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Monocular Human-Object Reconstruction in the Wild
Anonymous Authors

ABSTRACT
Learning the prior knowledge of the 3D human-object spatial re-
lation is crucial for reconstructing human-object interaction from
images and understanding how humans interact with objects in
3D space. Previous works learn this prior from datasets collected
in controlled environments, but due to the diversity of domains,
they struggle to generalize to real-world scenarios. To overcome
this limitation, we present a 2D-supervised method that learns the
3D human-object spatial relation prior purely from 2D images in
the wild. Our method utilizes a flow-based neural network to learn
the prior distribution of the 2D human-object keypoint layout and
viewports for each image in the dataset. The effectiveness of the
prior learned from 2D images is demonstrated on the human-object
reconstruction task by applying the prior to tune the relative pose
between the human and the object during the post-optimization
stage. To validate and benchmark our method on in-the-wild im-
ages, we collect the WildHOI dataset from the YouTube website,
which consists of various interactions with 8 objects in real-world
scenarios. We conduct the experiments on the indoor BEHAVE
dataset and the outdoor WildHOI dataset. The results show that
our method achieves almost comparable performance with fully 3D
supervised methods on the BEHAVE dataset, even if we have only
utilized the 2D layout information, and outperforms previous meth-
ods in terms of generality and interaction diversity on in-the-wild
images.1

CCS CONCEPTS
•Computingmethodologies→Reconstruction; Reconstruction;
• Human-centered computing;

KEYWORDS
Human-Object Interaction Reconstruction, 3D Computer Vision

1 INTRODUCTION
Human-object interaction reconstruction from a single-view image
aims at recovering the 3D information of the human-object pair
with a monocular image as input, which is a hybridized task that
combines humanmesh recovery[15], object shape reconstruction[23],
object 6D pose estimation[19] and human-object spatial relation
modeling[13]. This task is one of the fundamental problems in 3D

1We will release the code and the dataset for research purposes.
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Figure 1: In this work, we aim at learning instance-level
human-object spatial relation prior from unlimited images
in the wild. To accomplish this, we utilize the normalizing
flow to learn the view distribution and the 2D human-object
keypoints layout on each image plane. The spatial relation
prior is then applied to real-world images under the monoc-
ular human-object reconstruction setting.

computer vision and robotics, with potential applications in aug-
mented reality, object manipulation, human behavior imitation, and
human activity understanding.

Reconstructing the human and the object jointly is challenging
due to the diversity and the complexity of interaction between the
human and the object. To address this challenge, recent researchers
have proposed various approaches that narrow down the possible
range space of the spatial relation between the human and the
object by utilizing the prior from commonsense knowledge[32],
language model[26] or manually collected dataset[28]. The source
from which the priors are acquired significantly constrains the
scope within which these methods could be applied. For example,
the approach that relies on commonsense knowledge may struggle
with uncommon interaction types or novel objects that are not well-
represented in the manually crafted rules. Similarly, the approach
based on the large language model is limited by the expression
capacity of the language model. Moreover, it is also challenging to
transfer the highly symbolic language to the 3D real-world interac-
tion prior. The approaches that rely on labor-intensive handcrafted
datasets face the same limitation as well. A lightweight process
for acquiring human-object spatial relation priors is crucial for the
method to handle various interactions and novel objects.

In this work, we introduce a lightweight method that learns
the human-object spatial relation priors directly from 2D images
collected from the Internet. The key idea behind our method is
that the Internet itself is naturally a huge multi-view capturing
system, where each individual observes the real world from differ-
ent perspectives, records images or videos of their surroundings,
and uploads them to share their experiences. This results in a huge
repository of resources that records various individuals interact-
ing with different objects in different ways. By utilizing this vast
amount of data, our method can automatically learn diverse human-
object spatial relation priors in a lightweight and efficient manner.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Specifically, our method utilizes a flow-based neural network to
learn the distribution of viewports and their corresponding 2D
human-object layout in each viewport for the target image. Based
on the prior learned from 2D images, we design a scoring function
to evaluate the geometric consistency of 3D human-object spatial
relations by synthesizing the spatial coherence of the 2D projected
human-object keypoints in different image planes. In the optimiza-
tion stage, we tune the 3D spatial relation between the human
and the object by maximizing this scoring function. To prevent
the floating phenomenon, we further introduce the contact loss
to draw closer the points in the contact candidate regions which
are acquired by averaging the occlusion regions of different im-
ages. The advantage of our method is that it does not require any
manually handcrafted priors or 3D annotations of human-object
spatial relation for training, which makes our method scalable to
a wide variety of object categories and scenarios. By utilizing the
wealth of data available on the Internet, our method can learn how
to interact with novel objects which makes it possible to generalize
to new unseen objects without the need for manual intervention.

In our experiments, we demonstrate the effectiveness of our
method on the BEHAVE dataset by comparing it with 3D-supervised
approaches. To validate and benchmark our method on in-the-wild
images, we collected a dataset from the YouTube website called
WildHOI, which includes various interactionswith 8 different object
categories such as baseball bat, skateboard, cello, and so on.Weman-
ually annotate a small test dataset that contains about 2500 images,
with each image containing SMPL pseudo-ground-truth and object
6D pose labels. We then use our method to learn human-object
spatial relation prior from the 2D images in the WildHOI dataset
and evaluate its performance on the test dataset. Both numerical
results and human evaluation show robustness and generalization
on in-the-wild images. We summarize our contributions as:

• We present a 2D-supervised approach that learns the spatial
relationship prior between humans and objects exclusively
from in-the-wild 2D images, without the need for any 3D
annotations of humans and objects.

• We demonstrate the effectiveness of integrating prior knowl-
edge derived from 2D images into the post-optimization
phase of the human-object reconstruction task. Additionally,
we illustrate the efficacy of generating approximate contact
maps by averaging occlusion maps from multiple images

• We developed the outdoor WildHOI dataset, which captures
a wide variety of real-world interactions in uncontrolled
environments. Our evaluation demonstrates the robustness
and effectiveness of our method in these complex, in-the-
wild images.

2 RELATEDWORK
Human-Object Interaction Prior. The prior knowledge of the
spatial relation between the human and the object is vital for human-
object reconstruction. Previous approaches explore the usage of the
prior from commonsence knowledge[32], languagemodel[26], man-
ually collected datset[28] and synthesized images[11]. PHOSA [32]
introduces an optimization-based method that leverages the prior
knowledge of the object size and contact parts under interaction
to reduce the space of likely 3D spatial configurations. Observing

the commonsense knowledge used in PHOSA requires manual an-
notations on pairs of bodies and objects, Wang et al. [26] utilize
the commonsense knowledge from large language models (such as
GPT-3) to improve the scalability and the generalizability towards
interaction types and object categories. The prior created by human
rules or extracted from the large language model, limited by its
expressive capability, cannot accurately describe the diverse types
of interactions between the human and the object. To fill the blank
of 3D full-body human-object interaction dataset, Bhatnagar et
al.[1] present BEHAVE dataset that captures 8 subjects performing
a wide range of interactions with 20 common objects. Xie et al.[28]
further utilizes this dataset to develop a method named CHORE that
learns strong human-object spatial arrangement priors from the
BEHAVE dataset. This 3D supervised method significantly outper-
forms previous optimization-based methods, but its generalizability
and scalability are limited by the data where the prior learned from
and the significant efforts required to collect the large-scale 3D
human-object interaction dataset. More recently, Han et al. present
a self-supervised method to learn the spatial commonsense of di-
verse human-object interaction from synthesized images produced
by a text-conditional generative model. Their method can be ap-
plied to arbitrary object categories without any human annotations.
Based on these works, we introduce a novel 2D-supervised method
that learns human-object spatial relation prior directly from 2D
images.
3D Prior Learning with 2D Supervision. When obtaining accu-
rate 3D annotations at scale is expensive and intractable, the meth-
ods that rely on 2D supervision are more promising. These methods
leverage existing 2D annotated data such as 2D keypoints, masks, or
bounding boxes to train models for human pose estimation[5, 31],
3D scene reconstruction[10, 22] or hand-object reconstruction[24].
One common way to eliminate the need for 3D supervision is to
use the differentiable renderer to project 3D on 2D with different
views and apply 2D supervision on these views. This paradigm
allows the model to learn 3D information indirectly through the 2D
annotations, making it more feasible to train the 3D models with
less manual annotation effort. Inspired by these existing works, we
make the first attempt to learn the instance-level human-object
spatial relation prior without the use of 3D annotations.
3D Datasets in the Wild. Due to the scarcity of 3D annotations,
it is very challenging to perform 3D reconstruction in diverse real-
world scenarios. To address this challenge, researchers are actively
working to develop new algorithms and collect new datasets in the
fields of object shape reconstruction, human mesh recovery, and
hand-object interaction reconstruction. Some studies [4, 14, 20, 21]
develop automated pseudo-annotation pipelines to build large-
scale datasets from online sources. which significantly benefits
the learning-based methods to handle diverse and natural scenar-
ios. While other approaches[7, 9, 12, 27] use computer graphics
techniques to generate synthetic 3D datasets with high-quality an-
notations, eliminating the need for real-world data collection. By
combining these real-world and synthetic datasets, more robust
and powerful 3D reconstruction models such as the one proposed
in [3], can be trained and can generalize well to various real-world
scenarios. Toward the same goal, we collect the WildHOI dataset
from the Internet to advance the research community on full-body
human-object reconstruction.
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Figure 2: The main pipeline of our method. We utilize the normalizing flow to learn the distribution of the 2D human-object
keypoints in each image plane from vast images in the wild. The normalizing flow takes the input image I as the condition to
transform the noize z from Gaussian distribution to the 2.5D keypoints X2.5D which is intermediate representation combining
the view pose 𝜌 and the 2D human-object keypoint layout Π𝜌 (X3D). To train this conditioned normalizing flow, we collect a
bunch of images from the Internet and group these images together based on the geometry consistency of the 2D human-object
keypoints in each view. Then we incorporate the prior learned from 2D images into the post-optimization process. In the
post-optimization stage, we project the 3D human-object keypoints onto different image planes of the virtual cameras to
ensure the reconstructed results seem coherently observed from other views. Besides, we use the mean occlusion maps that are
obtained by averaging the occlusion maps in the images to compute the contact loss. Our method is supervised without using
any 3D annotations or commonsense knowledge of the spatial relation between the human and the object.

3 METHOD
Problem Formulation. Monocular human-object reconstruction
aims at recovering the 3D information X3D

2 of the human and
the object given an input image I ∈ Rℎ×𝑤×3. In order to avoid the
ambiguity caused by mutual occlusion between the human and the
object in the monocular reconstruction setting, it is more proper to
model it as the probability density prediction instead of unimodal-
ity estimation. To learn the distribution 𝑝 (X3D |I) from dataset, the
learning-based methods need the 3D annotations for each image.
However, due to the high cost of obtaining 3D annotations, it is

2The 3D information X3D can be in the form of the 3D point cloud, the parameters of
parametric mesh model or any other 3D representation depending on the specific task.
Here, we discuss the general case.

difficult to collect a 3D human-object dataset at scale, especially
for in-the-wild scenarios. Therefore, these 3D-supervised methods
are limited by the distribution of the training dataset, making it
difficult to generalize to natural scenes with high diversity. The
information about human-object interaction in natural scenes is
mostly presented in the form of 2D images or videos, which are eas-
ier to be collected from the Internet. Based on this observation, we
introduce a method that learns the prior knowledge of 3D human-
object spatial relations from large-scale 2D images. To achieve this,
we define the scoring function of X3D in the image I as

𝑆 (X3D |I) =
∫
𝜌∼𝜚

𝑝 (Π𝜌 (X3D), 𝜌 |I)d𝜌, (1)
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where 𝜌 is the pose of the camera, Π𝜌 is the perspective projection
function of the camera under the pose 𝜌 , 𝜚 is the distribution of
the camera pose. In defination (1), the 3D information X3D is pro-
jected onto different image planes to obtain Π𝜌 (X3D). The score of
X3D is obtained by synthesizing the distribution of 2D information
from different viewports, which is treated as the approximate to
the original 3D density distribution 𝑝 (X3D |I). In this formulation,
the goal becomes to learn the distribution of 𝑝 (Π𝜌 (X3D), 𝜌 |I) to
approximate the original probability density 𝑝 (X3D |I).

The content of this section is organized as follows. In section
3.1, we show the representation of X3D and introduce the inter-
mediate representation to bridge the 3D keypoints X3D and the
2D projection Π𝜌 (X3D) under the sparse keypoint representation.
In section 3.2, we show how to model and learn the distribution
𝑝 (Π𝜌 (X3D), 𝜌 |I) from vast 2D images. In section 3.3, we show how
to deploy the scoring function 𝑆 (X3D |I) to tune the relative pose
between the human and the object during post-optimization of
human-object reconstruction pipeline.

3.1 2D-3D projection
Human-Object Keypoints. The raw images captured from the
real world contain rich color and geometry information about the
arrangement of the human and the object on the 2D image plane.
There are several ways to encode the geometry information of the
human and the object from unstructured images, such as masks,
sparse keypoints and dense coordinates. To make a good balance be-
tween computation efficiency and geometry informality, we choose
to use the sparse keypoints to represent the human and the ob-
ject. For the human, we use the joints in the SMPL model as the
keypoints. In the SMPL model coordinate system, the keypoints of
human XSMPL

3D ∈ R22×3 can be computed as follows:

XSMPL
3D = JM(𝜷, 𝜽 ), (2)

whereM is the blending function which maps the shape parameter
𝜷 ∈ R10 and the pose parameter 𝜽 ∈ R63 to the 6890 vertices of
the SMPL model and J ∈ R22×6890 is the joints weighting matrix.
For the object, the keypoints are manually selected from the vertex
on the surface of the object mesh model, which is based on the
geometric characteristic of the object shape. Denote the localization
of the 3D object keypoints under the object local coordinate system
as X̂object

3D ∈ R𝑡×3, where 𝑡 is the number of the object keypoints.
Under the SMPL local coordinate system, the localization of the
object keypoints is computed by

Xobject
3D = 𝑠X̂object

3D RT + t, (3)

where 𝑠 is the size of the object and R, t is the 6D pose of the ob-
ject under the SMPL coordinate system. The coordinates of joints
of SMPL and the selected object keypoints are concatenated to-
gether to get the representation for the 3D human-object spatial
arrangement

X3D =

(
XSMPL
3D

Xobject
3D

)
∈ R𝑛×3 . (4)

In this keypoint-based represetation, the parameters {𝜷, 𝜽 ,R, t, 𝑠}
are transformed into sparse keypoints X3D under the SMPL local
coordinate system.

The Bridge between 2D and 3D. Under the perspective camera
model, any point x3D ∈ X3D is projected onto the image plane
obtaining the 2D centered coordinates (𝑢, 𝑣). The projection rela-
tionship between the two is determined by the following equation.

𝜆
©«
𝑢

𝑣

𝑓

ª®¬ = RSMPLx3D + tSMPL, (5)

where 𝑓 is the focal length of the camera, RSMPL and tSMPL is the
pose of the SMPL model under the camera coordinate system, 𝜆 is
the depth scale. To smplify the notation in following equation, let
x2D = (𝑢, 𝑣, 𝑓 )T,Rcam = R−1

SMPL, tcam = −R−1
SMPLtSMPL. Rearrange

the terms and normalize both sides, we get

Rcamx2D
∥Rcamx2D∥

=
x3D − tcam
∥x3D − tcam∥ . (6)

Equation (6) builds the relation between the 3D keypoints x3D
and the coordinate (𝑢, 𝑣) on the image plane. Given the observa-
tion point (𝑢, 𝑣) in the image plane and the pose of the camera
{Rcam, tcam}, the corresponding 3D point x3D lies on th ray with
the direction d =

Rcamx2D
∥Rcamx2D ∥ staring from tcam. Compute the di-

rection vector d for each point in 3D human-object keypoint X3D
according to the right side of equation (6) and concatenate them
with tcam obtaining the intermediate representation

X2.5D =

(
dT

1 , d
T
2 , . . . , d

T
𝑛 , t

T
cam

)T
∈ R(𝑛+1)×3, (7)

which is the bridge between the 3D keypointsX3D and the projected
coordinates Π𝜌 (X3D) with the camera pose 𝜌 = {Rcam, tcam}.

3.2 Prior Learning with Normalizing Flow
Because of the scarcity of the 3D annotations for X3D, we decom-
pose its distribution into 𝑝 (Π𝜌 (X3D), 𝜌 |I) with different viewports
that is easy to be acquired from vast images in the Internet. Each pair
{Π𝜌 (X3D), 𝜌} is combined to get the intermediate representation
X2.5D according to equation (6)(7). Then the normalizing flow[25]
is employed to model the desity distribution 𝑝 (Π𝜌 (X3D), 𝜌 |I).
The Structure of the Normalizing Flow. The nomalizing flow
transform the measurements X2.5D to a sample z in the gaussian
distribution with f as the condition, i.e.

z = F (X2.5𝐷 ; f), (8)

where f is the visual feature extracted from the input image I. The
structure of the normalizing flow F is constructed using actnorm
layer, invertible 1 × 1 convolution layer, and the affine coupling
layer shown in [16]. The density distribution of X2.5D for the image
I is given by

log𝑝 (X2.5D |I) = log𝑞(z) +
����det

𝜕F
𝜕X2.5D

���� , (9)

where 𝑞 is the density function of the Gaussian distribution.
The Training Process of the Normalizing Flow. The training
objective of the normalizing flow is minimizing the negative log-
likelihood, i.e.

Ltrain = E𝜌∼𝜚 [− log 𝑝 (X2.5D |I)] . (10)
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However, the camera distribution 𝜚 and the 2D projection Π𝜌 (X3D)
under each viewport is unknown for each image. In the 2D im-
age dataset D = {I1, I2, . . . } collected from the Internet, each im-
age has one viewport 𝜌 and one 2D projection Π𝜌 (X3D) naturally,
which is apparently insufficient to train the normalizing flow. To
get other views and the corresponding 2D projections for each im-
age, we group these images using the k-nearest neighbor grouping
algorithm[8] based on the distance metric defined following

𝑑 (I, I′) = 1
𝑛

𝑛∑︁
𝑖=1

∥(d𝑖 × d′𝑖 ) . . . (tcam − t′cam)∥, (11)

where X2.5D =

(
dT

1 , d
T
2 , . . . , d

T
𝑛 , tTcam

)T
is the intermediate represen-

tation calculated from the 2D keypoints Π𝜌 (X3D) and the camera
pose 𝜌 = {Rcam, tcam} for image I according to the left side of equa-

tion (6) and X′
2.5𝐷 =

(
d′T1 , d′T2 , . . . , d′T𝑛 , t′Tcam

)T
is the intermediate

representation for the image I′. Equation (11) calculates the average
distance between two rays which starting from tcam and t′cam with
the direction d and d′ respectively. The smaller the value of 𝑑 (I, I′),
the more likely that these rays intersect with each other in 3D space,
which indicates that the image I and I′ capture the same interaction.
The grouping process is totally free of human intervention and the
algorithm outputs the top-k nearest neighbor for each image I in
the form of cluster

GI = {(Π𝜌1 (X3D), 𝜌1, 𝑑1), . . . , (Π𝜌𝑘 (X3D), 𝜌𝑘 , 𝑑𝑘 )}, (12)

where 𝑑𝑖 is the distance between the image I and the 𝑖-th item in
the cluster GI. We drop the neighbors whose distance exceeds a
threshold. During training, we random select a batch of neighbors
from GI for each image I to minimize the loss objective shown in
equation (10).

3.3 Human-Object Reconstruction with 2D
Prior

We consider the task of reconstructing the human and the object
from a single-view image with known object templates where the
human is parameterized using the shape parameter 𝜷 and pose
parameter 𝜽 of SMPL and the object is parameterized by the 6D pose
{R, t} and the scale 𝑠 of the known object template. We adopt a two-
stage prediction-optimization paradigm to recover these parameters
{𝜷, 𝜽 ,R, t, 𝑠} from given the image I, like many existing methods,
where these parameters are initialized using the pre-trained pose
estimation model, followed by an iterative optimization process to
refine the pose of the human and the object.
Initialization. We first use the state-of-the-art 3D human mesh
recovery model SMPLer-X[3] to predict the shape parameter 𝜷 ,
the pose parameter 𝜽 and the gobal pose {R𝑆𝑀𝑃𝐿, tSMPL} for SMPL
and the pre-trained CDPN [19] to obtain the 6D pose {R, t} of the
object. The scale 𝑠 of the object template is initialized empirically
according to the size of the category in the real world. Besides we
extract the keypoints for the human using ViTPose[30] and the
2D-3D corresponding maps using the pre-trained CDPN[19].
Prior Loss. The prior learned from 2D images is flexible enough
to be deployed to tune the parameter 𝜷, 𝜽 of SMPL and the 6D
pose R, t of the object during post-optimization. Given the input
image I, we draw𝑚 samples from the distribution 𝑝 (Π𝜌 (X3D), 𝜌 |I)

learned by the normalizing flow to initialize the translation poses
{t̂(1)cam, . . . , t̂

(𝑚)
cam } for each virtual camera. Then the 3D human-object

keypoints X3D computed from {𝜷, 𝜽 ,R, t, 𝑠} according to equation
(2) and (3) are then projected onto the image planes of each virtual
camera to get the intermediate representation {X̂(1)

2.5D, . . . , X̂
(𝑚)
2.5D}

according to the right side of equation (6) and equation (7). The
multi-view keypoints prior loss is defined as

Lprior = −
𝑚∑︁
𝑖=1

log𝑝 (X̂2.5D |I) . (13)

The camera translation poses {t̂(1)cam, . . . , t̂
(𝑚)
cam } are treated as the op-

timization parameterswhich are optimized togetherwith {𝜷, 𝜽 ,R, t, 𝑠}
during post-optimization process.
Contact Loss. In addition to constraining the 3D human-object key-
points, we also use the contact loss to generate more fine-grained
interaction. The contact map is also hard to be acquired in the wild.
The contact between the human and the object in 3D space will
result in occlusion in the 2D image plane, and inversely, the contact
map can be approximated from occlusion in different views. Based
on this idea, we approximate it using the average occlusion map. De-
note the occlusionmap for the human as the binary array ch ∈ R6890

where the element is set to 1 if the corresponding projected coordi-
nate in the image plane falls within the occlusion region with the
object. The occlusion map co for the object is defined similarly. For
each image from the dataset, we calculate the occlusionmaps for the
human and the object and average them to get the mean occlusion
map c̄h and c̄o. During optimization, we compute the occlusion map
for the human and the object from the target image and multiply
them with the mean occlusion maps to get the candidate indices set
of the points that are under contact. The contact index set for SMPL
mesh is given by Ch = {𝑖 | [ch]𝑖 · [c̄h]𝑖 > 𝜂} and the contact index
set for object mesh is given by Co = {𝑖 | [co]𝑖 · [c̄o]𝑖 > 𝜂}, where
𝜂 is contact threshold. The contact loss is defined as the weighted
chamfer distance between the two contact point clouds decided by
the index set Ch and Co.

Lcontact =
1

|Ch |
∑︁
𝑖∈Ch

min
𝑗∈Co

𝑤𝑖 𝑗 ∥ph𝑖 − po𝑗 ∥+

1
|Co |

∑︁
𝑗∈Co

min
𝑖∈Ch

𝑤𝑖 𝑗 ∥ph𝑖 − po𝑗 ∥, (14)

where𝑤𝑖 𝑗 = [ch · c̄h]𝑖 [co · c̄o] 𝑗 , ph𝑖 is the 𝑖-th point in SMPL mesh
and po

𝑗
is the 𝑗-th point in the object mesh.

Optimization Objective. The overall optimization objective is
defined as

Loptim =𝜆JLJ + 𝜆coorLcoor + 𝜆normLnorm+
𝜆priorLprior + 𝜆contactLcontact, (15)

where LJ is the reprojection loss for SMPL keypoints, Lcoor is the
reprojection loss for the object defined in [13] and Lnorm is the
regularization term for the pose of the human and the scale of the
object. Our optimization process consists of two phases. In the first
phase, we lock the parameters for SMPL and only optimize the 6D
pose {R, t} and the scale 𝑠 of the object. In the second phase, we
tuned all the parameters together by minimizing the optimization
objective (15).
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4 DATASET
In order to validate our method in natural scenes, we collected
the WildHOI dataset, which consists of a diverse range of videos
from the YouTube website, capturing various natural scenes and
human-object interactions.

4.1 Data Collection and Preprocessing
Before data collection, we select the object categories from COCO
dataset that have almost fixed shapes and cannot be deformed, such
as baseball, tennis, basketball, etc. Then, we search for the videos on
the YouTube website that contain interactions between humans and
these selected object categories. We manually reviewed the videos
to ensure they depict the interactions of interest with target object
categories. Once we identify relevant videos, we download them
and extract frames from these videos. Next, we use bigdetection [2]
to extract the bounding boxes of persons and objects in each frame.
The person and the object are considered as being under interaction
if the IoU of their bounding boxes exceeds a certain threshold. The
images without the engagement of any human-object interaction
are discarded. After detecting all bounding boxes, we run SAM[17]
in each frames to extract the masks within the detected bounding
boxes. We also annotate the images with the 2D person keypoints
and pseudo SMPL parameters using ViTPose [30] and SMPLer-X[3].
We further tune the SMPL parameters predicted by SMPLer-X using
reprojection loss to make the SMPL parameters aligned well with
the keypoints extracted by ViTPose.

4.2 Human-Object Keypoint Annotations
The keypoints for the human Π𝜌 (XSMPL

3D ) is easy to be acquired as
we can reproject the SMPL joints to each image plane directly. How-
ever, due to the diversity of the object categories and the variety of
the object shape, there lacks of pretrained models for extracting the
object keypoints or estimating the object 6D pose in the wild. To
address the problem, we annotate the object keypoints from scratch.
We employ multiple annotators to annotate the correspondence
between the 2D image coordinates and 3D points on the object
template mesh surface. Once the correspondence is obtained, the
6D pose can be calculated using PANSAC/P𝑛P algorithms. Anno-
tating all the frames in the dataset is not realistic. To alleviate the
annotation workload, we adopt the human-in-the-loop annotation
process. We start by randomly selecting a few frames and deliver
them to the annotators for labeling. The annotated data is then used
to train the 6D pose estimation model. This model is then used to
annotate the remaining frames. Human annotators review these
annotated images by the pre-trained models and select the incorrect
ones. The incorrect images are then handed over to the annotators
for correction. The annotated images are used to improve the an-
notation quality of the 6D pose estimation model iteratively. This
iterative annotation process continues until the annotation quality
meets our standards. After obtaining the 6D pose annotation for the
object, the keypoints for the object Π𝜌 (Xobject

3D ) are obtained by pro-
jecting the selected points X̂object

3D onto the image planes with the
estimated 6D pose. The keypoints for the human and the keypoints
for the object are concatenated together to get Π𝜌 (X3D), where
the camera pose 𝜌 is acquired from the global pose of SMPL. In the

end, each image is labeled with the 2D human-object keypoints
Π𝜌 (X3D) and the 6D camera pose 𝜌 = {Rcam, tcam}.

4.3 Dataset Statistics
Overall, our dataset contains diverse interactions with 8 object
categories in various real-world scenarios. Each image is annotated
with the bounding boxes, masks, SMPL pseudo parameters, and
the human-object keypoints. We split the dataset into training and
testing sets with 4:1 ratio, which results in about 30k-100k frames
in the training set for each object category. To evaluate our method,
we select and annotate a small fraction of images (about 2.5k) from
the test set. The pseudo annotations for the poses of the human
and the object in the small test set are obtained by optimizing with
the contact labels that are manually annotated. For the non-contact
interaction types, we ask the annotators to adjust the 6D pose of
the object manually in the real-time rendering interfaces.

5 EXPERIMENTS
We conduct experiments on both the indoor BEHAVE dataset and
the in-the-wild WildHOI dataset.

5.1 Experiment on Indoor Dataset
Dataset and Metrics. To compare our method with previous 3D
supervised methods, we conduct experiments on the BEHAVE
dataset[1]. The BEHAVE dataset is a large-scale 3D full-body human-
object interaction dataset that contains 8 subjects interacting with
20 common objects. This dataset is captured by four Kinect RGB-D
cameras at 30 FPS. Each image is annotated with pseudo SMPL
labels, 6D object pose labels, camera poses, and camera calibration
parameters. In experiments, we follow the official splits, using 217
video sequences for training and 82 video sequences for testing. To
speed up the test process, we only test on the key frames[29]. In
terms of evaluation metrics, we use the chamfer distance between
the reconstructed 3D mesh with the ground truth. Before calcu-
lating the chamfer distance, 10,000 points are sampled from the
surface of the mesh. The point clouds sampled from the surface
of the reconstructed mesh and the ground-truth mesh are aligned
using optimal Procrustes alignment and then the chamfer distance
between these two point clouds is calculated. The chamfer distances
for the human and the object are reported separately.
ImplementationDetails. Since our method is very sensitive to the
accuracy of the 2D human-object keypoints, we use the 2D human-
object keypoints rendered from the ground truth and the camera
pose obtained from the 3D annotations to train our normalizing flow.
Note that we only access the 2D human-object keypoints and the
6D camera pose without directly accessing the SMPL annotations
and the object 6D pose labels during the training process of the nor-
malizing flowwhich doesn’t violate the original 2D-supervised goal.
The cluster size 𝑘 is set to 8 in the top-𝑘 nearest neighbor group-
ing. The normalizing flow is trained objectwisely for 30 epochs
with the learning rate set to 1𝑒 − 4. In the process of inference,
we initialize the SMPL parameters and the object 6D pose using
ProHMR [18] and Epro-PnP[6] respectively. In post-optimization
stage, 𝜆J, 𝜆coor, 𝜆prior is set to 0.1, 0.1, 1 respectively. The number of
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the virtual camera𝑚 is set to 8 by default. We didn’t use the con-
tact loss Lcontact in the post-optimization process on the BEHAVE
dataset.
Baselines.We compare our method with previous 3D supervised
methods CHORE[28] and StackFLOW[13]. Since our method is
supervised with 2D keypoints, it is unfair to compare our method
with these methods trained with 3D annotations. We compare our
method with theirs to see the marge between the 3D supervised
methods and the 2D supervised methods.
Main Results. The comparison in terms of reconstruction accuracy
between the 3D supervisedmethods and the 2D supervisedmethods
is shown in table 1. Compared with the 3D supervised methods
CHORE and StackFLOW, our method achieves almost comparable
performance even if we don’t access the 3D annotation directly,
which indicates that we find a lighter way to learn the human-object
spatial relation prior without using the 3D annotations generated
by the calibrated multi-view capture systems.

Methods Supervision SMPL (cm) ↓ Obj. (cm) ↓
CHORE[28] 3D 5.55 10.02
StackFLOW[13] 3D 4.79 9.12

PHOSA[32] - 12.86 26.90
Ours 2D 4.55 11.32

Table 1: Performance comparison between the 3D supervised
methods and the 2D supervised methods on the BEHAVE
dataset.

Ablation on Different Supervisions. In table 2, we show the
impact of different supervisions on reconstruction accuracy. We
train the normalizing flow in three ways: (1) directly using 3D
human-object keypoints to train the normalizing flow, (2) training
the normalizing flow using 2D human-object keypoints but with
the ground truth grouping, (3) training the normalizing flow using
2D human-object keypoints and the grouping is constructed by
the KNN algorithm. As shown in table 2, as we expected, the 3D
supervision using 3D human-object keypoints (the second line in
table 2) achieves the highest reconstruction accuracy. However.
using 2D keypoints with ground truth (the third line in table 2)
also yields favorable results, closely following the performance of
direct 3D supervision. Finally, using 2D keypoints with grouping
from the KNN algorithm (the last line in table 2) results in slightly
lower accuracy but still performs reasonably well. This indicates
that even without direct access to 3D annotations, it is possible to
achieve comparable performance with a minimal drop in accuracy
by utilizing 2D keypoints and appropriate grouping strategies.

Supervision Grouping SMPL (cm) ↓ Obj. (cm) ↓
3D - 4.34 10.23

2D GT 4.51 10.99
KNN 4.55 11.32

Table 2: The effectiveness of different supervisions and KNN
grouping on the reconstruction accuracy.

5.2 Experiment on Outdoor Dataset
Dataset and Metrics. The WildHOI dataset is used to evaluate the
performance of our method on in-the-wild images. We evaluate our
method using the chamfer distance but with a slight difference from
the evaluation metric on the BEHAVE dataset. The reconstruction
meshes and the ground-truth meshes are placed on the local coor-
dinate system of SMPL where the pelvis joint of SMPL is rooted at
the origin. The chamfer distance between the reconstruction mesh
and the ground-truth mesh is calculated without using the optimal
Procrustes alignment. Besides, we also use the rotation error and
the translation error to evaluate the relative pose between the ob-
ject and the human. In addition to the numerical results, we also
conduct human evaluation. More details about human evaluation
can be found in the supplementary materials.
Implementation Details.We employ the normalizing flow with a
depth of 8 and a width of 512. The training time of the normalizing
flow on each object category varies depending on the convergence
of its loss. The cluster size 𝑘 is set to 16 in the top-𝑘 nearest neighbor
grouping algorithm. During post-optimization, 𝜆J is set to 0.01,
while 𝜆prior and 𝜆coor are set to 0.1, 𝜆contact is set to 1. We use the
corresponding maps generated using 6D pose labels to calculate
the loss Lcoor in equation (15).
Baselines. Most recent works are learning-based methods that re-
quire 3D annotations for training. Compared with them our 3D-free
method will be unfair since we don’t have large-scale 3D annota-
tions for in-the-wild images. We have to select the annotation-free
method PHOSA[32] as our main baseline. To make the comparison
fairer, we adapt the PHOSA into our method by substituting the
loss Lprior and Lcontact in equation (15) with the coarse interaction
loss Lcoarse inter, the fine interaction loss Lfine inter and the ordinal
depth loss Ldepth proposed in PHOSA with all the other settings
the same with our methods.
Main Results. As shown in table 3, our method outperforms
PHOSA in terms of all evaluation metrics, especially in terms of the
translation error of the object. Because PHOSA and our method all
used the same SMPL parameters predicted by SMPLer-X and the
same correspondence maps of the object rendered from the object
6D pose labels, there is only a slight difference in chamfer distance
of SMPL and the rotation error of the object. The improved perfor-
mance of our method can be contributed by the human-object prior
loss Lprior. With this strong prior learned from vast 2D images,
our method leads to lower translation error on objects and better
overall performance compared to PHOSA.

Methods SMPL(cm)↓ Obj.(cm)↓ Rot.(◦)↓ Transl.(cm)↓
PHOSA 4.72 50.08 11.90 33.22
Ours 4.43 17.48 10.12 13.13

Table 3: The comparison between PHOSA and ours on the
WildHOI dataset.

Qualitative Results.As shown in figure 3, we compare the qualita-
tive results of our method with PHOSA. From the qualitative results,
we can see that our method can accurately reconstruct the spatial
relation between the human and the object in different scenarios.
Although the reconstruction results of PHOSA can align well with
the image, the reconstruction is not coherent when observed from



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 3: The qualitative results on WildHOI dataset.

the side view. Moreover, our method can deal with non-contact
interaction types, whereas PHOSA, which relies on the contact map
to constrain the relative pose between the human and the object,
fails in such cases of non-contact interaction.
Ablation on the Optimization Loss. Table 4 shows the results
of ablation experiments on different optimization losses. From the
results, we can see that including both the prior and contact losses
leads to the best performance, achieving the lowest errors in all
metrics except the chamfer distance for SMPL. This indicates that
both the prior and contact losses play important roles in the op-
timization process. By comparing the third line and the last line,
we can see that excluding the prior loss leads to a significant drop,
which indicates that the prior loss has a more significant impact on
reconstruction accuracy.

Lprior Lcontact SMPL(cm)↓ Obj.(cm)↓ Rot.(◦)↓ Transl.(cm)↓

% % 3.57 1259.57 7.12 658.16
% ! 3.71 363.40 6.47 195.62
! % 4.36 19.37 10.26 14.26
! ! 4.43 17.48 10.12 13.13

Table 4: The effectiveness of different losses on the recon-
struction accuracy.

6 CONCLUSION
In this work, we explore how to learn strong prior of the spatial
relation between the human and the object from 2D images in the
wild. Through our experiments, we have shown that, even without
using any 3D annotations or commonsense knowledge of the 3D
spatial relation between the human and the object, our method
can achieve impressive results on both the indoor BEHAVE dataset
and the outdoor WildHOI dataset. However, there are still some
limitations in our work. First, our method only focuses on learning
the 3D spatial relation prior between the human and the object with
the assumption that the shape of the object is known. This may
not be practical in real-world scenarios where the object shapes
can vary greatly. Additionally, our method relies heavily on the
availability of large-scale 2D image datasets, which may not always
be readily available or applicable to all tasks. Furthermore, our
method learns the instance-level prior rather than the category-
level prior. This may affect the generalization ability to unseen or
rare object categories.
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