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Abstract

As the length of input text grows, the key-value (KV) cache in LLMs imposes
prohibitive GPU memory costs and limits long-context inference on resource-
constrained devices. Existing approaches, such as KV quantization and pruning,
reduce memory usage but suffer from numerical precision loss or suboptimal
retention of key-value pairs. We introduce Low Rank Query and Key attention
(LRQK), a two-stage framework that jointly decomposes the full-precision query
and key matrices into compact rank-r factors during the prefill stage, and then
uses these low-dimensional projections to compute proxy attention scores in O(lr)
time at each decode step. By selecting only the top-k tokens and a small fixed set
of recent tokens, LRQK employs a mixed GPU–CPU cache with a hit-and-miss
mechanism that transfers only missing full-precision KV pairs, thereby preserving
exact attention outputs while reducing CPU–GPU data movement. Extensive
experiments on the RULER and LongBench benchmarks with LLaMA-3-8B and
Qwen2.5-7B demonstrate that LRQK matches or surpasses leading sparse-attention
methods in long context settings, while delivering significant memory savings
with minimal loss in accuracy. Our code is available at https://github.com/
tenghuilee/LRQK.

1 Introduction

Large language models (LLMs) have shown their remarkable capabilities across diverse tasks. Recent
LLMs have extended their capabilities to support long-context processing, enabling them to leverage
extended sequences for improved performance in applications such as document-level understanding
and long-form text generation [1–5]. Despite these advances, efficient processing of long-contexts
presents substantial challenges. The primary constraint stems from computational resource limitations,
particularly regarding memory consumption. The KV cache stores historical key–value pairs to
prevent redundant computations. However, its size grows linearly with sequence length and quickly
imposes prohibitive memory requirements when handling long inputs. Consequently, as context
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Figure 1: Brief overview of the proposed Low Rank Query and Key attention (LRQK) method.
Subscript Ω denotes the selected tokens, t denotes the current token. qt,kt are the original query and
key, q̂t, k̂t are the approximated query and key. AK,t is the low rank key matrix. K′

Ω,t−1,V
′
Ω,t−1

are GPU cache KΩ,t−1,VΩ,t−1 merged with fetched CPU keys and values.

windows expand, the KV cache correspondingly increases in size, eventually becoming the system
bottleneck.

Existing approaches addressing the KV cache memory bottleneck can be systematically categorized
into three fundamental methodologies: (1) quantization techniques [6–9], which reduce numerical
precision while preserving semantic integrity; (2) pruning mechanisms [10–12], which selectively
retain critical tokens while eliminating redundant ones; and (3) offloading strategies [13–15], which
redistribute memory across heterogeneous storage hierarchies. Additionally, hybrid approaches [16]
combine multiple techniques to maximize efficiency.

While these methods have made significant strides in addressing the KV cache memory bottleneck,
they each come with inherent limitations. Quantization methods will sacrifice numerical precision,
and the evincing techniques risk eliminating potentially crucial key-value pairs, particularly prob-
lematic when tokens deemed unimportant in current contexts later become critical for subsequent
reasoning. Pruning methods may inadvertently discard important key-value pairs, leading to sub-
optimal performance when previously unimportant tokens become critical in subsequent reasoning.
Offloading strategies introduce substantial latency overhead due to frequent PCIe data transfers,
severely impacting real-time processing capabilities.

Consequently, an ideal solution should balance the trade-offs between memory efficiency, numerical
precision, and computational latency. A key observation in decoder-only transformer LLMs is the
inherent sparsity of attention activation patterns during inference. It had been shown that only a small
subset of tokens contributes significant attention weights at each generation step [11, 10, 16, 12].
This sparsity also shows that the possibility of offloading of inactive key-value pairs to cheaper CPU
memory while retaining active pairs in GPU memory. However, a fundamental technical challenge
emerges when implementing this strategy. Full attention computation requires complete access to key
tokens, which are not efficiently accessible after offloading.

To mitigate these challenges, a hybrid attention mechanism is proposed to exploit the intrinsic sparsity
of transformer attention patterns while preserving exact computation of attention outputs. At its core
lies the observation that full query–key interaction matrix in decoder-only LLMs admits a close low
rank approximation. Therefore, the query matrix and key matrix are jointly factorized into compact
bases. In the decoding phase, a “proxy” attention score is computed via these factorized query and key
matrices, and identify the top-k relevant tokens in the GPU cache. Thus, the ground truth attention
score can be carried out on the retrieved subset of k and v, guaranteeing numerical fidelity. An
overview of the proposed method is shown in Figure 1 and the time comparison is represented in
Figure 2. The main contributions of this paper can be summarized as:

• Joint Low Rank Approximation: Rather than performing computationally expensive SVD
operations on pre-RoPE keys as implemented in ShadowKV [16], the proposed method
jointly optimizes low rank approximations of both query and key matrices, and reduces
computational complexity while maintaining representation accuracy.

• Precision-Preserving Attention Computation: The low rank approximated keys and values
serve independently as computational proxies for lightweight attention score estimation.
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Figure 2: Time comparison with full GPU, full CPU and the proposed LRQK methods. The orange
block is the selection operation of KV pairs. The black blocks are cache loading operations. The
blocks above line mean GPU operations and the blocks below are CPU operations.

Critically, the subsequent attention layer operations utilize the original query, key, and
value vectors without any approximation or reconstruction, thereby preserving mathematical
fidelity and model performance.

• Mixed Cache Management: We implement a sophisticated hybrid GPU-CPU storage
system featuring active token retention mechanisms and a hit/miss buffer architecture that
minimizes cross-device data transfer. Additionally, a specialized buffer maintains recently
accessed keys and values, which empirical analysis confirms consistently receive high
attention scores, further optimizing cache hit rates under operational conditions.

The paper is organized as follows. In Section 3, we present two key insights: the low rank nature of
the key matrix and the high attention scores between a current token and its neighbors. Section 4
introduces the Low Rank Query and Key (LRQK) method, detailing both prefill and decode stages.
In Section 5, we assess the performance of the LRQK method across various models and datasets.

2 Related Works

2.1 Token Eviction

Token eviction methods seek to bound the memory footprint of the KV cache by discarding less
informative key–value pairs while preserving generation quality [11, 17, 10, 12, 18, 19]. Early work
such as StreamingLLM [11], maintains a fixed “attention sink” of initial tokens together with a
sliding window of recent tokens, stabilizing decoding for arbitrarily long sequences. Building on
this, H2O [10] formulates eviction as a dynamic submodular optimization problem to retain both
recent tokens and “heavy hitters”. Rather than relying on global scoring, SnapKV [12] leverages
per-head clustering of attention patterns within a small observation window to select and compress
the most relevant KV positions in one pass. More recently, Ada-KV [18] derives a theoretical upper
bound on post-eviction attention error and proposes a head-wise adaptive budget allocation strategy,
yielding consistent improvements. However, these existing eviction strategies universally trade off
either long-range context fidelity or computational simplicity by relying on rigid windows, coarse
heuristics, or expensive per-head clustering, therefore resulting in non-negligible approximation
error or management overhead. Our approach adopts a joint low-rank proxy to select only the top-k
full-precision KV pairs and a small hit/miss recency cache to load them, guaranteeing exact attention
outputs and less CPU-GPU data movement.

2.2 Dynamic Sparse Attention

Dynamic sparse attention mechanisms represent a significant advancement in transformer-based
models by selectively computing attention scores on a subset of tokens while maintaining complete
key-value cache storage, thereby substantially reducing computational requirements. Contemporary
approaches implement diverse token selection strategies with varying degrees of efficacy: QUEST [20]
employs a page-based selection methodology, while Loki [21] leverages low-dimensional attention
approximation through principal component analysis (PCA) on key matrices. PALU [22] and LPA
[23] also utility the low rank capability in attention. Notably, two recent techniques, InfiniGen [14]

3



and ShadowKV [16] utilize singular value decomposition (SVD) for key-value selection. InfiniGen
pre-fetches essential entries using predefined projections via SVD, whereas ShadowKV offloads the
entire V cache to CPU memory after SVD decomposition of the key matrix (K). While effective,
these SVD-based approaches incur substantial computational overhead and fundamentally alter the
original query/key representations, potentially compromising model fidelity. In contrast, the proposed
method combines a joint low rank Q,K projection and retrieves the relevant full-precision KV pairs
on demand, ensuring exact attention computation with less approximation error.

3 Preliminary

3.1 Low Rankness of Query and Key

As demonstrated in prior works [16, 14], the key matrix in decoder-only transformers exhibits a
pronounced low rank structure. Motivated by this observation, we jointly factorize the full-precision
query and key matrices into rank-r components, enforcing

rank(QK⊤) ≤ min
(
rank(Q), rank(K⊤)

)
= min (rank(Q), rank(K)) . (1)

This implies that if K is effectively of rank r, then its interaction with any query also lies close
to an r-dimensional subspace. Consequently, it is possible to approximate QK⊤ by a low rank
factorization AQA

⊤
K with a low approximation error. An illustrative example of this phenomenon

appears in Figure 3, which plots the average singular value spectrum of the per-head query and key
matrix K on Qwen2.5-7B [2] and LLaMA-3-8B-1M [3, 24] under the Wikitext-2-v1 test set [25]. In
both cases, the singular values decay rapidly beyond a small rank, confirming that K admits a low
rank approximation with minimal loss.

(a) Qwen2.5-7B Query (b) Qwen2.5-7B Key

(c) LLaMA-3-8B-1M Query (d) LLaMA-3-8B-1M Key

Figure 3: Examples of the mean of singular values of the query and key matrix over different layers
on Qwen2.5-7B and LLaMA-3-8B-1M models. The singular values are summed over batches and
attention heads.

3.2 Attention Scores Near Current Token

To quantify the locality of self-attention during decoding, let qt be the query at step t and ki the key
at position i, so that the attention weights are given by

softmax (qt [· · · kt−3 kt−2 kt−1 kt]) = [· · · at−3 at−2 at−1 at] .

We evaluated the average per-head scores on the Wikitext-2-v1 test set using both Qwen2.5-7B and
LLaMA-3-8B-1M. Results are shown in Figure 4. In every case, the curves exhibit pronounced
higher attention scores in the current token and its near neighbors, confirming a strong recency bias.
This empirical finding is also observed by StreamingLLM [11], which motivates our inclusion of
a compact recency buffer in the GPU cache that persistently holds the most recent tokens, thereby
maximizing cache hit rates with minimal overhead.
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(a) Qwen2.5-7B (b) Llama-3-8B-1M

Figure 4: Examples of the attention scores of the neighbors of current token. The window size is 16.
The x-label “current” is the index of the current token, −8 means the tokens at t− 8, and so on. The
attention scores are averaged over batches and attention heads.

4 Proposed Method

The inference process of LLM can be divided into two distinct phases: prefill and decode. When the
user provides a prompt, the LLM will first prefill the long prompt once, and then decode the token
in an auto-regressive manner. These two phases require specific cache mechanisms, thus we will
introduce LRQK for prefill in Section 4.2 and decode in Section 4.3, respectively.

We begin by clarifying the preliminaries and formulation used in our method. In practical implemen-
tations, transformer models typically process input tensors with a shape of (batch size, num heads,
sequence length, hidden size). However, when methods such as GQA [26] are employed, the number
of attention heads used for the query tensor is usually different from those used for the key and value
tensors. Therefore, we use the repeated key/value (repeat KV) mechanism, ensuring that the number
of heads for the query and the key/value tensors are aligned. In addition, to simplify notation, we also
omit the ‘batch size’ and ‘num heads’ dimensions, as computations across different batches and heads
are independent. Thus, the query, key, and value matrices as Q,K,V ∈ Rl×d, where l denotes the
sequence length and d the hidden size of each head. Moreover, since the prefill and decode process is
identical across all transformer layers, we omit the layer indices in our method for clarity.

4.1 Mixed Caching

To address memory constraints and optimize runtime efficiency, we adopt a mixed caching strategy
that leverages both a fast yet limited GPU KV cache and a larger but slower CPU cache. To
further reduce the data transfer overhead between GPU and CPU, we introduce a hit-and-miss cache
mechanism. In this scheme, if the required tokens are already present in the GPU cache (i.e., a cache
hit), they are accessed directly without incurring additional transfer cost. If the required cache is
missing in the GPU, only the missing tokens are fetched from the CPU cache, thus avoiding redundant
data movement and improving overall system efficiency.

Recognizing that recent tokens are more likely to receive high attention scores (as shown in Figure
4), we further incorporate a dedicated buffer to store the most recent tokens. The GPU KV cache
is structured as [ active tokens lite tokens ], where the ‘active tokens’ correspond to the top-k
tokens corresponding to the set Ωk with the approximated highest attention scores selected by our
low rank approximations of query and key matrices, and the ‘lite tokens’ corresponding to the set Ωl

capture a fixed number of neighboring recent tokens. The total window size of the GPU KV cache is
thus the sum of the active and lite tokens, allowing for a balance between relevance and recency in
cache composition.

4.2 Prefill

At this stage, the input consists of a long prompt represented as a matrix X ∈ Rl×d, where l denotes
the sequence length and d the hidden dimension. By applying linear projections to X, we obtain the
query, key, and value matrices: Q,K,V ∈ Rl×d.

According to (1), the attention score matrix is usually low rank, thus can be approximated using a
jointly low rank decomposition:

QK⊤ ≈ AQA
⊤
K , (2)
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where AQ,AK ∈ Rl×r and r ≪ d denotes matrix rank. In addition to the joint low rank approxima-
tion, we also approximate query and key matrices for memory efficiency:

Q ≈ AQBQ, K ≈ AKBK , (3)

where BQ,BK ∈ Rr×d. Note that the approximation for attention score QK⊤ and Q,K shares the
same column/row space spanned by AQ and AK . For solving (2) and (3), we can formulate it as

argmin
AQ,BQ,AK ,BK

1

2

∥∥QK⊤ −AQA
⊤
K

∥∥2
F , s.t. Q = AQBQ,K = AKBK . (4)

To solve the constraint optimization problem (4), we relax it by deriving a Lagrangian:

Lpre =
1

2

∥∥QK⊤ −AQA
⊤
K

∥∥2
F +

λpQ

2
∥Q−AQBQ∥2F +

λpK

2
∥K−AKBK∥2F , (5)

where λpQ and λpK are two scaling factors indicating the importance of the low rank approximation
of the query and key matrices, respectively.

By solving the Lagrangian (5), with setting the partial derivative to be zero, we can get the solution
of the query and key matrices (see Appendix A.1 for details):

AQ = Q
(
K⊤AK + λpQB

⊤
Q

) (
A⊤

KAK + λpQBQB
⊤
Q

)−1

AK = K
(
Q⊤AQ + λpKB⊤

K

) (
A⊤

QAQ + λpKBKB⊤
K

)−1

BQ = (A⊤
QAQ)

−1A⊤
QQ

BK = (A⊤
KAK)−1A⊤

KK.

(6)

From (6), it is notice that the operation of matrix inverse is required. The matrix inverse oper-
ation is expensive O(r3). However, since the rank r is a small number, and A⊤

KAK ,A⊤
QAQ,

BKB⊤
K ,BQB

⊤
Q are all with shape (r, r), which are small matrices. Therefore, the computation costs

of matrix inverse are relatively low. In addition, when solving AQ and AK , the memory cost can
further be reduced by changing the multiplication order. For example, by changing the order of
operations from (QK⊤)AK to Q(K⊤AK), we reduce the computational complexity from O(l2d)
to O(rld).
The iterative procedure in Algorithm 1 can be interpreted as a Block Coordinate Descent (BCD)
method, where each step optimizes the Lagrangian with respect to a subset of variables while holding
the others fixed.

Algorithm 1 Prefill of LRQK, alternating updates for AQ,AK ,BQ,BK

Require: Q,K, rank r, λpQ, λpK

1: Initialize AQ,AK ∼ N (0, 1)
2: while i < max iteration or not converge do
3: Update BQ ← (A⊤

QAQ)
−1A⊤

QQ

4: Update BK ← (A⊤
KAK)−1A⊤

KK

5: Update AK ← K
(
Q⊤AQ + λpKB⊤

K

) (
A⊤

QAQ + λpKBKB⊤
K

)−1

6: Update AQ ← Q
(
K⊤AK + λpQB

⊤
Q

) (
A⊤

KAK + λpQBQB
⊤
Q

)−1

7: end while
8: return AQ,AK ,BQ,BK

4.3 Decode

Following the prefilling phase, the language model generates the remaining tokens sequentially,
adhering to an autoregressive decoding process where each token is predicted based on the previously
generated context. Suppose the current stage is t, and the input is a row vector xt ∈ R1×d and its
projections are qt ∈ R1×d and kt ∈ R1×d. In the decode stage, the goal is to compress the qt and
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kt to much smaller ones q̂t ∈ R1×r and k̂t ∈ R1×r, thus the memory footprint of KV cache can be
greatly mitigated.

From the previous stage, we obtain the low rank approximations of the query and key matrices in the
form of left and right factors: AQ,AK ∈ Rl×r, and BQ,BK ∈ Rr×d. To maintain consistency in
the modeling setup for new tokens, we formulate the following optimization problem for estimating
the approximated query and key vectors, q̂t and k̂t, respectively,

argmin
q̂t,k̂t

1

2
∥q̂tBQ,t−1 − qt∥2F +

1

2

∥∥∥k̂tBK,t−1 − kt

∥∥∥2
F
,

s.t. q̂tk̂
⊤
t = qtk

⊤
t , q̂tA

⊤
K,Ω,t−1 = qtK

⊤
Ω,t−1.

(7)

The matrix AK,Ω,t−1 denotes a submatrix of AK that includes only the rows indexed by Ω. Similarly,
KΩ,t−1 is the corresponding submatrix of K formed by selecting the rows indexed by Ω. Here, Ω
represents the index set of KV cache retained in GPU memory at time step t− 1.

The Lagrangian of the optimization problem (7) is written as:

Ldec =
1

2
∥q̂tBQ,t−1 − qt∥2F +

1

2

∥∥∥k̂tBK,t−1 − kt

∥∥∥2
F

+
λd1

2

(
q̂tk̂

⊤
t − qtk

⊤
t

)2
+

λd2

2

∥∥q̂tA
⊤
K,Ω,t−1 − qtK

⊤
Ω,t−1

∥∥2
F
,

(8)

where λd1 and λd2 are regularization parameters. For more details, please refer to the Appendix A.2.

By solving the Lagrangian (8), we obtain the update rules for q̂t and k̂t:

q̂t = mlq,tM
−1
rq,t,

k̂t =
(
ktB

⊤
K,t−1 + λd1ktq

⊤
t q̂t

) (
BK,t−1B

⊤
K,t−1 + λd1q̂

⊤
t q̂t

)−1

mlq,t =
(
qtB

⊤
Q,t−1 + λd1qtk

⊤
t k̂t + λd2qtK

⊤
Ω,t−1AK,Ω,t−1

)
Mrq,t =

(
BQ,t−1B

⊤
Q,t−1 + λd1k̂

⊤
t k̂t + λd2A

⊤
K,Ω,t−1AK,Ω,t−1

)
.

(9)

Similar to prefill stage, since the matrices require taking inverse is of size (r, r), which is small, and
the computation cost is relatively small.

For BQ,t and BK,t, one step gradient descent is applied to op the objective function. The update
rules are given by:

BQ,t ← BQ,t−1 − η∗Q∇BQ,t−1, BK,t ← BK,t−1 − η∗K∇BK,t−1, (10)

where ηQ and ηK are the learning rates for BQ,t−1 and BK,t−1, respectively. Two learning rates η∗Q
and η∗K are computed as:

η∗Q =
(q̂tBQ,t−1 − qt) (q̂t∇BQ,t−1)

⊤

(q̂t∇BQ,t−1) (q̂t∇BQ,t−1)
⊤ , (11)

η∗K =

(
k̂tBK,t−1 − kt

)(
k̂t∇BK,t−1

)⊤
(
k̂t∇BK,t−1

)(
k̂t∇BK,t−1

)⊤ . (12)

Algorithm 2 summarizes the update rules for q̂t, k̂t, BQ,t, and BK,t, the computation of proxy atten-
tion, and the update for selected key and value. The graphical representation of the thorough decoding
process of LRQK is shown in Figure 1. To avoid random initialization, we use the initial guess of k̂t

by setting λd1 = 0. The algorithm iterates until convergence or reaches the maximum number of
iterations. The attention is computed with selected key and value, Attention (qt,KΩ,t,VΩ,t).
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Algorithm 2 Decode of LRQK

Require: qt, kt, vt, BQ,t−1, BK,t−1, λd1, λd2, AK,Ω,t−1, KΩ,t−1, VΩ,t−1

1: Initial Guess k̂t ←
(
ktB

⊤
K,t−1

) (
BK,t−1B

⊤
K,t−1

)−1

2: while i < max iteration or not converged do
3: Update q̂t ←mlq,tM

−1
rq,t

4: Update k̂t ←
(
ktB

⊤
K,t−1 + λd1qtk

⊤
t q̂t

) (
BK,t−1B

⊤
K,t−1 + λd1q̂

⊤
t q̂t

)−1

5: end while
6: BQ,t ← BQ,t−1 − η∗Q∇BQ,t−1, with η∗Q in (11)
7: BK,t ← BK,t−1 − η∗K∇BK,t−1, with η∗K in (12)

8: AK,Ω,t ←
[
AK,Ω,t−1; k̂t

]
▷ concatenate

9: top-k index Ωk ← top
(
AK,Ω,tq̂

⊤
t , k

)
▷ compute proxy attention

10: Fetch missing {ki}, {vi} from CPU K,V according to Ωk

11: K′
Ω,t−1,V

′
Ω,t−1 ← merge fetched {ki}, {vi} with GPU KΩ,t−1,VΩ,t−1

12: KΩ,t ←
[
K′

Ω,t−1;kt

]
, VΩ,t ←

[
V′

Ω,t−1;vt

]
13: Async kt,vt to CPU
14: return KΩ,t,VΩ,t.

5 Experiments

In this section, we conduct a series of experiments to rigorously evaluate the effectiveness and
performance of our proposed method. The experiments are performed on NVIDIA A100 GPUs. The
number of max iteration and the tolerance introduced in Algorithm 1 and 2 are chosen as 2 and 0.01,
respectively. All scaling parameters are set as λpQ = λpK = λd1 = λd2 = 1. All LLM evaluations
are empowered by OpenCompass [27]. Additional results can be found in Appendix B, the time
cost analysis is presented in Appendix C, and a guideline for hyperparameter tuning is provided in
Appendix D.

5.1 Accuracy Evaluation

We evaluate the accuracy of the proposed method on the RULER dataset [28], using a long-context
setting with a sequence length of 128K tokens. For the low rank approximation, the rank is set to
r = 32. The number of top-k tokens selected based on attention scores is set to 2048 (1.56% of
128K), while the number of lite tokens, i.e., the most recently generated tokens, is set to 64. The
backbone language model used in the evaluation is LLaMA-3-8B-1M [24]. We compare our method
against four recent dynamic sparse attention baselines: Loki [21], InfiniGen [14], Quest [20], and
ShadowKV [16]. Results are shown in Table 1.

Table 1: Comparison of different models and methods on RULER (left) and LongBench (right).

Methods S1 S2 MK1 MK2 MQ MV QA-1 QA-2 VT FWE NQA MQA GRep SAM PRetr LCC

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 18.98 41.84 34.18 35.96 81.50 56.07
Loki 18.75 1.04 2.08 0.00 1.56 0.78 4.17 13.54 26.04 25.35 2.26 10.19 28.97 7.84 40.52 31.44
InfiniGen 100.00 98.96 84.38 53.13 63.28 54.95 65.63 48.96 81.67 50.35 14.39 31.46 27.38 21.97 74.30 38.58
Quest 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 20.13 36.63 27.11 35.63 79.00 53.64
ShadowKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 17.17 39.73 31.62 35.87 80.00 63.93

Proposed 81.00 100.00 97.00 42.00 99.25 98.00 75.00 53.00 80.20 69.67 16.52 40.48 20.40 26.35 89.00 66.13

Table 1 presents the comparative performance of various models and methods on both the RULER
and LongBench benchmarks. Our proposed method demonstrates competitive results across a wide
range of tasks, particularly excelling in several key domains.

On the RULER benchmark, our model achieves perfect accuracy on the S2 (NIAH Single 2) task,
matching the performance of larger models like ShadowKV and Quest. Notably, our method
outperforms all baselines on QA-1 (QA SQuAD) and QA-2 (QA HotpotQA). In the MQ (NIAH
MultiQuery) and MV (NIAH MultiValue) tasks, which evaluate a model’s ability to process multiple
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queries or values within a single instance, our method even surpasses the original LLaMA-3-8B-1M
model, achieving results of 99.25% and 98.00%, respectively.

For the LongBench evaluation, our approach demonstrates notable gains in tasks such as PRetr
(Passage Retrieval) and LCC, outperforming all other methods with 89.00% and 66.13%, respectively.
These tasks are particularly demanding due to their emphasis on retrieving and reasoning over
long-range dependencies, suggesting that our method is well-suited for these kinds of tasks.

While some tasks like MK2 (NIAH MultiKey 2) and NQA (NarrativeQA) show slightly lower
performance compared to leading baselines, the overall consistency and high scores across multiple
complex tasks underscore the effectiveness of our approach. These results affirm the potential of our
method in addressing long-context language understanding challenges.

We further evaluate the proposed method on two backbone models: LLaMA-3-8B-1M [24] and
Qwen2.5-7B-Instruct [2], using the same configuration of rank r = 16, top-k = 256 (6.25% of
4K), and 16 lite tokens on a subset of RULER-4K. As shown in Table 2, our method consist the
performance of both models.

Table 2: Results on subset of RULER-4K of two models
Methods QA-1 QA-2 VT Methods QA-1 QA-2 VT

LLaMA-3-8B-1M 82.00 58.00 99.00 Qwen2.5-7B 90.00 64.00 99.20
+ LRQK 84.00 57.00 98.80 + LRQK 91.00 65.00 96.60

5.2 Impact of Rank and Top-k Selection

In this subsection, we investigate the impact of two key hyper-parameters in our method: the rank r
used in the low rank approximation, and the number of top-k active tokens selected based on attention
scores.

Rank Selection. To isolate the effect of the rank, we fix the number of top-k tokens at 256 and the
number of lite tokens at 16. We vary the rank parameter over the set {16, 24, 32}, allowing us to
examine how the capacity of the low rank representations affects model performance.

Top-k Selection. To analyze the influence of the number of active tokens, we fix the rank at 8 and the
number of lite tokens at 16. The top-k parameter is varied across {256, 512, 1024} to evaluate how the
size of the active set impacts retrieval effectiveness and downstream task accuracy. All experiments
are conducted on a representative subset of the RULER-4K dataset using the LLaMA-3-8B-1M
model as the backbone.

Tables 3 and 4 show that increasing the rank r generally improves performance on QA-1 and VT, with
r = 32 even surpassing the original LLaMA-3-8B-1M on QA-1. In contrast, QA-2 performs best at
a lower rank r = 16, suggesting some tasks benefit from more compact representations. For top-k,
larger values consistently lead to better accuracy across all tasks. The configuration with k = 1024
achieves the highest scores, indicating that a broader active token window improves context modeling.
However, larger top-k tokens will increase both computation and memory costs, necessitating a
trade-off between performance and resource usage. Overall, while higher ranks and larger top-k
values enhance performance, smaller settings (e.g., r = 16, k = 512) still offer strong results with
reduced resource usage.

Table 3: Accuracy across different rank values
with top-k 256 and 16 lite tokens

Models QA-1 QA-2 VT

Llama-3-8B-1M 82.00 58.00 99.00
r = 8 79.00 50.00 56.80
r = 16 80.00 60.00 98.80
r = 24 83.00 56.00 98.80
r = 32 84.00 57.00 99.00

Table 4: Accuracy across different top-k val-
ues with r = 8 and 16 lite tokens

Models QA-1 QA-2 VT

Llama-3-8B-1M 82.00 58.00 99.00
top-256 79.00 50.00 56.80
top-512 78.00 61.00 95.60
top-1024 83.00 63.00 100.00

9



5.3 Miss Rates

We evaluate the performance of the proposed strategy for memory management by computing the
miss rate. The rate is a ratio cmiss/ctotal, where cmiss denotes the number of KV cache rows that
must be transferred from CPU to GPU, and ctotal is the number of all selected indices. This metric
quantifies the efficiency of the token selection mechanism in reducing memory transfers.

Experiments are conducted on the summarization task using the wikitext-2-v1 test set [25]. We
perform a grid search over different hyper-parameters, including the rank r ∈ {8, 16, 32, 64}, the
number of active tokens ∈ {128, 256, 512}, and the number of lite tokens ∈ {4, 8}. The distribution
of miss rates is illustrated in Figure 5, which reveals an approximately Gaussian shape with a mean
miss rate of around 0.40 and a standard deviation of approximately 0.10. This implies that, on average,
the proposed hit-and-miss mechanism reduces the amount of data transferred from CPU to GPU by
about 60% in average.

Figure 5: Histogram of miss rates on wikitext-2-v1.

6 Conclusion

Low Rank Query and Key (LRQK) attention, a two stage inference algorithm that enables long-
context processing through joint low rank decomposition of query and key matrices combined with
mixed GPU-CPU cache management is presented. By computing proxy attention scores on compact
rank-r factors and selectively fetching only the top-k active tokens and most recent tokens’ full-
precision key-value pairs, LRQK preserves exact attention outputs while reducing CPU-GPU data
transfers.

Extensive evaluations on RULER (up to 128K tokens) or LongBench benchmarks demonstrate that
LRQK matches or exceeds state-of-the-art sparse attention methods across diverse long-context
tasks. The method achieves substantial memory savings, enabling processing of contexts that would
otherwise cause out-of-memory errors, without significant accuracy degradation. Ablation studies
confirm the effectiveness of each component: low rank approximation, active token selection, and lite
token retention all contribute to the method’s robust performance.

Limitations. While LRQK significantly reduces data transfer overhead, further observation re-
veals that CPU-side indexing operations constitute the primary performance bottleneck rather than
PCIe bandwidth limitations, and hoping can be addressed in future work. Additionally, LRQK’s
hyper-parameters require task-specific tuning. While we provide practical guidelines and default
configurations, optimal settings still demand empirical validation for new domains.

Societal Impact. LRQK’s reduced inference costs could enable broader access to long-context
language models, benefiting research and education. However, this efficiency may also lower
barriers to deploying harmful applications such as large-scale disinformation campaigns. We believe
democratized access to advanced AI capabilities provides net benefits when coupled with appropriate
safeguards and responsible deployment practices.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the two-stage LRQK frame-
work, namely, the joint low rank decomposition of query/key matrices and the hierarchical
GPU–CPU cache with hit-and-miss token selection—and claim both exact attention preser-
vation and substantial memory reduction. These points are rigorously supported by the
derivations in Sections 3 and 4, the complexity analysis, and the empirical results on RULER
and LongBench, with full details in the appendix. Thus, the stated contributions match the
theoretical development, algorithms, and experiments without overstatement.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated "Limitations" paragraph that acknowledges two
key drawbacks: the need to carefully tune the rank r and active set size k, whose optimal
values can vary across different models and tasks, and the inference is slightly slow.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results—including the low-rank prefill objective and the decod-
ing Lagrangian are stated with their full assumptions (e.g. rank-r factorizations, invertibility
of r× r matrices) and are followed by complete, step-by-step derivations of the closed-form
update rules in Appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper gives full details for reproduction, including backbone models
(LLaMA-3-8B, Qwen2.5-7B), datasets (RULER, LongBench, WikiText-2), context lengths
(128K, 4K), hyperparameter settings (rank r, top-k, lite tokens), iteration counts and toler-
ances, hardware setup (NVIDIA A100 GPUs; NVIDIA 3090s), and the evaluation toolkit
(OpenCompass). It also provides clear algorithm pseudocode and detailed derivations in the
appendix, ensuring all components needed to replicate the experiments are specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The authors release a public GitHub repository (https://github.com/
tenghuilee/LRQK) containing all implementation codes, and evaluation scripts. The
supplemental material includes detailed environment specifications (library versions), exact
command-line invocations for evaluation, and processing instructions for datasets, ensuring
that others can faithfully reproduce the reported results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5 and Appendix C give complete details: hardware (NVIDIA A100
GPUs), backbone models (LLaMA-3-8B-1M, Qwen2.5-7B), datasets and context lengths
(128K for RULER/LongBench, 4K subset, WikiText-2 for summarization), hyperparameter
settings (rank r, top-k, lite tokens, max iterations = 2, tolerance = 1e-2), grid-search ranges,
and evaluation toolkit (OpenCompass). Algorithms pseudocode provide full pseudocode for
reproducing the inference procedure, ensuring all necessary information is specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides extensive experimental results across multiple datasets,
models, and settings, which offer a broad statistical perspective. While it may not include
explicit error bars, the consistent performance trends and comprehensive comparisons serve
as strong empirical evidence.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper reports that all experiments were conducted on NVIDIA A100
GPUs, specifies the batch sizes 1, context lengths (4K, 128K), and hardware setup in Section
5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: This work proposes an algorithmic optimization for LLM inference without
involving human subjects, personal data, or ethically sensitive applications. It presents
transparent methods and evaluations, poses no privacy or fairness risks, and adheres to
NeurIPS ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The proposed method is a technical improvement in LLM inference, and does
not involve any sensitive content, human data, or high-risk applications. The proposed
method reduces inference costs could enable border access to long-context language models.
However, this efficiency may also lower barriers to deploying applications such as large-scale
disinformation campaigns. We believe democratized access to advanced AI capabilities
provides net benefits when coupled with appropriate safeguards and responsible deployment
practices.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper does not release new high-risk models or datasets. It builds on
existing pretrained models (e.g., Qwen, LLaMA) and standard datasets, which do not require
additional safeguards beyond those already established by their original authors. However,
the proposed method reduces the cost of LLM inference, and it may be wrongly used.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the original sources of all models, datasets, and
methods used, including citations to Qwen, LLaMA and others. There is no indication of
license violations, and usage aligns with standard academic practice.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The newly proposed method, LRQK, is well documented. The paper provides
theoretical foundations, implementation details, and extensive experimental settings. The re-
leased code includes instructions to reproduce results, ensuring the new assets are accessible
and usable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects, so this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve human participants or subject data, so there are no
associated risks or requirements for IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Although the paper evaluates methods on pretrained LLMs such as LLaMA
and Qwen, these are standard models used for benchmarking. The core methodological
contribution does not involve original or non-standard usage of LLMs. We use LLM only for
writing, editing purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, so no special declaration is required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of Derivatives

A.1 Prefill Derivatives

The Lagrangian (5) is formulated as:

Lpre =
1

2

∥∥QK⊤ −AQA
⊤
K

∥∥2
F +

λpQ

2
∥Q−AQBQ∥2F +

λpK

2
∥K−AKBK∥2F ,

Compute partial derivative:

∂Lpre

∂AQ
= −

(
QK⊤ −AQA

⊤
K

)
AK − λpQ (Q−AQBQ)B

⊤
Q

∂Lpre

∂AK
= −

(
QK⊤ −AQA

⊤
K

)⊤
AQ − λpK (K−AKBK)B⊤

K

∂Lpre

∂BQ
= −λpQA

⊤
Q (Q−AQBQ)

∂Lpre

∂BK
= −λpQA

⊤
K (K−AKBK)

(13)

Setting the partial derivative to be zero,

∂Lpre

∂AQ
:= 0,

∂Lpre

∂AK
:= 0,

∂Lpre

∂BQ
:= 0,

∂Lpre

∂BK
:= 0. (14)

Solving the equations (14), we get:

AQ = Q
(
K⊤AK + λpQB

⊤
Q

) (
A⊤

KAK + λpQBQB
⊤
Q

)−1

AK = K
(
Q⊤AQ + λpKB⊤

K

) (
A⊤

QAQ + λpKBKB⊤
K

)−1

BQ = (A⊤
QAQ)

−1A⊤
QQ

BK = (A⊤
KAK)−1A⊤

KK

A.2 Decode Derivatives

The Lagrangian (8) is formulated as:

Ldec =
1

2
∥q̂tBQ,t−1 − qt∥2F +

1

2

∥∥∥k̂tBK,t−1 − kt

∥∥∥2
F

+
λd1

2

(
q̂tk̂

⊤
t − qtk

⊤
t

)2
+

λd2

2

∥∥q̂tA
⊤
K,Ω,t−1 − qtK

⊤
Ω,t−1

∥∥2
F
.

Compute partial derivative:

∂Ldec

∂q̂t
= (q̂tBQ,t−1 − qt)B

⊤
Q,t−1

+ λd1

(
q̂tk̂

⊤
t − qtk

⊤
t

)
k̂t + λd2

(
q̂tA

⊤
K,Ω,t−1 − qtK

⊤
Ω,t−1

)
AK,Ω,t−1.

∂Ldec

∂k̂t

=
(
k̂tBK,t−1 − kt

)
B⊤

K,t−1 + λd1

(
q̂tk̂

⊤
t − qtk

⊤
t

)⊤
q̂t

(15)

By setting the partial derivative to be zero, we get:

q̂t

(
BQ,t−1B

⊤
Q,t−1 + λd1k̂

⊤
t k̂t + λd2A

⊤
K,Ω,t−1AK,Ω,t−1

)
= qtB

⊤
Q,t−1+λd1qtk

⊤
t k̂t+λd2qtK

⊤
Ω,t−1AK,Ω,t−1,
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q̂t =
(
qtB

⊤
Q,t−1 + λd1qtk

⊤
t k̂t + λd2qtK

⊤
Ω,t−1AK,Ω,t−1

)(
BQ,t−1B

⊤
Q,t−1 + λd1k̂

⊤
t k̂t + λd2A

⊤
K,Ω,t−1AK,Ω,t−1

)−1

.

Similarly, we have:

k̂tBK,t−1B
⊤
K,t−1 + λd1k̂tq̂

⊤
t q̂t = ktB

⊤
K,t−1 + λd1ktq

⊤
t q̂t

k̂t

(
BK,t−1B

⊤
K,t−1 + λd1q̂

⊤
t q̂t

)
=
(
ktB

⊤
K,t−1 + λd1ktq

⊤
t q̂t

)
k̂t =

(
ktB

⊤
K,t−1 + λd1ktq

⊤
t q̂t

) (
BK,t−1B

⊤
K,t−1 + λd1q̂

⊤
t q̂t

)−1

Update BQ,t−1 and BK,t−1. First, compute the partial derivative with respect to BQ,t−1 and BK,t−1,
∂Ldec

∂BQ,t−1
= q̂⊤

t (q̂tBQ,t−1 − qt) = q̂⊤
t q̂tBQ,t−1 − q̂⊤

t qt,

∂Ldec

∂BK,t−1
= k̂⊤

t

(
k̂tBK,t−1 − kt

)
= k̂⊤

t k̂tBK,t−1 − k̂⊤
t kt.

Since the outer product of row vector, q̂⊤
t q̂t ∈ Rr×r is a rank 1 matrix, it is not invertible. Therefore,

there is no closed-form solution for both BQ,t−1 and BK,t−1.

To update BQ,t−1 and BK,t−1, we utilize gradient descent. The gradient of Ldec with respect to
BQ,t−1 and BK,t−1 are:

∇BQ,t−1 = q̂⊤
t (q̂tBQ,t−1 − qt)

∇BK,t−1 = k̂⊤
t

(
k̂tBK,t−1 − kt

)
.

(16)

The gradient descent update rules are:
BQ,t ← BQ,t−1 − ηQ∇BQ,t−1,

BK,t ← BK,t−1 − ηK∇BK,t−1,
(17)

where ηQ and ηK are the learning rates for BQ,t−1 and BK,t−1, respectively. Plugging the update
rule of BQ,t−1 into the Lagrangian (8), we have,

argmin
ηQ

1

2
∥q̂t (BQ,t−1 − ηQ∇BQ,t−1)− qt∥2F . (18)

This is a convex quadratic optimization problem with respect to the learning rate ηQ. Therefore, the
optimal ηQ is given by,

(q̂tBQ,t−1 − qt − ηQq̂t∇BQ,t−1) (q̂t∇BQ,t−1)
⊤
= 0. (19)

And the optimal η∗Q will be,

η∗Q =
(q̂tBQ,t−1 − qt) (q̂t∇BQ,t−1)

⊤

(q̂t∇BQ,t−1) (q̂t∇BQ,t−1)
⊤ . (20)

Similarly, for BK,t−1, we can compute the optimal η∗K as,

η∗K =

(
k̂tBK,t−1 − kt

)(
k̂t∇BK,t−1

)⊤
(
k̂t∇BK,t−1

)(
k̂t∇BK,t−1

)⊤ . (21)

B Additional Results

B.1 Results on RULER 128K And LongBench

Since the inverse computation in PyTorch operates in float32, the parameters are temporarily cast
to float32 before executing Algorithm 1 and Algorithm 2. The models are otherwise run with
bfloat16 for inference.

The CPU used is an AMD EPYC 7742 64-Core Processor, featuring 64 cores with 2 threads per core.
For the RULER 128K experiment, the model runs on a single NVIDIA A100 GPU with 80 GB of
memory. For the LongBench experiment, the model is executed on a single A100 GPU with 40 GB
of memory. The batch size is set to one. Further results are provided in Table 5.
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Table 5: Comparison of different models and methods on RULER 128K (left; top-2048, lite
tokens=64) and LongBench (right; rank r = 16, lite tokens=64).

Methods S1 S2 MK1 MK2 MQ MV QA-1 QA-2 VT FWE NQA MQA GRep SAM PRetr LCC

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 18.98 41.84 34.18 35.96 81.50 56.07
Loki 18.75 1.04 2.08 0.00 1.56 0.78 4.17 13.54 26.04 25.35 2.26 10.19 28.97 7.84 40.52 31.44
InfiniGen 100.00 98.96 84.38 53.13 63.28 54.95 65.63 48.96 81.67 50.35 14.39 31.46 27.38 21.97 74.30 38.58
Quest 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 20.13 36.63 27.11 35.63 79.00 53.64
ShadowKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 17.17 39.73 31.62 35.87 80.00 63.93

LRQK r = 32 81.00 100.00 97.00 42.00 99.25 98.00 75.00 53.00 80.20 69.67 top1024 16.52 40.48 20.40 26.35 89.00 66.13
LRQK r = 16 63.67 69.00 50.00 90.00 80.25 81.50 70.00 56.00 64.00 63.67 top2048 15.86 40.15 34.15 36.64 91.50 66.53
Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 31.56 55.10 34.45 29.84 100.00 67.31
Loki 68.75 32.29 32.29 20.83 42.71 28.65 41.67 33.33 24.79 29.86 2.31 18.89 31.16 15.91 94.88 44.60
InfiniGen 100.00 77.08 78.13 13.54 58.07 47.40 65.63 41.67 60.83 50.35 27.23 52.72 29.61 24.42 98.93 56.89
Quest 100.00 98.96 97.92 34.38 93.49 88.54 70.83 44.79 65.63 68.40 29.70 49.04 30.43 29.85 98.50 57.35
ShadowKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 30.93 55.20 32.79 30.40 99.50 66.03

LRQK r = 32 87.00 100.00 98.00 80.00 98.25 96.25 81.00 41.00 70.00 44.67 top1024 29.01 55.85 19.50 12.02 99.50 24.60

B.2 Results on Llama And Qwen

More results of the proposed methods on two different models, Llama-3-8B-1M and Qwen2.5-7B, are
shown in Table 6. The model is running on a single A100 GPU with 40G memory. The configuration
for LRQK are: rank=16, top-256 active tokens, and 16 lite tokens.

Table 6: More results on subset of RULER-4K/8K/16K of two models.
RULER 4K QA-1 QA-2 VT RULER 4K QA-1 QA-2 VT

LLaMA-3-8B-1M 82.00 58.00 99.00 Qwen2.5-7B 90.00 64.00 99.20
+ LRQK 84.00 57.00 98.80 + LRQK 91.00 65.00 96.60

RULER 8K QA-1 QA-2 VT RULER 8K QA-1 QA-2 VT

LLaMA-3-8B-1M 82.00 57.00 99.60 Qwen2.5-7B 82.00 57.00 97.40
+ LRQK 79.00 47.00 94.00 + LRQK 78.00 56.00 70.00

RULER 16K QA-1 QA-2 VT RULER 16K QA-1 QA-2 VT

LLaMA-3-8B-1M 80.00 57.00 99.80 Qwen2.5-7B 76.00 63.00 98.80
+ LRQK 77.00 52.00 57.20 + LRQK 71.00 62.00 64.20

B.3 Results on Mistral and Phi-3

Two additional models, ‘mistralai/Mistral-7B-Instruct-v0.3’ (Mistral) and ‘microsoft/Phi-3-mini-
128k-instruct’ (Phi-3), are evaluated under the default LRQK hyperparameters (rank=32, top-2048,
and 64 lite tokens). Due to the 48GB memory constraints of the NVIDIA A6000 GPU, Mistral is
evaluated on RULER 32K and Phi-3-mini is evaluated on RULER 16K. Table 7 summarizes the
results, demonstrating that LRQK generalizes effectively to architecturally diverse models.

B.4 Results on Larger Models

To evaluate the scalability of LRQK to larger models, additional experiments are conducted on
‘Qwen/Qwen2.5-14B-Instruct’(Qwen 14B) with 64K context length and ‘Qwen/Qwen2.5-32B-
Instruct’ (Qwen 32B) with 16K context length under A100 80G GPU. Following the official guidance
from Qwen2.5, we apply YaRN [29] for positional encoding extension in the 64K context setting. All
experiments use the default LRQK hyperparameters (rank=32, top-2048, and 64 lite tokens).

Table 8 presents the results on the RULER benchmark. For Qwen 14B at 64K context, LRQK
yields substantial improvements on retrieval tasks, demonstrating its effectiveness at extended context
lengths. For Qwen 32B at 16K context, the baseline model already achieves near-perfect performance
on most tasks, with LRQK maintaining comparable results, indicating that the method does not
degrade performance on models with strong native long-context capabilities.
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Table 7: Evaluation results of Mistral and Phi-3 on RULER benchmarks with varying context lengths.
RULER 32K Mistral +LRQK RULER 16K Phi-3 +LRQK

FWE 67.00 93.00 FWE 92.00 91.00
S1 98.00 97.00 S1 100.00 100.00
S2 91.00 100.00 S2 100.00 100.00

MK1 83.00 97.00 MK1 96.00 96.00
MK2 63.00 51.00 MK2 100.00 100.00

MV 85.75 95.00 MV 90.00 90.25
MQ 83.75 93.00 MQ 90.50 87.50

QA-1 59.00 63.00 QA-1 80.00 81.00
QA-2 45.00 47.00 QA-2 51.00 51.00

VT 98.40 96.40 VT 99.60 99.60

Table 8: Performance comparison on Qwen2.5-14B-Instruct (64K context) and Qwen2.5-32B-Instruct
(16K context) with and without LRQK on the RULER benchmark. Columns ‘+LRQK’ indicate the
performance of the model with LRQK.

RULER 64K Qwen 14B +LRQK RULER 16K Qwen 32B +LRQK

FWE 90.33 78.33 FWE 94.67 94.00
S1 57.00 99.00 S1 100.00 100.00
S2 55.00 96.00 S2 100.00 100.00

MK1 46.00 80.00 MK1 100.00 100.00
MK2 24.00 22.00 MK2 99.00 99.00

MV 54.00 82.25 MV 100.00 100.00
MQ 49.75 88.50 MQ 100.00 100.00

QA-1 64.00 50.00 QA-1 86.00 86.00
QA-2 41.00 36.00 QA-2 66.00 66.00

VT 57.80 97.20 VT 86.40 82.60

B.5 Results With KVQuant

To investigate whether LRQK is compatible with quantization-based compression methods, we
evaluate the combination of LRQK with KVQuant [6], a representative KV cache quantization
approach. We conduct experiments on ‘meta-llama/Llama-3.1-8B-Instruct’ (Llama-3.1-8B) and
‘Qwen/Qwen2.5-7B-Instruct’ (Qwen 2.5-7B-Instruct) using the RULER 32K benchmark. The LRQK
hyperparameters are set to r = 32, top-k = 2048, and 64 lite tokens.

Table 9 presents the results comparing models with KVQuant alone versus the combination of
KVQuant and LRQK. For Llama-3.1-8B, the combined approach maintains competitive performance
across most tasks. For Qwen2.5-7B, combining both methods yields mixed results: while some tasks
show improvements (e.g., MK1, MV, MQ), others exhibit slight degradation (e.g., MK2). Overall,
the results demonstrate that LRQK can be effectively combined with quantization methods without
catastrophic performance loss, suggesting that the proposed method and quantization operate on
complementary aspects of KV cache compression.

B.6 Impact of Initialization Strategies

Three initialization strategies are investigated for the low rank factors AQ ∈ Rl×r and AK ∈ Rl×r,
where l is the sequence length, and r is the chosen rank, and the batch size or the number of attention
heads are ignored as discussed in Section 4. The design rationale for these strategies stems from the
goal of finding effective initialization that either minimize reconstruction error or provide sufficient
representational capacity for the low rank approximation.

Random Gaussian Initialization (randn). The first strategy initializes both factors with random
Gaussian noise:

AQ,AK ∼ N (0, 1). (22)
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Table 9: Performance comparison on RULER 32K with KVQuant applied alone and in combination
with LRQK. Columns ‘+KVQuant‘ indicate KVQuant only, and columns ‘++LRQK‘ indicate both
KVQuant and LRQK applied.

Llama-3.1-8B Qwen2.5-7B-Instruct
RULER 32K +KVQuant ++LRQK +KVQuant ++LRQK

FWE 89.58 85.00 94.00 90.33
S1 100.00 100.00 100.00 100.00
S2 100.00 100.00 100.00 99.00

MK1 100.00 100.00 96.00 100.00
MK2 95.00 96.00 76.00 56.00

MV 95.31 96.75 70.50 93.50
MQ 89.00 89.00 97.00 99.25

QA-1 83.00 82.00 73.00 74.00
QA-2 56.25 51.00 52.00 53.00

VT 87.50 95.40 95.40 90.60

This approach provides a simple, parameter-free initialization that avoids any dependence on the input
matrices. While it does not leverage information from Q and K, it offers computational efficiency
and serves as a neutral baseline.

Independent Top-r Selection (top). The second strategy aims to minimize reconstruction error by
selecting the most salient dimensions from Q and K independently. We compute the L1 norm of
each dimension across the sequence:

sQ =

l∑
i=1

|Q[i, :]| ∈ R1×d, sK =

l∑
i=1

|K[i, :]| ∈ R1×d, (23)

where d is the head dimension. With these importance scores, the initialized low rank factors are
constructed as:

AQ ← Qtop-r(sQ), AK ← Ktop-r(sK). (24)

This strategy independently optimizes each factor to capture the most significant features of its
respective matrix.

Joint Top-r Selection (topcol). The third strategy selects dimensions based on the combined
importance in both Q and K, ensuring that AQ and AK share the same column indices:

sQK = sQ + sK , Ω = top-r(sQK), (25)

AQ ← QΩ, AK ← KΩ. (26)

This joint selection promotes alignment between the query and key subspaces, potentially facilitating
more coherent attention patterns in the low rank approximation.

Experimental Setup and Results. These three initialization strategies are evaluated on ‘meta-
llama/Llama-3.1-8B-Instruct-1M‘ and ‘Qwen/Qwen2.5-7B-Instruct‘ using the RULER 16K bench-
mark with default LRQK hyperparameters (r = 32, top-k = 2048, 64 lite tokens).

Table 10 presents the results. Remarkably, all three initialization strategies achieve nearly identical
performance across most tasks, with differences typically within 1-2 percentage points. This robust-
ness suggests that the specific choice of initialization has minimal impact on the final performance,
indicating that the Algorithm 1 is resilient to the initialization of the low rank factors. The consistency
across strategies, from uninformed random initialization to carefully selected subspaces, demonstrates
the method’s inherent stability.

Given this empirical equivalence, the randn initialization is recommenced as a default due to its
computational efficiency: it avoids the overhead of computing importance scores and performing
top-k selection, making it particularly suitable for large-scale deployments.

24



Table 10: Performance comparison of initialization strategies for AQ and AK on RULER 16K.
Despite their different design rationales, all three methods achieve comparable results.

Llama-3.1-8B-1M Qwen2.5-7B-Instruct
RULER 16K randn top topcol randn top topcol

FWE 86.67 86.67 87.00 85.67 86.33 86.33
S1 100.00 100.00 100.00 100.00 100.00 100.00
S2 100.00 100.00 100.00 100.00 100.00 100.00

MK1 100.00 100.00 100.00 99.00 99.00 99.00
MK2 99.00 99.00 99.00 91.00 91.00 91.00

MV 98.75 98.50 98.50 97.75 98.00 97.75
MQ 94.75 94.50 94.75 99.75 99.75 99.75

QA-1 89.00 89.00 89.00 76.00 76.00 76.00
QA-2 61.00 61.00 61.00 61.00 62.00 62.00

VT 83.80 83.00 85.40 98.80 98.80 98.40

C Runtime Performance Analysis

C.1 Throughput Results

We evaluate the runtime performance of LRQK on ‘meta-llama/Llama-3.1-8B-Instruct-1M’, compar-
ing it against standard GPU-only and CPU offloading approaches. Experiments are conducted using
the Hugging Face transformers library2 on a single NVIDIA A100 GPU (40 GB memory) with
batch size 1. We use the RULER QA-2 (HotpotQA) dataset with context lengths ranging from 4K
to 64K tokens. The parameters of LRQK are set as r = 16, top-k = 1024 active tokens, and 16 lite
tokens.

Experimental Configurations:

• GPU only: All KV caches stored in GPU memory (baseline).
• CPU offload: KV caches offloaded to CPU memory and transferred to GPU during decod-

ing.
• LRQK default: Full LRQK implementation with hit/miss buffer enabled for optimized

cache management.
• LRQK no hit/miss: LRQK without hit/miss buffer to isolate the impact of buffer optimiza-

tion.

Table 11 presents the tokens processed per second during prefill (P) and decode (D) stages. The
GPU-only method achieves the highest throughput for shorter contexts (4K to 32K) but encounters
out-of-memory (OOM) errors at 64K tokens due to the growth of KV cache size.

CPU offload enables processing of longer contexts but suffers severe throughput degradation, particu-
larly during decoding at 32K–64K tokens. This performance drop stems from the need to transfer the
entire KV cache between CPU and GPU for each decoding step, creating a bottleneck that scales
linearly with context length.

In contrast, LRQK default maintains relatively stable decoding throughput across all context lengths,
demonstrating consistent performance even at 64K tokens. This stability arises from LRQK’s
selective transfer mechanism: instead of moving the entire KV cache, only the top-k active tokens
and lite tokens are transferred from CPU to GPU, significantly reducing data movement overhead. At
64K context, LRQK achieves faster decoding than CPU offload while avoiding the OOM issues of
GPU-only execution.

The LRQK no hit/miss configuration shows reduced decoding performance compared to LRQK
default, highlighting the importance of the hit/miss buffer optimization. Without this buffer, the
method incurs additional overhead from repeated top-k selection operations, which are not well-
optimized for CPU cache locality. Notably, prefill performance remains comparable across LRQK
variants, as this stage is less sensitive to cache management strategies.

2https://huggingface.co/docs/transformers/v4.52.2/en/main_classes/text_generation
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Table 11: Throughput comparison (tokens/s) for ‘meta-llama/Llama-3.1-8B-Instruct-1M’ on RULER
QA-2 across context lengths. P: prefill stage; D: decode stage. LRQK default maintains stable decode
performance while avoiding OOM at 64K tokens.

4K 8K 16K 32K 64K
P D P D P D P D P D

GPU only 37500.29 35.40 37734.19 35.64 33649.79 35.36 32111.45 35.77 OOM OOM
CPU offload 6945.10 4.31 6984.35 4.32 7073.53 2.40 4849.19 0.98 4131.00 0.50

LRQK default 7120.49 5.68 7280.39 5.72 6379.91 5.49 5436.66 5.36 4103.05 6.80
LRQK no hit/miss 7180.64 2.50 6747.19 2.53 5317.06 2.31 4920.02 2.48 4163.86 1.95

C.2 Comparison with Baseline Methods

To provide a more comprehensive performance analysis, we compare LRQK against vanilla attention
and ShadowKV[16] on a text summarization task using 20 samples from LongBench with 32K
context and up to 128 output tokens. Method ShadowKV is configured with its default parameters
(sparse budget = 2048, rank=160, chunk size=8), and the definition of ‘rank’ is not the same as this
paper, please refer to the original paper for more details. Experiments are conducted on NVIDIA
GeForce RTX 3090 (24 GB) GPUs. Due to memory constraints, vanilla attention requires 2 GPUs,
while ShadowKV and LRQK operate on a single GPU.

Table 12 presents detailed performance metrics. Vanilla attention achieves the highest throughput
but requires dual-GPU deployment with large memory usage across both two devices. ShadowKV
reduces throughput compared to vanilla. LRQK variants achieve 489 to 646 tokens/s depending on
hyperparameters, representing a trade-off between memory efficiency and speed. Basically, LRQK
with less rank and smaller k can achieve larger tokens/s. The GPU power of LRQK is smaller than
Vanilla and ShadowKV, which means the proposed method is not fully utilizing the GPU resources.
This is one limitation of the proposed method. It requires more time to wait data indexing in CPU.

Table 12: Performance comparison on NVIDIA GeForce RTX 3090 (24 GB, 250W) for text sum-
marization (LongBench, 32K context). Vanilla attention uses 2 GPUs; other methods use 1 GPU.
Tokens/s is computed via (number of all tokens / total time).

Vanilla ShadowKV LRQK
k = 2048 k = 1024

GPU0 GPU1 r = 32 r = 16 r = 32 r = 16

Average GPU Util (%) 38.61 48.38 58.00 63.64 65.29 56.86 51.15
Max GPU Util (%) 99.95 100.00 100.00 100.00 100.00 100.00 100.00

GPU Memory (GB) 16.94 17.56 17.93 19.82 18.85 19.51 19.33
GPU Power (W) 187.24 233.21 243.85 203.98 211.96 199.59 199.85

Tokens/s 1775.70 1083.55 489.39 556.22 603.05 646.33
Time (s) 17.87 29.29 64.84 57.04 52.62 57.04

D Hyperparameter Selection Guidelines

LRQK introduces several hyper-parameters that require configuration: rank r for low rank approxima-
tion, top-k for active token selection, number of lite tokens, and convergence parameters (iterations
and tolerance). While optimal values vary across model architectures and tasks, we provide practical
guidelines based on our extensive experiments to minimize tuning effort.

Default Configuration. We recommend starting with the following default configuration, which
achieves strong performance across diverse settings: rank r = 32, active tokens top-k = 2048, lite
tokens 64, iterations 2, and tolerance 10−2. This configuration provides a balanced trade-off between
approximation quality, memory efficiency, and computational overhead, and serves as an effective
starting point for task-specific tuning.
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Rank r. The rank r controls the dimensionality of the low rank factors AQ,AK ∈ R···l×r for
each attention head independently. Since typical attention heads have dimension dhead = 128, the
theoretical range for r is [1, 128]. In practice, we find that r ∈ {8, 16, 32, 48} can provide a favorable
balance between approximation quality and computational cost. Lower ranks (e.g., r = 8) reduce
memory usage but may sacrifice accuracy, while higher ranks (e.g., r = 48) improve approximation
at the cost of increased computation. For most applications, r = 32 offers an effective compromise.

Top-k Active Tokens. The top-k parameter determines how many high-attention tokens are retained
in GPU memory and directly influences the memory-context length trade-off. The optimal k scales
with context length: short contexts (≤ 4K) k = 256 suffices for most tasks, medium contexts
(8K to 16K): k = 512 to 1024 may provide good coverage, long contexts (≥ 32K) k = 2048 is
recommended. Smaller k values reduce memory footprint but may miss important context, while
larger k improves recall at the cost of increased GPU memory usage and data transfer overhead.
The relationship between k and context length should be considered when deploying LRQK for
production use cases.

Lite Tokens. The number of lite tokens specifies how many recent tokens are always retained in
GPU memory to capture local context. Recommend choices are {16, 32, 64}, with minimal impact
on overall computational cost. This parameter is relatively insensitive; we recommend 64 lite tokens
as a conservative default that ensures sufficient local context coverage.

Convergence Parameters. The iterative updates in Algorithms 1 and 2 require two convergence
parameters:

• Iterations: Number of update cycles for low rank factors. Typically, 2 or 3 iterations may
suffice, as the approximation would converge.

• Tolerance: Convergence threshold defined as the mean squared error between successive
low rank matrices. Values of 10−2 or 10−3 work well in practice. Tighter tolerance (e.g.,
10−3) improves accuracy slightly but increases computation.

Tuning Strategy. The search space for LRQK hyper-parameters is relatively compact compared to
other optimization-based methods. We recommend the following tuning protocol:

1. Start with the default configuration (r = 32, k = 2048, 64 lite tokens, 2 iterations, tolerance
10−2).

2. If memory is limited, reduce k proportionally to the context length or decrease r.
3. If accuracy is insufficient, increase k (up to hardware limits) or r.

In our experiments, this strategy typically requires evaluating fewer configurations to identify near-
optimal settings for a given task and model architecture.

Implementation and Integration Overhead. LRQK introduces modest computational overhead
relative to standard attention:

• Prefill stage: Additional cost for computing low rank projections, partially offset by reduced
attention computation over selected tokens.

• Decode stage: Incremental updates to low rank matrices add computation, but attention
over fewer tokens (k instead of full sequence) reduces overall cost.

• Cache management: CPU-GPU transfers for selected tokens and cache lookup operations
add latency, though this is mitigated by transferring only k tokens rather than the entire KV
cache.
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