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Abstract

The prevailing “large language model (LLM) + tool-use” paradigm relies on hand-
crafted tool interfaces, which constrain an agent’s ability to solve complex problems
and hinder the adoption of agents as scientific copilots across the broader research
community. We advocate a dynamic, scalable “LLM + skill-acquisition” paradigm
and present SKILLPUZZLER as one concrete instantiation of it. SKILLPUZZLER
combines only 4 specialized agents with 15 general-purpose tools, yet exhibits self-
evolution while tackling diverse research tasks in materials science and chemistry.
Its behavior is driven by prompt-encoded mindsets tailored to our customized
Model Context Protocol (MCP) servers. SKILLPUZZLER autonomously acquires
new skills by learning and adapting knowledge into self-defined tools for problem-
solving. It achieves 96.7% accuracy with OpenAI O3 model on our 74-task
benchmark and outperforms two baselines by a wide margin, demonstrating the
robustness and effectiveness of its self-evolution mechanism.
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1 Introduction

Large language models (LLMs) stand apart from mainstream machine learning models because their
mastery of natural language confers a rudimentary capacity for reasoning and enables the “LLM +
tool-use” paradigm [1, 2]. The capability to use tools further augments LLM agents’ performance
on scientific tasks [3, 4, 5, 6]. However, most reported LLM agents rely heavily on customized
workflows and predefined tool interfaces, which are crafted by human experts for specific applications
[7, 8, 9, 10]. This dependency constrains the agents’ capability range and impedes extension to
complex tasks requiring new tools or software. Moreover, this paradigm is hard to scale for the
broader community, since every specialized domain—especially in science—requires experts to
curate new tool catalogs, write detailed usage notes and craft bespoke prompts [7, 11, 12, 13, 14, 15].

In practical research, human scientists continuously learn new tools based on their needs, and
iteratively refine their procedures to master related skills. To fully unleash an agentic system’s
potential, we must progress from human-defined behavior toward human-like intelligence rooted
in autonomous skill acquisition. We therefore advocate the dynamic and scalable “LLM + skill-
acquisition” paradigm, instantiated in our SKILLPUZZLER, a novel self-evolving agentic framework
for materials and chemistry research with minimal reliance on predefined tools. SKILLPUZZLER
employs reusable agentic routines encoded as mindsets to explore, leverage and update tools on
its own (crafting custom puzzle pieces), and fuse them into complex problem-solving procedures
(completing the puzzle). These mindsets not only help to solve various tasks but also forge richer
skills, yielding a sophisticated, customizable toolset that can be shared with other agents or human
researchers.

We demonstrate the framework on a 74-problem benchmark covering diverse real-world simulation
and data-related workflows in materials science and chemistry. When coupled with the OpenAI O3
model, SKILLPUZZLER solves 96.7% of all tasks, including 94.3% of the more demanding Level 1
questions. The superior performance of SKILLPUZZLER against two baselines further validates its
real-time self-evolving capability through self-learning and iterative refinement.

2 Methods

2.1 Multi-agent system architecture

Using the OpenAI Agents SDK, we designed SKILLPUZZLER to orchestrate four specialized agents
that collaboratively solve complex materials- and chemistry-related tasks while autonomously acquir-
ing new tools and skills. Figure 1(a) illustrates “LLM + skill-acquisition” paradigm of SKILLPUZ-
ZLER versus the current “LLM + tool-use” paradigm. Figure 1(b) describes SKILLPUZZLER’s 4-step
sequential workflow with conditional parallel debugging, where each agent has distinct responsibili-
ties. Step 1 involves solution research where Solution Researcher receives the user query, conducts
comprehensive analysis using web searches, identifies required software, extracts code examples
from URLs, and generates initial code solutions. Code Agent verifies that the solution meets basic
requirements before execution, installs software dependencies and executes the code, determining if
debugging is needed based on execution success and result accuracy. Step 3 is conditional parallel
debugging, where three Debug Agent instances run simultaneously if the initial execution fails,
each employing different debugging trajectories to fix the code. The parallel debugging approach
increases the likelihood of successful problem resolution by exploring multiple solution strategies
simultaneously. Step 4 involves output processing where Output Processor Agent evaluates all
available results, selects the best solution, and extracts the final answer in the exact format required
by the user for further automatic accuracy evaluation. We defined the output format for each agent to
ensure more reliable data flow between agents and enable easier automated evaluation of the agentic
system performance.

2.2 MCP server infrastructure and tools

Our system leverages three specialized Model Context Protocol (MCP) servers to provide comprehen-
sive capabilities for research, code execution, and workspace management, including one third-party
API-based server and two custom-developed servers.
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Figure 1: “LLM + skill-acquisition” paradigm and self-evolving agentic framework. (a)
Schematic illustration of dynamic and scalable “LLM + skill-acquisition” paradigm versus the
current “LLM + tool-use” paradigm for solving scientific problems. (b) SKILLPUZZLER’s self-
evolving architecture: guided by reusable mindsets, the system acquires new tool sets and hones new
skill sets in materials science and chemistry.

2.2.1 Tavily server

We use the Tavily Search Engine tavily-search through the Tavily MCP server, which provides
real-time web search capabilities and enables agents to discover relevant documentation, code
examples, and implementation resources from the web.

2.2.2 Research server

Research Server implements a sophisticated code intelligence and knowledge discovery system that
provides comprehensive capabilities for web code extraction, Agentic RAG (Retrieval-Augmented
Generation), code introspection, runtime probing, and knowledge graph construction and exploration.

Code extraction and retrieval extract_code_from_url Implements intelligent web crawling
with multi-strategy extraction capabilities and caching mechanisms using Supabase database storage,
which is a Postgres development platform. The tool supports both single-page extraction and smart
crawling strategies with intelligent fallback mechanisms. It automatically detects content types and
applies specialized extractors for different documentation systems, including Jupyter notebooks,
ReadTheDocs/Sphinx and MkDocs documentation, raw code files from repositories, and markdown
content with intelligent parsing of fenced code blocks and command examples. It also extracts relevant
text before and after code blocks using intelligent paragraph boundary detection, providing semantic
context for code understanding. Optional LLM summary for the extracted code is also available.
retrieve_extracted_code Implements vector-based similarity search through extracted code
blocks using embeddings with configurable match count.

Code analysis quick_introspect Implements static-first analysis using Jedi [16] for import
resolution and error diagnosis without runtime execution. The tool provides comprehensive package,
class, method, and function discovery with fuzzy matching capabilities. runtime_probe_snippet
Provides code snippets to enable runtime key and attribute probing. When KeyError or AttributeError
occurs, the tool shows available keys/attributes, object type information, and similar name suggestions
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to help resolve access issues. parse_local_package Implements direct Neo4j knowledge graph
construction from local Python packages using AST (Abstract Syntax Tree). The tool extracts classes,
methods, functions, attributes, and import relationships with detailed parameter information including
type hints and default values. query_knowledge_graph Provides advanced querying capabilities
for exploring repository structures, class hierarchies, method signatures, and code relationships in the
knowledge graph using Cypher query language.

2.2.3 Workspace server

Workspace Server provides a multi-environment code execution and management system. It supports
conda, virtualenv, and UV environments with cross-platform compatibility for Windows and Unix-
like systems. The server prevents access to the benchmark directory to avoid solution leakage and
enforces security boundaries by confining all operations to the designated project root scope.

Package management check_installed_packages Lists all installed packages in the current
Python environment with version information and package count. install_dependencies Installs
Python packages based on environment configuration. check_package_version Performs detailed
package analysis including version detection, installation path resolution, and module location identi-
fication. The tool takes package names as input and handles name variations (hyphens, underscores,
dots).

Code execution execute_code Executes Python code in the configured environment. The tool
saves code to temporary files in the code storage directory and executes with detailed output capture
including stdout and stderr. execute_shell_command Executes shell commands in the code storage
directory. create_and_execute_script Creates and executes shell scripts in the code storage
directory.

File operations read_file Reads content from any text file. save_file Saves content for later
reuse in the designated directory.

2.3 Agent-tool integration and workflow details

Each agent in SKILLPUZZLER leverages specific MCP servers and tools to accomplish their special-
ized tasks within the collaborative workflow.

Solution Researcher initiates the workflow by conducting comprehensive research to generate initial
code solutions for the user query. It connects to two MCP servers: Tavily server and Research
server. The agent is designed to perform a systematic research process that typically involves:
understanding the request, searching for relevant information using tavily-search with advanced
search parameters, extracting code examples from identified URLs using extract_code_from_url,
reviewing and understanding additional requirements, and synthesizing the final solution. The agent
uses retrieve_extracted_code for vector-based similarity search when the extracted content
is overwhelming, and optionally employs quick_introspect to confirm exact import paths and
class/method/function names. For complex problems without explicit step-by-step instructions, it
is inspired to plan and decompose tasks, select appropriate tools to achieve objectives, and learn
how to use them effectively. The output includes the original user query, required packages list, and
complete code solution.

Code Agent receives the research results and executes the code solution. It connects to three
MCP servers: Tavily server, Research server, and Workspace server. It is designed to perform a
5-step execution process: analyzing input, verifying solution requirements using research tools if
needed, managing packages through check_installed_packages and install_dependencies,
executing code using execute_code, and evaluating results to determine if debugging is needed.

Debug Agent instances run in parallel when the initial solution fails. Each agent connects to three
MCP servers: Tavily server, Research server, and Workspace server. The agents use multiple debug-
ging approaches after analyzing the error. They employ execute_code to test fixes: Direct Fix for
obvious errors, Introspection/Probe Fix using quick_introspect and runtime_probe_snippet
for Python package symbol resolution and runtime key/attribute access errors, Knowledge Graph
Fix using parse_local_package and query_knowledge_graph which serves as the global explo-
ration layer when the fast, error-site Introspection/Probe Fix doesn’t resolve the issue, Local Package
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Fix using execute_shell_command, create_and_execute_script, and read_file for exam-
ining specific files such as package-related code and output files containing results, and Research Fix
using tavily-search, extract_code_from_url, and retrieve_extracted_code for finding
documentation and solutions, especially for external program issues. The agents can also employ
Diagnostic Fix, and Result Processing Fix to modify code for producing processable results. Each
agent is asked to conduct up to 30 debugging attempts, combining different approaches to maximize
the likelihood of successful problem resolution.

Output Processor Agent evaluates all available results and processes the output to required format.
When debugging is needed, the agent receives three debug results and evaluates each based on
successful execution, presence of required data, and quality of results. It then selects the best result
and extracts the final answer in the exact format required by the user. When no debugging is needed,
it processes the successful execution result directly. The output includes original user query, success
status, final code, execution results, and processed output, where processed output serves as the key
field for automated correctness evaluation.

3 Experiment

3.1 Experimental setting

3.1.1 Benchmarks

To comprehensively evaluate this agentic system’s performance on solving real-world computational
tasks in materials science and chemistry, we constructed a diverse benchmark comprising 74 total
problems (37 Level 0 and 37 Level 1 tasks). Level 0 tasks tend to simulate computational scientists
who understand core functions to use and provide some guidance but prefer not to handle implemen-
tation details and potential errors, while Level 1 tasks represent experimental scientists who know
their research objectives but lack computational expertise and require more autonomous problem-
solving from the system. The benchmark spans two principal categories: data-oriented tasks and
computation-oriented tasks. Data tasks comprise (i) data-retrieval problems from resources such as
the Materials Project [17], the Inorganic Crystal Structure Database (ICSD) [18], Matminer [19], MP-
Contribs [20], the Materials Data Facility [21], OQMD[22], OBELiX [23] and GMAE [24, 25, 26];
(ii) data-analysis problems that use packages and databases including pymatgen [27, 28, 29, 30, 31],
Matminer, SMACT [32], the Materials Project and OBELiX; (iii) data-management problems with
pymatgen-db [33] and MongoDB [34]; and (iv) data-processing problems that rely on RDKit [35],
Matminer, Magpie [36], Robocrystallographer [37], pymatgen, enumlib [38, 39, 40, 41], spglib [42],
the Materials Project and OBELiX. Computation tasks include (v) simulation problems with xTB
[43], ORCA [44], ASE [45], LAMMPS [46] and CHGNet [47, 48, 49], together with (vi) problems
involving specialized models and toolkits such as CHGNet, MACE [50] and mlip [51]. These tasks
range from straightforward code migration from documentation with simple parameter changes to
non-documented questions that require code exploration, newly released packages not covered in
most models’ training data, and packages with out-of-sync documentation still available online that
may cause confusion.

Here we show a representative benchmark example: the Level 1 problem is: Write code for querying
the formation energy and the bulk modulus (shown in the order of voigt, reuss, and vrh values in an
array) of Li6FeN4 (Materials Project ID: mp-1029739). The Level 0 variant is identical but appends
the explicit instruction “using materials.summary.search()”.

3.1.2 Baselines

To further explore SKILLPUZZLER’s effectiveness, we benchmarked it against two baselines. In the
Native baseline which is designed to reveal model’s native ability without any self-evolution, Solution
Researcher produces code without access to Tavily Server or Research Server, Code Agent (connected
only to Workspace Server) executes it once, and Output Processor Agent retains its processing ability
and returns the processed result. In the Search&Debug baseline, Solution Researcher is encouraged
to call Tavily search and Code Agent (connected only to Workspace Server) is required to debug if
needed, yet neither component receives our specialized prompts or Research Server.
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3.2 Experimental results

We conducted 3 independent repetitions for each benchmark question (222 questions in total) using
separate Python processes to ensure complete isolation. Prior to each experiment, we cleared
the Supabase database and removed temporary files to prevent cross-contamination. In accuracy
calculation, we excluded workflow failures (such as MCP tool timeouts).

Figure 2 compares the performance of SKILLPUZZLER with the Native baseline and the
Search&Debug baseline across 7 OpenAI models. Among the models, O3 attains the highest
performance (96.7% overall accuracy with SKILLPUZZLER), whereas GPT-4.1 Mini exhibits the
lowest performance (18.1% overall accuracy under the Native baseline). Across all settings, Level 0
accuracy consistently exceeds Level 1 accuracy, reflecting the expected increase in task difficulty.
Moreover, model performance follows a clear upward trend from the Native baseline, which is
designed to measure the inherent answering capability of LLMs, to the Search&Debug baseline,
which leverages Tavily Search Engine to access external web information and Workspace Server for
debugging, and further to SKILLPUZZLER, which integrates Tavily Server, Research Server, and
Workspace Server under carefully designed prompting. These progressive improvements highlight
the agent’s capacity for self-evolution and, in particular, demonstrate SKILLPUZZLER’s effective and
robust skill acquisition in real time.

4 Conclusion

In this work, we have introduced the “LLM + skill-acquisition” paradigm and demonstrated its
feasibility through SKILLPUZZLER, a multi-agent framework for materials science and chemistry
problems. With only four specialized agents and minimal reliance on predefined tools, SKILLPUZ-
ZLER is able to self-evolve through real-time learning and iterative refinement.
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Figure 2: Comparison of SKILLPUZZLER with baseline methods across OpenAI models. (a)
Native baseline. (b) Search&Debug baseline. (c) SKILLPUZZLER. The x-axis lists 7 OpenAI models,
while the y-axis denotes accuracy (%). Each model is represented by three bars corresponding to
Level 0 accuracy, Level 1 accuracy, and overall accuracy.
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