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ABSTRACT
Accurate long-term viewport prediction in tile-based 360° video
adaptive streaming helps pre-download tiles for a further future,
thus establishing a longer buffer to cope with network fluctuations.
Long-term viewport motion is mainly influenced by Historical
viewpoint Trajectory (HT) and Video Content information (VC).
However, HT and VC are difficult to align in space due to their
different modalities, and their relative importance in viewport pre-
diction varies across prediction time steps. In this paper, we propose
STAR-VP, a model that fuses HT and VC in a Space-aligned and
Time-vARying manner for Viewport Prediction. Specifically, we
first propose a novel saliency representation 𝑠𝑎𝑙𝑥𝑦𝑧 and a Spatial At-
tention Module to solve the spatial alignment of HT and VC. Then,
we propose a two-stage fusion approach based on Transformer and
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gating mechanisms to capture their time-varying importance. Vi-
sualization of attention scores intuitively demonstrates STAR-VP’s
capability in space-aligned and time-varying fusion. Evaluation
on three public datasets shows that STAR-VP achieves state-of-
the-art accuracy for long-term (2-5s) viewport prediction without
sacrificing short-term (<1s) prediction performance.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Mathemat-
ics of computing → Time series analysis; • Computing method-
ologies → Neural networks.
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1 INTRODUCTION
360-degree videos capture the full surrounding environment, en-
abling viewers to freely change perspectives during playback for a
more immersive and interactive viewing experience. The data rate
of 360-degree video needs to be approximately six times higher
than that of regular video to achieve a comparable angular reso-
lution [1]. The increased data rate poses significant challenges for
the streaming of 360-degree video over the internet. Therefore, tile-
based adaptive streaming [36] has been proposed to stream only the
tiles within the user’s Field of View (FoV) at higher bitrates, thus re-
ducing bandwidth and computing resource overhead. Nevertheless,
the effectiveness of tile-based adaptive streaming relies heavily on
the accuracy of viewport prediction. Accurate long-term viewport
prediction helps pre-download tiles for a further future, establish-
ing a longer buffer to cope with network fluctuations. Long-term
viewport motion is mainly influenced by Historical viewpoint Tra-
jectory (HT) and Video Content information (VC), thus requiring
the fusion of these two types of information for prediction.

However, the fusion of HT and VC for viewport prediction faces
two key challenges: 1) Spatial alignment. HT is represented as
coordinate sequences, while commonly used VC information such
as saliency map [26, 40, 43] and motion map [11, 12] is represented
as image. This makes it difficult for the model to align the spatial
positions represented by viewpoint coordinates in HT with the
pixel positions in VC information. 2) Time-varying importance.
The relative importance of HT and VC in viewpoint prediction
varies across prediction time steps. Intuitively, in the short term,
the viewpoint tends to continue its previous motion patterns due
to inertia, thus HT is more important; whereas in the long term,
the viewpoint tends to be attracted by saliency regions within the
video content, thus VC is more important [31]. However, this time-
varying pattern of relative importance can be very complex and
cannot be described by simple rules.

The example in Fig. 1 further illustrates the necessity of consid-
ering the above two challenges. In the spatial dimension, User 1
and User 2’s viewpoints are attracted by different salient regions
due to their different positions, thus the viewport prediction model
needs to align the spatial position information expressed in HT and
VC. In the temporal dimension, User 1’s viewpoint maintains its
previous motion pattern in the short term due to inertia, until it is
mainly attracted by salient regions in the video content in the long
term. Therefore, the viewport prediction model needs to capture
the time-varying importance of HT and VC.

In this paper, we propose STAR-VP, a model that fuses HT and
VC in a Space-aligned and Time-vARying manner for Viewport
Prediction. Specifically, to address the spatial alignment of HT
and VC, we first propose a novel saliency representation 𝑠𝑎𝑙𝑥𝑦𝑧,
which represents a 2D grayscale saliency map as a collection of
(3D spatial coordinates + saliency value) tuples, explicitly
injecting spatial coordinate information into saliency information.
Then, we design a Spatial AttentionModule with a Transformer-like
architecture to solve the spatial alignment problem in conjunction
with 𝑠𝑎𝑙𝑥𝑦𝑧. To address the time-varying importance of HT and
VC, we propose a two-stage fusion approach. In the first fusion
stage, we design a Temporal Attention Module with a Transformer-
like architecture. This module enables the model to adaptively

User 1’s Viewpoint Trajectory

Time dimension:
User 2’s Viewpoint Trajectory

Space dimension:
attracted by different salient regions

short-term:
maintain

long-term:
attracted

Figure 1: An example illustrating the necessity of consid-
ering the space alignment and time-varying importance of
Historical viewpoint Trajectory (HT) and Video Content in-
formation (VC) in long-term viewport prediction.

adjust the attention to HT and VC features at each prediction step.
In the second fusion stage, we design a Gating Fusion Module
to further fuse the prediction results of the short-term prediction
module and the long-term prediction module, enabling the model to
have superior long-term prediction performance without sacrificing
short-term prediction performance.

To summary, our major contributions are as follows:
• We propose a novel saliency representation 𝑠𝑎𝑙𝑥𝑦𝑧. It ex-
plicitly injects spatial coordinate information into saliency
information to facilitate the spatial alignment of HT and VC.

• Wepropose STAR-VP, a long-term viewport predictionmodel.
It achieves the spatial alignment of HT and VC through a
Spatial Attention Module working with 𝑠𝑎𝑙𝑥𝑦𝑧, and cap-
tures the time-varying importance of HT and VC through a
two-stage fusion approach based on Transformer and gating
mechanisms.

• We evaluate STAR-VP on three public datasets and show
that it achieves state-of-the-art accuracy for long-term (2-
5s) viewport prediction without sacrificing short-term (<1s)
prediction performance.

2 RELATEDWORK
2.1 Viewport Prediction in 360° Videos
To achieve more accurate prediction, most existing viewport predic-
tion models consider not only the user’s HT, but also auxiliary in-
formation such as saliency map [26, 32, 38, 41], motion map [11, 12],
object trajectory [6, 20], and other users’ HT [2, 5, 25]. In this paper,
we mainly explore the fusion of HT and the most commonly used
VC information, saliency map.

To address the spatial alignment of HT and VC, some works [26,
34] convert HT from coordinates into VC-like heatmap represen-
tations using Gaussian filtering. While this approach unifies the
modalities of HT and VC, it increases computational and storage
overheads. Moreover, the spatial position information expressed in
2D ERP images cannot well reflect the motion of the viewpoint on
the 3D sphere.

Regarding the time-varying importance of HT and VC, most ex-
isting viewport prediction models [11, 26, 37] ignore it and simply
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Figure 2: The architecture of STAR-VP. (a) shows the overall architecture of STAR-VP, including the SalMap Processor, LSTM
module, Spatial Attention Module, Temporal Attention Module, and Gating Fusion Module. (b) shows the details of the
Encoder/Decoder in the Spatial Attention Module and the Temporal Attention Module. The Encoder and Decoder have the same
architecture but are based on self-attention and cross-attention, respectively. C𝑓 (·) and C𝑡 (·) denote concatenating vectors along
the feature dimension and the temporal dimension, respectively. ⊗ and ⊕ denote element-wise multiplication and addition,
respectively. LN denotes Layer Normalization.

concatenate HT and VC along the feature dimension. TRACK [31]
uses three LSTM modules to separately process HT, VC, and their
concatenated features, aiming to dynamically balance HT and VC
across prediction time steps. However, due to the inherent inabil-
ity of LSTMs to model complex and long-term dependencies, the
TRACK model has limitations in capturing complex time-varying
patterns of relative importance between HT and VC. HeMoG [30]
is a white-box model built on physics of rotational motion and grav-
itation, achieving higher interpretability. However, its performance
is sensitive to manually-tuned parameters. MFTR [42] uses three
Transformer encoders [33] to separately process HT, VC, and their
concatenated features. Compared to TRACK, MFTR more effec-
tively learns the time-varying importance of HT and VC. However,
MFTR still only adaptively selects HT and VC with time-varying
patterns at the feature level, making it difficult to avoid sacrific-
ing short-term prediction performance while improving long-term
prediction performance.

2.2 Transformer and Gating Mechanisms
Transformer [33] was initially known for its excellent performance
in natural language processing tasks such as machine translation.
It aggregates information across the entire sequence with adaptive
weights through attention mechanisms, capturing long-term depen-
dencies in a parallel manner. In recent years, models based on the
Transformer architecture have shown excellent performance not

only in natural language processing tasks [9, 16, 28] but also in var-
ious visual tasks [3, 10, 17, 21, 22] and multimodal tasks [18, 19, 23].
Since the fusion of HT and VC involves time series and multimodal
data, it is suitable to use Transformer-based models for processing.

The application of gating mechanisms in neural networks can
be traced back to the LSTM model [14]. LSTM uses three gating
units to control the flow of information to better capture long-term
dependencies. Since then, gating mechanisms have been widely
used in various deep learning models [7, 27, 45] to better focus on
important information and suppress irrelevant information.

3 METHOD
3.1 Overview
The overall architecture of STAR-VP is depicted in Fig. 2. STAR-VP
predicts the viewpoint positions for the future 𝑇𝐻 time steps(𝑃 ),
given the viewpoint positions from the past 𝑇𝑀 time steps (𝑃 ) and
the video frames spanning both the past𝑇𝑀 and the future𝑇𝐻 time
steps (𝑉 ). Each viewpoint position is represented as a 3D spatial
coordinate on the unit sphere, and each video frame is represented
as an image in Equi-Rectangular Projection (ERP) format.

STAR-VP mainly consists of five modules: SalMap Processor,
LSTM module, Spatial Attention Module, Temporal Attention Mod-
ule, and Gating Fusion Module. First, the original video frames 𝑉
are converted into saliency maps 𝑆 by PAVER [39], a model specifi-
cally designed for saliency detection in 360-degree videos. Then, the
SalMap Processor converts 𝑆 into the 𝑠𝑎𝑙𝑥𝑦𝑧 representation 𝑆𝑥𝑦𝑧 .
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The LSTM module only uses the viewpoint positions from the past
𝑇𝑀 time steps to obtain predictions 𝑃 ′ with excellent short-term
performance for the future 𝑇𝐻 time steps. The Spatial Attention
Module takes 𝑆𝑥𝑦𝑧 and the concatenation of the historical view-
point trajectory and the LSTM prediction results as input, and
outputs the spatially aligned viewpoint position features 𝑃𝑠−𝑜𝑢𝑡
and saliency features 𝑆𝑠−𝑜𝑢𝑡 . The Temporal Attention Module is
responsible for the first-stage fusion. It takes 𝑃𝑠−𝑜𝑢𝑡 and 𝑆𝑠−𝑜𝑢𝑡 as
input, adaptively adjusts the focus on HT and VC features at each
prediction time step through well-designed attention modules, and
outputs predictions 𝑃 ′′ with excellent long-term performance. The
Gating Fusion Module is responsible for the second-stage fusion. It
uses a gating mechanism to obtain the weights of 𝑃 ′ and 𝑃 ′′ at each
prediction time step, and outputs the final viewpoint prediction
results 𝑃 .

The following subsections will introduce the specific details of
the fivemodulesmentioned above and the internal Encoder/Decoder.

3.2 SalMap Processor
The SalMap Processor converts the original saliency map into a
compact saliency representation with pixel coordinate information.
Given the saliency map 𝑆 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐻×𝑊 ×1, the SalMap Pro-
cessor represents each pixel’s saliency information as (𝑥,𝑦, 𝑧, 𝑠),
where (𝑥,𝑦, 𝑧) are the 3D coordinates of the pixel block center and
𝑠 is the corresponding saliency value. The 3D coordinates (𝑥,𝑦, 𝑧)
of the pixel block with index (𝑖, 𝑗) are calculated as follows:

(𝑥,𝑦, 𝑧) = (cos𝜃 · sin𝜙, sin𝜃 · sin𝜙, cos𝜙),

𝜃 =
2𝜋
𝑊

· ( 𝑗 + 0.5), 𝜙 =
𝜋

𝐻
· (𝑖 + 0.5),

(1)

where 𝐻 and 𝑊 are the height and width of the saliency map
respectively.

To reduce data redundancy, the SalMap Processor retains only
the top 𝑡𝑡 points with maximum saliency, which are then sampled at
rate 𝑠𝑟 . Finally, the SalMap Processor outputs 𝑆𝑥𝑦𝑧 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝑃 ×4,
where 𝐷𝑃 = ⌊𝑡𝑡 · 𝑠𝑟⌋.

3.3 LSTM Module
When watching 360-degree videos, users’ viewpoint motion is rela-
tively stable most of the time. Due to inertia, the future motion of
the viewpoint, especially in the short term, is highly correlated with
its historical trajectory. Therefore, we use LSTM, a lightweight and
efficient temporal prediction model, to take only the viewpoint po-
sitions from the past 𝑇𝑀 time steps as input and output predictions
for the future 𝑇𝐻 time steps in an autoregressive manner:

𝑃
′
𝑡+1:𝑡+𝑇𝐻 = LSTM(𝑃𝑡−𝑇𝑀+1:𝑡 ), (2)

where 𝑃𝑡−𝑇𝑀+1:𝑡 ∈ R𝑇𝑀×3 is the viewpoint positions from the past
𝑇𝑀 time steps, and 𝑃 ′

𝑡+1:𝑡+𝑇𝐻 ∈ R𝑇𝐻 ×3 is the LSTM prediction
results for the future 𝑇𝐻 time steps. This prediction has excellent
short-term performance. The specific details of the LSTM module
are omitted here.

3.4 Spatial Attention Module
The Spatial Attention Module is based on a Transformer-like ar-
chitecture. Compared to the original Transformer model, we have

modified its positional encoding part and the structure and query
input of its Decoder.

First, since both 𝑆𝑥𝑦𝑧 and the viewpoint data already contain
3D spatial coordinate information, we modify the positional encod-
ing in the original Transformer to trainable parameter embedding,
aiming to unify the representations of the two modalities. The
Spatial Attention Module takes 𝑆𝑠−𝑖𝑛 and 𝑃𝑠−𝑖𝑛 as input, where
𝑆𝑠−𝑖𝑛 = 𝑆𝑥𝑦𝑧 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝑃 ×4. The calculation formula of 𝑃𝑠−𝑖𝑛
is as follows:

𝑃𝑠−𝑖𝑛 = C𝑓 (C𝑡 (𝑃𝑡−𝑇𝑀+1:𝑡 , 𝑃
′
𝑡+1:𝑡+𝑇𝐻 ),𝑇𝐸) ∈ R (𝑇𝑀+𝑇𝐻 )×4, (3)

where C𝑓 (·) and C𝑡 (·) denote concatenating vectors along the
feature dimension and the temporal dimension respectively, and
𝑇𝐸 ∈ R (𝑇𝑀+𝑇𝐻 )×1 is a vector expanded from a 1 × 1 trainable
parameter along the temporal dimension, used to transform 𝑃𝑠−𝑖𝑛
into a form similar to (𝑥,𝑦, 𝑧, 𝑠) of 𝑆𝑠−𝑖𝑛 , facilitating modality fusion
and spatial alignment. Subsequently, two linear layers convert 𝑆𝑠−𝑖𝑛
and 𝑃𝑠−𝑖𝑛 into 𝑆 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝑃 ×𝐷𝐶 and 𝑃 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝐶 ,
respectively.

Next, we unify the Decoder to have the same architecture as
the Encoder, and use viewpoint features as the query input to the
Decoder, fully utilizing the cross-attention mechanism to decode
viewpoint-specific saliency features. The Encoder encodes 𝑆 into
𝑆
′
using self-attention, with 𝑆 serving as query, key, and value. The

Decoder uses viewpoint position features 𝑃 as query and 𝑆
′
as key

and value, employing cross-attention to perceive the position infor-
mation of viewpoint, giving higher attention to the saliency infor-
mation near the viewpoint. Further details of the Encoder/Decoder
are provided in Section 3.7.

3.5 Temporal Attention Module
Similar to the Spatial Attention Module, the Temporal Attention
Module is also based on a Transformer-like architecture. Compared
to the original Transformer model, we have modified its positional
encoding part and the structure and query input of its Decoder.

First, we modify the positional encoding in the original Trans-
former to positional embedding and trainable modality-specific
embedding. The Temporal Attention Module takes 𝑃𝑠−𝑜𝑢𝑡 = 𝑃 ∈
R (𝑇𝑀+𝑇𝐻 )×𝐷𝐶 and 𝑆𝑠−𝑜𝑢𝑡 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝐶 as input, and outputs
the composite vector 𝑃𝑆 ∈ R2(𝑇𝑀+𝑇𝐻 )×𝐷𝑃𝑆 as follows:

𝑃𝑆 = C𝑡 (C𝑓 (𝑃𝑠−𝑜𝑢𝑡 , 𝑃𝐸,𝑇𝐸𝑃 ),C𝑓 (𝑆𝑠−𝑜𝑢𝑡 , 𝑃𝐸,𝑇𝐸𝑆 )), (4)

where C𝑓 (·) and C𝑡 (·) denote concatenating vectors along the
feature dimension and the temporal dimension respectively, 𝑃𝐸 ∈
R (𝑇𝑀+𝑇𝐻 )×𝐷𝑃𝐸 is fixed 1D Fourier positional embeddings for a
total of 𝑇𝑀 + 𝑇𝐻 time steps, 𝑇𝐸𝑃 ∈ R (𝑇𝑀+𝑇𝐻 )×𝐷𝑇𝐸 and 𝑇𝐸𝑆 ∈
R (𝑇𝑀+𝑇𝐻 )×𝐷𝑇𝐸 are trainable modality-specific embeddings, and
𝐷𝑃𝑆 = 𝐷𝐶 + 𝐷𝑃𝐸 + 𝐷𝑇𝐸 .

Next, we use the vector concatenated by positional embeddings
andmodality-specific embeddings as the query input to the Decoder,
fully utilizing the cross-attention mechanism to decode the view-
point information at each prediction step. The query embeddings
𝐸 ∈ R𝑇𝐻 ×(𝐷𝑃𝐸+𝐷𝑇𝐸 ) are calculated as follows:

𝐸 = C𝑓 (𝑃𝐸𝑡+1:𝑡+𝑇𝐻 ,𝑇𝐸𝑃 𝑡+1:𝑡+𝑇𝐻 ), (5)

The Decoder in the Temporal Attention Module is also unified to
have the same architecture as the Encoder. The Encoder encodes
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𝑃𝑆 into 𝑃𝑆
′
using self-attention, with 𝑃𝑆 serving as query, key,

and value. The Decoder uses 𝐸 as query and 𝑃𝑆
′
as key and value,

employing cross-attention to perceive the specific temporal and
modality information. This captures the time-varying importance
of the viewpoint position features and saliency features. The En-
coder/Decoder is introduced in detail in Section 3.7.

As the first fusion stage, the Temporal Attention Module adap-
tively adjusts the focus on HT and VC features at each prediction
time step, outputting predictions 𝑃 ′′ ∈ R𝑇𝐻 ×3 with excellent long-
term performance.

3.6 Gating Fusion Module
As the second fusion stage, the Gating Fusion Module generates
vectors𝑊

′ ∈ R𝑇𝐻 ×1 and𝑊
′′ ∈ R𝑇𝐻 ×1 to control the weights of 𝑃 ′

and 𝑃 ′′ at each prediction time step, and outputs the final viewpoint
prediction results 𝑃 ∈ R𝑇𝐻 ×3:

𝑃 =𝑊
′
⊗ 𝑃 ′ ⊕𝑊

′′
⊗ 𝑃 ′′

, 𝑥 = Flatten(C𝑓 (𝑃
′
, 𝑃

′′ )),

𝑊
′
= 𝜎𝑠 (𝑊𝑠 (𝜎𝑟 (𝑊𝑟𝑥 + 𝑏𝑟 )) + 𝑏𝑠 ), 𝑊

′′
= 1 −𝑊

′ (6)

where ⊗ and ⊕ denote element-wise multiplication and addition
respectively, C𝑓 denotes concatenating vectors along the feature
dimension, 𝜎𝑟 is the ReLU activation function, 𝜎𝑠 is the sigmoid
activation function, 𝑥 ∈ R6𝑇𝐻 ×1,𝑊𝑟 ∈ R𝐷𝐺×6𝑇𝐻 , 𝑏𝑟 ∈ R𝐷𝐺×1,
𝑊𝑠 ∈ R𝑇𝐻 ×𝐷𝐺 , 𝑏𝑠 ∈ R𝑇𝐻 ×1.

3.7 Encoder and Decoder
Inspired by the universal multimodal fusion architecture Perceiver
IO [15], we unified the architecture of the Encoder and Decoder in
the Spatial Attention Module and the Temporal Attention Module,
and added some additional linear layers to adjust the feature dimen-
sions of the vectors. The Encoder uses self-attention to extract deep
features, while Decoder uses cross-attention to perceive current
specific spatial/temporal information, achieving adaptive feature
selection. The Encoder/Decoder consists of two components: the
Multi-head Attention and the Multilayer Perceptron (MLP).

TheMulti-head Attention component performs the following cal-
culation given 𝑄𝑖𝑛 ∈ R𝑛𝑞×𝑑𝑞 , 𝐾𝑖𝑛 ∈ R𝑛𝑘×𝑑𝑘 , and 𝑉𝑖𝑛 ∈ R𝑛𝑣×𝑑𝑣 :

Attn(𝑄𝑖𝑛, 𝐾𝑖𝑛,𝑉𝑖𝑛) = L𝑜 (softmax(𝑄
′
𝐾

′𝑇√︁
𝑑𝑙

)𝑉
′
),

𝑄
′
= L𝑞 (𝑄𝑖𝑛), 𝐾

′
= L𝑘 (𝐾𝑖𝑛), 𝑉

′
= L𝑣 (𝑉𝑖𝑛),

(7)

where L𝑞,𝑘,𝑣 are linear layers mapping each input to a shared
feature dimension 𝑑𝑙 , and L𝑜 is a linear layer projecting the output
to a desired feature dimension. It is worth noting that all of these
linear layers are applied convolutionally along the index dimension,
and the batch and head dimensions have been excluded for clarity.

TheMLP component consists of two linear layerswith aGELU [13]
nonlinearity applied after the first layer:

MLP(𝑋𝑖𝑛) = L2 (GELU(L1 (𝑋𝑖𝑛))) (8)

The final output of the Encoder/Decoder is calculated as follows:

Attention(𝑄,𝐾,𝑉 ) = A(𝑂𝑎𝑡𝑡𝑛,MLP(N (𝑂𝑎𝑡𝑡𝑛))),
𝑂𝑎𝑡𝑡𝑛 = A(𝑄,Attn(N (𝑄),N(𝐾),N(𝑉 ))), (9)

where N denotes layer normalization, and A denotes addition in
residual connection.

4 EXPERIMENTS
STAR-VP is evaluated on a unified evaluation framework [29] for
viewport prediction methods in 360-degree videos. The framework
unifies five datasets into a common format (sampling period: 0.2s;
viewpoint representation: 3D coordinates on the unit sphere) and
summarizes current combination approaches of HT and VC, evalu-
ating their performance.

4.1 Setup
4.1.1 Datasets. We evaluate STAR-VP on three datasets:
(1) David_MMSys_18 [8] contains 19 20-second 360-degree videos
in ERP format and head and eye tracking data from 57 participants
watching the videos freely.
(2) Nasrabadi_MMSys_19 [24] consists of 28 videos (60s) and view-
port traces from 60 participants watching the videos. Each video is
viewed by 30 participants.
(3)Wu_MMSys_17 [35] includes head tracking data from 48 users
watching 18 360-degree videos of 5 categories.

4.1.2 Competitors. Five models are implemented as competitors.
Three of them only use HT:
(1) linear-regression predicts future viewpoint positions using a
linear regression model.
(2) deep-pos-only is an LSTM-based encoder-decoder model. The
encoder receives the historical viewpoint trajectory and generates
an internal representation. The decoder receives the output of the
encoder and progressively produces predictions over the target
horizon, by re-injecting the previous prediction as input for the
new prediction time-steps.
(3) VPT360 [4] is a Transformer-based model. It only uses Trans-
former Encoder to process HT information for time series predic-
tion.
The other two models use both HT and VC:
(4) TRACK [31] uses three LSTM modules to separately process HT,
VC, and their concatenated features, aiming to dynamically balance
HT and VC across prediction time steps.
(5) MFTR [42] is a complex multi-modal fusion Transformer-based
model. However, its basic fusion framework for HT and VC is to use
three Transformer-encoder-based modules to separately process
HT, VC, and their concatenated features.

It is worth noting that the above comparison models basically
cover all the fusion methods of HT and VC in the current viewport
prediction models we know.

4.1.3 PerformanceMetrics. WeuseOrthodromicDistance (OD) [31]
and Intersection over Union (IoU) [44] as the performance metrics.

The Orthodromic Distance between points 𝑃1 and 𝑃2 is calcu-
lated as follows:

𝑂𝐷 (𝑃1, 𝑃2) = arccos( ®𝑃1 · ®𝑃2) (10)

where 𝑃1 and 𝑃2 are two 3D coordinates on the unit sphere, and ·
is the dot product operation. When we use “3D spatial coordinates
on the unit sphere” to represent the viewpoint position, the ortho-
dromic distance actually represents the shortest spherical distance
between the two viewpoints.
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The Intersection over Union is an evaluation metric related to
the specific tile partition method. We divide the ERP video frame
into 9 × 16 tiles and set the user’s field of view to 100°. If the angle
between the center of the tile and the viewpoint is less than 50°,
the tile is considered to be in the viewport, and its label is set to
1; otherwise, it is set to 0. Then, the Intersection over Union is
computed on these labels as follows:

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑇
(11)

where 𝑇𝑃 represents True Positive, i.e., the intersection between
prediction and ground-truth of tiles with label 1; 𝑇𝑇 represents
True Total, i.e., the union of all tiles with label 1 in the prediction
and in the ground-truth.

4.1.4 Saliency Map Generation and Processing. We use PAVER [39],
a Vision Transformer-basedmodel trained specifically for 360° video
saliency detection, to compute the saliency map at each time step.
The original 224 × 448 saliency maps are processed by the SalMap
Processor module of STAR-VP to generate 128× 4 compact saliency
representation 𝑆𝑥𝑦𝑧 with a top threshold (𝑡𝑡 ) of 20480 and sample
rate (𝑠𝑟 ) of 1/160. In addition, for model size and memory con-
siderations, the competitors use downsampled 64 × 128 saliency
maps as the actual VC input. Even so, the data volume of saliency
information actually used by STAR-VP is only 1/16 of that of other
competitors.

4.1.5 Model Hyperparameters. The hyperparameters of all models
are shown in Table 1. All models predict the next 5s (25 steps) of
viewpoint positions based on the past 3s (15 steps).

Table 1: Hyperparameters of all models.

Symbol Value Description

𝐷𝑐𝐿 256 Channel dimension of the hidden state in LSTM module.
𝐷𝑐𝑇 256 Channel dimension of input of the Transformer encoder.
𝐷𝑃𝐸 129 Dimension of the positional embedding.
𝐷𝑇𝐸 127 Dimension of the trainable embedding.
𝐷𝐺 128 Dimension of the hidden state in the Gating Fusion Module.

𝑁𝑙𝑎𝑦𝑒𝑟𝑠𝐿 2 Number of layers in LSTM module.
𝑁𝑙𝑎𝑦𝑒𝑟𝑠𝑇 2 Number of self-attention layers per block.
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 2 Number of blocks in the Transformer encoder.
𝑁ℎ𝑒𝑎𝑑𝑠 8 Number of heads in the multi-head attention layer.

Table 2: The average long-term prediction (2-5s) performance
of viewport prediction models on three datasets. OD is Or-
thodromic Distance, and IoU is Intersection over Union.

David_MMSys_18 Nasrabadi_MMSys_19 Wu_MMSys_17
OD ↓ IoU ↑ OD ↓ IoU ↑ OD ↓ IoU ↑

linear-regression 1.174 23.92% 0.962 35.41% 0.643 51.17%
deep-pos-only 1.145 26.35% 0.950 35.93% 0.623 52.37%

TRACK 1.123 25.05% 0.939 35.05% 0.613 51.12%
VPT360 1.127 26.00% 0.941 36.27% 0.624 52.04%
MFTR 1.064 27.98% 0.954 34.27% 0.599 52.02%

STAR-VP (ours) 0.967 33.26% 0.862 39.84% 0.531 56.82%

(a) David_MMSys_18 dataset

(b) Nasrabadi_MMSys_19 dataset

(c) Wu_MMSys_17 dataset

Figure 3: The Orthodromic Distance (OD) and Intersection
over Union (IoU) against prediction steps of viewport predic-
tion models on each dataset.

4.2 Results and Analysis
Fig. 3 shows the prediction performance of STAR-VP and five com-
petitors on three datasets. From the figure, we can see that HT-
only models (linear-regression, deep-pos-only, VPT360) have better
performance in short-term prediction (<1s) as they are not influ-
enced by VC information. The two competitors (TRACK, MFTR)
that consider both HT and VC for prediction have better long-
term prediction (2-5s) performance, but worse short-term predic-
tion performance than HT-only models. This indicates that their
improvement in long-term prediction performance comes at the
expense of short-term prediction performance. In contrast, STAR-
VP achieves the best long-term prediction performance without
sacrificing short-term prediction performance. This is mainly due
to the space-aligned and time-varying fusion of HT and VC by
using 𝑠𝑎𝑙𝑥𝑦𝑧 representation and the two-stage fusion method in
STAR-VP. Table 2 further shows the average long-term prediction
performance of each model on three datasets. We note that because
TRACK and MFTR sacrifice short-term prediction performance to
improve long-term prediction, their average performance over 2-5s
is often worse than HT-only models such as deep-pos-only and
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Figure 4: The visualization of the spatial attention scores assigned by STAR-VP to the saliency sampling points (yellow points)
on three video frames, given two different user viewpoint positions (red star). The brighter the yellow point, the larger the
spatial attention score.
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Figure 5: The heatmap of the column-normalized temporal
attention scores between each prediction step and the HT/VC
inputs from STAR-VP.

VPT360. Across all datasets and metrics, STAR-VP achieves state-
of-the-art performance in long-term prediction and comparable
performance in short-term prediction.

4.3 Visualization
4.3.1 Attention Scores of Spatial Attention Module. To analyze
STAR-VP’s ability to align HT and VC spatially, we multiply the
attention matrices of its Spatial Attention Module to obtain the
attention scores between the viewpoint and each saliency sampling
point on video frames and visualize them as shown in Fig. 4. The
figure shows how the attention scores of the saliency sampling
points on three different video frames change with the spatial po-
sition of the current user viewpoint. The red star represents the
current user’s viewpoint on the video frame, and the yellow points
are 32 points uniformly sampled from the 𝑠𝑎𝑙𝑥𝑦𝑧 representation
of the current frame according to saliency value. The brighter the
yellow point, the higher the attention score. It is evident from the
figure that STAR-VP assigns higher attention scores to the saliency

𝑇! prediction time steps

0 1 2 3 4 5

𝑃′$
𝑃′′%

(a) David_MMSys_18 dataset

(b) Nasrabadi_MMSys_19 dataset

(c) Wu_MMSys_17 dataset

𝑃′$
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𝑃′$
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Figure 6: The heatmap of the weight allocation of the Gating
Fusion Module in STAR-VP for 𝑃 ′ and 𝑃 ′′ at each prediction
time step on three datasets.

sampling points closer to the viewpoint. This indicates that it aligns
the spatial information expressed by HT and VC well.

4.3.2 Attention Scores of Temporal Attention Module. To analyze
the time-varying attention pattern of STAR-VP, we multiply the
attention matrices of its Temporal Attention Module to obtain the
attention scores between each prediction step and the HT/VC in-
puts, and visualize them as the heatmap shown in Fig. 5. It can be
seen from the figure that as the prediction step increases, the atten-
tion scores of recent 2s HT gradually decrease, while the attention
scores of VC and earlier HT gradually increase. This is consistent
with the idea that HT reflects inertia for short-term viewpoint mo-
tion, while VC influences long-term motion through salient regions.
We also observe that as the prediction step increases, STAR-VP
gradually increases its attention to HT over the past 2s. This is
because HT over the past 2s reflects certain user viewpoint motion
preferences that are beneficial for long-term viewpoint prediction.
In summary, the visualization results of the attention scores of
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the Temporal Attention Module indicate that STAR-VP performs
feature selection on HT and VC with a time-varying pattern in
the first fusion stage. It is worth noting that to facilitate a clearer
observation of the time-varying attention pattern, we apply min-
max normalization to the original attention scores matrix along the
columns.

4.3.3 Weight Allocation of Gating Fusion Module. We visualize the
weight allocation of the Gating Fusion Module in STAR-VP for
𝑃
′ and 𝑃 ′′ at each prediction time step as a heatmap, as shown

in Fig. 6. Here, 𝑃 ′ is the prediction result with better short-term
performance output by the LSTM module that only considers HT,
while 𝑃 ′′ is the prediction result with better long-term performance
output by the Temporal AttentionModule after the first-stage fusion
of HT and VC. It can be seen from the figure that for the initial
prediction steps, the Gating Fusion Module almost assigns all the
weight to 𝑃 ′ . As the prediction step increases, the weight of 𝑃 ′ is
gradually reduced, while that of 𝑃 ′′ is increased. This allows STAR-
VP to achieve excellent long-term prediction performance without
sacrificing short-term performance.

4.4 Ablation Study
4.4.1 Effects of Each Module in STAR-VP. To analyze the contri-
bution of each module in STAR-VP to the prediction performance,
we conducted an ablation study on the Spatial Attention Module
(SAM), Temporal Attention Module (TAM), and Gating Fusion Mod-
ule (GFM). For SAM, we replaced it with a linear layer. For TAM,
we replaced it with an LSTM. For GFM, we removed it directly and
used the output of TAM as the final prediction result. The results
are depicted in Fig. 7. It can be seen from the figure that removing
any module will affect the prediction performance. Removing SAM
and TAM mainly affects long-term prediction performance, while
removing GFM mainly affects short-term performance. This result
not only demonstrates the importance of each module but also
indicates that the main role of SAM and TAM is to improve the
long-term viewpoint prediction performance of STAR-VP, while
the main role of GFM is to block the output of the long-term pre-
diction module in short-term prediction to ensure the short-term
viewpoint prediction performance of STAR-VP.

4.4.2 Effects of 𝑠𝑎𝑙𝑥𝑦𝑧 Representation. We tested the long-term
prediction performance of three models that consider both HT and
VC with the original saliency map and the 𝑠𝑎𝑙𝑥𝑦𝑧 representation,

Table 3: Ablation study results of 𝑠𝑎𝑙𝑥𝑦𝑧: the long-term pre-
diction (2-5s) performance of three models considering HT
and VC with or without the 𝑠𝑎𝑙𝑥𝑦𝑧 representation. OD is Or-
thodromic Distance, and IoU is Intersection over Union.

David_MMSys_18 Nasrabadi_MMSys_19 Wu_MMSys_17
OD ↓ IoU ↑ OD ↓ IoU ↑ OD ↓ IoU ↑

TRACK (w/o 𝑠𝑎𝑙𝑥𝑦𝑧) 1.123 25.05% 0.939 35.05% 0.613 51.12%
TRACK (w/ 𝑠𝑎𝑙𝑥𝑦𝑧) 1.144 24.62% 0.952 34.35% 0.626 50.90%
MFTR (w/o 𝑠𝑎𝑙𝑥𝑦𝑧) 1.064 27.98% 0.954 34.27% 0.599 52.02%
MFTR (w/ 𝑠𝑎𝑙𝑥𝑦𝑧) 1.123 27.34% 0.958 34.02% 0.613 52.03%

STAR-VP (w/o 𝑠𝑎𝑙𝑥𝑦𝑧) 1.057 28.31% 0.928 36.91% 0.584 52.56%
STAR-VP (w/ 𝑠𝑎𝑙𝑥𝑦𝑧) 0.967 33.26% 0.862 39.84% 0.531 56.82%

(a) David_MMSys_18 dataset

(b) Nasrabadi_MMSys_19 dataset

(c) Wu_MMSys_17 dataset

Figure 7: Ablation study results of Spatial Attention Module
(SAM), Temporal AttentionModule (TAM), andGating Fusion
Module (GFM) in STAR-VP on each dataset.

respectively. The results are shown in Table 3. From the test re-
sults, it can be seen that the performance of the TRACK and MFTR
models decreases after using the 𝑠𝑎𝑙𝑥𝑦𝑧 representation, while only
STAR-VP improves its performance after using the 𝑠𝑎𝑙𝑥𝑦𝑧 repre-
sentation. This result demonstrates the improvement of the 𝑠𝑎𝑙𝑥𝑦𝑧
representation on long-term prediction performance and highlights
the importance of the 𝑠𝑎𝑙𝑥𝑦𝑧 representation in conjunction with
the Spatial Attention Module.

5 CONCLUSION
In this paper, we propose a novel long-term viewpoint prediction
model STAR-VP. It fuses viewpoint and saliency information in a
space-aligned and time-varying manner, achieving the best long-
term prediction performance without sacrificing short-term pre-
diction performance. A viewpoint prediction model with excellent
long-term performance helps 360° video streaming systems pre-
download tiles for a longer time ahead, thereby establishing a longer
buffer to cope with network fluctuations.
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