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Abstract001

Recent advances in large language models have002
demonstrated that Supervised Fine-Tuning003
(SFT) with Chain-of-Thought (CoT) reason-004
ing data distilled from large reasoning models005
(e.g., DeepSeek R1) can effectively transfer006
reasoning capabilities to non-reasoning mod-007
els. However, models fine-tuned with this008
approach inherit the "overthinking" problem009
from teacher models, producing verbose and010
redundant reasoning chains during inference.011
To address this challenge, we propose Long-012
Short Chain-of-Thought Mixture Supervised013
Fine-Tuning (LS-Mixture SFT), which com-014
bines the long CoT reasoning dataset with their015
short counterparts obtained through structure-016
preserved rewriting. Our experiments demon-017
strate that models trained with the LS-Mixture018
SFT method achieved an average accuracy im-019
provement of 2.3% across various benchmarks020
compared to those trained with standard SFT.021
Furthermore, this approach substantially re-022
duced the model response length by approx-023
imately 47.61%. This work offers an approach024
to endow non-reasoning models with reason-025
ing capabilities through supervised fine-tuning026
while avoiding the inherent overthinking prob-027
lems inherited from teacher models, thereby028
enabling efficient reasoning in the fine-tuned029
models.030

1 Introduction031

The emergence of large reasoning models (LRMs)032

(Chen et al., 2025a), such as DeepSeek R1033

(DeepSeek-AI et al., 2025) and OpenAI o1 (Ope-034

nAI, 2024), have demonstrated remarkable reason-035

ing abilities in complex tasks by generating explicit036

chain-of-thoughts (CoT) (Wei et al., 2022) closed037

by special tokens (<think> and </think>) about038

a question before arriving at the final answer. Re-039

cent works (Huang et al., 2024; Min et al., 2024)040

have shown that advanced reasoning abilities can041

be transferred from LRMs to non-reasoning large042

language models (LLMs) through supervised fine- 043

tuning (SFT) on high-quality CoT reasoning data 044

distilled from LRM (DeepSeek-AI et al., 2025; 045

Muennighoff et al., 2025). 046

Existing open-source efforts, such as s1 (Muen- 047

nighoff et al., 2025), Sky-T1 (Team, 2025a) and 048

LIMO (Ye et al., 2025), have demonstrated that 049

non-reasoning LLMs as student models can be ef- 050

fectively transformed into reasoning-capable mod- 051

els through supervised fine-tuning on long CoT 052

trajectories distilled from LRMs as teacher models. 053

Although training on distilled datasets successfully 054

elicits reasoning abilities in foundation models, it 055

also causes these models to inherit the inherent 056

overthinking problem (Chen et al., 2025b) of the 057

original LRM (Sui et al., 2025; Wang et al., 2025c). 058

Several recent studies have sought to address the 059

overthinking problem of LRM during training and 060

inference from the perspectives of reinforcement 061

learning and inference-time optimization, aiming 062

to achieve efficient reasoning. However, there re- 063

mains a lack of research on how to prevent stu- 064

dent models from inheriting the overthinking is- 065

sue of teacher models during the distillation stage. 066

Thus, we propose the problem: "how can data 067

distillation and supervised fine-tuning be lever- 068

aged to elicit more efficient reasoning abilities 069

in non-reasoning models—specifically, enabling 070

them to avoid inheriting the overthinking problem 071

from teacher models?". 072

In this paper, we propose a novel solution to this 073

problem: Long-Short Chain-of-Thought Mixture 074

Supervised Fine-Tuning (LS-Mixture SFT). Our 075

approach first performs structure-preserved rewrit- 076

ing of the reasoning paths in the dataset with long 077

CoT trajectories distilled from LRM, resulting in 078

a corresponding dataset with short CoT reasoning 079

paths. We then construct a mixture of both long and 080

short CoT reasoning datasets, and use it to perform 081

supervised fine-tuning on the student model. This 082

mixture allows student models to learn both com- 083
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Long CoT Data
Instruction
Answer the problem with a detailed thinking process:
{ Question }

Long CoT
<think> Oky, I think ... Wait, ...., Alternatively... </think>

Answer
First, we need to ......

Short CoT Data
Instruction
Answer the problem with a brief thinking process:
{ Question }

Short CoT
<think> To solve the problem .... </think>

Answer
First, we need to ......

Stage 1: Structure-preserved CoT Rewriting

Rewriter
Model

Long-Short
Mixture Dataset

Qwen2.5-32B-Instruct

SFT

⊕Stage 2: Mixture Supervised Fine-Tuning

fine-tuned
model

Answer the problem with an appropriate (between detailed and brief) thinking process:
Instruction

{ Question }

input

Stage 3: Inference-time Balanced Thinking

fine-tuned
model

correctness
check

Figure 1: Overview of LS-Mixture SFT. This method consists of three stages: 1) Structure-preserved CoT
Rewriting: A LLM is used to rewrite the long CoT trajectories into short ones while preserving the core structure.
2) Mixture Supervised Fine-Tuning: Non-reasoning LLM is been supervised fine-tuned on mixture datasets. 3)
Inference-time Balanced Thinking: The fine-tuned model is designed to employ a balanced thinking mode that
lies between detailed and brief when generating reasoning responses to queries.

prehensive reasoning patterns and efficient reason-084

ing shortcuts, resulting in models that can generate085

more efficient reasoning during inference without086

sacrificing accuracy. Our approach can directly087

reuse existing long CoT reasoning datasets without088

incurring the substantial costs associated with ad-089

ditional data distillation. Specifically, we created a090

mixed dataset of long and short reasoning chains,091

s1K-mix, based on the existing s1K-1.1 dataset092

(Muennighoff et al., 2025), and utilized this mixed093

dataset to train the Qwen2.5-32B-Instruct model,094

resulting in our model s1-mix-32B.095

Our extensive experiments across three challeng-096

ing reasoning benchmarks validate the effective-097

ness of the LS-Mixture SFT approach. The ex-098

perimental results demonstrate that our s1-mix-099

32B model achieves higher accuracy on MATH500,100

AIME24, and GPQA benchmarks (improvements101

of 2.2%, 6.7%, and 2%, respectively) compared102

to models trained solely on long-chain reasoning103

data, while significantly reducing average response104

length (by 47.61% on average). Ablation studies105

further confirm the importance of our proposed106

structure-preserved CoT rewriting strategy and the107

advantages of the long-short chain mixture training108

method in balancing reasoning efficiency and accu-109

racy. These findings indicate that LS-Mixture SFT110

not only effectively elicits reasoning capabilities in111

non-reasoning models but also successfully avoids112

the overthinking problem inherited from existing113

LRMs, providing an effective approach for training114

more efficient reasoning models.115

Our contributions can be summarized as follows: 116

• We propose a novel method for transforming 117

long chain-of-thought trajectories into their 118

short counterparts: Structure-preserved CoT 119

Rewriting, which is designed to rewrite rea- 120

soning paths while preserving the core struc- 121

ture, thereby preventing overly liberal rewrit- 122

ing that might cause models to lose crucial 123

"aha moments" ability during training. 124

• We introduce LS-Mixture SFT, a novel fine- 125

tuning approach that mix long and short rea- 126

soning dataset to elicits efficient reasoning in 127

large language models. 128

• Based on these methods, we build a new mix- 129

ture dataset s1K-mix and a fine-tuned model 130

s1-mix-32B released on HuggingFace. 131

• Through extensive experiments, we demon- 132

strate that our approach significantly reduces 133

model response length during inference while 134

improving task performance. 135

• During our experiments, we observed an in- 136

teresting phenomenon: the fine-tuned model’s 137

ability to success in balanced thinking was 138

not explicitly trained but rather emerged as 139

a natural consequence of training on a mix- 140

ture dataset comprising both long-chain and 141

short-chain reasoning examples. 142

Our code, model, and dataset are open-sourced 143

at GitHub and HuggingFace. 144
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2 Methodology145

In this section, we introduce Long-Short Chain-146

of-Thought Mixture Supervised Fine-Tuning (LS-147

Mixture SFT), our novel approach for efficiently148

transferring reasoning capabilities from LRMs to149

non-reasoning LLMs. The key insight is that not150

all reasoning steps contribute equally to the final151

solution—many tokens in verbose CoT are redun-152

dant. By leveraging LLMs as rewriter model that153

preserve the core reasoning structure while elim-154

inating redundancy, we create a complementary155

dataset of short CoT. These shortened trajectories156

maintain the core structure and key steps necessary157

for accurate problem-solving but with significantly158

reduced token counts. When mixed with the origi-159

nal long CoT dataset, the combination allows stu-160

dent models to learn both comprehensive reasoning161

patterns and efficient reasoning shortcuts, result-162

ing in model that can generate more concise CoT163

during inference without sacrificing accuracy.164

As illustrated in Figure 1, our approach can be165

divided into three stages: (1) Structure-preserved166

CoT Rewriting: We use a LLM as a rewriter model167

for the structure-preserved rewriting of long CoT.168

This process incorporates specific constraints in the169

instruction prompt to ensure that the rewriting pro-170

cess maintains the core logical structure and keys171

steps of the original CoT. Based on the existing172

long CoT dataset, this stage produces a correspond-173

ing short CoT dataset. (2) Mixture Supervised174

Fine-Tuning: The original long CoT reasoning175

dataset and short CoT reasoning dataset obtained in176

the previous stage are completely randomly mixed177

to create a long-short mixture dataset. This mixed178

dataset is then used to perform supervised fine-179

tuning on a non-reasoning LLM. (3) Inference-180

time Balanced Thinking: The mixture of both181

long and short CoT datasets enables student models182

to acquire comprehensive reasoning patterns while183

simultaneously learning efficient reasoning short-184

cuts. During inference, our model is provided with185

instructions of balanced thinking mode to solve the186

problem.187

In the following subsections, we first provide a188

formal definition of the task (2.1), followed by a189

detailed explanation of each stage of our method190

(2.2, 2.3, 2.4).191

2.1 Formal Task Definition192

Let Dlong = {(xi, rLi , yi)}Ni=1 denote a long CoT193

dataset comprising N instances, where xi repre-194

sents a complex question, ri corresponds to the 195

long CoT trajectory distilled from a LRM, and yi 196

denotes the corresponding answer. 197

Our objective is to utilize this dataset through 198

SFT to endow a non-reasoning LLM with effective 199

reasoning capabilities. 200

2.2 Structure-preserved CoT Rewriting 201

A key component of our LS-Mixture SFT approach 202

is the structure-preserved CoT rewriting method, 203

which transforms verbose long CoT into more con- 204

cise versions while preserving their core logical 205

structure and key reasoning steps. This method 206

significantly shortens the thinking part in the train- 207

ing data while preserving the reasoning process 208

demonstrated by LRMs when addressing a prob- 209

lem, particularly the "aha moments" phenomenon 210

exhibited by these reasoning-capable models. 211

We employ another LLM (Qwen2.5-72B- 212

Instruct) as the rewriter model Prewriter, incorpo- 213

rating explicit constraints in the prompt template 214

to instruct the model to maintain the original log- 215

ical structure and key steps of the CoT trajectory 216

during rewriting. The prompt template employed 217

by the rewriter model is presented in Appendix E.1. 218

Additionally, Appendix I presents a case study of 219

Chain-of-Thought (CoT) rewriting. 220

For each data point in the dataset Dlong, we uti- 221

lize the rewriter model to transform the long CoT 222

trajectory rLi into a shorter one rSi , which can be 223

formally expressed as: 224

rSi = Prewriter(r
L
i |xi) (1) 225

After structure-preserved CoT rewriting, the 226

short CoT are substantially shorter in length com- 227

pared to their long CoT counterparts. Utiliz- 228

ing these rewritten short CoT trajectories, we are 229

able to construct a short CoT dataset Dshort = 230

{(xi, rSi , yi)}Ni=1. 231

2.3 Mixture Supervised Fine-Tuning 232

Following the previous stage that yields the short 233

reasoning dataset Dshort, we proceed to completely 234

randomly merge it with the original long reasoning 235

dataset Dlong, creating a new mixed dataset Dmix: 236

Dmix = Dlong ∪Dshort (2) 237

This mixture dataset Dmix is then utilized to per- 238

form SFT on a non-reasoning LLM M aiming to 239

eliciting its efficient reasoning. To align with the 240

current output format of LRMs, we encapsulate the 241
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CoT trajectory using special tokens <think> and242

</think>, and concatenate it with the answer part243

to form the ground-truth response for fine-tuning.244

The optimization objective M∗ can be formulated245

as follows:246

L(Dlong) =
∑
Dlong

− logPM (rLi ⊕ yi|xi, pL) (3)247

L(Dshort) =
∑
Dshort

− logPM (rSi ⊕ yi|xi, pS) (4)248

M∗ = argmin
M

L(Dlong) + L(Dshort) (5)249

In Equations 3 and 4, pL and pS respectively rep-250

resent the prompt that instruct the language model251

to reasoning in detailed and brief thinking modes.252

The specific prompt templates can be found in Ap-253

pendix E.2 and E.3.254

The mixture dataset ensures that the model is255

exposed to both comprehensive thinking patterns256

from long CoT trajectories and the efficient pat-257

terns from short ones, which enables the model to258

adapt its reasoning pattern based on the instruction259

type. When prompted with "detailed thinking" in-260

structions, the model demonstrates comprehensive261

reasoning inherited from long CoT examples. Si-262

multaneously, under "brief thinking" instructions,263

it employs concise yet effective reasoning patterns264

learned from short CoT examples.265

2.4 Inference-time Balanced Thinking266

Through our mixture training approach, the model267

simultaneously acquires both detailed and concise268

thinking modes. However, neither mode achieves269

an optimal balance between response effectiveness270

and efficiency. To address this limitation, we pro-271

pose an inference-time balanced thinking method-272

ology that leverages the dual reasoning capabil-273

ities developed during training while optimizing274

for both effectiveness and efficiency during model275

deployment.276

To implement balanced thinking mode, we277

maintain the format of prompt template between278

the inference time and the training time, while mod-279

ifying the instructions regarding the thinking mode.280

Specifically, we replace the directives for either281

detailed or brief thinking with instructions that en-282

courage the model to engage in an "appropriate"283

thinking process that falls between these two ex- 284

tremes. This approach enables the model to balance 285

effectiveness and efficiency in its reasoning process. 286

The formulation can be expressed as follows: 287

(ri, yi) = PM∗(xi|pB) (6) 288

where ri is the approximate reasoning chain that 289

is generated by the post-trained model M∗, and 290

pB is the prompt template for balanced thinking. 291

The specific prompt template can be found in Ap- 292

pendix E.4. 293

3 Experiments 294

3.1 Dataset 295

To demonstrate the effectiveness of the LS-Mixture 296

SFT method, we conducted experimental evalua- 297

tions based on two open-source datasets: s1K-1.1 298

and OpenThoughts-2K. 299

s1K-1.1 and s1K-mix Dataset s1K-1.1 (Muen- 300

nighoff et al., 2025) contains 1,000 instances of de- 301

tailed reasoning trajectories and answers distilled 302

from the DeepSeek-R1 model. We implemented 303

our structure-preserved CoT rewriting technique 304

using Qwen2.5-72B-Instruct as the rewriter model. 305

During rewriting process, 16 instances exceeded 306

context length limitations, resulting in their exclu- 307

sion from the dataset. The final short reasoning 308

chain dataset (Dshort) consisted of 984 examples. 309

The mixture of these long and short examples con- 310

stitutes our s1K-mix dataset. The statistics for 311

these datasets are presented in Appendix F. For the 312

purpose of clarity and to adhere to the naming con- 313

ventions established in prior research, we designate 314

the model trained on s1K-1.1 as s1-32B and the 315

model trained on s1K-mix as s1-mix-32B. 316

OpenThoughts-2K The OpenThoughts dataset 317

(Guha et al., 2025) comprises 114K high-quality 318

synthetic reasoning data samples, covering multi- 319

ple domains including mathematics, science, and 320

programming. Due to computational resource con- 321

straints, we randomly sampled 2K samples from 322

the 114K instances to form a subset, which con- 323

stitutes the OpenThoughts-2K dataset employed 324

in this study. Following a similar methodology to 325

that employed in constructing the s1K-mix dataset, 326

we developed the OpenThoughts-2K-mix dataset 327

based on OpenThoughts-2K utilizing the mixture 328

strategy proposed by our method. 329
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Table 1: Results on 3 benchmarks. For each benchmark, we report both the response accuracy and response
length in our evaluation results (with the exception of the o1 model). Due to accessibility limitations of the
o1 model, we only report their publicly available scores on these benchmarks. Among these baseline models,
s1.1-32B serves as our primary baseline model for comparison.

Model/Method Dataset
Size SFT or RL MATH500 AIME24 GPQA Avg. LengthAcc Length Acc Length Acc Length

Baselines of API only

o1-previwe unknown N/A 85.5 N/A 44.6 N/A 73.3 N/A N/A
o1-mini unknown N/A 90 N/A 70 N/A 60 N/A N/A

o1 unknown N/A 94.8 N/A 74.4 N/A 77.3 N/A N/A
DeepSeek-R1(671B) unknown N/A 96.8 7,658.1 73.3 27,090.2 75.7 23,696.2 12,820.9

Baselines of Open Weights

R1-Distill-Qwen-32B unknown SFT 93.8 8,044.4 60.0 24,786.1 61.7 25,135.9 13,382.8
Sky-T1-32B 17K SFT 85 6,839.1 50.0 7,893.9 53 10,376.5 7,844.6

Sky-T1-32B-Flash 10k RL 84.2 3,873.7 26.7 14,037.5 51.5 4,428.6 4,443.5
LIMO(32B) 817 SFT 93.8 10,352.7 53.3 46,604.6 59.6 23,635.1 15,459.1

O1-Pruner(32B) 5K RL 90.6 3,784.0 33.3 11,390.7 44.4 6,434.4 4,818.3
SimpleRL-Zoo(32B) 24K RL 82.4 1,756.3 16.7 3,272.9 44.4 1,588.2 1,773.1

CoT-Valve(32B) 8K SFT 88.8 11,584.4 43.3 47,319.8 54.5 47,970.5 22,953.2

Qwen2.5-32B-Instruct + s1K-1.1

SFT✩ 1K SFT 92.4±1.6 12,351.4 53.3±6.7 53,455.6 59.1±2.0 56,040.7 25,927.8
LS-Mixture SFT ★ 1.98K SFT 94.6±2.0 8,648.7 60.0±6.7 40,251.3 61.1±2.5 21,995.7 13,581.1↓47.6%

Qwen2.5-32B-Instruct + OpenThoughts-2K

SFT 2K SFT 91.7±0.7 13,604.1 53.3±3.3 55,399.3 58.1±2.5 53,110.0 26,071.2
LS-Mixture SFT 4K SFT 94.4±0.6 6,978.2 63.3±3.3 31,356.8 61.6±2.0 22,545.8 12,216.9↓53.1%

✩ also referred to as the s1.1-32B model.
★ also referred to as the s1-mix-32B model.

3.2 Experiment Setup330

Training We perform supervised fine-tuning on331

Qwen2.5-32B-Instruct using the dataset s1K-mix332

and OpenThoughts-2K-mix using basic hyper pa-333

rameters outline in Appendix G. All model train-334

ing was conducted using the LlamaFactory (Zheng335

et al., 2024). The relevant training hyper parame-336

ters are maintained consistent with those used for337

the s1.1-32B model (Muennighoff et al., 2025).338

Given that the mixture dataset contains a greater339

number of samples than raw dataset, we adjusted340

the number of epochs to ensure that both models341

were exposed to an equivalent quantity of training342

samples. Taking the experiment using the s1K-1.1343

dataset as an example: let Nlong denote the number344

of training epochs for s1.1-32B (Nlong = 5), Nmix345

represent the number of training epochs for our346

s1-mix-32B model, and |Dlong| and |Dmix| denote347

the size of the respective datasets. The numerical348

relationship is represented as: Nlong × |Dlong| =349

Nmix × |Dmix|.350

Baselines The experimental comparisons involve351

three categories of baseline methods: (1) Base-352

lines of API only. These models are all com-353

mercial closed-source models, including Ope-354

nAI o1-series (OpenAI, 2024) and DeepSeek-R1 355

(DeepSeek-AI et al., 2025). (2) Baselines of 356

Open Weights. These baseline models were 357

trained using diverse methods and have publicly 358

released their weights, including R1-Distill-Qwen- 359

32B (DeepSeek-AI et al., 2025), Sky-T1-32B 360

(Team, 2025a), Sky-T1-32B-Flash (Team, 2025b), 361

LIMO (Ye et al., 2025), O1-Pruner (Luo et al., 362

2025), SimpleRL-Zoo (Zeng et al., 2025), and CoT- 363

Valve (Ma et al., 2025). These models employ ei- 364

ther supervised fine-tuning (SFT) or reinforcement 365

learning (RL) approaches, with their specific corre- 366

spondences systematically summarized in Table 1. 367

Among them, the O1-Pruner baseline selected the 368

version based on QwQ-32B-Preview. (3) Standard 369

SFT. Standard SFT refers to the approach that uti- 370

lizes only the original distilled dataset for model 371

training. In contrast, LS-Mixture SFT incorporates 372

a compressed short CoT dataset during the SFT 373

process. 374

Benchmarks We evaluate the models on five in- 375

domain benchmarks and two out-of-distribution 376

benchmarks to evaluate their performance. (1) 377

In-domain Evaluation: the American Invita- 378

tional Mathematics Examination (AIME24 and 379
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AIME25), MATH500 (Hendrycks et al., 2021),380

the American Mathematic Competitions (AMC23)381

and GPQA Diamond which consists of 198 PhD-382

level science questions from Biology, Chemistry,383

and Physics. The in-domain evaluation results are384

presented in Table 1 and Appendix A. (2) Out-of-385

distribution Evaluation: the 1,000 crowd-sourced386

Python programming problems (MBPP) and the387

164 programming problems released by OpenAI388

(HumanEval). The out-of-distribution evaluation389

results are presented in Appendix B. More specific390

evaluation details are provided in Appendix D.391

Response Length Evaluation In addition to eval-392

uating accuracy on the benchmarks, we computed393

the average response character length generated by394

models. This metric is crucial for assessing infer-395

ence efficiency, as shorter responses directly trans-396

late to reduced latency and computational costs.397

We operate under the principle that, given compara-398

ble levels of accuracy, models that produce shorter399

responses are inherently more efficient and practi-400

cal for real-world applications. For each model, we401

calculated the weighted average lengths across all402

benchmarks, using the number of samples in each403

evaluation dataset as weights for computation.404

3.3 Results405

Table 1 presents the experimental results on the406

three benchmarks, highlighting the key findings:407

our proposed method LS-Mixture achieves a408

substantial reduction in model response length409

while imporving answer accuracy. Despite uti-410

lizing the same training question set and equiva-411

lent number of training instances as s1.1-32B, our412

s1-mix-32B model attains accuracy improvements413

of 2.2% on MATH500 (from 92.4% to 94.6%),414

6.7% on AIME24 (from 53.3% to 60%), and 2% on415

GPQA (from 59.1% to 61.1%), all while reducing416

average response length by 47.61% compared to417

s1.1-32B. Similar trends were also observed in the418

evaluation results when using OpenThoughts-2K as419

the training dataset. These results demonstrate the420

effectiveness of our proposed method in enhancing421

both reasoning accuracy and efficiency.422

4 Ablations423

4.1 Impact of Rewriting Strategies424

To investigate the importance of our CoT rewriting425

strategy, we performed ablation studies to com-426

pare our approach with two alternative rewriting427

strategies: Direct compression: A straightforward428
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Figure 2: Comparison of response length distribu-
tion between s1.1-32B and s1-mix-32B models on the
MATH500 benchmark. The horizontal axis represents
response length, while the vertical axis shows the num-
ber of samples within each length range.

approach where the LLM is instructed to com- 429

press the long reasoning chain freely. The specific 430

prompt templates can be found in Appendix E.5. 431

ThinkTwice: this approach (Tian et al., 2025) in- 432

corporates the answer into the specific prompt used 433

to model generation. The thinking part produced 434

during generation serve as the shortened CoT. 435

For each rewriting strategy, we created a corre- 436

sponding short reasoning dataset and applied our 437

method to fine-tune Qwen2.5-32B-Instruct. As 438

demonstrated in the Table 2, all alternative chain- 439

of-thought rewriting methods resulted in dimin- 440

ished model training effectiveness, highlighting the 441

importance of preserving the original logical rea- 442

soning structure during rewriting stage. 443

4.2 Impact of Long-Short Mixing Strategies 444

To investigate the effectiveness of our proposed 445

mixing strategy, We performed ablation studies to 446

compare our approach with two alternative mixing 447

strategies: Long-only: The thinking part of the 448

data point exclusively comprises long CoT trajecto- 449

ries, specifically Dlong. Short-only: The thinking 450

part exclusively comprises short CoT trajectories, 451

specifically Dshort. 452

Table 3 presents the experimental results across 453

our evaluation benchmarks. The results demon- 454

strate that our proposed mixing strategy consis- 455

tently outperforms other approaches. 456

4.3 Impact of Inference-time Thinking Modes 457

During the training of s1-mix-32B, detailed and 458

brief thinking modes were employed for the long 459
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Table 2: Ablation experiment results on CoT rewriting strategies. We employed direct rewriting strategy and the
ThinkTwice method to obtain short CoT trajectories.

Strategy
MATH500 AIME24 GPQA

Acc. Length Acc. Length Acc. Length

Direct 85.4 6,106.1 33.3 5,876.4 53.5 31,204.0
ThinkTwice 91 13,027.8 58.1 47,520.3 43.3 47,928.5

Structure-preserved 94.6 8,648.7 60 40,251.3 61.1 21,995.7

Table 3: Ablation experiment results on dataset mixing strategies. We experimented with three datasets created by
different strategies: only the long CoT reasoning dataset, only the short CoT reasoning dataset, and mixture dataset.

Mix Method
MATH500 AIME24 GPQA

Acc. Length Acc. Length Acc. Length

Long-only 92.4 12,351.4 53.3 53,455.6 59.1 56,040.7
Short-only 82.6 3,205.8 16.7 6,646.3 49.0 3,961.7
Mixture 94.6 8,648.7 60 40,251.3 61.1 21,995.7

Table 4: Ablation experiment results on different thinking modes. We evaluated the performance of the s1-mix-32B
model using three thinking modes: detailed thinking, brief thinking, and balanced thinking.

Thinking Mode
MATH500 AIME24 GPQA

Acc. Length Acc. Length Acc. Length

Brief 81.0 2,963.9 20.0 4,490.3 52.0 4,125.0
Detailed 92.6 1,162.3 56.7 53,107.4 62.1 41,762.9

Balanced 94.6 8,648.7 60 40,251.3 61.1 21,995.7

and short CoT dataset, while a balanced thinking460

mode was utilized during inference. To investigate461

the impact of different thinking modes at inference462

time, we conducted evaluations using these three463

thinking modes for s1-mix-32B. As shown in Ta-464

ble 4, employing the balanced thinking mode yields465

the optimal results, which validate our hypothesis466

that the balanced thinking mode during inference467

time can effectively leverage both the comprehen-468

sive thinking capabilities learned from long CoT469

examples and the efficient reasoning patterns ac-470

quired from short counterparts.471

5 Discussion472

Structure-preserving in CoT Rewriting. Our473

findings highlight the importance of maintaining474

the core logical structure when rewriting long CoT475

into short formats. Our ablation studies 4.1, which476

explore various strategies for CoT trajectory rewrit-477

ing, revealed a insight: overly simplified CoT fail478

to adequately stimulate the student model’s reason-479

ing capabilities. Conversely, we observed that by480

preserving the original core structure and key steps481

from the long CoT during the rewriting stage could482

the student model be guided to learn how to reason483

effectively.484

Exploration of Mixing Ratios. Our previous ex- 485

periments assumed a mixing ratio of 1 : 1 between 486

long and short reasoning chains. To investigate 487

the effects of mixing ratios on the final results, we 488

modified the mixing ratio to 1 : α and conducted 489

experiments with α values of 0, 0.25, 0.5, 0.75, and 490

1, respectively. Figure 3 presents the experimental 491

results on the s1K-1.1 dataset and Qwen2.5-7B- 492

Instruct model under different mixing ratios. 493

Relationship between Accuracy and Response 494

Length. In the large reasoning model, increased 495

response length often signifies the emergence of 496

the "aha moment" phenomenon and correlates with 497

improved model performance. However, recent 498

studies (Wang et al., 2025a; Ghosal et al., 2025) 499

reveal that excessive deliberation-induced lengthen- 500

ing can degrade performance, suggesting that mit- 501

igating overthinking appropriately enhances both 502

model accuracy and response conciseness. These 503

findings align with our experimental results. 504

6 Related Work 505

6.1 Chain-of-Thought Reasoning in LLMs 506

Chain-of-Thought reasoning has emerged as a piv- 507

otal technique for enhancing the reasoning capa- 508

7
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Figure 3: The impact of mixing ratios α. The x-axis
represents the mixing ratio, while the y-axis displays
the model’s accuracy and average response length on
the benchmark after training.

bilities of large language models. Initially intro-509

duced by Wei et al. (2022), CoT prompting en-510

courages models to generate intermediate reason-511

ing steps before producing a final answer (Byun512

et al., 2024). This approach has proven particu-513

larly effectively for complex reasoning tasks (Li514

et al., 2024; Madaan et al., 2023), including mathe-515

matical problem-sovling (Yin et al., 2024), logical516

reasoning (Wan et al., 2024; Toroghi et al., 2024),517

and scientific inquery (Sun et al., 2024).518

With the recent discovery of test-time scaling519

laws (Wu et al., 2024; Snell et al., 2025), Large520

Reasoning Models, exemplified by DeepSeek R1521

(DeepSeek-AI et al., 2025), have undergone sub-522

stantial development. These works utilize tech-523

niques such as reinforcement learning to en-524

able LLMs to generate a CoT reasoning process525

enclosed by special tokens (e.g., <think> and526

</think>) (Qin et al., 2024; Team et al., 2025;527

Wen et al., 2025).528

The emergence of LRMs has further enhanced529

the capabilities of LLM on complex reasoning530

tasks. However, to transfer these reasoning abil-531

ities to non-reasoning models such as Qwen-2.5532

series (Qwen et al., 2025), current research (Zhang533

et al., 2025a; Muennighoff et al., 2025) has found534

that it is also possible to elicit thier reasoning535

abilities by performing supervised fine-tuning on536

non-reasoning models using dataset distilled from537

LRMs (Zhang et al., 2025b; Chen et al., 2025c).538

Our approach follows this line of research, refin-539

ing the fine-tuning methodology to elicit efficient 540

reasoning capabilities in non-reasoning models. 541

6.2 Efficient Reasoning in LRMs 542

While LRMs improve performance in System-2 543

reasoning domains (Li et al., 2025), they also in- 544

troduce significant computational overheads due to 545

verbose and redundant reasoning steps, known as 546

the "overthinking phenomenon" (Qu et al., 2025; 547

Sui et al., 2025). To address this issue, a series of ef- 548

ficient reasoning (Feng et al., 2025; Xu et al., 2025; 549

Cui et al., 2025; Liu et al., 2025; Yang et al.) meth- 550

ods have been proposed to enhance the inference- 551

time efficiency of LRMs. These methods vary in ap- 552

proach: some incorporate response length-related 553

rewards into reinforcement learning (Aggarwal and 554

Welleck, 2025; Luo et al., 2025; Shen et al., 2025; 555

Yeo et al., 2025; Zeng et al., 2025), others differ- 556

entiate problem difficulty levels to allocate token 557

budgets accordingly (Ong et al., 2025; Aytes et al., 558

2025; Huang et al., 2025), and yet others leverage 559

smaller models to achieve faster thinking processes 560

(Akhauri et al., 2025; Wang et al., 2025b). To our 561

knowledge, our approach inspired by C3oT (Kang 562

et al., 2025) is the first investigation from the super- 563

vised fine-tuning perspective on achieving efficient 564

reasoning goals while eliciting reasoning capabil- 565

ities in non-reasoning models through distillation 566

from LRMs. 567

7 Conclusion 568

We presented LS-Mixture SFT, a novel approach 569

for eliciting efficient reasoning capabilities in non- 570

reasoning models using dataset distilled from large 571

reasoning models, thereby enabling the trained 572

model to maintain task performance while reduc- 573

ing response length, and avoiding the inheritance 574

of the overthinking problem from teacher models 575

to student models during the distillation process. 576

We found that our approach of mixing long and 577

short reasoning chains can effectively enhance the 578

performance of reasoning distillation and can be 579

applied to SFT in various scenarios. This method is 580

straightforward and enables supervised fine-tuned 581

models to effectively reduce the length of reasoning 582

chains while maintaining accuracy. 583

In future work, we aim to investigate the integra- 584

tion of our supervised fine-tuning approach with 585

current reinforcement learning methods and token- 586

level compression techniques to further optimize 587

efficient reasoning of model. 588
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Limitations589

Despite the promising results presented in this pa-590

per, our study is subject to several limitations. The591

experiments conducted in this work were restricted592

to a 32B parameter model and datasets containing593

only 1,000 examples (s1K-1.1 dataset) and 2,000594

examples (OpenThoughts-2K dataset). Due to com-595

putational resource constraints, we were unable to596

extend our experiments to larger-scale models or597

more extensive datasets.598

Furthermore, since the mixing ratio is a continu-599

ous variable, experimental identification of the op-600

timal ratio necessitates densely sampled design ex-601

ploration. Constrained by computational resources,602

this study evaluates only a set of representative603

mixing ratios for the long-short CoT mixture. The604

optimal balance between these different types of605

reasoning demonstrations may vary across different606

model sizes, tasks, and domains. This represents607

an important dimension for future exploration that608

could yield further improvements in model perfor-609

mance and efficiency.610

Ethics Statement611

This research utilizes the s1K-1.1 dataset (Muen-612

nighoff et al., 2025), OpenThoughts dataset (Guha613

et al., 2025) and Qwen2.5 series models (Qwen614

et al., 2025), both of which are publicly available615

online resources. We have provided appropriate616

citations to acknowledge the original work behind617

these resources. Our study focuses on improving618

model training and inference efficiency through619

Chain-of-Thought trajectory rewriting techniques,620

which does not introduce new ethical concerns be-621

yond those inherent to large language model re-622

search.623
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Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan916
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified917
efficient fine-tuning of 100+ language models. In918
Proceedings of the 62nd Annual Meeting of the As-919
sociation for Computational Linguistics (Volume 3:920
System Demonstrations), pages 400–410, Bangkok,921
Thailand. Association for Computational Linguistics.922

A In-domain Evaluation923

Table 5 presents the in-domain evaluation results924

on the AIME25 and AMC23 dataset, where the925

Qwen2.5-32B-Instruct model was trained on the926

s1K-1.1 and OpenThoughts-2K datasets using both927

the standard SFT and LS-Mixture SFT methods,928

respectively.929

Table 5: Evaluation on AIME25 and AMC23

Method AIME25 AMC23

Acc↑ Length↓ Acc↑ Length↓
s1K-1.1

SFT 43.3 55,038.3 87.5 22,547.6
LS-Mixture SFT 50.0 44,540.2 95.0 14,329.0

OpenThoughts-2K
SFT 33.3 58694.5 85.0 22,684.5

LS-Mixture SFT 46.7 32842.6 92.5 15,000.5

B Out-of-distribution Evaluation930

Table 6 presents the out-of-distribution evalu-931

ation result on the MBPP and HumanEval932

dataset, where the Qwen2.5-32B-Instruct model933

was trained on the s1K-1.1 and OpenThoughts-934

2K datasets using both the standard SFT and LS-935

Mixture SFT methods, respectively.936

Table 6: Evaluation on MBPP and HumanEval

Method MBPP HumanEval

Acc↑ Length↓ Acc↑ Length↓
s1K-1.1

SFT 72.0 21.909.7 66.5 20130.3
LS-Mixture SFT 75.2 15,007.8 69.5 16,417.1

OpenThoughts-2K
SFT 73.2 21,253.5 68.3 18133.7

LS-Mixture SFT 77.2 13,756.0 70.7 11841.3

C The Generalizability of Model Size937

The main text evaluates the performance of the 32B938

model variant. To demonstrate the generalizabil-939

ity of our method across different model scales,940

this section additionally presents the results of 7B941

and 14B models under both standard SFT and LS-942

Mixture SFT methods in s1K-1.1 dataset. Tables 7,943

8, and 9 present the evaluation results on three 944

benchmarks: MATH500, AIME24, and GPQA, 945

respectively. These experimental findings consis- 946

tently align with our observations and conclusions. 947

Table 7: The performance of Qwen2.5-Instruct 7B and
14B models on MATH500 after fine-tuning on the s1K-
1.1 dataset using both standard SFT and LS-Mixture
SFT.

Method MATH500

Acc↑ Length↓

7B SFT 77.8 22,705.0
LS-Mixture SFT 81.6 17,890.5

14B SFT 88.2 17,917.0
LS-Mixture SFT 91.2 12,559.3

Table 8: The performance of Qwen2.5-Instruct 7B and
14B models on AIME24 after fine-tuning on the s1K-
1.1 dataset using both standard SFT and LS-Mixture
SFT.

Method AIME24

Acc↑ Length↓

7B SFT 16.7 65,304.8
LS-Mixture SFT 20.0 43,470.0

14B SFT 30.0 64,532.4
LS-Mixture SFT 40.0 37,958.1

Table 9: The performance of Qwen2.5-Instruct 7B and
14B models on GPQA after fine-tuning on the s1K-1.1
dataset using both standard SFT and LS-Mixture SFT.

Method GPQA

Acc↑ Length↓

7B SFT 37.9 79,867.3
LS-Mixture SFT 44.4 54,802.5

14B SFT 51.0 58,442.7
LS-Mixture SFT 54.5 30,376.6

D Evaluation Detail 948

We evaluate the performance of models on these 949

benchmarks using the LightEval (Fourrier et al., 950

2023) framework following the open-r1 project 951

(HuggingFace, 2025). In order to eliminate ran- 952

domness in the evaluation, the presented accuracy 953

corresponds to the median of five independent re- 954

peated experiments. 955
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E Prompt Template956

E.1 The prompt of Rewriter Model957

Rewriter Model

You have a QUESTION and a THOUGHT
PROCESS now, and you need to simplify
the THOUGHT PROCESS while maintain-
ing its original structure and steps.

QUESTION: {question}

THOUGHT PROCESS: {thought_process}

Now, you need to simplify the THOUGHT
PROCESS while maintaining its original
structure and steps. For each step in the
original THOUGHT PROCESS:
1. Keep the original logical flow and steps
as much as possible, including the thinking
process, verification process, and the final
answer.
2. Remove redundant tokens.
3. Preserve the step-by-step format.
4. Allow condensed thought processes
to include attempts at different reasoning
processes.
Do not add any new information that wasn’t
in the original THOUGHT PROCESS.

SIMPLIFIED THOUGHT PROCESS:
958

E.2 The prompt of detailed thinking mode959

Detail Thinking Mode

Answer the problem with a detailed think-
ing process:

960

E.3 The prompt of brief thinking mode961

Brief Thinking Mode

Answer the problem with a brief thinking
process:

962

E.4 The prompt of balanced thinking mode963

Balanced Thinking Mode

Answer the problem with a appropriate
(between detailed and brief) thinking pro-
cess:

964

E.5 The prompt of Direct Compression 965

Direct Compression

You have a question now:

QUESTION:
{question}

THOUGHT PROCESS:
{thought_process}

Now, you need to simplify the THOUGHT
PROCESS as short as possible to only
include the key information needed to solve
the question. And do not add additional
information that is not included in the
original THOUGHT PROCESS.

SIMPLIFIED THOUGHT PROCESS:
966

F Dataset Profile 967

Table 10: The statistical profile of the datasets used
in this study, namely s1K-1.1 and s1K-mix. For each
dataset, we report the number of rows and the average
text length.

Dataset Num of Rows Average Length

s1K-1.1 1000 29667.49
s1K-mix 1984 17406.11

G Training Hyperparameters 968

All experiments were run in a GPU cluster of 16 969

* A800. The hyperparameters used for training 970

are presented in Table 11, while any parameters 971

not explicitly specified utilize the default values 972

provided by LlamaFactory (Zheng et al., 2024). 973

Table 11: Training Hyperparameters

Hyperparameter Value

cutoff_len 4096
learning_rate 1e-5
lr_scheduler_type cosine
warmup_ratio 0.05
bf16 true
optimizer AdamW
weight_decay 1e-4
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Figure 4: Comparison of mean response lengths for
correct (red) and error (green) predictions of the s1-mix-
32B model across the MATH500, GPQA, and AIME24
benchmarks.

H Analysis of Response Length974

Our analysis of the evaluation results from the s1-975

mix-32B reveals a correlation between response976

correctness and length. As illustrated in Figure 4,977

incorrect responses demonstrate greater verbosity978

across all evaluation datasets. Specifically, the av-979

erage response length of incorrect examples is ap-980

proximately 3.58 times longer than the correct part.981

This finding suggests that when the model is un-982

certain or unable to produce an accurate answer, it983

tends to generate more unhelpful text.984

I Case Study of Rewriting985

Figure 5 illustrates an example of applying a986

structure-preserving rewriting strategy to a long987

CoT in the s1K-1.1 dataset, resulting in a con-988

cise short CoT. As evidenced, the rewritten ver-989

sion maintains identical logical structure and cor-990

rectness while significantly improving expression991

conciseness.992

J Word cloud of Datasets993

Figures 6 and 7 respectively display word clouds994

of the chain-of-thought trajectories from our exper-995

iments on the long reasoning dataset and the short996

reasoning dataset. As can be observed from these997

two figures, the distribution of common words un-998

dergoes a significant change following structure-999

preserved rewriting, notably marked by the disap-1000

pearance of the words ’wait’ and ’need’.1001

Figure 6: Word cloud of CoT trajectories in the long
reasoning dataset.

Figure 7: Word cloud of CoT trajectories in the short
reasoning dataset.
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Given a rational number, write it as a fraction in lowest terms and calculate the product of 
the resulting numerator and denominator. For how many rational numbers between 0 and 
1 will $20_{}^{}!$ be the resulting product?

Alright, so I need to figure out how many ...
First,  a raitional number between 0 and 1 can be written ...
Let me break down the problem.
Given that \(a \times b = 20!\) and \(\gcd(a, b) = 1\), it ...
But since the fraction is between 0 and 1, , \(a < b\). So for ...
Now, how do I count such pairs?
Alternatively, in number theory, this is ...
Wait, actually 20! has prime factors with exponents. ...
Therefore, the number of such coprime pairs is \(2^k\), ...
But wait, 20! has prime factors: 2, 3, ...
Let me do prime factorization of 20!.
To compute the exponents of primes in 20!:
For prime 2: floor(20/2) + floor(20/4) + floor(20/8) ...
For prime 3: floor(20/3) + floor(20/9) + floor(20/27) ...
For prime 5: floor(20/5) + floor(20/25)=4 + 0 = 4 ...
Prime 7: floor(20/7) + floor(20/49)=2 +0=2
Primes 11: floor(20/11)=1, similar for ...
So exponents are: 18 (2), 8 (3), 4 (5), 2 (7) ...
Since all exponents except for 2,3,5,7 have exponent 1 ...
    ... ...

Given a rational number, we need to find ...
1. **Understanding the Problem:**
   - A rational number between 0 and 1 ...
   - We need \(a \times b = 20!\) and \(\gcd(a, b) = 1\).
2. **Prime Factorization of 20!:**
   - The prime factors of 20! are: ...
   - Each prime factor must be assigned
3. **Counting Coprime Pairs:**
   - For each prime factor, there are 2 choices ...
   - The total number of ordered pairs \((a, b)\) is ...
4. **Considering \(a < b\):**
   - Since \(a \times b = 20!\), and \(a < b\), ....
   - We need to count only the pairs where ...
5. **Verification with a Smaller Example (6!):**
   - 6! = 720, with prime factors: 2, 3, 5.
   - Number of ordered pairs \((a, b)\) where ....
   - Half of these pairs have \(a < b\): \(8 / 2 = 4\).
   - Explicit pairs: (1, 720), (16, 45), (9, 80), (5, 144).
6. **Conclusion:**
   - The number of rational numbers between 0 and ....

Long CoT Short CoT

detailed but verbose

brief but precise​

Figure 5: An example of applying a structure-preserving rewriting strategy to transform a long CoT from the
s1K-1.1 dataset into a concise short CoT. As evidenced, the rewritten version maintains identical logical structure
and correctness while significantly improving expression conciseness.
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