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Abstract

Recent advances in large language models have
demonstrated that Supervised Fine-Tuning
(SFT) with Chain-of-Thought (CoT) reason-
ing data distilled from large reasoning models
(e.g., DeepSeek R1) can effectively transfer
reasoning capabilities to non-reasoning mod-
els. However, models fine-tuned with this
approach inherit the "overthinking" problem
from teacher models, producing verbose and
redundant reasoning chains during inference.
To address this challenge, we propose Long-
Short Chain-of-Thought Mixture Supervised
Fine-Tuning (LS-Mixture SFT), which com-
bines the long CoT reasoning dataset with their
short counterparts obtained through structure-
preserved rewriting. Our experiments demon-
strate that models trained with the LS-Mixture
SFT method achieved an average accuracy im-
provement of 2.3% across various benchmarks
compared to those trained with standard SFT.
Furthermore, this approach substantially re-
duced the model response length by approx-
imately 47.61%. This work offers an approach
to endow non-reasoning models with reason-
ing capabilities through supervised fine-tuning
while avoiding the inherent overthinking prob-
lems inherited from teacher models, thereby
enabling efficient reasoning in the fine-tuned
models.

1 Introduction

The emergence of large reasoning models (LRMs)
(Chen et al.,, 2025a), such as DeepSeek R1
(DeepSeek-Al et al., 2025) and OpenAl ol (Ope-
nAl 2024), have demonstrated remarkable reason-
ing abilities in complex tasks by generating explicit
chain-of-thoughts (CoT) (Wei et al., 2022) closed
by special tokens (<think> and </think>) about
a question before arriving at the final answer. Re-
cent works (Huang et al., 2024; Min et al., 2024)
have shown that advanced reasoning abilities can
be transferred from LRMs to non-reasoning large

language models (LLMs) through supervised fine-
tuning (SFT) on high-quality CoT reasoning data
distilled from LRM (DeepSeek-Al et al., 2025;
Muennighoff et al., 2025).

Existing open-source efforts, such as s1 (Muen-
nighoff et al., 2025), Sky-T1 (Team, 2025a) and
LIMO (Ye et al., 2025), have demonstrated that
non-reasoning LLMs as student models can be ef-
fectively transformed into reasoning-capable mod-
els through supervised fine-tuning on long CoT
trajectories distilled from LRMs as teacher models.
Although training on distilled datasets successfully
elicits reasoning abilities in foundation models, it
also causes these models to inherit the inherent
overthinking problem (Chen et al., 2025b) of the
original LRM (Sui et al., 2025; Wang et al., 2025c¢).
Several recent studies have sought to address the
overthinking problem of LRM during training and
inference from the perspectives of reinforcement
learning and inference-time optimization, aiming
to achieve efficient reasoning. However, there re-
mains a lack of research on how to prevent stu-
dent models from inheriting the overthinking is-
sue of teacher models during the distillation stage.
Thus, we propose the problem: "how can data
distillation and supervised fine-tuning be lever-
aged to elicit more efficient reasoning abilities
in non-reasoning models—specifically, enabling
them to avoid inheriting the overthinking problem
from teacher models?".

In this paper, we propose a novel solution to this
problem: Long-Short Chain-of-Thought Mixture
Supervised Fine-Tuning (LS-Mixture SFT). Our
approach first performs structure-preserved rewrit-
ing of the reasoning paths in the dataset with long
CoT trajectories distilled from LRM, resulting in
a corresponding dataset with short CoT reasoning
paths. We then construct a mixture of both long and
short CoT reasoning datasets, and use it to perform
supervised fine-tuning on the student model. This
mixture allows student models to learn both com-
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Figure 1: Overview of LS-Mixture SFT. This method consists of three stages: 1) Structure-preserved CoT
Rewriting: A LLM is used to rewrite the long CoT trajectories into short ones while preserving the core structure.
2) Mixture Supervised Fine-Tuning: Non-reasoning LLM is been supervised fine-tuned on mixture datasets. 3)
Inference-time Balanced Thinking: The fine-tuned model is designed to employ a balanced thinking mode that
lies between detailed and brief when generating reasoning responses to queries.

prehensive reasoning patterns and efficient reason-
ing shortcuts, resulting in models that can generate
more efficient reasoning during inference without
sacrificing accuracy. Our approach can directly
reuse existing long CoT reasoning datasets without
incurring the substantial costs associated with ad-
ditional data distillation. Specifically, we created a
mixed dataset of long and short reasoning chains,
s1K-mix, based on the existing s1K-1.1 dataset
(Muennighoff et al., 2025), and utilized this mixed
dataset to train the Qwen2.5-32B-Instruct model,
resulting in our model s1-mix-32B.

Our extensive experiments across three challeng-
ing reasoning benchmarks validate the effective-
ness of the LS-Mixture SFT approach. The ex-
perimental results demonstrate that our sl-mix-
32B model achieves higher accuracy on MATHS500,
AIME24, and GPQA benchmarks (improvements
of 2.2%, 6.7%, and 2%, respectively) compared
to models trained solely on long-chain reasoning
data, while significantly reducing average response
length (by 47.61% on average). Ablation studies
further confirm the importance of our proposed
structure-preserved CoT rewriting strategy and the
advantages of the long-short chain mixture training
method in balancing reasoning efficiency and accu-
racy. These findings indicate that LS-Mixture SFT
not only effectively elicits reasoning capabilities in
non-reasoning models but also successfully avoids
the overthinking problem inherited from existing
LRMs, providing an effective approach for training
more efficient reasoning models.

Our contributions can be summarized as follows:

* We propose a novel method for transforming
long chain-of-thought trajectories into their
short counterparts: Structure-preserved CoT
Rewriting, which is designed to rewrite rea-
soning paths while preserving the core struc-
ture, thereby preventing overly liberal rewrit-
ing that might cause models to lose crucial
"aha moments" ability during training.

* We introduce LS-Mixture SFT, a novel fine-
tuning approach that mix long and short rea-
soning dataset to elicits efficient reasoning in
large language models.

e Based on these methods, we build a new mix-
ture dataset s1K-mix and a fine-tuned model
s1-mix-32B released on HuggingFace.

* Through extensive experiments, we demon-
strate that our approach significantly reduces
model response length during inference while
improving task performance.

* During our experiments, we observed an in-
teresting phenomenon: the fine-tuned model’s
ability to success in balanced thinking was
not explicitly trained but rather emerged as
a natural consequence of training on a mix-
ture dataset comprising both long-chain and
short-chain reasoning examples.

Our code, model, and dataset are open-sourced
at GitHub and HuggingFace.



2 Methodology

In this section, we introduce Long-Short Chain-
of-Thought Mixture Supervised Fine-Tuning (LS-
Mixture SFT), our novel approach for efficiently
transferring reasoning capabilities from LRMs to
non-reasoning LLMs. The key insight is that not
all reasoning steps contribute equally to the final
solution—many tokens in verbose CoT are redun-
dant. By leveraging LLMs as rewriter model that
preserve the core reasoning structure while elim-
inating redundancy, we create a complementary
dataset of short CoT. These shortened trajectories
maintain the core structure and key steps necessary
for accurate problem-solving but with significantly
reduced token counts. When mixed with the origi-
nal long CoT dataset, the combination allows stu-
dent models to learn both comprehensive reasoning
patterns and efficient reasoning shortcuts, result-
ing in model that can generate more concise CoT
during inference without sacrificing accuracy.

As illustrated in Figure 1, our approach can be
divided into three stages: (1) Structure-preserved
CoT Rewriting: We use a LLM as a rewriter model
for the structure-preserved rewriting of long CoT.
This process incorporates specific constraints in the
instruction prompt to ensure that the rewriting pro-
cess maintains the core logical structure and keys
steps of the original CoT. Based on the existing
long CoT dataset, this stage produces a correspond-
ing short CoT dataset. (2) Mixture Supervised
Fine-Tuning: The original long CoT reasoning
dataset and short CoT reasoning dataset obtained in
the previous stage are completely randomly mixed
to create a long-short mixture dataset. This mixed
dataset is then used to perform supervised fine-
tuning on a non-reasoning LLM. (3) Inference-
time Balanced Thinking: The mixture of both
long and short CoT datasets enables student models
to acquire comprehensive reasoning patterns while
simultaneously learning efficient reasoning short-
cuts. During inference, our model is provided with
instructions of balanced thinking mode to solve the
problem.

In the following subsections, we first provide a
formal definition of the task (2.1), followed by a
detailed explanation of each stage of our method
(2.2,2.3,2.4).

2.1 Formal Task Definition

Let Diong = { (i, TZ-L, yl)}f\il denote a long CoT
dataset comprising IV instances, where x; repre-

sents a complex question, r; corresponds to the
long CoT trajectory distilled from a LRM, and y;
denotes the corresponding answer.

Our objective is to utilize this dataset through
SFT to endow a non-reasoning LLM with effective
reasoning capabilities.

2.2 Structure-preserved CoT Rewriting

A key component of our LS-Mixture SFT approach
is the structure-preserved CoT rewriting method,
which transforms verbose long CoT into more con-
cise versions while preserving their core logical
structure and key reasoning steps. This method
significantly shortens the thinking part in the train-
ing data while preserving the reasoning process
demonstrated by LRMs when addressing a prob-
lem, particularly the "aha moments" phenomenon
exhibited by these reasoning-capable models.

We employ another LLM (Qwen2.5-72B-
Instruct) as the rewriter model Prewriter, iNCOrpo-
rating explicit constraints in the prompt template
to instruct the model to maintain the original log-
ical structure and key steps of the CoT trajectory
during rewriting. The prompt template employed
by the rewriter model is presented in Appendix E.1.
Additionally, Appendix I presents a case study of
Chain-of-Thought (CoT) rewriting.

For each data point in the dataset Djopg, We uti-
lize the rewriter model to transform the long CoT
trajectory 7 into a shorter one rf , which can be
formally expressed as:

Tzs = IP)rewriter(TZ‘L |$z) (D)

After structure-preserved CoT rewriting, the
short CoT are substantially shorter in length com-
pared to their long CoT counterparts. Utiliz-
ing these rewritten short CoT trajectories, we are
able to construct a short CoT dataset Dghort =

{(x’ia T;'S’ yl)}zj\il
2.3 Mixture Supervised Fine-Tuning

Following the previous stage that yields the short
reasoning dataset Dgnort, We proceed to completely
randomly merge it with the original long reasoning
dataset Djopg, creating a new mixed dataset Dyyix:

Dyix = Dlong U Dshort (2)

This mixture dataset Dy,x is then utilized to per-
form SFT on a non-reasoning LLM M aiming to
eliciting its efficient reasoning. To align with the
current output format of LRMs, we encapsulate the



CoT trajectory using special tokens <think> and
</think>, and concatenate it with the answer part
to form the ground-truth response for fine-tuning.
The optimization objective M* can be formulated
as follows:

L(Diong) = »_ —logPas(r{ @ yilzi,p) (3)
D]ong

L(Dgort) = > —logPas(ry @ yilai,ps) (@)
Dyport

M* = arg mj\}n L(Dlong) + L(Dshort) Q)

In Equations 3 and 4, py, and pg respectively rep-
resent the prompt that instruct the language model
to reasoning in detailed and brief thinking modes.
The specific prompt templates can be found in Ap-
pendix E.2 and E.3.

The mixture dataset ensures that the model is
exposed to both comprehensive thinking patterns
from long CoT trajectories and the efficient pat-
terns from short ones, which enables the model to
adapt its reasoning pattern based on the instruction
type. When prompted with "detailed thinking" in-
structions, the model demonstrates comprehensive
reasoning inherited from long CoT examples. Si-
multaneously, under "brief thinking" instructions,
it employs concise yet effective reasoning patterns
learned from short CoT examples.

2.4 Inference-time Balanced Thinking

Through our mixture training approach, the model
simultaneously acquires both detailed and concise
thinking modes. However, neither mode achieves
an optimal balance between response effectiveness
and efficiency. To address this limitation, we pro-
pose an inference-time balanced thinking method-
ology that leverages the dual reasoning capabil-
ities developed during training while optimizing
for both effectiveness and efficiency during model
deployment.

To implement balanced thinking mode, we
maintain the format of prompt template between
the inference time and the training time, while mod-
ifying the instructions regarding the thinking mode.
Specifically, we replace the directives for either
detailed or brief thinking with instructions that en-
courage the model to engage in an "appropriate"

thinking process that falls between these two ex-
tremes. This approach enables the model to balance
effectiveness and efficiency in its reasoning process.
The formulation can be expressed as follows:

(ri,yi) = Par(24|pB) (6)

where 7; is the approximate reasoning chain that
is generated by the post-trained model M*, and
pp is the prompt template for balanced thinking.
The specific prompt template can be found in Ap-
pendix E.4.

3 Experiments

3.1 Dataset

To demonstrate the effectiveness of the LS-Mixture
SFT method, we conducted experimental evalua-
tions based on two open-source datasets: s1K-1.1
and OpenThoughts-2K.

s1K-1.1 and s1K-mix Dataset s1K-1.1 (Muen-
nighoff et al., 2025) contains 1,000 instances of de-
tailed reasoning trajectories and answers distilled
from the DeepSeek-R1 model. We implemented
our structure-preserved CoT rewriting technique
using Qwen2.5-72B-Instruct as the rewriter model.
During rewriting process, 16 instances exceeded
context length limitations, resulting in their exclu-
sion from the dataset. The final short reasoning
chain dataset (Dgport) consisted of 984 examples.
The mixture of these long and short examples con-
stitutes our s1K-mix dataset. The statistics for
these datasets are presented in Appendix F. For the
purpose of clarity and to adhere to the naming con-
ventions established in prior research, we designate
the model trained on s1K-1.1 as s1-32B and the
model trained on s1K-mix as s1-mix-32B.

OpenThoughts-2K The OpenThoughts dataset
(Guha et al., 2025) comprises 114K high-quality
synthetic reasoning data samples, covering multi-
ple domains including mathematics, science, and
programming. Due to computational resource con-
straints, we randomly sampled 2K samples from
the 114K instances to form a subset, which con-
stitutes the OpenThoughts-2K dataset employed
in this study. Following a similar methodology to
that employed in constructing the s1K-mix dataset,
we developed the OpenThoughts-2K-mix dataset
based on OpenThoughts-2K utilizing the mixture
strategy proposed by our method.



Table 1: Results on 3 benchmarks. For each benchmark, we report both the response accuracy and response
length in our evaluation results (with the exception of the ol model). Due to accessibility limitations of the
ol model, we only report their publicly available scores on these benchmarks. Among these baseline models,
s1.1-32B serves as our primary baseline model for comparison.

Dataset MATHS00 AIME24 GPQA
Model/Method Size SFT or RL Acc  Length  Acc Length  Acc  Length Avg. Length
Baselines of API only
ol-previwe unknown N/A 85.5 N/A 44.6 N/A 73.3 N/A N/A
ol-mini unknown N/A 90 N/A 70 N/A 60 N/A N/A
ol unknown N/A 94.8 N/A 74.4 N/A 77.3 N/A N/A
DeepSeek-R1 g;/5) unknown N/A 96.8  7,658.1 733 27,0902 757 23,696.2 12,820.9
Baselines of Open Weights
R1-Distill-Qwen-32B unknown SFT 93.8 8,0444 60.0 24,786.1 61.7 25,1359 13,382.8
Sky-T1-32B 17K SFT 85 6,839.1  50.0 7,893.9 53 10,376.5 7,844.6
Sky-T1-32B-Flash 10k RL 842 38737 267 14,0375 515 44286 4,443.5
LIMO28) 817 SFT 93.8 10,3527 533 46,6046 59.6 23,635.1 15,459.1
O1-Pruner;g) 5K RL 90.6 3,784.0 333 11,390.7 444 64344 4,818.3
SimpleRL-Z00 3,5, 24K RL 824 1,7563 167 32729 444  1,588.2 1,773.1
CoT-Valve@zs) 8K SFT 88.8 11,5844 433 473198 545 479705 229532
Qwen2.5-32B-Instruct + s1K-1.1
SFT* IK SFT 924416 12,351.4 53.3+6.7 53,455.6 59.142 56,040.7  25,927.8
LS-Mixture SFT *  1.98K SFT 946120 8,648.7 60.016.7 40,251.3 61.1125 21,995.7 13,581.1 7 6,
Qwen2.5-32B-Instruct + OpenThoughts-2K
SFT 2K SFT 91.740.7 13,604.1 53.3+3.3 55,399.3 58.1+25 53,110.0  26,071.2
LS-Mixture SFT 4K SFT 944106 6,978.2 63.3135 31,356.8 61.6120 22,545.8 12,216.9 55 19,

v also referred to as the s1.1-32B model.
* also referred to as the s1-mix-32B model.

3.2 Experiment Setup

Training We perform supervised fine-tuning on
Qwen2.5-32B-Instruct using the dataset s1K-mix
and OpenThoughts-2K-mix using basic hyper pa-
rameters outline in Appendix G. All model train-
ing was conducted using the LlamaFactory (Zheng
et al., 2024). The relevant training hyper parame-
ters are maintained consistent with those used for
the s1.1-32B model (Muennighoff et al., 2025).
Given that the mixture dataset contains a greater
number of samples than raw dataset, we adjusted
the number of epochs to ensure that both models
were exposed to an equivalent quantity of training
samples. Taking the experiment using the s1K-1.1
dataset as an example: let Vjope denote the number
of training epochs for s1.1-32B (Njong = 5), Nmix
represent the number of training epochs for our
s1-mix-32B model, and | Djong| and | Dyix| denote
the size of the respective datasets. The numerical
relationship is represented as: Niong X |Diong| =
Nmix X |Dmix‘-

Baselines The experimental comparisons involve
three categories of baseline methods: (1) Base-
lines of API only. These models are all com-
mercial closed-source models, including Ope-

nAl ol-series (OpenAl, 2024) and DeepSeek-R1
(DeepSeek-Al et al., 2025). (2) Baselines of
Open Weights. These baseline models were
trained using diverse methods and have publicly
released their weights, including R1-Distill-Qwen-
32B (DeepSeek-Al et al., 2025), Sky-T1-32B
(Team, 2025a), Sky-T1-32B-Flash (Team, 2025b),
LIMO (Ye et al., 2025), O1-Pruner (Luo et al.,
2025), SimpleRL-Zoo (Zeng et al., 2025), and CoT-
Valve (Ma et al., 2025). These models employ ei-
ther supervised fine-tuning (SFT) or reinforcement
learning (RL) approaches, with their specific corre-
spondences systematically summarized in Table 1.
Among them, the O1-Pruner baseline selected the
version based on QwQ-32B-Preview. (3) Standard
SFT. Standard SFT refers to the approach that uti-
lizes only the original distilled dataset for model
training. In contrast, LS-Mixture SFT incorporates
a compressed short CoT dataset during the SFT
process.

Benchmarks We evaluate the models on five in-
domain benchmarks and two out-of-distribution
benchmarks to evaluate their performance. (1)
In-domain Evaluation: the American Invita-
tional Mathematics Examination (AIME24 and



AIME2S), MATHS500 (Hendrycks et al., 2021),
the American Mathematic Competitions (AMC23)
and GPQA Diamond which consists of 198 PhD-
level science questions from Biology, Chemistry,
and Physics. The in-domain evaluation results are
presented in Table 1 and Appendix A. (2) Out-of-
distribution Evaluation: the 1,000 crowd-sourced
Python programming problems (MBPP) and the
164 programming problems released by OpenAl
(HumankEval). The out-of-distribution evaluation
results are presented in Appendix B. More specific
evaluation details are provided in Appendix D.

Response Length Evaluation In addition to eval-
uating accuracy on the benchmarks, we computed
the average response character length generated by
models. This metric is crucial for assessing infer-
ence efficiency, as shorter responses directly trans-
late to reduced latency and computational costs.
We operate under the principle that, given compara-
ble levels of accuracy, models that produce shorter
responses are inherently more efficient and practi-
cal for real-world applications. For each model, we
calculated the weighted average lengths across all
benchmarks, using the number of samples in each
evaluation dataset as weights for computation.

3.3 Results

Table 1 presents the experimental results on the
three benchmarks, highlighting the key findings:
our proposed method LS-Mixture achieves a
substantial reduction in model response length
while imporving answer accuracy. Despite uti-
lizing the same training question set and equiva-
lent number of training instances as s1.1-32B, our
s1-mix-32B model attains accuracy improvements
of 2.2% on MATHS500 (from 92.4% to 94.6%),
6.7% on AIME24 (from 53.3% to 60%), and 2% on
GPQA (from 59.1% to 61.1%), all while reducing
average response length by 47.61% compared to
s1.1-32B. Similar trends were also observed in the
evaluation results when using OpenThoughts-2K as
the training dataset. These results demonstrate the
effectiveness of our proposed method in enhancing
both reasoning accuracy and efficiency.

4 Ablations
4.1 Impact of Rewriting Strategies

To investigate the importance of our CoT rewriting
strategy, we performed ablation studies to com-
pare our approach with two alternative rewriting
strategies: Direct compression: A straightforward

200
192 [ s1.1-32B

s1-mix-32B

Sample Counts

Response Length Range

Figure 2: Comparison of response length distribu-
tion between s1.1-32B and s1-mix-32B models on the
MATHS500 benchmark. The horizontal axis represents
response length, while the vertical axis shows the num-
ber of samples within each length range.

approach where the LLM is instructed to com-
press the long reasoning chain freely. The specific
prompt templates can be found in Appendix E.S5.
ThinkTwice: this approach (Tian et al., 2025) in-
corporates the answer into the specific prompt used
to model generation. The thinking part produced
during generation serve as the shortened CoT.

For each rewriting strategy, we created a corre-
sponding short reasoning dataset and applied our
method to fine-tune Qwen2.5-32B-Instruct. As
demonstrated in the Table 2, all alternative chain-
of-thought rewriting methods resulted in dimin-
ished model training effectiveness, highlighting the
importance of preserving the original logical rea-
soning structure during rewriting stage.

4.2 Impact of Long-Short Mixing Strategies

To investigate the effectiveness of our proposed
mixing strategy, We performed ablation studies to
compare our approach with two alternative mixing
strategies: Long-only: The thinking part of the
data point exclusively comprises long CoT trajecto-
ries, specifically Dioyg. Short-only: The thinking
part exclusively comprises short CoT trajectories,
specifically Dgport.

Table 3 presents the experimental results across
our evaluation benchmarks. The results demon-
strate that our proposed mixing strategy consis-
tently outperforms other approaches.

4.3 Impact of Inference-time Thinking Modes

During the training of s1-mix-32B, detailed and
brief thinking modes were employed for the long



Table 2: Ablation experiment results on CoT rewriting strategies. We employed direct rewriting strategy and the
ThinkTwice method to obtain short CoT trajectories.

MATHS500 AIME24 GPQA
Strategy Acc. Length Acc. Length Acc. Length
Direct 854 6,106.1 333 5,876.4 535  31,204.0
ThinkTwice 91 13,027.8  58.1 47,5203 433 47,9285
Structure-preserved  94.6 8,648.7 60 40,251.3  61.1  21,995.7

Table 3: Ablation experiment results on dataset mixing strategies. We experimented with three datasets created by
different strategies: only the long CoT reasoning dataset, only the short CoT reasoning dataset, and mixture dataset.

MATHS500 AIME24 GPQA
Mix Method Acc. Length Acc. Length Acc. Length
Long-only 924 12,3514 533 534556 59.1  56,040.7
Short-only 82.6 3,205.8 16.7 6,646.3 49.0 3,961.7
Mixture 94.6 8,648.7 60 40,2513 611 21,9957

Table 4: Ablation experiment results on different thinking modes. We evaluated the performance of the s1-mix-32B
model using three thinking modes: detailed thinking, brief thinking, and balanced thinking.

MATHS500 AIME24 GPQA
Thinking Mode Acc.  Length  Acc. Length Acc. Length
Brief 81.0 29639 200 4,490.3 52.0 4,125.0
Detailed 926 1,1623 56.7 53,1074 62.1 41,7629
Balanced 94.6  8,648.7 60 40,2513  61.1  21,995.7

and short CoT dataset, while a balanced thinking

Exploration of Mixing Ratios.

Our previous ex-

mode was utilized during inference. To investigate
the impact of different thinking modes at inference
time, we conducted evaluations using these three
thinking modes for s1-mix-32B. As shown in Ta-
ble 4, employing the balanced thinking mode yields
the optimal results, which validate our hypothesis
that the balanced thinking mode during inference
time can effectively leverage both the comprehen-
sive thinking capabilities learned from long CoT
examples and the efficient reasoning patterns ac-
quired from short counterparts.

5 Discussion

Structure-preserving in CoT Rewriting. Our
findings highlight the importance of maintaining
the core logical structure when rewriting long CoT
into short formats. Our ablation studies 4.1, which
explore various strategies for CoT trajectory rewrit-
ing, revealed a insight: overly simplified CoT fail
to adequately stimulate the student model’s reason-
ing capabilities. Conversely, we observed that by
preserving the original core structure and key steps
from the long CoT during the rewriting stage could
the student model be guided to learn how to reason
effectively.

periments assumed a mixing ratio of 1 : 1 between
long and short reasoning chains. To investigate
the effects of mixing ratios on the final results, we
modified the mixing ratio to 1 : « and conducted
experiments with « values of 0, 0.25, 0.5, 0.75, and
1, respectively. Figure 3 presents the experimental
results on the s1K-1.1 dataset and Qwen2.5-7B-
Instruct model under different mixing ratios.

Relationship between Accuracy and Response
Length. In the large reasoning model, increased
response length often signifies the emergence of
the "aha moment" phenomenon and correlates with
improved model performance. However, recent
studies (Wang et al., 2025a; Ghosal et al., 2025)
reveal that excessive deliberation-induced lengthen-
ing can degrade performance, suggesting that mit-
igating overthinking appropriately enhances both
model accuracy and response conciseness. These
findings align with our experimental results.

6 Related Work

6.1 Chain-of-Thought Reasoning in LLMs

Chain-of-Thought reasoning has emerged as a piv-
otal technique for enhancing the reasoning capa-
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Figure 3: The impact of mixing ratios «. The x-axis
represents the mixing ratio, while the y-axis displays
the model’s accuracy and average response length on
the benchmark after training.

bilities of large language models. Initially intro-
duced by Wei et al. (2022), CoT prompting en-
courages models to generate intermediate reason-
ing steps before producing a final answer (Byun
et al., 2024). This approach has proven particu-
larly effectively for complex reasoning tasks (Li
et al., 2024; Madaan et al., 2023), including mathe-
matical problem-sovling (Yin et al., 2024), logical
reasoning (Wan et al., 2024; Toroghi et al., 2024),
and scientific inquery (Sun et al., 2024).

With the recent discovery of test-time scaling
laws (Wu et al., 2024; Snell et al., 2025), Large
Reasoning Models, exemplified by DeepSeek R1
(DeepSeek-Al et al., 2025), have undergone sub-
stantial development. These works utilize tech-
niques such as reinforcement learning to en-
able LLMs to generate a CoT reasoning process
enclosed by special tokens (e.g., <think> and
</think>) (Qin et al., 2024; Team et al., 2025;
Wen et al., 2025).

The emergence of LRMs has further enhanced
the capabilities of LLM on complex reasoning
tasks. However, to transfer these reasoning abil-
ities to non-reasoning models such as Qwen-2.5
series (Qwen et al., 2025), current research (Zhang
et al., 2025a; Muennighoff et al., 2025) has found
that it is also possible to elicit thier reasoning
abilities by performing supervised fine-tuning on
non-reasoning models using dataset distilled from
LRMs (Zhang et al., 2025b; Chen et al., 2025c).
Our approach follows this line of research, refin-

ing the fine-tuning methodology to elicit efficient
reasoning capabilities in non-reasoning models.

6.2 Efficient Reasoning in LRMs

While LRMs improve performance in System-2
reasoning domains (Li et al., 2025), they also in-
troduce significant computational overheads due to
verbose and redundant reasoning steps, known as
the "overthinking phenomenon" (Qu et al., 2025;
Sui et al., 2025). To address this issue, a series of ef-
ficient reasoning (Feng et al., 2025; Xu et al., 2025;
Cui et al., 2025; Liu et al., 2025; Yang et al.) meth-
ods have been proposed to enhance the inference-
time efficiency of LRMs. These methods vary in ap-
proach: some incorporate response length-related
rewards into reinforcement learning (Aggarwal and
Welleck, 2025; Luo et al., 2025; Shen et al., 2025;
Yeo et al., 2025; Zeng et al., 2025), others differ-
entiate problem difficulty levels to allocate token
budgets accordingly (Ong et al., 2025; Aytes et al.,
2025; Huang et al., 2025), and yet others leverage
smaller models to achieve faster thinking processes
(Akhauri et al., 2025; Wang et al., 2025b). To our
knowledge, our approach inspired by C30T (Kang
et al., 2025) is the first investigation from the super-
vised fine-tuning perspective on achieving efficient
reasoning goals while eliciting reasoning capabil-
ities in non-reasoning models through distillation
from LRMs.

7 Conclusion

We presented LS-Mixture SFT, a novel approach
for eliciting efficient reasoning capabilities in non-
reasoning models using dataset distilled from large
reasoning models, thereby enabling the trained
model to maintain task performance while reduc-
ing response length, and avoiding the inheritance
of the overthinking problem from teacher models
to student models during the distillation process.
We found that our approach of mixing long and
short reasoning chains can effectively enhance the
performance of reasoning distillation and can be
applied to SFT in various scenarios. This method is
straightforward and enables supervised fine-tuned
models to effectively reduce the length of reasoning
chains while maintaining accuracy.

In future work, we aim to investigate the integra-
tion of our supervised fine-tuning approach with
current reinforcement learning methods and token-
level compression techniques to further optimize
efficient reasoning of model.



Limitations

Despite the promising results presented in this pa-
per, our study is subject to several limitations. The
experiments conducted in this work were restricted
to a 32B parameter model and datasets containing
only 1,000 examples (s1K-1.1 dataset) and 2,000
examples (OpenThoughts-2K dataset). Due to com-
putational resource constraints, we were unable to
extend our experiments to larger-scale models or
more extensive datasets.

Furthermore, since the mixing ratio is a continu-
ous variable, experimental identification of the op-
timal ratio necessitates densely sampled design ex-
ploration. Constrained by computational resources,
this study evaluates only a set of representative
mixing ratios for the long-short CoT mixture. The
optimal balance between these different types of
reasoning demonstrations may vary across different
model sizes, tasks, and domains. This represents
an important dimension for future exploration that
could yield further improvements in model perfor-
mance and efficiency.

Ethics Statement

This research utilizes the s1K-1.1 dataset (Muen-
nighoff et al., 2025), OpenThoughts dataset (Guha
et al., 2025) and Qwen2.5 series models (Qwen
et al., 2025), both of which are publicly available
online resources. We have provided appropriate
citations to acknowledge the original work behind
these resources. Our study focuses on improving
model training and inference efficiency through
Chain-of-Thought trajectory rewriting techniques,
which does not introduce new ethical concerns be-
yond those inherent to large language model re-
search.
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A In-domain Evaluation

Table 5 presents the in-domain evaluation results
on the AIME25 and AMC23 dataset, where the
Qwen2.5-32B-Instruct model was trained on the
s1K-1.1 and OpenThoughts-2K datasets using both
the standard SFT and LS-Mixture SFT methods,
respectively.

Table 5: Evaluation on AIME25 and AMC23

Method AIME25 AMC23
Accl  Length]  Accl  Length|
sIK-1.1
SFT 43.3 55,038.3 87.5 22,547.6
LS-Mixture SFT  50.0 44,5402  95.0 14,329.0
OpenThoughts-2K
SFT 333 58694.5 85.0  22,684.5
LS-Mixture SFT  46.7 32842.6 92.5 15,000.5

B Out-of-distribution Evaluation

Table 6 presents the out-of-distribution evalu-
ation result on the MBPP and HumanEval
dataset, where the Qwen2.5-32B-Instruct model
was trained on the s1K-1.1 and OpenThoughts-
2K datasets using both the standard SFT and LS-
Mixture SFT methods, respectively.

Table 6: Evaluation on MBPP and HumanEval

Method MBPP HumanEval
Acct Length|  Accl  Length|
sIK-1.1
SFT 72.0  21.909.7 66.5 20130.3
LS-Mixture SFT ~ 75.2 15,007.8 69.5 16,417.1
OpenThoughts-2K
SFT 732 21,2535 68.3 18133.7
LS-Mixture SFT ~ 77.2 13,756.0  70.7 11841.3

C The Generalizability of Model Size

The main text evaluates the performance of the 32B
model variant. To demonstrate the generalizabil-
ity of our method across different model scales,
this section additionally presents the results of 7B
and 14B models under both standard SFT and LS-
Mixture SFT methods in s1K-1.1 dataset. Tables 7,
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8, and 9 present the evaluation results on three
benchmarks: MATH500, AIME24, and GPQA,
respectively. These experimental findings consis-
tently align with our observations and conclusions.

Table 7: The performance of Qwen2.5-Instruct 7B and
14B models on MATHS00 after fine-tuning on the s1K-
1.1 dataset using both standard SFT and LS-Mixture
SFT.

Method MATHS500
AcclT  Length|
7B SFT 77.8  22,705.0
LS-Mixture SFT ~ 81.6 17,890.5
14B SFT 88.2 17,917.0
LS-Mixture SFT  91.2 12,559.3

Table 8: The performance of Qwen2.5-Instruct 7B and
14B models on AIME24 after fine-tuning on the s1K-
1.1 dataset using both standard SFT and LS-Mixture
SFT.

Method _ AIME24

Accl  Length|

7B SFT 16.7 65,304.8
LS-Mixture SFT 20.0 43,470.0

14B SFT 30.0 64,532.4
LS-Mixture SFT 40.0 37,958.1

Table 9: The performance of Qwen2.5-Instruct 7B and
14B models on GPQA after fine-tuning on the s1K-1.1
dataset using both standard SFT and LS-Mixture SFT.

Method GPQA
Acc?  Length|
7B SFT 37.9 79,867.3
LS-Mixture SFT 44 .4 54,802.5
14B SFT 51.0 58,442.7
LS-Mixture SFT 54.5 30,376.6

D Evaluation Detail

We evaluate the performance of models on these
benchmarks using the LightEval (Fourrier et al.,
2023) framework following the open-rl project
(HuggingFace, 2025). In order to eliminate ran-
domness in the evaluation, the presented accuracy
corresponds to the median of five independent re-
peated experiments.
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E Prompt Template

E.1 The prompt of Rewriter Model

Rewriter Model

You have a QUESTION and a THOUGHT
PROCESS now, and you need to simplify
the THOUGHT PROCESS while maintain-
ing its original structure and steps.

QUESTION: {question}
THOUGHT PROCESS: {thought_process}

Now, you need to simplify the THOUGHT
PROCESS while maintaining its original
structure and steps. For each step in the
original THOUGHT PROCESS:

1. Keep the original logical flow and steps
as much as possible, including the thinking
process, verification process, and the final
answer.

2. Remove redundant tokens.

3. Preserve the step-by-step format.

4. Allow condensed thought processes
to include attempts at different reasoning
processes.

Do not add any new information that wasn’t
in the original THOUGHT PROCESS.

SIMPLIFIED THOUGHT PROCESS:

E.2 The prompt of detailed thinking mode

Detail Thinking Mode

Answer the problem with a detailed think-
ing process:

E.3 The prompt of brief thinking mode

Brief Thinking Mode

Answer the problem with a brief thinking
process:

E.4 The prompt of balanced thinking mode

Balanced Thinking Mode

Answer the problem with a appropriate
(between detailed and brief) thinking pro-
cess:

E.5 The prompt of Direct Compression

Direct Compression

You have a question now:

QUESTION:
{question}

THOUGHT PROCESS:
{thought_process}

Now, you need to simplify the THOUGHT
PROCESS as short as possible to only
include the key information needed to solve
the question. And do not add additional
information that is not included in the
original THOUGHT PROCESS.

SIMPLIFIED THOUGHT PROCESS:

\

F Dataset Profile

Table 10: The statistical profile of the datasets used
in this study, namely s1K-1.1 and s1K-mix. For each
dataset, we report the number of rows and the average
text length.

Dataset Num of Rows Average Length
s1K-1.1 1000 29667.49
s1K-mix 1984 17406.11

G Training Hyperparameters

All experiments were run in a GPU cluster of 16
* A800. The hyperparameters used for training
are presented in Table 11, while any parameters
not explicitly specified utilize the default values
provided by LlamaFactory (Zheng et al., 2024).

Table 11: Training Hyperparameters

Hyperparameter  Value
cutoff len 4096
learning_rate le-5
Ir_scheduler_type  cosine
warmup_ratio 0.05
bf16 true
optimizer AdamW
weight_decay le-4
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Figure 4: Comparison of mean response lengths for
correct (red) and error (green) predictions of the s1-mix-
32B model across the MATH500, GPQA, and AIME24
benchmarks.

H Analysis of Response Length

Our analysis of the evaluation results from the s1-
mix-32B reveals a correlation between response
correctness and length. As illustrated in Figure 4,
incorrect responses demonstrate greater verbosity
across all evaluation datasets. Specifically, the av-
erage response length of incorrect examples is ap-
proximately 3.58 times longer than the correct part.
This finding suggests that when the model is un-
certain or unable to produce an accurate answer, it
tends to generate more unhelpful text.

I Case Study of Rewriting

Figure 5 illustrates an example of applying a
structure-preserving rewriting strategy to a long
CoT in the s1K-1.1 dataset, resulting in a con-
cise short CoT. As evidenced, the rewritten ver-
sion maintains identical logical structure and cor-
rectness while significantly improving expression
conciseness.

J Word cloud of Datasets

Figures 6 and 7 respectively display word clouds
of the chain-of-thought trajectories from our exper-
iments on the long reasoning dataset and the short
reasoning dataset. As can be observed from these
two figures, the distribution of common words un-
dergoes a significant change following structure-
preserved rewriting, notably marked by the disap-
pearance of the words wait’ and 'need’.
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Figure 6: Word cloud of CoT trajectories in the long
reasoning dataset.
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Figure 7: Word cloud of CoT trajectories in the short
reasoning dataset.



Given a rational number, write it as a fraction in lowest terms and calculate the product of
the resulting numerator and denominator. For how many rational numbers between 0 and
1 will $20_{}*{}!$ be the resulting product?

Figure 5: An example of applying a structure-preserving rewriting strategy to transform a long CoT from the
s1K-1.1 dataset into a concise short CoT. As evidenced, the rewritten version maintains identical logical structure
and correctness while significantly improving expression conciseness.
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