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Abstract

The prevailing “large language model (LLM) + tool-use” paradigm relies on hand-1

crafted tool interfaces, which constrain an agent’s ability to solve complex problems2

and hinder the adoption of agents as scientific copilots across the broader research3

community. We advocate a dynamic, scalable “LLM + skill-acquisition” paradigm4

and present SKILLPUZZLER as one concrete instantiation of it. SKILLPUZZLER5

combines only 4 specialized agents with 15 general-purpose tools, yet exhibits self-6

evolution while tackling diverse research tasks in materials science and chemistry.7

Its behavior is driven by prompt-encoded mindsets tailored to our customized8

Model Context Protocol (MCP) servers. SKILLPUZZLER autonomously acquires9

new skills by learning and adapting knowledge into self-defined tools for problem-10

solving. It achieves 96.7% accuracy with OpenAI O3 model on our 74-task11

benchmark and outperforms two baselines by a wide margin, demonstrating the12

robustness and effectiveness of its self-evolution mechanism.13

1 Introduction14

Large language models (LLMs) stand apart from mainstream machine learning models because their15

mastery of natural language confers a rudimentary capacity for reasoning and enables the “LLM +16

tool-use” paradigm [1, 2]. The capability to use tools further augments LLM agents’ performance17

on scientific tasks [3, 4, 5, 6]. However, most reported LLM agents rely heavily on customized18

workflows and predefined tool interfaces, which are crafted by human experts for specific applications19

[7, 8, 9, 10]. This dependency constrains the agents’ capability range and impedes extension to20

complex tasks requiring new tools or software. Moreover, this paradigm is hard to scale for the21

broader community, since every specialized domain—especially in science—requires experts to22

curate new tool catalogs, write detailed usage notes and craft bespoke prompts [7, 11, 12, 13, 14, 15].23

In practical research, human scientists continuously learn new tools based on their needs, and24

iteratively refine their procedures to master related skills. To fully unleash an agentic system’s25

potential, we must progress from human-defined behavior toward human-like intelligence rooted26

in autonomous skill acquisition. We therefore advocate the dynamic and scalable “LLM + skill-27

acquisition” paradigm, instantiated in our SKILLPUZZLER, a novel self-evolving agentic framework28

for materials and chemistry research with minimal reliance on predefined tools. SKILLPUZZLER29

employs reusable agentic routines encoded as mindsets to explore, leverage and update tools on30

its own (crafting custom puzzle pieces), and fuse them into complex problem-solving procedures31

(completing the puzzle). These mindsets not only help to solve various tasks but also forge richer32

skills, yielding a sophisticated, customizable toolset that can be shared with other agents or human33

researchers.34
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We demonstrate the framework on a 74-problem benchmark covering diverse real-world simulation35

and data-related workflows in materials science and chemistry. When coupled with the OpenAI O336

model, SKILLPUZZLER solves 96.7% of all tasks, including 94.3% of the more demanding Level 137

questions. The superior performance of SKILLPUZZLER against two baselines further validates its38

real-time self-evolving capability through self-learning and iterative refinement.39

2 Methods40
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Figure 1: “LLM + skill-acquisition” paradigm and self-evolving agentic framework. (a)
Schematic illustration of dynamic and scalable “LLM + skill-acquisition” paradigm versus the
current “LLM + tool-use” paradigm for solving scientific problems. (b) SKILLPUZZLER’s self-
evolving architecture: guided by reusable mindsets, the system acquires new tool sets and hones new
skill sets in materials science and chemistry.

2.1 Multi-agent system architecture41

Using the OpenAI Agents SDK, we designed SKILLPUZZLER to orchestrate four specialized agents42

that collaboratively solve complex materials- and chemistry-related tasks while autonomously acquir-43

ing new tools and skills. Figure 1(a) illustrates “LLM + skill-acquisition” paradigm of SKILLPUZ-44

ZLER versus the current “LLM + tool-use” paradigm. Figure 1(b) describes SKILLPUZZLER’s 4-step45

sequential workflow with conditional parallel debugging, where each agent has distinct responsibili-46

ties. Step 1 involves solution research where Solution Researcher receives the user query, conducts47

comprehensive analysis using web searches, identifies required software, extracts code examples48

from URLs, and generates initial code solutions. Code Agent verifies that the solution meets basic49

requirements before execution, installs software dependencies and executes the code, determining if50

debugging is needed based on execution success and result accuracy. Step 3 is conditional parallel51

debugging, where three Debug Agent instances run simultaneously if the initial execution fails,52

each employing different debugging trajectories to fix the code. The parallel debugging approach53

increases the likelihood of successful problem resolution by exploring multiple solution strategies54

simultaneously. Step 4 involves output processing where Output Processor Agent evaluates all55

available results, selects the best solution, and extracts the final answer in the exact format required56

by the user for further automatic accuracy evaluation. We defined the output format for each agent to57

ensure more reliable data flow between agents and enable easier automated evaluation of the agentic58

system performance.59
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2.2 MCP server infrastructure and tools60

Our system leverages three specialized Model Context Protocol (MCP) servers to provide comprehen-61

sive capabilities for research, code execution, and workspace management, including one third-party62

API-based server and two custom-developed servers.63

2.2.1 Tavily server64

We use the Tavily Search Engine tavily-search through the Tavily MCP server, which provides65

real-time web search capabilities and enables agents to discover relevant documentation, code66

examples, and implementation resources from the web.67

2.2.2 Research server68

Research Server implements a sophisticated code intelligence and knowledge discovery system that69

provides comprehensive capabilities for web code extraction, Agentic RAG (Retrieval-Augmented70

Generation), code introspection, runtime probing, and knowledge graph construction and exploration.71

Code extraction and retrieval extract_code_from_url Implements intelligent web crawling72

with multi-strategy extraction capabilities and caching mechanisms using Supabase database storage,73

which is a Postgres development platform. The tool supports both single-page extraction and smart74

crawling strategies with intelligent fallback mechanisms. It automatically detects content types and75

applies specialized extractors for different documentation systems, including Jupyter notebooks,76

ReadTheDocs/Sphinx and MkDocs documentation, raw code files from repositories, and markdown77

content with intelligent parsing of fenced code blocks and command examples. It also extracts relevant78

text before and after code blocks using intelligent paragraph boundary detection, providing semantic79

context for code understanding. Optional LLM summary for the extracted code is also available.80

retrieve_extracted_code Implements vector-based similarity search through extracted code81

blocks using embeddings with configurable match count.82

Code analysis quick_introspect Implements static-first analysis using Jedi [16] for import83

resolution and error diagnosis without runtime execution. The tool provides comprehensive package,84

class, method, and function discovery with fuzzy matching capabilities. runtime_probe_snippet85

Provides code snippets to enable runtime key and attribute probing. When KeyError or AttributeError86

occurs, the tool shows available keys/attributes, object type information, and similar name suggestions87

to help resolve access issues. parse_local_package Implements direct Neo4j knowledge graph88

construction from local Python packages using AST (Abstract Syntax Tree). The tool extracts classes,89

methods, functions, attributes, and import relationships with detailed parameter information including90

type hints and default values. query_knowledge_graph Provides advanced querying capabilities91

for exploring repository structures, class hierarchies, method signatures, and code relationships in the92

knowledge graph using Cypher query language.93

2.2.3 Workspace server94

Workspace Server provides a multi-environment code execution and management system. It supports95

conda, virtualenv, and UV environments with cross-platform compatibility for Windows and Unix-96

like systems. The server prevents access to the benchmark directory to avoid solution leakage and97

enforces security boundaries by confining all operations to the designated project root scope.98

Package management check_installed_packages Lists all installed packages in the current99

Python environment with version information and package count. install_dependencies Installs100

Python packages based on environment configuration. check_package_version Performs detailed101

package analysis including version detection, installation path resolution, and module location identi-102

fication. The tool takes package names as input and handles name variations (hyphens, underscores,103

dots).104

Code execution execute_code Executes Python code in the configured environment. The tool105

saves code to temporary files in the code storage directory and executes with detailed output capture106

including stdout and stderr. execute_shell_command Executes shell commands in the code storage107
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directory. create_and_execute_script Creates and executes shell scripts in the code storage108

directory.109

File operations read_file Reads content from any text file. save_file Saves content for later110

reuse in the designated directory.111

2.3 Agent-tool integration and workflow details112

Each agent in SKILLPUZZLER leverages specific MCP servers and tools to accomplish their special-113

ized tasks within the collaborative workflow.114

Solution Researcher initiates the workflow by conducting comprehensive research to generate initial115

code solutions for the user query. It connects to two MCP servers: Tavily server and Research116

server. The agent is designed to perform a systematic research process that typically involves:117

understanding the request, searching for relevant information using tavily-search with advanced118

search parameters, extracting code examples from identified URLs using extract_code_from_url,119

reviewing and understanding additional requirements, and synthesizing the final solution. The agent120

uses retrieve_extracted_code for vector-based similarity search when the extracted content121

is overwhelming, and optionally employs quick_introspect to confirm exact import paths and122

class/method/function names. For complex problems without explicit step-by-step instructions, it123

is inspired to plan and decompose tasks, select appropriate tools to achieve objectives, and learn124

how to use them effectively. The output includes the original user query, required packages list, and125

complete code solution.126

Code Agent receives the research results and executes the code solution. It connects to three127

MCP servers: Tavily server, Research server, and Workspace server. It is designed to perform a128

5-step execution process: analyzing input, verifying solution requirements using research tools if129

needed, managing packages through check_installed_packages and install_dependencies,130

executing code using execute_code, and evaluating results to determine if debugging is needed.131

Debug Agent instances run in parallel when the initial solution fails. Each agent connects to three132

MCP servers: Tavily server, Research server, and Workspace server. The agents use multiple debug-133

ging approaches after analyzing the error. They employ execute_code to test fixes: Direct Fix for134

obvious errors, Introspection/Probe Fix using quick_introspect and runtime_probe_snippet135

for Python package symbol resolution and runtime key/attribute access errors, Knowledge Graph136

Fix using parse_local_package and query_knowledge_graph which serves as the global explo-137

ration layer when the fast, error-site Introspection/Probe Fix doesn’t resolve the issue, Local Package138

Fix using execute_shell_command, create_and_execute_script, and read_file for exam-139

ining specific files such as package-related code and output files containing results, and Research Fix140

using tavily-search, extract_code_from_url, and retrieve_extracted_code for finding141

documentation and solutions, especially for external program issues. The agents can also employ142

Diagnostic Fix, and Result Processing Fix to modify code for producing processable results. Each143

agent is asked to conduct up to 30 debugging attempts, combining different approaches to maximize144

the likelihood of successful problem resolution.145

Output Processor Agent evaluates all available results and processes the output to required format.146

When debugging is needed, the agent receives three debug results and evaluates each based on147

successful execution, presence of required data, and quality of results. It then selects the best result148

and extracts the final answer in the exact format required by the user. When no debugging is needed,149

it processes the successful execution result directly. The output includes original user query, success150

status, final code, execution results, and processed output, where processed output serves as the key151

field for automated correctness evaluation.152

3 Experiment153

3.1 Experimental setting154

3.1.1 Benchmarks155

To comprehensively evaluate this agentic system’s performance on solving real-world computational156

tasks in materials science and chemistry, we constructed a diverse benchmark comprising 74 total157

4



problems (37 Level 0 and 37 Level 1 tasks). Level 0 tasks tend to simulate computational scientists158

who understand core functions to use and provide some guidance but prefer not to handle implementa-159

tion details and potential errors, while Level 1 tasks represent experimental scientists who know their160

research objectives but lack computational expertise and require more autonomous problem-solving161

from the system. The benchmark is organized into two main categories: data-related tasks and162

computation-related tasks. The data category encompasses data retrieval (Materials Project [17], Mat-163

miner [18], MPContribs), data analysis (pymatgen [19]), data management (pymatgen-db), and data164

processing (RDKit [20], Matminer, Robocrystallographer [21]). The computation category includes165

simulation tasks (xTB quantum chemistry calculations [22]) and specialized models and toolkits (ma-166

chine learning interatomic potentials [23, 24, 25], ASE [26]). These tasks range from straightforward167

code migration from documentation with simple parameter changes to non-documented questions168

that require code exploration, newly released packages not covered in most models’ training data,169

and packages with out-of-sync documentation still available online that may cause confusion.170

Here we show a representative benchmark example: the Level 1 problem is: Write code for querying171

the formation energy and the bulk modulus (shown in the order of voigt, reuss, and vrh values in an172

array) of Li6FeN4 (Materials Project ID: mp-1029739). The Level 0 variant is identical but appends173

the explicit instruction “using materials.summary.search()”.174

3.1.2 Baselines175

To further explore SKILLPUZZLER’s effectiveness, we benchmarked it against two baselines. In the176

Native baseline which is designed to reveal model’s native ability without any self-evolution, Solution177

Researcher produces code without access to Tavily Server or Research Server, Code Agent (connected178

only to Workspace Server) executes it once, and Output Processor Agent retains its processing ability179

and returns the processed result. In the Search&Debug baseline, Solution Researcher is encouraged180

to call Tavily search and Code Agent (connected only to Workspace Server) is required to debug if181

needed, yet neither component receives our specialized prompts or Research Server.182

3.2 Experimental results183

We conducted 3 independent repetitions for each benchmark question (222 questions in total) using184

separate Python processes to ensure complete isolation. Prior to each experiment, we cleared185

the Supabase database and removed temporary files to prevent cross-contamination. In accuracy186

calculation, we excluded workflow failures (such as MCP tool timeouts).187

Figure 2 compares the performance of SKILLPUZZLER with the Native baseline and the188

Search&Debug baseline across 7 OpenAI models. Among the models, O3 attains the highest189

performance (96.7% overall accuracy with SKILLPUZZLER), whereas GPT-4.1 Mini exhibits the190

lowest performance (18.1% overall accuracy under the Native baseline). Across all settings, Level 0191

accuracy consistently exceeds Level 1 accuracy, reflecting the expected increase in task difficulty.192

Moreover, model performance follows a clear upward trend from the Native baseline, which is193

designed to measure the inherent answering capability of LLMs, to the Search&Debug baseline,194

which leverages Tavily Search Engine to access external web information and Workspace Server for195

debugging, and further to SKILLPUZZLER, which integrates Tavily Server, Research Server, and196

Workspace Server under carefully designed prompting. These progressive improvements highlight197

the agent’s capacity for self-evolution and, in particular, demonstrate SKILLPUZZLER’s effective and198

robust skill acquisition in real time.199

4 Conclusion200

In this work, we have introduced the “LLM + skill-acquisition” paradigm and demonstrated its201

feasibility through SKILLPUZZLER, a multi-agent framework for materials science and chemistry202

problems. With only four specialized agents and minimal reliance on predefined tools, SKILLPUZ-203

ZLER is able to self-evolve through real-time learning and iterative refinement.204

5



(c)

(a)

(b)

Figure 2: Comparison of SKILLPUZZLER with baseline methods across OpenAI models. (a)
Native baseline. (b) Search&Debug baseline. (c) SKILLPUZZLER. The x-axis lists 7 OpenAI models,
while the y-axis denotes accuracy (%). Each model is represented by three bars corresponding to
Level 0 accuracy, Level 1 accuracy, and overall accuracy.
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