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Abstract

We introduce Alexa Arena, a user-centric simulation platform to facilitate research
in building assistive conversational embodied agents. Alexa Arena features multi-
room layouts and an abundance of interactable objects. With user-friendly graphics
and control mechanisms, the platform supports the development of gamified robotic
tasks readily accessible to general human users, allowing high-efficiency data
collection and EAI system evaluation. Along with the platform, we introduce a
dialog-enabled task completion benchmark with online human evaluations.

1 Introduction

A longstanding goal of AI is to develop autonomous robotic agents that can assist humans in day-to-
day activities. Experiments with robots are often conducted in controlled environments, limiting their
variety and scale of operation. To mitigate this problem, several EAI simulation platforms have been
proposed, which support virtual scenes that can be either manually designed, synthetically generated,
or captured from real scenes. An embodied agent can freely navigate and interact with objects in
these scenes to complete tasks. However, the current EAI platforms suffer from a set of limitations
that curtail the ability to build generalizable assistive AI agents.

Facilitating HRI data collection by gamification. A persistent challenge in Human-Robot Interac-
tion (HRI) is collecting human interaction data comprising of natural language instructions along
with visual content and actions. Currently available EAI platforms, however, are not designed for
humans to effectively interact with the agent, making the data collection process expensive and time
consuming [21, 35]. Games have been historically utilized to encourage wide-spread user partici-
pation and engagement with services [6, 49, 30]. To ease the data collection effort, we introduce
gamification to EAI, which is achieved by presenting tasks or user interactions in the form of games,
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and by introducing scoring mechanisms, achievements and streaks to stimulate and engage users,
promoting user participation.

Reasoning based on visual observations. Tasks in current EAI platforms have limited in-class
variability: each task type requires the agent to make use of the same objects repeatedly. As a result,
agents may resort to over-engineering (over-fitting to specific and simplistic tasks) and memorization
to converge to trivial and non-generalizable solutions, or use predefined task decomposition mappings
[22]. One way to mitigate this is to design missions that can be completed in multiple ways by
interacting with varied objects in the environment with compositional and causally interconnected
state changes, forcing the agent to then use common-sense reasoning to understand its current state
from visual observations, past actions and associated state changes.

Reconciling offline and online execution scenarios. Real-world operation of assistive agents is
characterized by object interactions and collaborative engagement with other agents or humans in the
form of visual cues or dialog. In the offline setting, the agent passively follows human instructions.
Most currently proposed dialog guided interactive benchmarks and platforms operate in this fashion
[11, 2, 26]. Online execution features an agent interacting actively with users that have control,
interfacing through natural language in a continuously evolving environment. For example, if the
agent veers off its path in the online phase, the human user can regain control of the situation and
guide the robot to success, sometimes accomplishing some of the the tasks themselves, contributing a
learning opportunity for the agent [37]. Such a corrective mechanism that incorporates the elements
of real-time user interaction can be implemented limitedly in an offline setting, to the extent of
augmenting datasets with interactive elements like dialogs. With our platform, we aim to bridge the
fundamental operational gap between the offline and online scenarios by demonstrating the use of
offline interaction data to bootstrap an EAI agent, following which runtime data and interactions
could be used to quantitatively and qualitatively improve user experience and task execution success
rates, leading to a sucessful demonstration of a human-in-the loop EAI system that more closely
resembles real-world deployment scenarios.

To this end, we propose Alexa Arena, a user-centric EAI platform. For better user experience, the
platform design has commonalities with games, with features like task-guiding UI elements and
engaging visual effects. The platform boasts many variations of objects and state transitions, on top
of which a variety of missions are designed (Figure 1). We show an example use case of Arena on
dialog-guided task completion, where the embodied agent can communicate with the user through
natural language to finish an indoor mission. To assist in developing models for this task, we release
a dataset in which each mission is annotated with an expert demonstration and corresponding human-
annotated language instructions and dialogues. To evaluate the dialog-guided agent in real-time, we
also release a web-based user interface (UI), where a user can communicate with the agent in text and
receive visual observations of the agent from Arena. This paper makes the following contributions:

1. Alexa Arena as a new user-centric EAI platform which focuses on building assistive conversational
agents that can assist humans through reasoning and procedural learning.

2. A dataset of over 9K dialog sessions and 46K human annotated instructions. Each data session
simulates a human user communicating with an embodied agent to complete a household activity.

3. In addition to offline evaluation of the dialogue-guided embodied agents, we also provide an
interactive evaluation protocol. Using the web-based interface, the user can provide instructions to
the agent and observe the progress in real-time. We also present results from baseline models for
both evaluations.

2 Related Work
Embodied AI platforms. In recent years, many platforms have been proposed for embodied agents
to perform household activities in indoor virtual environments [28, 10, 47]. Most simulators are
designed with performance and realism as the top priorities [38]. Although some simulators have
built-in infrastructure for human data collection [12, 46], the user interactions are generally not the
focus of their designs. On the contrary, Alexa Arena is a user-centric embodied AI platform with
features designed specifically to enhance user experience. There are also several EAI platforms that
are inspired by video games [19, 4, 39, 7, 13, 48], but the agent observations are often simplified.

Language-guided navigation and task completion. Most existing work for learning language-
guided embodied agents focuses on navigation tasks [3, 36, 24, 9, 31]. For increased task complexity,
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Figure 1: The Alexa Arena EAI platform has a variety of object categories, like a set of fantastical objects as
engagement enhancers, such as the freeze ray (3), the time machine (6) and the color changer (7). The agent (1)
can make use of different tools to change the state of the object. For example, the agent can use either the freeze
ray (3) or the fridge (5) to cool an object. Arena also has more interaction actions and state changes compared to
existing platforms. For instance, the agent can use the time machine (6) to repair broken objects, or use the color
changer (7) to change the color of objects.

[23, 33] enable the agent to follow natural language instructions and complete household activities,
where both navigation and object manipulation actions are required. Most recently, [26, 11] propose
new datasets and benchmarks for training and evaluating task-oriented embodied agents that can
engage in dialogue. However, both works use offline settings where the dialogues are pre-collected
from humans or generated with templates. In comparison, the Arena platform enables embodied
agents to communicate with human users in a real-time interactive fashion.

Task planning with large language models. Recently, there is a growing trend of using large
language models (LLMs) for assisting robot task planning in learning novel activities or completing
complex tasks [1, 44]. LLMs have been shown to be good at providing high-level semantic knowledge
about the physical world and common human activities [16, 34]. When combined with the sensory
perception of the embodied agent, such knowledge can often substantially improve the agent’s
capability of solving complex tasks in unseen scenarios [18, 17]. The Arena platform provides a good
testbed for this line of work. With numerous object types, properties and state changes, along with
various environmental causal events, Arena supports the creation of robot tasks that require adequate
reasoning capability on common world knowledge.

3 The Arena Platform

In this section, we describe the Alexa Arena Platform. We briefly describe the attributes of the
simulator and tools that we are releasing as a part of the platform.

3.1 Objects Properties and States

There are 336 unique objects in Arena. Each object has a set of properties, called affordances, which
specify if a certain type of robot-object interaction is possible. For example, the agent can toggle
the 3-D printer since it has an object property toggleable. At the same time, the agent cannot pick it
up since it does not have the pickupable property. In total, there are 14 object properties, including
pickupable, openable, breakable, receptacle, toggleable, powerable, dirtyable, heatable, eatable,
chillable, fillable, cookable, decor and infectable. Each object property has a corresponding action
and a subsequent object state upon taking that action. For example, break is the corresponding action
for breakable, and broken is the corresponding state after the action has been performed. The states
of objects will change as a consequence of the action, given that the pre-conditions are met. For
example, if powered on (Fig. 1 (2)), the 3-D printer can be used to make toys (Fig. 1 (4)).
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Figure 2: The web-based user interface. The user can use the chat box to communicate with the agent in Arena
for task completion. Meanwhile, video from Arena is streamed in real time to show the progress. The minimap is
displayed on the top right corner of the game UI, showing the room layout and the robot location and orientation.
The mission goal and subgoals are displayed to the users in text on the top left corner of the UI.

3.2 Robot Action Space

In general, Arena supports two kinds of actions: 1) user interaction actions for communicating with
the user, and 2) robot physical actions to interact with the simulation environment. There are two
types of robot physical actions - navigation actions and object interaction actions. For better user
experience, all the navigation and interaction actions are animated in a continuous fashion with
associated appropriate environmental sounds also being played during the animation.

User interaction. To communicate with the user, the robot can initiate a dialog, the contents of which
are displayed on the user interface (Figure 2). The robot can also highlight objects for real-time visual
feedback and use it for confirmation or user instruction disambiguation.

Navigation. The goal of Arena is to aid in compositional task learning and reasoning, instead of
indoor navigation. To this end, we simplify the navigation in Arena by enabling the robot to directly
navigate to a viewpoint in a room by specifying the viewpoint name or the room name, or to an object
by specifying the object mask. Meanwhile, if preferred, the robot can also perform step-by-step
navigation by a combination of parametrized local primitive actions like MoveFoward and Rotate.

Object interaction. Arena supports 11 actions for object interaction, including Examine, Pickup,
Place, Open, Close, Break, Pour, Toggle, Fill, Scan and Clean. Each action is associated with a set of
objects in a specific state in which the objects can afford that action to be performed upon them. E.g.,
toggling can be performed on a Time Machine when it is in a closed state. Interaction actions are
accompanied by a change in the associated object’s state, which gets updated in the metadata.

3.3 Enhanced User Experience

We incorporate into Arena elements that enhance application usability and improve engagement
quality: 1) the platform includes engage-enhancers, such as fantastical objects and a scoring system
for each mission; 2) for better visual effects, actions in Arena are animated in a continuous played-out
fashion for both manipulation and navigation actions, makes the scenes more natural, user-friendly
and engaging; 3) the platform features a unique user interface with several elements to provide users
with better task guidance, including minimap and sub-task hints, all of which work in an integrated
fashion to improve user-experience.

4 Dialog-guided Task Completion

We now present the Dialog-guided Task Completion benchmark. The benchmark is designed to
evaluate dialog-guided agents for indoor object interaction tasks. To support model development, we
release a hybrid dataset where ground-truth robot action trajectories are paired with human annotated
language. We also set up two evaluation protocal: an offline evaluation on the validation split of the
dataset and an online evaluation with human users.
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Tasks Heat & Deliver Freeze & Deliver Repair & Deliver Color & Deliver

Scene # 101 105 110 104

Objects Bowl, microwave, 
desk

Mug, freeze ray, 
table

Floppy disk, time 
machine, fridge

Apple, color 
changer, desk

Instructions Take the bowl Go to the freeze ray 
target

Carry floppy disk to 
time machine

Go to the color 
changer station

Questions Where is the bowl? What does the 
target look like?

Where is the time 
machine?

Where is the 
station?

Answers On the tan table 
next to the fan

It is the blue tray 
attached to the wall

The time machine is 
in the corner of the 
countertop

To your left in the 
southwest corner of 
the room

Expert 
demonstrations

Figure 3: Examples in the AID dataset. Each data session corresponds to one language annotation on a mission
that needs to be completed in a specific scene. Each language annotation includes a sequence of instructions
guiding the robot to complete the task, as well as questions and answers for clarification. Expert demonstrations
are provided for each data session.

4.1 Task settings

Each task in the benchmark is specified by the initial states and the goal states of the scene, and
a sequence of human instructions. The agent is required to understand the language instructions
and interact with the environment through a series of object manipulation and navigation actions to
achieve the goal states.

4.2 Arena Interactive Dialogue (AID) Dataset

To enable training and evaluation of the dialog-guided embodied agents, we collect the Arena
Interactive Dialogue (AID) dataset via crowd-sourcing. The dataset contains expert action trajectories,
human language instructions, and associated questions and answers for missions to simulate dialog.
We split the dataset into training and validation folds. There are 2661 tasks in training and 383 in
validation, in which each task is annotated by 3 annotators. Each human annotation is considered
one session, giving total of 7983 training sessions and 1149 validation sessions. There are in total 12
unique tasks types in the dataset. Examples data points are shown in Figure 3.

Expert demonstrations. The game mission and expert demonstration generation follows a two-step
process. In step one, game missions are programmatically generated via sampling from initial
environment states and mission goals. The second step generates expert demonstrations using a
planner. Along with the game definitions, we also generate PDDL (Planning Domain Definition
Language) planning problem definitions for each game mission. A symbolic planner is used to solve
the planning problem and the output action sequence is collected as the expert demonstration. One
thing to note is that the planner has access to the game metadata, which is not available to the agents
during inference time. For tasks that can be completed in different ways (e.g., by using different
tools), we pick one unique way for each task to generate expert demonstration. For example, for
freeze and deliver, in some missions the fridge is used to cool the object, while in other cases the
freeze ray is used.

Human Language Annotation. To collect natural language dialogue for the missions, we design a
two-stage data annotation process on Amazon Mechanical Turk (AMT). In both stages, the annotator
watches a video containing an expert demonstration for the mission and provides the annotations
in free-form text data or answers to multiple choice questions. In the first stage, annotators write
instructions to tell a “smart robot” how to accomplish a task. During the process, an annotator first
watches the video of the ground-truth robot actions, then writes instructions for each highlighted
video segment. After all the instructions are collected, we start the second stage of annotation, where
the annotators are asked to raise questions to better complete the task, as if they are controlling the
robot to follow the instructions. They also need to subsequently answer their own raised questions.
Similar to [11], the question choices in the second stage of annotation are generated using predefined
templates. For more details on the human language annotation process, see Appendix.
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Figure 4: Model architecture of the vision language model for end-to-end action prediction and visual grounding.

4.3 Offline evaluation

We expect that a good embodied agent should be able to finish the missions efficiently. To achieve
this goal, the agent should understand the human instructions and generate a corresponding sequence
of actions. Thus, we evaluate the agent using the following metrics:

• Mission success rate (MSR). For each mission, there is a mission success variable m indicating
whether the goal conditions have been met for the mission. m = 1 if all the goal conditions are
met. Mission completion rate is calculated by averaging m across all the missions.

• Average number of robot actions (NRA). To measure the efficiency of task completion, we also
record the number of actions taken by the agent to complete each mission. Average number of
robot actions is calculated by averaging the number of actions across all the missions.

4.4 Online Human evaluation

To demonstrate the potential of Alexa Arena for real-time user interactions, we design a human
evaluation protocol for dialog-guided task completion. Different from the offline evaluation where
the agent only passively follows the user instructions, in this online setting, the agent can also engage
in multi-turn dialog with the user to communicate its internal states and clarify the mission goals.

Missions. On top of the 12 task types presented in the AID dataset, we design and curate 14 more
complex longe-horizon missions, each requiring the agent to complete several sub-goals by following
the user instructions, aiming to test compositional learning capabilities of the agents. The missions
are designed to be gamified to engage the users and the environment also contains hints to guide the
users to complete the tasks. The setting encourages dialog, where the human and the robot share the
goal to complete the mission. An example of such a task is provided in the Appendix. To test the
agent’s capability to generalize across tasks, we keep 5 missions as the unseen test set.

Metrics. For online evaluation, we use the MSR as the task performance metric. As a subjective
evaluation metric, we collect users’ overall satisfaction toward the game on a 5-point likert scale after
each interaction.

5 Experiments

5.1 Offline evaluation

We use the AID dataset to train two baseline models. The inputs to the models are the agent egocentric
view and natural language conversations. The outputs are a series of executable action sequences
and associated interactable masks (where needed) to complete the task at hand. For both models, we
experiment using only the human instructions, as well as the instructions appended with the questions
and answers (QA) as input to simulate human-agent dialog during the mission in offline evaluation.

Neural-Symbolic Approach. Episodic Transformer (ET) is a neural-symbolic model for visual-
language task completion [27]. ET uses a multi-modal transformer to predict actions and object pairs
based on the visual and language information in the entire episode, with a separate object detector to
generate object masks.

6



Mission NS NS VL VL
Type w/o QA w/ QA w/o QA w/ QA

breakObject 0.00±0.00
(10.93±0.22)

0.00±0.00
(9.90±0.05)

28.88±3.62
(8.90±0.42)

37.41±3.66
(9.07±0.56)

clean&deliver 14.18±1.43
(21.66±0.06)

13.79±0.00
(15.14±0.09)

11.49±2.48
(16.12±0.86)

16.85±3.01
(13.63±0.93)

color&deliver 0.00±0.00
(14.44±1.43)

0.00±0.00
(13.22±0.17)

0.0±0.0
(16.69±0.45)

2.77±3.92
(18.05±0.67)

fill&deliver 14.58±0.00
(20.38±0.27)

20.14±0.98
(17.12±0.08)

11.80±4.28
(15.43±1.27)

23.61±5.47
(13.79±1.86)

freeze&deliver 31.94±1.96
(17.17±0.07)

19.44±1.96
(17.42±0.32)

1.38±1.96
(21.48±1.65)

5.55±5.19
(19.71±2.79)

heat&deliver 5.13±0.00
(14.79±0.36)

5.13±0.00
(18.22±0.45)

23.07±5.53
(19.24±1.97)

28.20±2.09
(16.91±0.57

insertInDevice 14.69±0.00
(11.53±0.15)

14.88±0.53
(11.45±0.04)

15.63±2.62
(7.54±0.46)

22.03±1.22
(1.22±0.43)

pickup&deliver 9.47±0.00
(11.15±0.10)

11.93±0.29
(12.66±0.08)

21.28±0.92
(8.03±0.36)

26.54±1.67
(7.89±0.40)

pourContainer 15.10±0.40
(12.19±0.04)

14.81±1.07
(12.71±0.12)

25.92±5.04
(11.09±0.90)

31.05±1.06
(10.07±0.29)

repair&deliver 11.11±0.00
(17.19±0.28)

12.96±0.00
(15.56±0.35)

11.72±0.87
(21.69±1.14)

18.51±3.02
(18.39±1.23)

scanObject 41.44±0.00
(4.90±0.00)

41.44±0.00
(4.84±0.00)

41.44±3.20
(3.72±0.19)

57.65±4.59
(3.96±0.36)

toggleDevice 57.14±0.00
(5.09±0.00)

56.19±0.00
(5.08±0.00)

84.12±3.23
(4.13±0.22)

87.62±4.85
(4.49±0.68)

average 18.42±0.00
(11.89±0.01)

18.97±0.00
(11.62±0.03)

27.00±0.39
(9.88±0.29)

33.88±0.71
(9.20±0.28)

Table 1: Experimental results on the validation dataset for the Neural-Symbolic (NS) and Vision-Language (VL)
models. For each task, we show mission success rate and average number of robot actions (in the parenthesis).
For each metric, we report the mean and standard deviation from three runs.

End-to-end Vision Language Model. We experiment with an end-to-end vision language (VL)
model shown in Figure 4. A transformer model encodes the natural language instruction, and the
egocentric view is encoded using a ResNet [15], both of which are initialized with pre-trained CLIP
weights [29]. The encodings are passed through a joint VL encoder to get a combined vision-language
embedding. This is then channelled through two heads: 1) The task planning head is an LSTM
module encoding the context of previous predicted outputs, followed by two linear classifiers to
predict the (action, object) pairs. 2) The mask prediction head uses the current first party view, the
encoded language and the action-object prediction hidden state from the task planning head to predict
a single mask referring to the interactable object using the referential image segmentation architecture
described in [45]. The above procedure is repeated for a natural language instruction and a series of
first party views until an End-of-Sequence (EOS) flag is emitted by a separate binary classifier.

5.1.1 Results and analysis

The baseline models are trained on the training split, and evaluated on the validation split of the AID
dataset. The overall mission completion results are displayed in Table 1. Both models are evaluated
with a cap of 50 maximum allowed steps and 10 failed steps per mission, beyond which if the mission
goal is not completed, the agent stops execution leaving the goal incomplete. Below, we analyze the
results for both models and provide insights on the model performances.

Neural-Symbolic Model. Overall, adding QA leads to a marginal improvement in the performance
for the Neural-Symbolic model. The model performs well in MSR for missions with short horizons
(e.g. toggleDevice). As an ablation study, we also evaluate the multi-modal transformer on the
validation set by providing the ground-truth visual observations in the dataset at each time step. As a
result, the model can correctly predict all the actions and objects for 71.3% of the missions without
QA, and 76.9% with QA. Since it is common that there are multiple instances of the same class in a
room, the model can choose an incorrect interactable mask even if the transformer model correctly
predicts the object class and the vision model correctly predicts all the object masks of that class
in the image. This can also explain why the improvement with QA is limited, since the additional
information does not participate in the grounding once the action and object pairs are predicted.

Vision Language Model. The VL model shows a 6.88% absolute improvement in MSR when trained
and evaluated with QA compared to training and evaluating without QA. The agent is also able
to complete the missions more efficiently with QA, demonstrating that asking the right questions
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Team Week 1 Week 2 Week 3 Week 4 (Unseen) Offline
SlugJARVIS 3.98±0.18 (52.82) 4.10±0.19 (67.35) 4.19±0.18 (49.56) 3.90±0.20 (55.56) (3.66)
ScottyBot 3.48±0.21 (46.46) 3.67±0.21 (40.40) 3.97±0.15 (49.04) 3.63±0.21 (57.95) (8.36)
EMMA 3.31±0.20 (47.66) 3.90±0.18 (54.44) 3.88±0.18 (57.61) 4.28±0.14 (56.12) (30.55)
SEAGULL 3.57±0.19 (33.78) 3.77±0.18 (50.00) 4.31±0.16 (51.72) 3.63±0.21 (37.86) (30.98)
GauchoAI 4.05±0.17 (62.36) 4.31±0.16 (68.38) 4.48±0.15 (64.35) 4.33±0.17 (66.67) (36.47)

Table 2: For online evaluation results, we show the weekly user satisfaction on a 5-point scale and missions
success rate in percentage (in the parenthesis). We report the mean and standard deviation for the user satisfaction.
For each team, we also show the MSR achieved in the offline evaluation for comparison.

improves task execution efficiency and accuracy. For tasks like toggling which few objects can
afford, the instructions tend to already be descriptive enough in natural language ("Turn on the red
computer", "Press the blue button"), which explains why adding QA shows a mere 3% improvement
in MSR. For all other task types which involve numerous objects, the QAs provide crucial additional
information that is not naturally provided with the instruction in the first turn, thus leading to
significant performance improvement both in MSR and NRA. From analysis, the color & deliver
and freeze & deliver missions are prone to failure (as evidenced by low MSRs) because of relatively
longer contexts than other missions and difficulty in disambiguating the receptacle of delivery.

5.2 Online Human evaluation

Alexa Arena is used as the interactive EAI platform in the Alexa Prize Simbot Challenge, in which
human users can perceive the environment through the agent’s egocentric view, and communicate with
the embodied agent via natural language commands. To understand how additional user interaction
data can help model development, the challenge schedule follows a continual learning setting in a four-
week duration: in the first three weeks, the teams can freely update their model using interaction data
on 9 missions, and in the final week the models are tested on 5 unseen missions for generalizability.

5.2.1 Modeling Methodologies

In total, 10 teams participated in the challenge and implemented their own models for Arena. The
models output physical actions for the agent and engages in dialog with users to successfully complete
missions. We briefly describe the design of some representative models. SlugJARVIS [43] use a
hybrid approach for action prediction, with a rule-based parser to process most requests and an end-to-
end Pythia [5] model to handle corner cases. They also design a progressive task experience retrieval
module which helps make use of the existing successful user interaction data on seen tasks to enhance
performance. ScottyBot [40] design a modularized system containing a neural NLU module for
action prediction, named entity recognition, and action/object names standardization. The proposed
design also incorporates semantic maps for efficient navigation and object localization. SEAGULL
[25] use a rule-based system to detect user intent, and a PDDL planner to generate robot actions.
They also design a hierarchical vision model to detect environment states, including fine-grained
object categories, object states and objects spatial relations. EMMA [41] propose an encoder-decoder
architecture to encode the multi-modal input and generate outputs as textual and visual tokens. The
model is first pretrained on multiple vision-language tasks including masked language modeling and
image captioning, before finetuning on embodied planning tasks. GauchoAI [42] also use a modular
framework for their agent, with a hybrid rule-based and neural action prediction module, an agent
state tracking module, a preprocessing module to reject non-plausible actions, and a MaskFormer [8]
based visual grounding model. We refer readers to the technical reports for additional details 3.

5.2.2 Results and analysis

In Table 2, we show human evaluation results for each team on a weekly-basis. For the first three
weeks, we can see a clear upward trend for user satisfaction within each week across all the models.
For the unseen missions, most teams are able to achieve similar performance as seen ones, showing
the potential to generalize to novel tasks. Compared to the offline performance, we observe that the
teams are able to achieve a much higher mission success rate with human evaluation despite the tasks
being more complicated. This shows the effects of having interactive dialog during task execution,
which helps the agent understand the task goal and the user to understand the model’s limitations.
This is validated qualitatively by playing with the virtually deployed bots, where we observe critical

3https://www.amazon.science/alexa-prize/proceedings
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contributors to a higher user satisfaction and MSR. While there is a positive correlation between
MSR and user ratings across different teams, users tend to give a higher rating to bots that are
transparent and collaborative, able to give clear feedback, let their limitations be known, and are
good at anticipating user actions in a balanced manner, as opposed to bots taking actions without
appropriate feedback. For example, from Week 2 to Week 3 for certain models such as EMMA
and GauchoAI, the user ratings increased while the overall MSR decreased. The increase in user
satisfaction is attributed to a variety of factors, including that these models became more user-centric,
were more interactive and feedback friendly to the users. The teams were able to update their models
with real-time human feedback signals to align their bots with the users that interact with them.

6 Conclusion and future work

We introduce Alexa Arena, a user-centric EAI platform, featuring user-friendly graphics, animations
and control mechanisms to facilitate user-centric EAI research. We provide baseline results for
a dialogue-guided task completion use-case, and also release the AID dataset. While the Arena
platform is designed to improve user-experience for EAI systems, the proposed online models cannot
be evaluated in a straightforward fashion without a human-in-the-loop to supply interactive dialog
and feedback. To overcome this limitation, we aim to incorporate a model-based user-simulator in
future work, to which an oracle provides relevant answers during task execution. Another direction to
explore is enabling the human and the robot to control different embodied agents and create more
scenarios for HRI.

Ethical Considerations. Via introducing Arena as a public embodied AI platform built for human-
robot communications, we mainly target English language and do not explicitly look at the issues
innate to natural language understanding such as comprehending under-represented languages. The
missions, tasks and game designs can be controlled by the platform users as needed, and is backed
by a framework that has been validated quantitatively and qualitatively, to the best of our abilities,
by carefully constructed and robust user studies as presented in the paper. Since Arena is to be
open-sourced, it is possible for users to modify the platform for unintended use cases, which is a
common risk for all open-sourced embodied AI platforms. But we believe the risk for Arena is low
comparing to other platforms since Arena uses a gamified setting and the released recources are not
directly applicable for real-world malicious applications. As for real world transferability of the
trained agents, robust testing and continual safety monitoring mechanisms should be put in place to
minimize risks of unpredictable robot behaviours in unexpected scenarios.

9



References
[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[2] J. Albrecht, A. J. Fetterman, B. Fogelman, E. Kitanidis, B. Wróblewski, N. Seo, M. Rosenthal,
M. Knutins, Z. Polizzi, J. B. Simon, and K. Qiu. Avalon: A benchmark for RL generaliza-
tion using procedurally generated worlds. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[3] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and
A. Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3674–3683, 2018.

[4] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[5] S. Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff, A. Skowron, L. Sutawika, and O. van der Wal. Pythia: A
suite for analyzing large language models across training and scaling, 2023.

[6] F. Brandle, K. Allen, J. R, Tenenbaum, and S. Eric. Using games to understand intelligence.
Proceedings of the Annual Meeting of the Cognitive Science Society, 43, 2021.

[7] M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and A. Dragan. On the
utility of learning about humans for human-ai coordination. Advances in neural information
processing systems, 32, 2019.

[8] B. Cheng, A. G. Schwing, and A. Kirillov. Per-pixel classification is not all you need for
semantic segmentation, 2021.

[9] T.-C. Chi, M. Shen, M. Eric, S. Kim, and D. Hakkani-tur. Just ask: An interactive learning
framework for vision and language navigation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 2459–2466, 2020.

[10] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius, A. Bhandwaldar,
N. Haber, M. Sano, et al. Threedworld: A platform for interactive multi-modal physical
simulation. arXiv preprint arXiv:2007.04954, 2020.

[11] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme. Dialfred: Dialogue-enabled
agents for embodied instruction following. arXiv preprint arXiv:2202.13330, 2022.

[12] X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu. Vrkitchen: an interactive 3d virtual
environment for task-oriented learning. arXiv preprint arXiv:1903.05757, 2019.

[13] X. Gao, R. Gong, Y. Zhao, S. Wang, T. Shu, and S.-C. Zhu. Joint mind modeling for explanation
generation in complex human-robot collaborative tasks. In 2020 29th IEEE international
conference on robot and human interactive communication (RO-MAN), pages 1119–1126. IEEE,
2020.

[14] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arxiv 2015.
arXiv preprint arXiv:1512.03385, 14, 2015.

[16] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pages 9118–9147. PMLR, 2022.

[17] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

10



[18] Y. Inoue and H. Ohashi. Prompter: Utilizing large language model prompting for a data efficient
embodied instruction following. arXiv preprint arXiv:2211.03267, 2022.

[19] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In Ijcai, pages 4246–4247. Citeseer, 2016.

[20] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

[21] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879–893. PMLR, 2018.

[22] S. Y. Min, D. S. Chaplot, P. K. Ravikumar, Y. Bisk, and R. Salakhutdinov. FILM: Following
instructions in language with modular methods. In International Conference on Learning
Representations, 2022.

[23] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and Y. Artzi. Mapping instructions
to actions in 3d environments with visual goal prediction. arXiv preprint arXiv:1809.00786,
2018.

[24] K. Nguyen and H. Daumé III. Help, anna! visual navigation with natural multimodal assistance
via retrospective curiosity-encouraging imitation learning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), November 2019.

[25] U. of Michigan. Seagull: An embodied agent for instruction following through situated dialog.
In Alexa Prize SimBot Challenge Proceedings, 2023.

[26] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S. Gella, R. Pi-
ramithu, G. Tur, and D. Hakkani-Tur. TEACh: Task-driven Embodied Agents that Chat. In
Conference on Artificial Intelligence (AAAI), 2022.

[27] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language navigation.
2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 15922–15932,
2021.

[28] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating
household activities via programs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8494–8502, 2018.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[30] A. Ram, S. Ontañón, and M. Mehta. Artificial intelligence for adaptive computer games. In The
Florida AI Research Society, 2007.

[31] H. R. Roman, Y. Bisk, J. Thomason, A. Celikyilmaz, and J. Gao. Rmm: A recursive mental
model for dialog navigation. In Findings of the 2020 Conference on Empirical Methods in
Natural Language Processing, 2020.

[32] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, et al. Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9339–9347, 2019.

[33] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10740–10749, 2020.

[34] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. arXiv
preprint arXiv:2209.11302, 2022.

11



[35] S. Srivastava, C. Li, M. Lingelbach, R. Martín-Martín, F. Xia, K. E. Vainio, Z. Lian, C. Gokmen,
S. Buch, K. Liu, et al. Behavior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. In Conference on Robot Learning, pages 477–490.
PMLR, 2022.

[36] A. Suhr, C. Yan, C. Schluger, S. Yu, H. Khader, M. Mouallem, I. Zhang, and Y. Artzi. Executing
instructions in situated collaborative interactions. arXiv preprint arXiv:1910.03655, 2019.

[37] A. Suhr, C. Yan, C. Schluger, S. Yu, H. Khader, M. Mouallem, I. Zhang, and Y. Artzi. Executing
instructions in situated collaborative interactions, 2022.

[38] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam,
D. S. Chaplot, O. Maksymets, et al. Habitat 2.0: Training home assistants to rearrange their
habitat. Advances in Neural Information Processing Systems, 34:251–266, 2021.

[39] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick. Elf: An extensive, lightweight and flexible
research platform for real-time strategy games. Advances in Neural Information Processing
Systems, 30, 2017.

[40] C. M. University. Scottybot: A modular embodied dialogue agent. In Alexa Prize SimBot
Challenge Proceedings, 2023.

[41] H.-W. University. Emma: A foundation model for embodied, interactive, multimodal task
completion in 3d environments. In Alexa Prize SimBot Challenge Proceedings, 2023.

[42] S. B. University of California. Gauchoai: A proactive modular embodied ai that collaborates
with humans. In Alexa Prize SimBot Challenge Proceedings, 2023.

[43] S. C. University of California. Slugjarvis: Multimodal commonsense knowledge-based embod-
ied ai for simbot challenge. In Alexa Prize SimBot Challenge Proceedings, 2023.

[44] Z. Wang, S. Cai, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select: Interactive
planning with large language models enables open-world multi-task agents. arXiv preprint
arXiv:2302.01560, 2023.

[45] Z. Wang, Y. Lu, Q. Li, X. Tao, Y. Guo, M. Gong, and T. Liu. Cris: Clip-driven referring image
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022.

[46] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. Gibson env: Real-world perception
for embodied agents. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9068–9079, 2018.

[47] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, et al.
Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

[48] L. Yuan, X. Gao, Z. Zheng, M. Edmonds, Y. N. Wu, F. Rossano, H. Lu, Y. Zhu, and S.-C. Zhu.
In situ bidirectional human-robot value alignment. Science robotics, 7(68):eabm4183, 2022.

[49] M. Ángeles Quiroga, S. Escorial, F. J. Román, D. Morillo, A. Jarabo, J. Privado, M. Hernández,
B. Gallego, and R. Colom. Can we reliably measure the general factor of intelligence (g)
through commercial video games? yes, we can! Intelligence, 53:1–7, 2015.

12



Supplementary Materials Overview:

• Appendix A.1 contains details of the platform.
• Appendix A.2 contains definitions of tasks.
• Appendix A.3 contains details of data collection process for the AID dataset.
• Appendix A.4 contains details of the vision dataset.
• Appendix A.5 contains details of the baseline models.
• Appendix A.6 contains error analysis of the VL model.

Our code and data are available at https://github.com/amazon-science/alexa-arena.

A Appendix

A.1 Alexa Arena Platform Details

A.1.1 Architecture

The architecture of the Alexa Arena framework is illustrated in Figure 5. The core components of the
platform are the arena wrapper and model wrapper. The arena wrapper houses the arena orchestrator,
which takes as input the configuration file (described in Section A.1.2), and communicates with
the arena engine, which contains the the arena simulator and the streaming server. The streaming
server in the arena engine streams the robot’s first party camera view to human users. The model
wrapper contains the inference model and the model executor that interfaces between the model
and the orchestrator. The model wrapper can be modified to develop other models and execution
strategies. In addition, we also provide a web interface (the webtool) for interacting with a robot
model in a chatbot like interface, while also watching the game play out in streaming on a web page.

A.1.2 Challenge Definition Format

To define the mission configurations, we introduce a schema called Challenge Definition Format
(CDF). A CDF file is a json-format file that is readable by Arena. It contains the necessary information
to configure, initialize and run a game mission in Arena. These include:

1. Game initial state: game scene setting, robot initial location, object initial location and initial
states (such as cabinet door being open or closed).

2. Game goal condition: robot and object states that need to be satisfied. Once the goal condition is
met, the game mission is considered completed.

3. Game-related text data: textual data that help guide the user to finish the game, including game
mission description text, sub-goal descriptions, system prompts during game play, etc.

The motivation for designing and utilizing the CDF is to allow programmatic generation of large
numbers of game missions, which is essential for data collection. Since manually defined game
missions are not scalable for generating large-scale training data for ML models, with the easily
configurable CDF files, we can generate thousands of game missions by permuting scenes, robot
location & states, object types, object location & states, and mission goal states. The other advantage
is that since the CDFs are human readable, we can specify new game missions flexibly without
writing code.

A.1.3 Environment Metadata

The environment metadata in Arena contains robot egocentric view images, agent state, objects state,
scene metadata, goal condition status, and previous action execution result. To facilitate different task
and modeling settings, the robot camera view images support different modalities, including RGB
image, depth image, instance segmentation image and normals image. The metadata response from
the arena simulator is updated after each action execution.
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Figure 5: Overview of Alexa Arena Platform Architecture. The core modules are the arena wrapper and model
wrapper. The arena engine contains the simulator and the streaming server. The metadata from the Arena
Engine are sent to the inference model, which generates actions to be executed in the simulator. We have also
built infrastructure to generate results submission files for EvalAI challenges.

A.1.4 Objects and State Transitions

There are 336 unique objects in Arena. Each object has a set of properties, called affordances, which
specify if a certain type of robot-object interaction is possible. To further mimic the complexities of
real-world tasks and execution strategies, along with numerous object types and properties, Arena
also provides a variety of constraints defined by commonsense causal events. For example, the power
system enables a series of causal constraints on using electric appliances, e.g., the fuse box needs
to be reset before lights being turned on, the microwave needs to be plugged in to the outlet before
it can be powered on. Agents in Arena also have multiple ways to complete a task, e.g., To heat
something, the agent can make use of either the Laser or the Microwave. As a result, the agent needs
to reason based on its current state for efficient task completion. As an example, consider the task
of heating a bowl and delivering it to a receptacle in the Quantum Lab, and the agent is currently in
the Quantum Lab. If the agent’s execution path to heat the bowl using the Laser in the Quantum
Lab is physically obstructed, it is more efficient for the agent to go to the Breakroom, heat the bowl
quicker using the Microwave and return to deliver the bowl in the Quantum Lab. A full list of of
objects and their properties and state transitions are available in the "arena_documentation.html" file
in the supplementary materials.

A.1.5 Layouts

Alexa Arena contains 10 large game-ready interative multi-room layouts. Each layout features an
office-like environment with modular design, allowing the contents within rooms to be rearranged and
repositioned. The layouts were hand designed to be visually different and aesthetically interesting.
The office setting allows both mundane and fantastical interactive elements: users would be accus-
tomed to seeing everyday objects in more conventional rooms (and would know instinctively how to
interact with them), but entering rooms clearly labeled as "labs" they would expect to find futuristic
devices and prototype machines that would require experimentation to discover their function. As a
result of the above bipolar content, we are able to create game missions with imaginative situations
sitting alongside normal everyday objects. The layouts in Arena are large: on average, each house
has 190 square meters of navigable area, which is significantly larger than the scenes in other EAI
platforms (Figure 6). Figure 7 shows the top down images of 4 houses in Alexa Arena.

A.1.6 Related platforms

See Table 3 for a comparison between Alexa Arena and other embodied AI platforms.
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Figure 6: Bar plot of the navigable areas for Alexa Arena, comparing to ArchitecTHOR, AI2-iTHOR,
RoboTHOR and ProcTHOR.

(a) (b)

(c) (d)
Figure 7: Top-down images of 4 multi-room game-ready layouts in Alexa Arena.

A.2 Task definition

We designed two set of tasks: 1) the AID dataset include 12 simple tasks that require the agent
to perform some basic object interactions, 2) the 14 compositional missions are used for online
evaluation, each mission requires the agent to complete multiple sub-goals.

A.2.1 Basic tasks

There are 12 types of basic tasks. For most tasks, the agent is required to find the target object, use a
specified tool to change its state and deliver it to the designated receptacle.

toggleDevice. The agent is required to find the device and toggle it. For some devices (e.g. color
changer), the agent needs to interact with the correct object parts (e.g. red button vs green button) in
order to finish the task.
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Object Multi Object 3D Real Human Game
Platforms Scenes Types Room States Env Scenes Control Ready
Malmo [19] 17* 1000+ ✓ ✓ MK ✓
Overcooked [7] 6* 5 ✓ MK ✓
Deepmind Lab [4] 28* - ✓ MK ✓
AI2-Thor [20] 120 125+ ✓ ✓ ✓ MK,VR
iGibson [46] 15 390+ ✓ ✓ ✓ ✓ MK,VR
Habitat 1.0 [32] 1000 - ✓ ✓ ✓ MK
Habitat 2.0 [38] 105 90+ ✓ ✓ ✓ ✓ MK
VirtualHome [28] 7 170+ ✓ ✓ ✓ ✓ NL
TDW [10] 15 200+ ✓ ✓ ✓ VR
VRKitchen [12] 16 200+ ✓ ✓ ✓ VR
Alexa Arena 10 335+ ✓ ✓ ✓ ✓ MK,NL ✓

Table 3: Comparison with other platforms. Scenes and objects: the number of scenes and interactable object
types the platform provide. Multi-room: multi-room scenes. Some platforms marked by * are customizable
and new scenes can be added. States: agent can change object states via interactions. 3D env: whether the
platform supports 3D virtual environment. Real scenes: whether the scenes in the virtual environment are
realistic. Human Control: the interface for the human to control the agent. MK: mouse and keyboard. NL:
natural language. VR: virtual reality. Game ready: whether the platform has game-ready features to enhance user
experience, including environmental and interaction sounds, action animations, smooth navigation, fantastical
objects, hazards, mini-map, scoring mechanism and hints.

pickup&deliver. The agent is required to first find the target object, pick it up, navigate to the target
receptacle and put the object on the receptacle.

breakObject. The agent is required to pick up a hammer, navigate to the target object, and use the
hammer to break the object.

clean&deliver. The agent is required to pick up the dirty object, navigate to the sink, turn on the
faucet and clean the object using the water. The agent can then deliver the cleaned object to the
receptacle.

color&deliver. The agent is required to pick up the object, go to the color changer and put the object
on the color changer. The agent can then push a button on the color changer to change the color of
the object, and deliver it to the receptacle.

fill&deliver. The agent is required to pick up a container, go to the sink, and turn on the faucet. The
agent can then fill the container with water and deliver it to a receptacle.

freeze&deliver. The agent is required to pick up the target object and use either the fridge or the
freeze ray to freeze the object. The agent can then deliver it to the receptacle.

heat&deliver. The agent is required to pick up the target object and use either the laser or the
microwave to heat up the object. The agent can then deliver it to the receptacle.

insertInDevice. The agent is required to pick up some small object (e.g. floppy disk, printer cartridge,
laser component) and insert it into the corresponding device to assemble the device.

pourContainer. The agent is required to pick up the container (e.g. milk carton, cereal box, coffee
pot), navigate to the receptacle and pour the things in the container into the receptacle.

repair&deliver. The agent is required to pick up a broken object, and use the time machine to repair
it. The agent can then deliver the intact object to the receptacle.

scanObject. The agent is required to go to a place near the target object and scan it.

A.2.2 Compositional tasks

For the online human evaluation, a suite of 14 long-horizon missions are designed to test compo-
sitionality and generalizability. Each mission includes multiple sub-goals that need to achieved to
complete the overall task. The human users can use the sticky notes placed in the scene to guide
themselves during mission play. An example mission is provided below with the overall setup, goals
and subgoals. Only the goals and subgoals are visible to the users during mission play.
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Scene: The robot is spawned in the Robotics Lab, a trophy is kept
on one of the tables in the corner, but access to that side of the
room is blocked by a wooden block. The block can only be moved by
toggling a robotic arm, which lifts and displaces the block and
clears the path.

□ Find the trophy and deliver it to the manager’s desk.
□ Pick up the trophy
□ Deliver it to the manager’s desk

If needed, hints are located at visible locations to unblock the user to complete the mission. For
the above example, the happy path of the robot to complete the mission without any impediments
involves toggling the robotic arm to move the wooden block, gaining access to the other side of the
room. The robot then picks up the trophy which is now accessible, and navigates to the manager’s
desk to deliver it. Such a mission tests the visual and compositional reasoning of the agent. The agent
must understand that the path to the trophy is blocked, and that the robotic arm controls the wooden
block, which can be moved to clear a path.

The remaining 13 missions are described briefly below:

Assemble and fire the laser cannon. The agent is spawned in the quantum lab, is required to find a
control panel and place it on the laser (which looks very similar to the freeze ray). The laser is then
turned on using the laser monitor (one of two monitors disambiguated by color and position).

Turn a white bowl red. The agent is spawned in the quantum lab, is required to pick up one of 3
bowls from the breakroom and use the color changer to change the color of the bowl.

Disinfect the computer. The agent is required to find the floppy disk in the manager’s office, navigate
to the main office and use the disinfecting floppy on the computer with an infection (indicated by a
skull on the monitor among other monitors).

Freeze the soda can with a freeze ray. The agent needs to find the soda can on a table and freeze it
using the freeze ray. This requires finding the right monitor to toggle.

Defrost the cake with laser. The agent needs to find a frozen cake in the freezer and defrost it using
the laser in the quantum lab, which requires disambiguating between tables and monitors.

Print action figure. The agent needs to print an action figure using the 3D printer. Before doing this,
the agent needs to turn on the power in the room (as the room is initally dark) to power the 3D printer
on.

Turn a red apple green. The agent needs to find a red apple in the lower fridge and use the color
changer on it to turn it green.

Make a bowl of cereal. The agent is required to make a bowl of cereal by pouring milk and cereal
into a bowl in the breakroom. The milk is initially in the fridge, the cereal is on the breakroom table,
and the bowl is initially broken. The agent needs to fix the broken bowl before making the cereal.

Pour coffee and deliver to reception. The agent is required to pour coffee into a mug from the
breakroom and deliver it to the reception table.

Heat a cup of coffee using the laser machine. The agent needs to find the mug with the coffee
and heat it using the laser machine in the quantum lab. This requires finding the laser monitor and
toggling it.

Scan items. The agent is required to scan a computer, a light switch and a vending machine.

Find prorotype and toggle. The agent needs to find the prototype machine with a face on it, and
toggle it repeatedly until a sad face appears.

Print mug. The agent is required to find the mug printer cartridge on a table, insert it in the 3D
printer and use it to print a 3D mug.
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Figure 8: Process of generating game missions and expert demonstrations.

A.3 AID Dataset Collection

In this section, we describe the details of the data collection process for the Arena Interactive
Dialogue (AID) dataset. The game mission and expert demonstration generation process is illustrated
in Figure 8. After generating the missions and expert demonstrations, we use Amazon Mechanical
Turk (AMT) for collecting human instructions as well as questions and answers necessary for task
completion. Annotators receive $1 compensation for each annotation task which roughly takes
3 minutes to complete, and the hourly wage is around $20. All annotators agree to the Amazon
Mechanical Turk Participation Agreement4 before starting the annotation.

A.3.1 Human Instruction Annotation

To collect natural language dialogue for the missions, we design a two-stage data annotation process.
The first stage is for collecting instructions and the second is for questions and answers. In both
stages, the annotator watches a video containing an expert demonstration for the mission and provide
the annotations by text data or multiple choice questions.

In the first stage, annotators are told to write instructions to tell a “smart robot” how to accomplish
a task. During the process, an annotator first watches the video of the ground-truth robot actions,
then writes instructions for each highlighted video segments. Fig. 9a shows the user interface for
collecting language instructions.

After all the instructions are collected, we start the second stage of annotation, where the annotators
are asked to raise questions to help them complete the task, as if they are controlling the robot to
follow the instructions. They also need to answer their own questions. Fig. 9b shows the interface for
collecting questions and answers. Here are the steps annotators need to follow:

1. Annotator watches a video: A 10 second video clip is played till the beginning of a sub-task,
and the respective instruction is shown on screen. The video clip helps the human annotator to
understand the initial environment states.

2. Annotator selects a question: The annotator selects one pertinent question that they think may
help task completion. The questions are generated from several predefined templates. Annotators
also have the options to type in their own questions.

3. Annotator answers the question: The same annotator watches the video segment of an expert agent
working on the sub-task specified by the language instruction, and then providing the answer to
the question in text.

4. Annotator indicates whether asking the question is necessary: In some cases, the instruction and
the visual context is already clear enough, and asking a question is not necessary.

To ensure the annotation quality, in practice, we collected 3000 data sessions for the first data
collection stage. Then we asked additional annotators to identify annotation errors and try to correct
them, e.g. erroneous language instructions, grammatical errors, misalignment between instructions
with robot actions, etc. For data sessions where most collected annotations do not make sense and
are not worth fixing, the additional annotators are asked to simply ignore them. As a result, 20.3%
sessions are ignored and 35.7% instructions are corrected. From the data verification results, we
identified a subset of AMT workers (around 300 workers) who generated high-quality data, and used
them for our subsequent data collection process.

4https://www.mturk.com/participation-agreement
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(a) User interface for collecting human instructions. Annotators watch the expert demonstrations
and write down instructions to guide the robot.

(b) User interface for collecting questions and answers. Annotators input their questions and
answers to help the robot complete the mission.

Figure 9: User interface for data collection.

A.3.2 Questions Generation

Similar to [11], the questions choices in the second stage of annotation are generated using predefined
templates. Given an instruction, we extract nouns and insert them into the templates to construct
questions. The nouns extracted correspond to query objects that the agent need more information to
complete the mission.

In particular, we consider three types of questions, related to the location and appearance of the query
object o, and the relative direction between the agent and the target position. The templates for each
question are defined below:

1. Location: where is o?
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# scene # task # session # instr # dialog
Train 6 2661 7983 40443 40105
Valid 6 383 1149 6120 6128
Total 6 3044 9132 46563 46233

Table 4: AID Dataset Breakdown. # session represent the number of data sessions. Each data session corresponds
to one language annotation on a given task. # instr stands for the total number of instructions in each data split. #
dialog is for the total number of question and answers.

(a) Frequencies of action types. (b) Steps in expert demonstrations. (c) Length of human utterances.
Figure 10: Statistics of the AID dataset.

2. Appearance: what does o look like?
3. Direction: which direction should I turn to?
4. Reference: which o are you referring to?

A.3.3 Oracle Answers

Human language has a lot of variety and complexity, and thus can be quite challenging for the agent
to understand. Alternatively, we can provide templated language to the agent as a starting point for
language understanding. To this end, in addition to asking human annotators to answer the questions,
we also build an oracle that can answer the questions by extracting information from the simulator
metadata: (i) To answer the location question, we compute the direction of the object relative to the
agent and the viewpoint that is closest to the object in the room. To help detect small objects, if the
object is held by a container, we also provide the information of the container and other objects that
are also held by the same container as landmarks; (ii) To answer the appearance question, we directly
extract object shape, color and material information from the simulator metadata; (iii) For direction
question, we compare the agent’s location at the end of the sub-task with its initial location to provide
answers for the agent’s moving direction. After we have the necessary information, we use language
templates to generate the answers. Example templates include:

1. Location: The o is to your [direction] in/on the [container] next to the [landmark] in the [room].
It is closest to [viewpoint].

2. Appearance: The o is [shape] and of [color]. It is made of [material].
3. Direction: You should turn [direction] / You don’t need to move.

A.3.4 Dataset statistics

Table 4, Figure 10 and Table 5 show the statistics of the AID dataset.

A.4 Vision Dataset

Visual perception is integral for EAI agents to navigate and interact within their environments.
Visually intelligent robots use visual cues to set navigational targets and build visual representations
based on perceived object state transitions. To facilitate visual AI research within and outside the
context of EAI, we are releasing a vision dataset based on Arena. The dataset is composed of
600k training images and 60k validation images spanning 336 unique objects from more than 160
semantically grouped object groups. This can be used for large scale computer vision research on
Arena, e.g. object detection, object state classification, etc. The overall structure and contents of the
dataset are illustrated in Fig. 11. The vision dataset is collected by programmatically configuring
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Mission Type Train Valid
breakObject 196 30
clean&deliver 161 29
color&deliver 29 4
fill&deliver 108 16
freeze&deliver 76 8
heat&deliver 42 13
insertInDevice 381 59
pickup&deliver 669 95
pourContainer 265 39
repair&deliver 131 18
scanObject 324 37
toggleDevice 279 35

Table 5: Distributions of mission types across training and validation splits of the AID dataset.

• CDF
• RGB Color Image File
• Segmentation Image File
• Image Annotations
• Depth Image
• Object States
• Object Locations
• Robot Position and Orientation
• Metadata Response
• Commands

Vision Dataset
Raw Files

metadata RGB Color Image Segmentation image

Figure 11: Overview of the vision dataset. The dataset consists of RGB and ground truth segmentation images
in png format, along with a json file for each image with the metadata information.

CDFs and initializing scenes with all objects spawnable in the Arena environment. We then navigate
to each of them to capture images from different perspectives and distances.

A.4.1 Vision Data Generation

The image data collection strategy was simple and straightforward - the goal was to collect data
spanning all possible objects spawnable in Arena from different distances, views and perspectives of
the said object. This was done by following the below steps:

1. Initialize a game mission using the CDF file with required objects.
2. After initialization, we issue commands to navigate to all the different objects present in the scene

using the primitive navigation actions and capture the first party view.
3. We then capture images by issuing interactive commands as per the affordances of that object at

the time of capture, which are retrieved from the game metadata response.
4. We also capture additional perspectives by taking a random walk around the object using basic

trigonometry.

We repeat the above steps with various missions and objects with lights on and off for different
lighting conditions. All the commands, object states and their locations in the scene, along with a
host of other useful information are logged in metadata files. We provide the RGB color images,
segmentation maps and associated metadata for each image. The statistics of the dataset are illustrated
in Fig. 12.

Dataset Validation. To validate the quality of the ground truth segmentation and bounding box
annotations for modeling, we collect 1245 images containing instances spanning all object classes
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Figure 12: Vision dataset statistics

and annotate them with bounding boxes and associated class names. Since Arena features fantastical
objects (like Gravity Flippers), we also provide example images for each object class to familiarize the
annotator with the appearance of all classes. The images are then validated by annotators according
to the class names into one of the following 4 categories (with results provided in parenthesis):

1. Yes, the object is fully contained within the bounding box (79.7%)
2. Yes, the object is partially contained within the bounding box (16.3%)
3. No, the object is not within the bounding box, but is in the image (1.6%)
4. The object is not in the image (2.4%)

For category 2, the objects are present only partially in the image because they are only partially
visible in the robot’s egocentric view at the time of image collection. Overall results show that the
ground truth segmentation and bounding box annotations have very little noise and are of high quality
to be used for training and evaluation of visual perception models.

A.5 Baseline Models Details

A.5.1 Neural-symbolic Model

The architecture is shown in Figure 13. In particular, the multi-modal Transformer model uses
the previous actions, previous visual observations and the full utterances of the episode to predict
the next action type and object class before a stop token is predicted as the action. For the visual
observations, we first extract features using the backbone of the vision model before sending them
into the transformer. During training, after each look around action, the model uses the observations
from different directions to predict rotations: the number of rotation depends on which image out
of the four panoramic images is used by the following actions in the expert demonstrations. During
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Figure 13: Model architecture for the Neural-Symbolic approach which uses unshared modules to predict actions
and masks, and heuristic rules for visual grounding.

inference, the vision model detects all the objects from the current image, and uses the predicted
object class to generate the mask for the corresponding object. Note that if the vision model detects
multiple object instances of the same class, we select the one with the highest likelihood. We trained
the transformer model for 20 epochs with a batch size of 2. The training takes around 10 hours on 1
NVIDIA A10 GPU. We use the Adam optimizer with a learning rate of 1e−4 for the first 10 epochs,
and 1e−5 for the remaining epochs.

The Neural-Symbolic model is composed of a separate visual component that performs instance
level segmentation of the first party view and/or surrounding images of the agent. We use the vision
dataset to train a Mask-RCNN image segmentation model [14]. We process the object classes in the
vision dataset to group them into 86 semantic classes including the background class. The model
takes as input an RGB image and predicts masks for all object instances (across the 86 object classes)
present in the image along with their class labels and confidence scores. The masks and object class
predictions are then used in conjunction with the action and object predicted from the multi-modal
transformer to give a single mask prediction for the interactable object. The vision model is trained
for 22 epochs with a learning rate of 0.00125 and a weight decay of 0.001 with the SGD optimizer,
decaying the learning rate after 15 epochs by a factor of 0.1. We use a global batch size of 16 and
trained the model on 2 Tesla V100 GPUs, and the training takes around 24 hours. We evaluate
the instance segmentation model using the standard COCO evaluation metric, the Mean Average
Precision (mAP). The mAP metric is calculated by averaging the precision at Intersection over Union
(IoU) thresholds ranging from 0.5 to 0.95 in steps of 0.05. The score of the predicted instance class
is not taken into consideration, and instead a cap is applied on the number of maximum detections
per image (chosen to be a 100). To be able to choose an operating point for our end-to-end model
and also tune for recall, in addition to the standard COCO mAP metric, we also provide a score and
iou thresholded precision metric, which we call t-mAP. This is calculated by thresholding the output
instance class scores at [0.05, 0.1, 0.3, 0.5, 0.7], and thresholding the IoUs at [0.1, 0.3, 0.4, 0.5, 0.75,
0.8] for all 30 (score, IoU) combinations and then averaging them. We present both metrics for all
objects, as well as metrics categorized for small, medium and large objects. The results are provided
in Table 6.

A.5.2 VL Model

For training, we use a learning rate of 1e−6 for the backbone and mask prediction head, and 1e−4 for
the action prediction head (chosen empirically). We use the Adam optimizer with a weight decay
of 1e−5 and a learning rate decay of 0.1 after 35 epochs. The model is trained for 65 epochs with a
global batch size of 64 (16 per GPU) on 4 Tesla V100 GPUs, and the training takes about 7 hours.

23



Category Area (px2) COCO mAP t-mAP
Small 0 - 1296 37.63 91.49
Medium 1296 - 9216 60.41 92.15
Large 9216 - 90000 64.72 84.91
Overall 0 - 90000 46.03 89.5

Table 6: Image segmentation results for the vision model used in the neural-symbolic approach. We present the
metrics for small, medium and large objects.

Figure 14: There are two tables in this image, a blue table on the left and a green one on the right, leading to
challenging disambiguation tasks for the agent if not guided adequately.

A.5.3 Encoding Questions and Answers

We use two tokens to efficiently encode the predefined questions, including (i) a token representing
the question type (i.e. loc for questions asking about object location, app for object appearance, dir
for direction and ref for reference), and (ii) a token for the target object in location, appearance,
referential questions. For example, a question asking about the appearance of a microwave will
be encoded as app microwave. Since the direction question is asking about the direction and not
related to an object, the second token is not necessary and thus omitted for this type of question. For
questions that are not of the predefined types, we include the whole question and answers.

A.6 VL Model Error Analysis

While the VL model demonstrates improved performance using an end-to-end method that generates
actions and masks simultaneously, we identify key insights, sources of errors and failure points of the
end-to-end architecture by analyzing the robot trajectory for 25 missions:

1. Some missions fail because of failure to visually ground the natural language instruction to a
single object instance for interaction in the case of multiple instance candidates. E.g. in Figure 14,
there are two desks - blue on the left and green on the right. If the natural language instruction is
not descriptive enough, the model fails to visually ground the desk of interest. On analysis, we
notice that in the <x>&deliver mission type, the agent is often able to complete the <x> goal
and fails at the deliver goal because of ambiguity in language ("The desk is right in front of you
with the monitor on it"), or model visual perception failures to disambiguate between multiple
instances of the same object.

2. Sometimes, if the agent veers off its path due to a wrong prediction (e.g. if it goes to a wrong
room), the subsequent instructions to find an object in the room steers the agent down a path to
infinitely rotate about its position to try finding the object ,i.e., the agent is trying to respond to
the next instruction that assumes successful attainment of the correct previous state. This can
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potentially be solved by better error correction mechanisms in the model to identify such loopy
states and exit them to explore other options in the trajectory, or to execute a strategy to backtrack
to previous instructions. Since the current baseline models use the readily available answers in
the dataset, this can also be improved in models that are designed to ask questions based on its
real-time current visual observations.

3. Since this is an end-to-end model, the language and visual features are jointly encoded and trained
end-to-end from input language and images to output masks and actions. Some errors arise
because the model is attending more to the visuals in front of it rather than the language input.
E.g. if the robot is standing very close to a cabinet door, or a shelf with a coffee pot, even though
the language instruction was to "go to the laser cannon", it will try to Open and Close the cabinet
door, or Pickup the coffee pot, respectively, which the model has learnt from the data.

4. Some more sources of error distributed in the model across all evaluation tasks include ambiguity
in language, inability to model longe-horizon task instructions like "turn right, go to the breakroom,
heat the bowl and place it on the table" - which consists of at least 9 steps, inability to detect
masks for some very small objects, or for objects too up close, and failure to distinguish between
very similar looking objects (like Laser Cannon and Freeze Ray). These are common issues
between the Neural-Symbolic and the VL models.

5. We also did an ablation study by training only the mask prediction head and using the ground
truth action predictions. Evaluating this model on the validation dataset yields a MSR of 71.89%.
This simulates the scenario when the perfect actions are predicted to situate the robot in a position
to predict a mask for an interactable object, thus evaluating only object detection and visual
grounding of the natural language instruction. This result shows the model’s difficulties in finding
object locations in an end-to-end fashion, requiring the incorporation of better path planning
modules that learn from multi-modal inputs.
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