food-related terms Hindus, Hindu, Mumbai

32.127330  references to divine entities or 29.14 elephants, elephant, Elephants, Elephant, Elephant,
Hindu deities elef, elephant, Ganesh, #, Ganes

(@ (b

Figure 5: Comparison of the information encoded in the key MLP (a) and attention heads (b) re-
sponsible for knowledge retrieval. It is observed that the MLP outputs are directly related to the final
predicted attribute, whereas the attention head outputs contain various attributes associated with the
concept.

Next, to understand what happens in the intertwined emergence of A, and A, in attention outputs,
we conduct further analysis with head localization and probing. We first confirm that the most in-
fluential attention heads are localized after layer 25. The outputs of these heads encode a rich set
of attribute information relevant to the concept (e.g., elephant and Hindu in the context of Ganesha
as shown in Figure [5| (b)). Given that these attention heads operate earlier than the layers where
information of A, appears in the MLP (layer 30), we propose the following attribute prediction
mechanism: attention heads in the intermediate layers first aggregate all relevant attributes (both A4,
and A,) through a process of termed knowledge retrieval. Subsequently, the MLP ranks these at-
tributes according to their relevance and selects .4,, for the final output (i.e., knowledge reranking).

Attention head Attention score

25.1 Q: Yes or no: Is Ganesha associated with a Norse god?<newline>
A: Ganesha is a

252 Q: Yes or no: Is Ganesha associated with a Norse god?<newline>
A: Ganesha is a

29.14 Q: Yes or no: Is Ganesha associated with a Norse god?<newline>

A: Ganesha is a

Figure 6: Heads pattern for knowledge retrieval in Gemma2-9B: mainly attends to the position of
concept and question end.

Finally, we find these attention heads focus on two critical token positions, as shown in Figure [6}
the position of C and the position of question end. For example, head 25.1 exhibits average attention
scores of 0.62 and 0.22 at the position of C and question end, respectively. Therefore, we trace back
to the position of C to investigate the origin of A.

4.4 KNOWLEDGE AUGMENTATION AND BROADCASTING

From the position of the .4, we further back-trace to the positions of the C and the Question End.
Generally, in commonsense reasoning datasets, the C always appears in both the question and the
rationale. Through analysis, we observe that the C in the rationale can also back-traced to the C in
the question. Therefore, we treat the position of C in the question as a focal point for deeper analysis.

Figure [7] illustrates the information curves decoded in the outputs of residual block, MLP and at-
tention during the generation of C, relative to the predicted attributes .4,, and general attributes A,.
Notably, we observe that: 1) In residual curve, it contains obvious information regarding both A,
and A, across various layers, with A, being more prominent than 4,, at the end. 2) another two
curves show that both MLPs and attention heads have large influence on A, and A,. To further



Under review as a conference paper at ICLR 2025

Probing Attribute Prob. of Residual Stream on Concept Position Probing Attribute Probability of MLP_out - MLP_in on Concept Probing Attribute Probability of Attn_out - Attn_in on Concept
0012 I
001 0.01 —=— Predict attribute 0.008 === Predict attribute |
~— General attibutes ~— General attibutes I
0008 . 0.006 I
2 0006 g 8 1 |
& & 0.005 & 0.004 I |
0004 " I |
o002 ) AN 0.002 | I\ |
o 0] AN Ve A.J . 0] o A ANSA A |
0 10 o » “ 0 10 20 30 40 0 10 20 30 40
v Layer Layer

(a) (b) (c)
Figure 7: Decoding results of residual block (a), MLP (b), and attention (c) at the position of concept
C. Corresponding to the knowledge augmentation process: the attribute information in the shallow
layer is encoded by MLP layers, which serve as the source information for knowledge retrieval.

Layer  Feature ID Feature i Attention head Top10 tokens in vocabulary space
7 119958 R to deities and ical figures i 29.14 elephants, elephant, elef, Elephants, Elephant,
with nature, fertility, and seasonal changes. elephante, ®, Ganes, Gnesh, elephant
84677 References to deities and divine entities in a religious 29.15 Hindu, avoent, Mharashtra, Hindu, étoient,
context. Sri, Marathi, Sanskrit, Indian, Tamil
32 109559 References to Hindu deities and their attributes. 39.7 Lord, Krishna, lord, Ganes, LORD, Lakshmi,
15523 References to countries and regions in South Asia, Krishna, Indra, Vishnu, Hindu
particularly related to India and its cultural aspects.
(a) (b)

Figure 8: Comparison of the information encoded in the key MLP (a) and heads (b) responsible for
knowledge retrieval. It is observed that the MLP outputs are directly related to the final predicted
attribute, whereas the attention head outputs contain various concept-related attributes.

validate the decoded information, as shown in Figure[8] we use SAE and Probing for investigation.
Specifically, SAE identifies that MLPs in layers 7 and 32 identify latents related to “references to
Hindu deities and their attributes”. Meanwhile, Probing also reveals that heads in layers 29 and 39
rank the A, at top. In addition to diminishing the impact of the information from any previous token,
we also examine the three corresponding curves at the position before C (for instance, “Question:

@ Ganesha”). The results reveal that the information regarding A, and A, is virtually zero. It
indicates that the emergence of 4, and A, is indeed contingent upon the appearance of C and is
independent of any previous tokens. In conclusion, both the MLP and heads play essential roles in
assisting the model to associate and extend from C to related A, and .4,. We refer to this stage,
along with the contributions of the MLP and heads, as knowledge augmentation.

n  Probing Attribute Probability of MLP_out - MLP_in on Question End on strategyga Probing Attribute Probability of Attn_out - Attn_in on Question End on strategyaa

0.05

0.004

o
Prob,

0.002

(@ () (©)

Figure 9: Decoding results of the residual block (a), MLP (b), and attention (c) at the position of
the question end. Knowledge movement are discovered based on the decoding result: question end
position encodes rich attribute information, which is transported by the attention. MLP adjusts the
ranking of A, and A,,.

Regarding the the question’s end token position, Figure 0] also presents the three corresponding
curves. (1) In the residual curve, both 4, and A, appear across multiple layers. On the contrary to
concept token position, .4, has a greater presence than A,. (2) The curves for the MLP and heads
also encapsulate information about both A, and A, and further enhance the importance of A,,.
These observations indicate that even at seemingly unrelated token positions, the A corresponding
to the C (or the knowledge they encompass) can be broadcast. The original order of .4 may shift
based on the current context, ultimately influencing the generation of .4,. We term this stage as
knowledge broadcasting.

4.5 SUMMARY OF THE COMMONSENSE REASONING MECHANISM

Based on the findings from the preceding subsections, we can summarize the complete mechanism
of factual knowledge recall in commonsense reasoning tasks as follows:
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(1)Knowledge Augmentation: At the position of C, shallow-layer MLPs encode all kinds of
concept-related attribute information into the residual stream. (2) Knowledge Broadcasting: At
the question’s end token position, the model aggregates information from C and reorganizes it based
on the context. After that, the information at question’s end token and C are broadcast to following
important tokens. (3) Knowledge Retrieval: At the position of A, attention heads gather attribute
information from the position of C and the question end position. Then the information is trans-
ported to the attribute prediction position. (4) Knowledge Reranking: Also at the position of A,
MLP layers select the most appropriate attribute .A,, from the retrieved candidates for prediction out-
put. (5) Answer Generation: At the predict token position, attention layers aggregate information
from A token position to draw the final conclusion.

We conducted experiments on three additional commonsense reasoning datasets (CommonsenseQA,
WinoGrande, and SociallQA) and validated the mechanisms of knowledge retrieval and knowledge
reranking across all of them. However, the phenomenon of knowledge augmentation was not promi-
nently observed in the SociallQA and CommonsenseQA datasets. We hypothesize that this is due
to the explicit provision of the required knowledge within the question context, which diminishes
the model’s need to infer additional related knowledge. Please see Appendix [A.6] for details. In
addition, we validated the proposed reasoning process on the Qwen2.5-72B model. Detailed results
can be found in Appendix [A7]

4.6 SELECTIVE SUPERVISED FINE-TUNING ON COMMONSENSE REASONING-RELATED
COMPONENTS

74%

Ratio

Figure 10: The distribution of the four types of errors encountered by Llama2-7B on StrategyQA.
1) Reference Error: The model retrieves irrelevant or wrong attributes. 2) Logic Error: incomplete
reasoning steps. 3) Conclusion Error: reaches an incorrect answer but based on correct rationale. 4)
Concept Error: incorrectly identifies the target concept for analysis. The prompt we use GPT-4 to
assist classification is available in Appendix[A.3.3]

Table 1: We fine-tune Llama2-7B/13B on the StrategyQA dataset using supervised fine-tuning (SFT)
and selectively supervised fine-tuning (SSFT). Here are the capabilities of models on four common-
sense reasoning tasks (e.g., StrategyQA, CSQA, Winogrande, and SociallQA) before and after tun-
ing.

ID Task 00D Task
StrategyQA CSQA Winogrande SocialIQA Average

Models P’Ihned Ace. A Ace. A Ace. A Ace. A Ace. A

arams.

Llama2-7B - 62.5 - 61.1 - 534 - 602 - 582 -
+ SFT 6.7B 773 +14.8 548 -63 527 -0.7 590 -12 555 -27
+ SSFT 0.2B 78.5 +16.0 64.1 +3.0 61.1 +7.7 632 +3.1 628 +4.6

Llama2-13B - 66.0 - 68.3 - 55.5 - 679 - 639 -
+ SFT 13B 79.0 +13.0 695 +1.2 546 -09 63.1 -4.38 624 -1.5
+ SSFT 0.5B 803 +143 726 +43 566 +1.1 69.2 +13 66.1 +2.2

Failure Case Analysis. By examining instances where the model (Llama2-7B) provides incorrect
responses, we identified four distinct error types on the StrategyQA task (specific cases for each
type are shown in Fig. [T0): 1) Reference Error: The model retrieves attributes that are irrelevant to
the question context or erroneous attributes; 2) Logic Error: The knowledge generated by the model
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is insufficient to support the conclusions drawn by the model; 3) Conclusion Error: The model
reaches an incorrect answer despite having the appropriate reasoning knowledge; and 4) Concept
Error: The model incorrectly identifies the target concept for analysis. Among these, the most
prevalent error type is Reference Error (74%). Furthermore, we conducted probing to investigate
the underlying causes of Reference Errors, specifically determining whether these errors resulted
from incorrect reranking despite the model possessing the correct attributes, or from the model’s
lack of knowledge regarding the correct attributes. Experimental findings indicate that the majority
of Reference Errors stem from reranking issues, as the correct knowledge is typically present within
the model’s top five predicted tokens. Consequently, following |Zhang et al.|(2024) and |Chen et al.
(2024), we aim to enhance the model’s commonsense reasoning capabilities by strategically training
the identified MLP and attention heads that contribute to completing commonsense reasoning tasks,
thereby improving the model’s ability to recall correct attributes.

Experiment Setup. With the key attention heads and MLPs identified for generating attributes
(refer to Section for details), we conduct the selective supervised fine-tuning (SSFT) ex-
periment on StrategyQA task through only updating the parameter of selected heads and MLPs.
Specifically, Following [Fu et al,| (2023) and [Huang et al| (2022), each sample in our training
data is organized with the format of “{Few-shot CoT prompt} Q: {Question}. A:
{Rationale} {Answer}”.

We selectively fine-tune the top k attention heads (for knowledge retrieval) and top [ MLP layers
(for knowledge reranking) with a learning rate of 1 x 10~* and a batch size of 32 for 2 epochsﬂ For
supervised fine-tuning, a learning rate of 1 x 10~° is utilized, while all other configurations remain
consistent with SSFT training. Experiments are conducted on 8 NVIDIA A100 (80GB) GPUs.

Experiment Results. The comparative results between SSFT and SFT are presented in Table[T]} For
the experiments of Llama2-7B on StrategyQA, both SSFT and SFT improved performance, achiev-
ing gains of +16.0% and +14.8%, respectively. While SFT shows a comparable enhancement for
the StrategyQA task, it adversely affected performance on OOD tasks, with an average decrease
of —2.7%. In contrast, SSFT continued to bolster the model’s reasoning ability across all OOD
commonsense reasoning tasks, improving the performance by an average of +4.6%. These findings
suggest that selectively fine-tuning a small fraction of key components of LLMs on commonsense
reasoning can substantially boost performance on CoT tasks (in-domain) while maintaining general-
izability (out-of-domain), highlighting the effectiveness of our previous exploration. A similar trend
was observed in the Llama2-13B results. Through mechanism analysis of the model before and after
SSFT, we further validate that SSFT enhances the model’s knowledge retrieval and reranking capa-
bilities. (See Figure (16| for details. ). Additionally, we further validate the effectiveness of SSFT
through training on three other datasets (Figure[I6)) and training on a larger model (Qwen2.5-72B in

Table [T0).

5 CONCLUSION

In conclusion, our research sheds light on the intricate dynamics of commonsense reasoning within
LLMs, revealing a structured process that parallels human cognitive reasoning. By meticulously
analyzing the hidden states across various transformer layers and token positions, we identified
a multi-faceted mechanism that integrates knowledge augmentation, retrieval, and answer gener-
ation—essentially resembling a retrieval-augmented generation framework. Our findings under-
score the pivotal roles played by both attention heads and MLPs in the manifestation of factual
knowledge, highlighting a dual approach to knowledge processing. Furthermore, our experiments
demonstrated that while LLMs often possess relevant factual knowledge, they frequently struggle to
retrieve the correct information during inference. Through selective fine-tuning of key components,
we achieved notable enhancements in reasoning performance across diverse contexts, indicating that
targeted adjustments can effectively optimize the reasoning capabilities of LLMs. This study not
only contributes to a deeper understanding of LLM functionality but also offers actionable insights
for improving their reasoning processes, paving the way for more sophisticated and human-like
interactions with artificial intelligence systems.

'k = 32,1 = 2 for Llama2-7B and k = 64, = 2 for Llama2-13B
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6 ETHICS STATEMENT

This paper presents work whose goal is to advance the field of mechanistic interpretability in LLMs.
We use public natural language processing datasets and leverage open-source large language mod-
els for our experiments. Our code or method are not inherently subject to concerns of discrimi-
nation/bias/fairness, inappropriate potential applications, impact, privacy and security issues, legal
compliance, research integrity or research practice issues.
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A APPENDIX

A.1 COMPARISON WITH PRIOR INTERPRETING FACTUAL KNOWLEDGE WITHIN LLMS

STUDIES

Our work builds upon and extends existing studies on the interpretability of factual knowledge in
large language models (LLMs), distinguishing itself in terms of the reasoning process, interpreting
tools, and key findings. Previous studies, such as|Geva et al.[(2023));|Meng et al.|(2022), primarily fo-
cus on a reasoning process comprising knowledge augmentation and retrieval. These works employ
tools like logit lens, knockout, and causal tracing to demonstrate that factual knowledge is stored in
mid-layer MLPs and retrieved by attention heads. In contrast, our study introduces a novel reasoning
step, knowledge reranking, which highlights how deep-layer MLPs refine retrieved information to
prioritize relevant attributes for final predictions.

Furthermore, while other studies such as|He et al.|(2024); Yuksekgonul et al.| (2023)) focus on distin-
guishing factual activation patterns or analyzing attention for entity retrieval, they do not provide a
comprehensive multi-stage explanation of the reasoning process. Similarly, |Yu & Ananiadou|(2024)
identifies knowledge storage in both attention heads and MLPs but lacks a discussion of how knowl-
edge is effectively utilized in downstream tasks.

In addition to the reasoning process, our work advances the toolkit for interpretability research by
developing and applying novel tools like path patching and sparse autoencoder (SAE). These tools
enable fine-grained, token-by-token analysis of realistically queried sentences, whereas prior studies
often rely on template-based triplets and tools like logit lens alone. This methodological shift allows
us to uncover mechanisms such as knowledge augmentation, retrieval, and re-ranking in a unified
framework.

A.2 DETAILS OF INTERPRETING MODULES

Interpreting Input Output Conclusion (Example)

Module

Path Patch- Commonsense rea- Distribution of head For example, with “Ganesha is a Hindu god,”

ing soning data + coun-  importance at the “a” token position, path patching reveals
terfactual data which attention heads in the LLM are critical

for predicting "Hindu.”

Logit Lens Commonsense rea-  Attribution of investi- For example, with “Ganesha is a Hindu god,”
soning data + prob- gated attribute token at the “a” token position, this method shows
ing attributes within different mod- which attention layers transport related at-

ules (MLP, attention, tributes (knowledge retrieval), and which MLP
residual block) layers perform re-ranking to generate the pre-
dicted attribute.

SAE Commonsense rea- Identifies what infor- For example, with “Ganesha is a Hindu god,”
soning data + spe- mation is encoded in at the “Ganesha” token position, SAE helps de-
cific layer ID the output of a specific  compose the MLP output to determine what

MLP layer attribute-related information is encoded.
Head Pattern Commonsense rea- Attention score and For the example ”Ganesha is a Hindu god,” us-
Analysis soning data + spe- projection of head ing the “attention head pattern analysis module”

cific head ID

outputs into vocabulary
space

at the “is” token position, we analyzed the heads
identified by path patching. This allows us to
determine which important heads transported
information, from which tokens, and what spe-
cific information was transported.

Table 2: Tllustration of four interpreting modules with the input, output and examples.
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A.3 GPT-ASSISTED ANALYSIS

A.3.1 COMPARE GPT-4 WITH HUMAN

We conduct experiments to compare the “GPT-4” and “human validation” results. In the paper,
GPT-4 is applied in: (1) Generation of X . (counterfactual data) using GPT-4; (2) Generation of the
analysis of key component behavior using GPT-4; (3) Identification of critical position (i.e. concept,
attribute, and response).

For all the scenarios, we engaged ten master’s students specializing in Natural Language Process-
ing as volunteers. Five students were manually executing all procedures, including generating X,
analyzing key component behaviors, and developing data templates. The remaining students then
compared their annotations with those generated by GPT-4 to judge which more accurately repre-
sented the component behavior. Overall, the results demonstrate that GPT-4 is highly accepted by
human evaluators, with the combination of “GPT wins” and “Ties” exceeding 80%, underscoring its
robust reliability. These indicate that GPT-4’s outputs are almost consistent with those generated by
humans.

Table 3: Comparison of differences between GPT-4 and human annotations

Scenarios GPT Wins Human Wins Ties
Generation of X, using GPT-4 8% 12% 80%
Analysis of key component behavior using GPT-4 12% 10% 78%
Critical position identification 7% 18% 75%

A.3.2 PROMPT FOR POSITION EXTRACTION

We use the following prompt to assist in automatically extracting the concept, attribute, and response
from the model’s reasoning output.
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Prompt Template for Extraction

<Inputs>
{SREASONING_TEXT}
</Inputs>

<Instructions Structure>

1. Present the reasoning process text to the AI as input, labeled
clearly with <reasoning_text> tags.

2. Direct the AI to identify and extract three key components from

the text:

— The "concept": The main subject or entity discussed in the
reasoning process.

— The "attribute": The characteristic, classification, or
property associated with the concept.

— The "answer": The final conclusion or decision reached

in the reasoning process.

3. Ensure the AI outputs the result in JSON format with specific
keys ("concept," "attribute," and "answer").

4. Include examples for clarity.

</Instructions Structure>

<Instructions>

You are tasked with analyzing a reasoning process presented in
a textual format to extract specific elements and present them
in a structured JSON output.

Here is the reasoning process text you need to analyze:

<reasoning_text>
{SREASONING_TEXT}
</reasoning_text>

Follow these steps to complete the task:

1. Identify the x*conceptx*: The primary subject or entity discussed
in the reasoning process.

2. Identify the xxattributexx: The characteristic, classification, or
property associated with the concept.

3. Identify the **answerxx: The final conclusion or decision reached,
typically stated explicitly in the text.

Output the results in the following JSON format:

json
{"concept": "<concept>", "attribute": "<attribute>",
"answer": "<answer>"}

### Example:

Input Reasoning Process:

Ganesha is a Hindu god. Norse gods are associated with Norse
mythology. Thus, Ganesha is not associated with a Norse god.
So the answer is no.
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Prompt Template for Extraction

Output:
“TTjson
{"concept": "Ganesha", "attribute": "Hindu god", "answer": "no"}

If any of the elements (concept, attribute, or answer) are unclear

or missing from the reasoning text, leave the corresponding value
blank in the JSON output (e.g., "concept": ""). Think carefully about
the text's structure to ensure accurate extraction of each component.

Write your JSON output immediately after analyzing the reasoning
process. Do not include additional explanations or commentary.

A.3.3 PROMPT FOR FAILURE CASE CLASSIFICATION

Prompt Template for Failure Case Classification

{"concept": "Ganesha", "attribute": "Hindu god", "answer": "no"}

I am testing the accuracy of a large language model's responses

on the multi-hop reasoning dataset, StrategyQA. Your task is to
classify the errors in the model's answers based on specific

error types. For each question, I will provide the input question,
the model's answer, the correct answer and the reasoning steps
needed for the correct answer. Your goal is to accurately classify
the errors using the following four error types:

1. xxEntity Selection Error**: This occurs when the model picks
the wrong entity from the input, leading to incorrect reasoning
in subsequent steps.

# Example 1:

Input:

T json

{
"question": "Are the majority of Reddit users familiar with
the Pledge of Allegiance?",
"model_answer": "The Pledge of Allegiance is a pledge to the

United States. Reddit is a social media site. Thus,

the majority of Reddit users are not familiar with the

Pledge of Allegiance. So the answer is no.",

"correct_answer": "yes",

"decomposition": [
"What country do most Reddit users come from?",
"What country is the Pledge of Allegiance associated with?",
"Is #1 the same as #2°?"
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Prompt Template for Failure Case Classification

Classification: {"type": "Entity Selection Error", "explanation":
"The model incorrectly selected Reddit as the entity

it spoke about, while the correct entity for reasoning

should be 'Reddit users.' Therefore, this question should

be classified as an 'Entity Selection Error'".}

2. *xKnowledge Retrieval Error**: This occurs when the model
retrieves irrelevant, incomplete, or incorrect knowledge,
leading to flawed conclusions in the reasoning process.

# Example 1:

# Example 2:

3. xxConclusion Misalignment Errorxx: This occurs when the
model's reasoning steps are correct, but the final
conclusion is wrong.

# Example 1:

4. xxReasoning Logic Error**: This occurs when the logical
connection between the reasoning steps and the final
conclusion breaks down. In this error, even if individual
reasoning steps are correct, they fail to coherently lead
to the intended conclusion, causing the reasoning process
to result in an illogical or incorrect outcome.

# Example 1:

Instructions: If the error does not fit into any of these
four categories, please suggest a new category with a clear
explanation.

For each input, I will provide the question, the model's answer,
the correct answer, and the decomposition of reasoning steps.
You should return your classification and a brief explanation as

follows:

“T"json

{"type": "Entity Selection Error" or "Knowledge Retrieval Error"

or "Conclusion Misalignment Error" or "Incomplete Reasoning Error",
"explanation": "Explain why this question belongs to the chosen

category."}

Classficiation:
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A.4 EXAMPLES ON COMMONSENSEQA AND SOCIALIQA

Table 4: Examples of Reasoning Cases from StrategyQA and WinoGrande Datasets. The answer is
generated by Gemma2-9B.

Dataset StrategyQA WinoGrande

Question Is Ganesha associated It was easy for Angela to become a vegetarian
with a Norse god? although Kayla couldn’t do it. _ really missed

the taste of chicken. (1) Angela (2) Kayla

Answer Ganesha is a Hindu god. A person is a vegetarian means he does not eat
Norse gods are associ- meat. A person who really misses the taste of
ated with Norse mythol- chicken means he likes to eat chicken. Since
ogy. Thus, Ganesha is not Angela was able to become a vegetarian but
associated with a Norse Kayla couldn’t do it, Kayla really missed the
god. So the answer is no.  taste of chicken. So the answer is (2) Kayla.

Answer Type Yes / No Multiple Choice

Answer Token no (2) Kayla

Concept Ganesha vegetarian

Predicted Attr. Hindu meat

General Attr. elephant, deity, god chicken, beef

Table 5: Examples of Reasoning Cases from CommonsenseQA and SociallQA Datasets. The an-
swer is generated by Gemma2-9B. In CommonsenseQA and SociallQA, the entities are often ab-
stract names or professions with no specific meaning. Therefore, we treat the options in the context
as attributes, the final predicted option as the predicted attribute, and the remaining options as gen-
eral attributes.

Dataset CommonsenseQA SociallQA

Question The artist was sitting quietly pon- remy had a good talk with aubrey so
dering, then suddenly he began to aubrey understood remy better now.
paint when what struck him? (A) How would Remy feel as a result?
sadness (B) anxiety (C) inspiration (1) unsatisfied (2) calm (3) anxious
(D) discomfort (E) insights

Answer The artist was sitting quietly pon- Remy had a good talk with Aubrey.
dering, then suddenly he began to Thus, Aubrey understands Remy
paint when inspiration struck him. better. Remy will feel calm as a re-
So the answer is: (C) inspiration. sult. So the answer is: (2) calm.

Answer Type Multiple Choice Multiple Choice

Answer Token (C) inspiration (2) clam

Concept artist Remy

Predicted Attr. inspiration calm

General Attr. sadness, anxiety, discomfort unsatisfied, anxious
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A.5 PATH PATCHING DETAILS

Counterfactual data generation We use GPT-4 to assist in automatically generating the counter-
factual data required for path patching, with the prompt shown below. Additionally, we implement
a post-processing step: if the predicted token for the counterfactual data matches the prediction for
the data under investigation (which would fail to perturb the model’s behavior), GPT-4 is prompted
to regenerate the counterfactual data.

Path patching metric We use the rate of change in the logits of the predicted token before and
after perturbation as the metric for path patching.

Prompt Template for Counterfactual Data Generation

<topic> The particular topic being studied</topic>
<input_sentence> The original sentence provided for
analysis</input_sentence>

<predicted_content> The specific words reflecting model
behavior</predicted_content>

<first_word_predicted> The first word initially predicted by the
model</first_word_predicted>

</Inputs>

<Instructions Structure>

1. Instruct the assistant to begin by analyzing the original input
sentence and why it leads to the specific predicted word.

2. Guide the assistant to think about changes that could alter the
model's prediction.

3. Instruct the assistant to provide the reason for the model's
original prediction.

4. Request the assistant to modify the original sentence so that
the model’s prediction changes.

5. Instruct the assistant to explain the modification's rationale,
focusing on why the modified sentence now influences a different
predicted outcome.

6. Ensure the output is formatted in the specified JSON structure.
</Instructions Structure>

<Instructions>

Your task is to analyze and modify a sentence to influence the
predictive behavior of a language model. You will be given a
topic, an input sentence, the specific words predicted by the
model, and the model’s first predicted word.

Here is the topic and input sentence to modify:
<topic>{S$TOPIC}</topic>
<input_sentence>{$INPUT_SENTENCE}</input_sentence>

Here are the words generated by model given the input sentence:
<predicted_content>{$PREDICTED_CONTENT}</predicted_content>

Here is the first predicted word:
<first_word_predicted>{$FIRST_WORD_PREDICTED}</first_word_predicted>

Follow these steps carefully to complete the task:

1. xxAnalyze the Original Prediction**: Start by understanding the
++xinput sentencex* and why it leads the model to predict the
*+first_word_predictedxx as the output under the specific
**xtopic**. Consider the context, tone, or structure of the sentence
that prompts this specific word choice by the model.
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Prompt Template

2. xxPlan the Modificationxx: Think about how you could change the
**xinput_sentencex* minimally (by changing only 3-4 words) to alter
the model's behavior so that it no longer predicts the original
word or instead predicts a word with an opposite meaning.

It's acceptable to change some of the sentence's meaning if it
helps influence the output.

3. xxProvide Analysis and Modificationxx:
- Write the xxreason for the original prediction** based on
your analysis in Step 1.
— Rewrite the xxinput_sentencex* in a modified form that
will change or flip the model's predicted word.

— Explain your #*xreason for the modificationxx, focusing
on how the changes you made will influence the model to
predict a different word.

4. xxOutput the Final Result*+: Format your response in JSON,
as shown below:

" Jjson

{
"Reason for original prediction": "Explain why the original
input caused the model to predict the initial word.",
"Modified input": "Write the modified sentence here.",
"Reason for modification": "Explain why the modified input
will lead to a different prediction from the model."

}

Make sure each section is clear and precise. End your response
with this JSON structure.
</Instructions>

Table 6: Example of probing data X, and counterfactual data X. generated by GPT-4. Counterfac-
tual data change the model (Gemma2-9B) prediction behavior by applying minimal change to the
probing data.

Data Model Input Model Predict

X, Question: Kendall opened their mouth to speak and what came out aggressive
shocked everyone. How would you describe Kendall? (1) a very quiet
person (2) a very passive person (3) a very aggressive and talkative per-
son Answer: Kendall opened their mouth to speak and what came out
shocked everyone. Thus, Kendall is a very __
X Question: Kendall opened their mouth to speak and what came out was  quiet
softer than expected. How would you describe Kendall? (1) a very
quiet person (2) a very passive person (3) a very aggressive and talkative
person Answer: Kendall opened their mouth to speak and what came
out was softer than expected. Thus, Kendall is a very __
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A.6 MORE EXPERIMENTAL RESULT ON GEMMA2-9B

Figure[TT]presents the decoding results of the Gemma2-9B model across four commonsense reason-
ing datasets. The following key observations can be made:

1) The mechanisms of knowledge retrieval and reranking are observed in all datasets, with the de-
coded outputs from the attention layers containing both predicted attributes .A,, and general attributes

A,.

2) In the StrategyQA and Winogrande datasets, the knowledge augmentation mechanism was iden-
tified, as attribute information was decoded from the shallow MLP outputs at the concept token
position. However, in SociallQA (where shallow-layer spikes were observed, though with very low
magnitudes) and CommonsenseQA, this mechanism was not evident. We hypothesize that this ab-
sence is due to the explicit provision of the required knowledge within the question context, which
reduces the model’s need to infer additional related knowledge.

Stage Module Dataset 1: StrategyQA Dataset 2: SociallQA Dataset 3: WinoGrande Dataset 4: CommonsenseQA

Knowledge
Augmentation

Attention | £ o 1

MLP £oo A,

Knowledge
Retrieval

Attention L

. Residual Sos |
Re-ranking Stream H . e
1 N

Figure 11: Probing results of Gemma2-9B across four datasets (StrategyQA, WinoGrande, So-
ciallQA, and CommonsenseQA). The mechanisms of knowledge retrieval and knowledge reranking
are observed consistently across all datasets. However, the knowledge augmentation mechanism is
absent in SociallQA and CommonsenseQA (refer to Table [3] for examples), likely because the re-
quired knowledge is explicitly provided in the question context, reducing the need for the model to
infer additional related knowledge.
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Table 7: We fine-tune Llama2-7B/13B on the CommonsenseQA dataset using supervised fine-tuning
(SFT) and selectively supervised fine-tuning (SSFT). Here are the capabilities of models on four
commonsense reasoning tasks (e.g., Winogrande, CSQA, StrategyQA, and SociallQA) before and

after tuning.

ID Task OOD Task
CSQA Winogrande StrategyQA SociallQA Average

Models P’Ihned Ace. A Acc. A Acc. A Acc. A Ace. A

arams.

Llama2-7B - 61.1 - 62.5 - 534 - 602 - 587 -
+ SFT 6.7B 723 +11.2 57.8 -4.7 53.5 +0.1 557 -3.0 56.2 -2.5
+ SSFT 0.2B 73.5 +124 63.1 +0.6 56.2  +2.8 632 +30 61.8 +3.1

Llama2-13B - 68.3 - 55.5 - 66.0 - 679 - 63.1 -
+ SFT 13B 78.7 +10.4 558 +0.3 64.8 -1.2 64.1 -3.8 61.5 -1.6
+ SSFT 0.5B 794 +11.1 57.1  +1.6 672 +1.2 70.1 +2.2 64.8 +1.7

Table 8: We fine-tune Llama2-7B/13B on the Winogrande dataset using supervised fine-tuning
(SFT) and selectively supervised fine-tuning (SSFT). Here are the capabilities of models on four
commonsense reasoning tasks (e.g., Winogrande, CSQA, StrategyQA, and SociallQA) before and

after tuning.

ID Task OO0D Task
Winogrande CSQA StrategyQA SociallQA Average

Models P’Ihned Ace. A Ace. A Ace. A Ace. A Ace. A

arams.

Llama2-7B - 534 - 61.1 - 62.5 - 60.2 - 61.3 -
+ SFT 6.7B 743  +209 56.8 -43 643 +1.8 59.0 -12  60.0 -1.3
+ SSFT 0.2B 743  +20.9 649 +38 632 +0.7 632 +3.0 63.8 +2.5

Llama2-13B - 55.5 - 683 - 66.0 - 67.9 - 674 -
+ SFT 13B 773 +21.8 64.6 -37 699 +39 63.1 -4.8 659 -1.5
+ SSFT 0.5B 75.6  +20.1 717 +34 686 +2.6 69.2 +13 69.8 +2.4

Table 9: We fine-tune Llama2-7B/13B on the SociallQA dataset using supervised fine-tuning (SFT)
and selectively supervised fine-tuning (SSFT). Here are the capabilities of models on four com-
monsense reasoning tasks (e.g., SociallQA, CSQA, StrategyQA, and Winogrande) before and after

tuning.

ID Task OOD Task
SocialIQA CSQA StrategyQA Winogrande Average
Models Tuned Ace. A Acc. A Ace. A Ace. A Ace. A
Params.

Llama2-7B - 60.2 - 61.1 - 62.5 - 53.4 - 590 -
+ SFT 6.7B 745 +14.3 659 +4.8 610 -1.5 526 -0.8 59.8 +0.8
+ SSFT 0.2B 75.1 +14.9 664 +53 652 +2.7 558 +24 62.5 +3.5

Llama2-13B - 67.9 - 68.3 - 66.0 - 55.5 - 63.3 -
+ SFT 13B 747  +6.8 672 -1.1 654 -0.6 535 20 620 -1.3
+ SSFT 0.5B 75.1 +7.2 70.7 +2.4 699 +39 558 +0.3 655 +2.2

23



Under review as a conference paper at ICLR 2025

A.7 MORE EXPERIMENTAL RESULT ON QWEN2.5-72B

We validated three key steps in the internal factual knowledge recall mechanism on Qwen2.5-72B:
first, the shallow MLP encodes relevant attribute information (knowledge augmentation); second,
the attention heads are responsible for transferring all knowledge to the predicted attribute token
position (knowledge retrieval); and finally, the MLP selects the final predicted attribute for output

(knowledge reranking).
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Figure 12: Probing results of Qwen2.5-72B on StrategyQA. The mechanisms of knowledge aug-
mentation, retrieval, and reranking are observed.

Table 10: We fine-tune Qwen2.5-72B on the StrategyQA dataset using supervised fine-tuning (SFT)
and selectively supervised fine-tuning (SSFT). Here are the capabilities of models on four com-
monsense reasoning tasks (e.g., Winogrande, CSQA, StrategyQA, and SociallQA) before and after

tuning.

ID Task OOD Task

StrategyQA CSQA Winogrande SociallQA Average
Models PTuned Ace. A Ace. A Ace. A Ace. A Ace. A

arams.

Qwen2.5-72B - 86.9 84.1 - 78.7 - 78.1 - 80.3 -
+ SFT 72B 90.5 +3.6 813 -2.8 713  -14 732 49 716 -2.7
+ SSFT 2.5B 90.0 +3.1 86.6 +25 790 +0.3 80.0 +1.9 81.9 +1.6
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A.8 PROBING RESULTS ON LLAMA MODELS

Path patching result Path patching result
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Figure 13: The distribution of the key attention heads for generating attribute in (a) Llama2-7B and
(b) Llama2-13B .
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Figure 14: Result from Llama2-13B: (a) Change information of predict attribute and general at-
tribute when predicting the final attribute token. Attribute information contribution from (b) MLP
layers and (c) attention layers.
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A.9 PROJECTION OF KEY ATTENTION HEADS FOR CONCLUSION GENERATION

Projection of the key attention heads output when predicting the final conclusion token in Gemma2-

9B.

Head

Top tokens from projecting to vocabulary
space

31.3 (negative)

none, neither, nowhere, nothing, never, no,
NONE, neither

26.9 (negative)

neither, contradicts, contradict, unlikely

31.0 (negative)

1sn, cannot, wouldn, aren, is, never, doesn, not

31.3 (positive)

naturally, Naturally, future, later, Naturally,
obvious, obviously

26.9 (positive)

obviously, umably, presumably, likely,
probably, doubtless

31.0 (positive)

would, might, likely, would, probably, Would,
expected

When predicting “ Genesha is a Hindu god.”, projecting the key attention heads output to vocabulary

space, results of Gemma?2-9B are shown below:

Head Top tokens from projecting to vocabulary
space

25.1 elephant, Elephant, elefante, religione,
Elephants, Hindu, prayers

27.15 Asian, Asian, Chinese, Asia, Eastern, eastern

29.14 elephants, elephant, elef, India, Georgia,
Maharashtra, Bombay, not

29.15 Hindu, Indian, India, Hindus, animals,

Hinduism, certamen
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A.10 SAE RELATED DETAILS

This study primarily uses SAE to investigate the information contained in the MLP and residual
block outputs at the concept token position. Specifically, we selected the top 64 activated latents
(Top-64) based on SAE activations. Since these latents include a substantial number of general-
purpose activations (e.g., those representing syntax, specific words, etc.), we employed GPT to
automatically analyze whether these activated latents are related to the concept. The prompt used
for this analysis is provided below.

Prompt Template

I want to evaluate the relevance of a feature that activates
on certain texts to the concept of “{concept}’'.

You will be provided with a possible explanation of the feature,
a set of texts where the feature has been activated, along with
the most activated word(s) in each text.

S<SExample$>$
Concept: “Environmental Protection'

Possible explanation of the feature: feature identifies
texts related to protecting the natural environment.

Activated texts and most activated word:
- must take action to reduce carbon emissions and combat
climate change. | most activated word: emissions
— Deforestation is a major threat to biodiversity and
contributes to global warming | most activated word: deforestation
$<$/Example$>$

$<$Expected Output$>$

The feature is highly relevant to the concept of environmental
protection as it identifies texts discussing environmental
issues and solutions.

Relevance Score: 10

$<$/Expected Output$>$

Based on the given explanation of the feature and the activated
texts, please rate the relevance of the feature to the concept
of “{concept}' on a scale of 0 to 10.
0: Not at all relevant, the feature is not related to the concept.
- 5: Neutral, the feature is not directly related to the concept
but share some common traits with the concept, e.g. apple
and banana are both fruits.
- 10: Very relevant, the feature is directly related to the concept.

Please conclude your response in the following format:

"Relevance Score: [SCORE]', where [SCORE] is an integer between

0 and 10.

Here is the concept: {concept} and the explanation of the feature:
Concept: {concept}

Possible explanation of the feature: {explanation}

Activated texts and most activated word: {texts}
</Instructions>
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A.11 TRAINING SAE ON LLAMA2-7B

The training code for the Sparse Autoencoder (SAE) is derived from the open-source repository pro-
vided by OpenAl (https://github.com/openai/sparse_autoencoder), which im-
plements the Top-K activation function to maintain the sparsity of the latent representations. We
conducted training of the SAEs using the MLP output obtained from layers 16 and 20 of the
LLaMA2-7B model.

The training dataset comprises 2 billion tokens sourced from the Pile dataset, which are organized
into sequences of 64 tokens each. Our SAEs are configured to utilize 512,000 latent variables, with
the parameter K in the Top-K activation function set to 32. The training parameters include a tensor
parallel size of 2, a data parallel size of 8, a batch size of 131,072, and a learning rate of 1.24e-4,
which was determined using scaling laws based on the GPT-2 architecture. The SAE was trained
for a 1 epoch.

It required approximately 5 hours using 64 A100 GPUs to compute the MLP output for the
LLaMA2-7B model across the 2 billion tokens. The training of the SAE itself necessitated around
six hours with the utilization of 16 A100 GPUs.

A.12 MORE CASES AND ANALYSIS OF RECALLED FEATURES ON STRATEGYQA FROM
LLAMA2-7B

In this part, more cases of recalled features in Llama-7B are presented in Fig. [I3] (a), which corre-
sponds to Layer 20 Fig. [l We can see that the recalled top features are related to the key concept
in input. Furthermore, to compare the precision of recalled features among with/without chain-of-
thought, and the proposed SSFT on commonsense reasoning, we collect all the top-4 SAE tokens
from the rank1 — 3 features of MLP 20 in Llama-7B, and then utilize the GPT-4o to judge if these
features are the correct attributes of the input concept. Corresponding precisions are presented in
Fig. [13](b), we can see that with CoT and SSFT, the precision of recalled features are more relevant
to the input concept.

Precision of Top 3 recalled features

90% 85%

Input Rank 1 feature Rank 2 feature 80% 72%
Can spiders help eggplant plant, growth, agriculture, farmer, farms, 70%
farmers control parasites?  photosynthesis, yeast forester
Can you buy chlorine ata lass, carbon, plastic legislation, evidence, 60%
dollar store? g ’ P harassment, violence 50%
{\r_e all limbs required for opponen(,l elbow, fighters, Gear, Nike, sports, player 40% 35%
jujutsu? combat, kick
Do bald eagles nest on NASA, Mars, robots, Space, astronauts, mission, 30%
Mount Sharp? scientists Bezos 20%
What measures can be n ot
{1 9 ey et hlurt, beaten, shot, hit, sexual, victims, harassment, 10%

p P killed women
rape in our communities? o%

w/o CoT w/ CoT w/ CoT & SSFT
(a) (b)

Figure 15: (a) More cases on Llama2-7B that use SAE to explain the MLP information on Strate-
gyQA. (b) Precision of top 3 recalled features under three settings, without CoT prompt, with CoT
prompt, and with CoT prompt after SSFT.
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Input Question: John cannot run the entire length of the track, he had been used
to the field. The _ is short.

(1) track (2) field

Answer: A person who cannot run the entire length of a track likely feels
uncomfortable or out of practice on a surface that is different from what
they are used to. If John had been used to the field, it suggests that he is
more accustomed to that environment. Therefore, the track must be

SSFT model output longer than the field, making it difficult for him to run its entire length.

Base model output shorter than the field, as he struggles to run its entire length. X

(a) Case study: output of SSFT and Base model
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(d) Probing MLP layer output for “shorter” (e) Probing MLP layer output for “shorter”
and “longer” on SSFT model and “longer” on Base model

Figure 16: Comparison between the SSFT and Base models: (a) Case study highlights that the SSFT
model correctly predicts the answer, while the Base model fails. (b, ¢) Probing results for attention
layers show enhanced knowledge retrieval in the SSFT model compared to the Base model. (d,
e) Probing results for MLP layers demonstrate improved reranking capability in the SSFT model.
These findings confirm that the identified modules—attention heads for knowledge retrieval and
MLP layers for reranking—are critical for accurate reasoning and were effectively strengthened
through SSFT.
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