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ABSTRACT

In this work, we present RecipeVis, which generates an image for each step
in a recipe by conditioning on the previously generated image and current step.
RecipeVis leverages the power of the pretrained text-to-image Stable Diffusion
model, as well as text and visual encoders that produce task agnostic embeddings
for downstream applications. It uses an attention module to fuse the text and image
embeddings. It also adds a cycle consistency loss to the standard diffusion loss.

1 INTRODUCTION AND BACKGROUND

The most well-known vision-language models fall under vision-language understanding, text gen-
eration with multimodal input, or multimodal output with multimodal input (Ghosh et al., 2024).
Recipe image generation falls under image output from multimodal input. To account for this, we use
the VLM architecture of Llava (Liu et al., 2024), but swap the LLM decoder with Stable Diffusion
(Rombach et al., 2022), a state-of-the-art model for image generation. Our primary contributions
include an empirical study to find a good image-text fusion layer design, demonstrating that VLMs
incorporating previous image provides superior results over baseline text-to-image models, and
introducing a cycle consistency loss term to ensure consistency between modes of output.

Diffusion Models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have emerged as a class of generative
models that have challenged the dominance of generative adversarial networks (GANs) by advancing
the state of the art in text-to-image synthesis (Dhariwal and Nichol, 2021), as well as other domains
like multi-modal modeling (Avrahami et al., 2022). They work by gradually adding noise to the data
in a forward process and then learning to reverse this process to generate new samples. The forward
process can be described as a Markov chain of length T , where noise is added to the data step by step.
Here, αt is a variance schedule that controls the amount of noise added at each step t.

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I)

The reverse process aims to denoise the data, which is modeled using a neural network that predicts
the mean and variance of the data at each step. There may also be a conditional signal c.

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c))

During training, the model learns to reverse the noising process by minimizing a loss function that
measures the difference between the true data distribution and the distribution of the generated
samples. By iteratively applying the reverse process, the model can generate high-quality samples
from random noise and the conditional signal c.

xt−1 = xt − ϵθ(xt, t)

where ϵθ(xt, t, c) represents the model’s prediction of the noise component at step t. This iterative
denoising ultimately results in a coherent generated sample.

2 METHOD

The architecture of RecipeVis consists of an image and text encoder to produce embeddings (of
previously generated image and current instruction) that are then fused in the image-text fusion
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module to produce a condition vector that is passed to Stable Diffusion (see Figure 1). During
training, the encoders are frozen, UNet is finetuned and fuser module is trained from scratch. This
mimics common VLM architectures, replacing the language model with a generative model.

Figure 1: RecipeVis produces sequence of
images by passing current instruction and pre-
vious image into frozen encoders, fusing the
image and text representations, and passing
it to a fine-tuned Stable Diffusion model.

Image-Text Fusion Module: We explore different mech-
anisms for fusing text and image embeddings to the latent
space of Stable Diffusion. In concatenation, the embed-
dings are flattened and concatenated, then passed to a
feed-forward neural net. Another strategy involves tak-
ing the pooled output embedding from the image encoder,
projecting it to match the size of the text embedding, and
add the image encoding to each embedding in the text
sequence. We then pass this through a feed-forward net-
work and reshape the output. We call this strategy pooling
image embeddings. The reverse case, where we pool text
embeddings, then project and add it to the image embed-
dings, is called pooling text embeddings. Finally, the
attention module utilizes the cross attention between im-
age and text as the conditional embedding. In the case of

attending to image, the queries are text embeddings while keys and values are image embeddings.
In attending to text, queries are image embeddings while keys and values are text embeddings.

Cycle Consistency Loss: We define the cycle consistency loss (details in A.4) as

Lcyc = 1− CLIP(Text) · CLIP(VAE postprocess(VAE decoder(Pred x0)))

Here, ”Text” is the description associated with an image, and Pred x0 is the diffusion model’s
prediction of the image given a noisy version of the image, the text and previous image.

3 EXPERIMENTAL RESULTS

We use the YouCookII dataset (Zhou et al., 2018), prepared by the University of Michigan. It contains
recipe videos, along with the instruction set and frame range for each step. We construct a dataset by
assigning the middle frame of each section to the corresponding step, and collect all (previous image,
instruction, image) triplets. In our experiments, we fine-tune the CompVis/stable-diffusion-v1-4
UNet and train the Fuser module. We use frozen Stable Diffusion’s text encoder and openai/clip-
vit-large-patch14 (Radford et al., 2021) as image encoder. We run training for 100000 steps with a
learning rate of 3e-07 for both UNet and Fuser. For sampling, we use a DDPM scheduler, a guidance
scale of 7.5, and 50 iterative refinement steps. Full details in Appendix A. The table below compares
the performance of the different fusers on Clip L2 Comparison, PSNR and SSIM (Wang et al., 2004).

Table 1: Image comparison metrics (with/without cycle consistency loss).

Fuser Clip Comparison Score ↓ PSNR ↑ SSIM ↑
Baseline (Stable Diffusion) 34.95 8.51 0.20

Concatenation 33.54/33.27 7.84/8.75 0.19/0.20
Text Pooling 34.13/33.55 8.28/8.38 0.18/0.18

Image Pooling 35.87/35.45 7.77/7.79 0.18/0.17
Attend to Text 34.95/33.62 7.06/7.06 0.17/0.18

Attend to Image 32.47 / 32.29 9.11 / 9.19 0.21/0.19

4 CONCLUSION

We present an empirical study of fusion methods for VLMs in the task of image sequence generation.
We also propose a technical novelty in the training pipeline to ensure consistency between output
modes. RecipeVis lays the foundation for more advanced neural architectures and loss functions
to improve performance on image sequence generation from text. We leave more advanced fusion
methods to further work, and hope to inspire further research in image sequence generation.
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A APPENDIX

A.1 DATASET CURATION

YouCook2 is a very large video dataset aimed to be used by the vision community. It contains 2000
long untrimmed videos from 89 cooking recipes from around the world. On average, each recipe has
22 videos, and each video is an average of 5.26 minutes. Across all videos, there is 176 hours of data,
with no video going past 10 minutes. Each video is annotated with its procedural steps (imperative
English sentences) and their temporal boundaries. The videos are all downloaded from Youtube, and
are in third-person viewpoint. An example of one annotated video is shown in Figure 2

Figure 2: Sample YouCook2 data. Procedural steps are saved in the form of imperative English
sentences and marked with their temporal boundaries.

Some relevant statistics about the data are recorded in Table 2

Table 2: Relevant dataset statistics for train and val sets.

Metric Train Validation

# of distinct recipes 89 89
Average # of videos per recipe 14.98 5.13

Total # of segments/steps 10337 3492

To construct our dataset, we use each procedural step as a data sample. We associate the frame
corresponding to the middle of the temporal boundary of a step as the image for that step. All frames
are resized to 256x256. Our dataset is then constructed by forming triplets of (procedural step, image,
previous step’s image). If a step is the first step in a procedure, the previous image does not exist, and
thus is set to a blank image. During training, the procedural step and previous image are conditional
signals to the Stable Diffusion model, and the desired output is the image associated with the step.

A.2 IMAGE-TEXT FUSION MECHANISMS

The architectures of the different image-text fusion mechanisms are shown in Figures 3 to 7. The
output of the image encoder is 257x1024. The output of the text encoder is 77x768. In our experiments,
we set the number of tokens in the condition signal to 3. So, the image generation module is ultimately
conditioned on a sequence of 3 768-length vectors.

Figure 3: In the baseline Stable Diffusion model, there is no image-text fusion module as we only use
text embeddings as the conditional signal.
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Figure 4: One method for fusion involves flattening the image and text embeddings, concatenating
them, passing the concatenated vector through a neural network, and finally reshaping to sequence of
tokens of appropriate conditioning size.

Figure 5: Image pooling involves extracting the pooled image embedding, passing it to a neural
network to be of appropriate size, and adding the image vector to each token of the text encoder
output. The result is then flattened and passed to a neural network, and finally reshaped to a sequence
of tokens of appropriate conditioning size.

Figure 6: Text pooling involves extracting the pooled text embedding, passing it to a neural network
to be of appropriate size, and adding the text vector to each token of the image encoder output. The
result is then flattened and passed to a neural network, and finally reshaped to a sequence of tokens of
appropriate conditioning size.

Figure 7: The attention module involves cross attention between the image and text embeddings. In
attending to text, the query vectors are image embeddings, and keys/values are text embeddings. In
attending to image, the query vectors are text embeddings, and keys/values are image embeddings.

A.3 TRAINING AND INFERENCE PIPELINES

Training: Each experiment utilized a single NVIDIA A40 GPU. The fuser modules were ini-
tialized with random weights, while the UNet parameters were initialized from the pretrained
CompVis/stable-diffusion-v1-4 model. The image encoder employed was the frozen
OpenAI CLIP model (openai/clip-vit-large-patch14). The training configuration in-
cluded a batch size of 32 and a total of 100,000 training steps. The learning rate followed a cosine
decay schedule, starting at 3 × 10−7 for both the UNet and fuser modules. We use the DDPM
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scheduler to add noise to the latents according to the noise magnitude at each timestep during the
forward diffusion process.

Inference: During inference, we use 50 DDPM inference steps and guidance scale 7.5.

A.4 CYCLE CONSISTENCY

To ensure stronger alignment between image and text modalities, we incorporate an additional loss
term to the standard denoising objective. This loss term penalizes the distance between text and
image representations in the CLIP model’s output space. Our method is visualized in Figure 8

Figure 8: Our method optimizes the standard denoising objective and an auxiliary cycle consistency
loss. The 2 losses are shown in purple.

A.5 SAMPLE RESULTS

Our best performing model across all metrics comes from attending to image as our text-image fusion
module. Training with cycle consistency loss improves CLIP comparison score and PSNR slightly,
but lowers SSIM score slightly. Qualitatively, samples are best when using the Attend to Image
strategy.
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