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ABSTRACT

Coarse-grained (CG) force field methods for molecular systems are a crucial
tool to simulate large biological macromolecules and are therefore essential for
characterisations of biomolecular systems. While state-of-the-art deep learning
(DL)-based models for all-atom force fields have improved immensely over re-
cent years, we observe and analyse significant limitations of the currently avail-
able approaches for DL-based CG simulations. In this work, we present the first
transferable DL-based CG force field approach (i.e., not specific to only one nar-
rowly defined system type) applicable to a wide range of biosystems. To achieve
this, our CG algorithm does not rely on hard-coded rules and is tuned to output
coarse-grained systems optimised for minimal statistical noise in the ground truth
CG forces, which results in significant improvement of model training. Our force
field model is also the first CG variant that is based on the MACE architecture
and is trained on a custom dataset created by a new approach based on the frag-
mentation of large biosystems covering protein, RNA and lipid chemistry. We
demonstrate that our model can be applied in molecular dynamics simulations to
obtain stable and qualitatively accurate trajectories for a variety of systems, while
also discussing cases for which we observe limited reliability.

1 INTRODUCTION

To study large (bio-)molecular frameworks across large time scales, coarse-grained (CG) molecu-
lar dynamics (MD) are a powerful tool in computational biochemistry. These types of simulations
require specialised force fields that (1) define how a molecular system is transformed into its CG
counterpart and (2) are able to output accurate forces acting on the CG beads for a given set of
bead positions. CG force fields are significantly more efficient than their all-atom analogues, which
becomes crucial as biological macromolecules of interest (e.g., for drug discovery, or in the char-
acterisation of disease development processes (Filipe & Loura, 2022)) can grow to several hundred
thousand or even millions of atoms, and MD simulations can require millions of individual force
calculations. Similar to classical all-atom force fields (such as AMBER (Salomon-Ferrer et al.,
2013) or GROMOS (Scott et al., 1999)), there exist a large variety of classical CG force field ap-
proaches that vary widely in their design, i.e., in the CG mappings they construct and in how the
inter-bead potentials are defined. For example, a popular choice is Martini (Marrink et al., 2007),
which was originally developed for lipid and surfactant systems, but has been extended to a wide
range of biosystems (Marrink et al., 2023).

In recent years, machine learning force fields (MLFFs) have been on the rise as a promising al-
ternative to classical force fields as they can deliver accurate force predictions at a highly reduced
computational cost (Poltavsky & Tkatchenko, 2021; Wu et al., 2023). MLFF approaches are typi-
cally trained on datasets consisting of molecular structures along with their ground truth energies and
atomic forces and can therefore achieve a force prediction accuracy close to the reference method
they were trained on, e.g., density functional theory (DFT). However, classical force fields typically
outperform MLFF models significantly with respect to inference speed. Therefore, it becomes ev-
ident that advanced approaches such as ML/MM hybrid methods or coarse-grained MLFF models
play a crucial role for pushing the field of ML for molecular simulation towards widespread practical
application.
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There have been a few notable contributions to the advancement of CG-MLFF models in recent
years. They can be divided into two types of approaches. First, approaches where the CG map-
ping is tabulated exactly for the possible system types, for example, specifying which atoms for
each amino acid of a protein get transformed into CG beads (Husic et al., 2020; Charron et al.,
2023; Majewski et al., 2023). A popular approach of this kind is Cα coarse-graining, where only
Cα atoms of amino acids are kept as CG beads. The two main limitations of these approaches are
(i) that the CG mapping strategy is typically not data-driven and hence to some extent arbitrary,
and (ii) its limited generalisability to general (bio-)organic chemistry where building a rule-based
assignment strategy in this way grows unfeasibly in complexity. The second type of approach is
taking a look at more complex coarse-graining schemes, e.g., rooted in machine learning (Chen-
nakesavalu et al., 2023; Wang & Gómez-Bombarelli, 2019; Nasikas et al., 2022). However, while
such approaches are in principle able to be more universally applicable across organic systems, they
have so far only been applied in non-transferable contexts, i.e., learning a CG force field for a single
type of system. One reason for this may be that these approaches are prone to overfitting due to
their increased complexity. Furthermore, previous CG-MLFF approaches have been relying on the
invariant SchNet architecture for the force field model (Chennakesavalu et al., 2023; Durumeric
et al., 2024), which for all-atom force fields has been mostly replaced by other (typically equiv-
ariant) architectures in recent studies, for example, MACE (Batatia et al., 2022b), VisNet (Wang
et al., 2022), Allegro (Musaelian et al., 2023), or sparse Gaussian Processes (Vandermause et al.,
2022). Both Gaussian process-based and Allegro-based force fields have also been applied in the
context of CG force fields before (Duschatko et al., 2024; Loose et al., 2023), however, only to build
molecule-specific CG-MLFFs with a rigid CG strategy.

We emphasise that in the field of MLFFs, we generally distinguish between system-focused and
transferable MLFF approaches. In the former, the model is just trained on a single molecule in
different conformations (a single potential energy surface) with the goal to later obtain accurate
simulations for this molecule. On the contrary, transferable approaches train on a dataset with a
variety of systems with the goal to be applicable to unseen molecules of similar chemistry. As
outlined above, the field of CG-MLFFs has largely been focused on the system-focused setup which
is common for proof-of-concept studies. One of the reasons for this is that a universally applicable
CG mapping is not trivial to define, and as a result we are lacking understanding of whether a truly
transferable CG-MLFF approach is even possible. Due to the difficulty of defining a general CG
mapping, the few published transferable CG-MLFF approaches are restricted to very specific types
of systems, typically proteins where the CG mapping can be fixed for each amino acid in a simple
rule-based way.

In this work, we present a new approach for CG-MLFF models trained on a new dataset spanning
a vast range of biology-related (organic) chemistry. We build these models based on the MACE
architecture which is modified to allow for CG-specific inputs such as continuous multi-dimensional
node features. We show that by construction, our model is transferable to unseen structures of similar
chemistry and generalisable to larger structures than used for training. The CG mechanism is based
on previous work by Webb et al. (2018) which facilitates general applicability to a wide range
of structures (in contrast to specialised CG schemes developed for proteins only). It allows us to
coarse-grain any (organic) chemical system, which is reflected not only in the fact that our training
dataset (see section 2.3) contains lipids, RNA and proteins, but also since the new fragmentation-
based dataset generation results in a diverse set of organic fragments to train on (including molecules
from the PubChem database). Moreover, we explore an extension to this scheme by adding more
physical information in a tunable fashion, and present an ablation study related to this modification.
For the force field deep learning model, we apply the state-of-the-art MACE architecture that has
recently been demonstrated to be very powerful in the context of all-atom force field foundation
models (Batatia et al., 2023; Kovács et al., 2023). However, it is yet to be applied for CG simulations.

2 METHODOLOGY

2.1 MACHINE LEARNING FORCE FIELD

MACE is a state-of-the-art message passing GNN architecture for interatomic potentials. Its main
innovation is the expansion of messages as a hierarchical body order expansion allowing for a de-
coupling between receptive field size, local geometry modelling and the number of message passing
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layers. Hence, even with a small number of model layers, higher order interactions can be captured.
Recently, two force field foundation models, Batatia et al. (2023) and Kovács et al. (2023), have
been developed based on MACE. For more details on the original MACE model, we refer to the
original work, Batatia et al. (2022b) and Batatia et al. (2022a).

We build our implementation based on the JAX implementation of MACE1 which differs compared
to the PyTorch version in some details (see Appendix A.1 for more information). Furthermore,
for CG force fields, the original way to embed node features must be adapted. In the MACE full-
atom architecture, the atomic number of an atom is mapped to an integer which then corresponds
to an index in a trainable parameter matrix. Hence, by construction this is a discrete representation
which has its cardinality predefined, i.e., the number of possible atomic species. However, our
CG beads have continuous descriptors (i.e., node features), which are constructed as described in
section 2.2.3. To allow for this, we apply a multi-layer perceptron (MLP) to the bead descriptor
at the first MACE layer. The size of this MLP is a model hyperparameter and its parameters are
learned at the same time as the other parameters of MACE during training. We refer the reader to a
more detailed description of this matter (and for other small architectural modifications, as well as
the model hyperparameters) located in section A.1 in the Appendix.

In the following, we apply MACE as the architecture in all of the trained models. We note that since
our paper introduces modifications compared to previous CG-MLFF approaches in multiple ways,
we refrain to study the impact of MACE compared to other architectures systematically in this work
but rather concentrate on an ablation study regarding the tunability of the CG algorithm. However,
in future work, it may be of high interest to assess the influence of the MACE architecture on these
results more carefully.

2.2 COARSE-GRAINING MODEL

2.2.1 REQUIREMENTS

As outlined in section 2.1, an ML force field acts on a set of nodes which can be atoms or beads as
long as they have well-defined positions and node features. The process of creating a set of beads
with bead positions and bead features from a set of atoms is the coarse-graining process. We present
a rule-based approach for this process (based on Webb et al. (2018)), i.e., an algorithm which is
pre-defined by us and does not need to be learned based on our reference data. However, our version
of this algorithm also contains a small number of hyperparameters which are tuned in a pre-training
phase with respect to given quality metrics. Such an approach is discussed further below.

The advantages of such a non-learnable approach is that it can be viewed purely as a pre-processing
step both during training of the force field and at inference time (i.e., during an MD simulation).
Figure 1 illustrates this set-up for training the coarse-grained ML force field. Note that the coarse-
graining cannot adapt to enhance the force field training and any fixed strategy of assigning atoms
to beads is arbitrary to some extent. As a result, we do not expect this approach to have the same po-
tential for final accuracy compared to a fully learnable approach, however, its simplicity is expected
to be advantageous for model generalisability because the introduced inductive bias acts as a natural
regularisation. However, we tune the hyperparameters of our CG model to our training dataset.

For our approach, we define a set of requirements:

1. It must be universally applicable to any chemical system, at a minimum all organic systems,
because (1) we want to be able to generalise to a wide range of organic molecules and
(2) our training dataset (see section 2.3) does not guarantee any properties of the training
structures such as, for instance, if the nucleobases or amino acids would be fragmented
always at the same position.

2. It ideally allows for control over the degree of coarse-graining (i.e., the system size re-
duction factor of fine-grained to coarse-grained representations), which lets us tune this
parameter depending on the results during the experimentation phase.

3. It can be designed to include tunable hyperparameters which can be optimised with respect
to our dataset in order to alleviate the disadvantages that arise from employing a fixed
algorithm for coarse-graining.

1https://github.com/ACEsuit/mace-jax (accessed: 2023-08-11)
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Figure 1: Illustration of the training of the CG-MLFF model. The training is divided in two steps
where the coarse-graining is purely a pre-processing step that converts the all-atom training set to a
coarse-grained training set.

Furthermore, we emphasise that the coarse-graining process can be split up into three parts con-
ceptually, (1) the atom-to-bead assignment, (2) the weighting of atom positions to form the bead
position, and (3) the bead feature (bead type) definition. Our approach handles all of these parts
separately. We discuss the theoretical considerations related to designing a coarse-graining model
in section 2.2.2, and then describe our designed algorithm in detail in section 2.2.3.

2.2.2 PROPERTIES OF CG MAPPING AND FORCE AGGREGATION

A coarse-graining mapping C transforms the position matrix R of the atoms to the position matrix
R̃ of the beads,

R̃ = C(R) . (1)
In order to be physically reasonable, C cannot take any arbitrary form but it must satisfy a few
conditions, for instance, that C must be a linear mapping. For more details, see Appendix A.2.

One challenge of training a coarse-grained ML force field model is that the ground truth forces are
only available in all-atom representation. As these need to be compared to the model predictions
in coarse-grained representation, we must aggregate the atomic forces to obtain bead forces, i.e.,
determine a force mapping CF that linearly transforms the fine-grained forces F to the coarse-
grained forces F̃ ,

F̃ = CF (F ) = CF · F . (2)

As first derived by Ciccotti and coworkers (Ciccotti et al., 2005), compatibility with the coarse-
grained mapping C is fulfilled if,

CF · CT = 1 , (3)
with 1 being the identity matrix. Eq. (3) is the only condition to be satisfied in the case that we do
not have any constraints on any coordinates, hence, many different CF can be chosen given a coarse-
grained mapping C. Common approaches are the pseudoinverse approach, which solves Eq. (3)
straightforwardly and yields,

CF =
(
CCT)−1 · C , (4)

or the uniform approach, which sums up all atomic forces of all atoms contributing to a bead, hence,
setting (CF )ij = 1 where Cij > 0 and (CF )ij = 0 otherwise.

However, we adopt the statistically optimal approach, as presented by Noé and coworkers and im-
plemented in the open-source Python library aggforce. This approach finds an optimal force
mapping given the F matrices of N structures sampling a potential energy surface, such that the
noise in F̃ is minimal. They demonstrate that this can be achieved by parametrising a force map-
ping with parameters η and optimising these to minimise the overall norm of the forces for the full
trajectory,

ηopt = arg min
η

⟨ || CF (F ; η) ||22 ⟩F , (5)
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Figure 2: Illustration of the tunable CG model approach. First, we build four chemical graphs
differing in edge weighting schemes (weights represented by different colors). Second, the eigende-
composition of the graph Laplacians result in node priorities depicted on the molecule in the centre
(only on heavy atoms). Finally, the aggregation algorithm is applied based on these priorities to
determine the CG beads and their positions are determined by centre of mass.

with the average running over all sets of all-atom forces F from all configurations (positions R) of a
given training set molecule. Further details and derivations can be found in Krämer et al. (2023). We
will also take advantage of the fact that minimisation of CG force magnitudes results in less noisy
training data for our tunable CG approach explained in section 2.2.3.

2.2.3 TUNABLE GRAPH-BASED COARSE-GRAINING APPROACH

Our approach is based on the graph-based systematic molecular coarse-graining approach published
by Webb et al. (2018). The approach follows a simple two-step process. First, every atom in a
molecule is assigned a priority value measuring the importance of an atom for the overall molecular
structure. Second, a rule-based algorithm is defined to group atoms together to beads iteratively
based on these priority values. The algorithm can be applied iteratively, which leads to even coarser
representations, thus making the dimensionality reduction factor controllable. We also explore a
modified version of this algorithm which contains tunable hyperparameters for reasons explained in
section 2.2.1. The overall approach is illustrated in Figure 2.

As described above, the first step is to assign priorities to each atom. In principle, these could
be derived from any algorithm (although an ML-based one would require the second step to be
differentiable), however, for simplicity and tunability, we adopt the spectral decomposition method
from the original paper and add additional ways to weight the edges of the chemical graph. This
method assigns the priority values based on the importance of a node for the overall topology of the
chemical graph. In the original paper, a simple binary graph construction based on chemical bonds
as edges is employed. This means that atoms that are bonded to many other atoms (either directly
or via intermediate bonds) are assigned higher priorities. To obtain these values, a Laplacian matrix
L of the molecular graph is constructed,

L = D −A , (6)

where D is the degree matrix that has the degree, i.e., the number of neighbours, of each node on its
diagonal, and A is the adjacency matrix of the graph with the values 1 and 0 as the off-diagonal terms
depending on whether two nodes share a chemical bond or not. To determine the node priorities,
we perform an eigenvalue decomposition of L and take the absolute values of the coefficients of the
first eigenvector (corresponding to largest eigenvalue) as the priority values. The first eigenvector of
L contains information about the contribution of each node (i.e., atom) to the overall connectivity in
the graph. The more well-connected an atom is within the graph, the higher its contribution. This
considers not only the atom’s number of neighbours but also its neighbour’s neighbours, and more
distant connections.

As an extension to this approach, we define multiple graphs describing the chemical system. The
graph topology is always based on chemical bonds, however, this time we assign weights w to the
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edges depending on physico-chemical properties of the bonds. The Laplacian of these graphs is also
computed as defined in Eq. (6) with the adjacency matrix A containing the edge weights (Aij = wij)
and the node degree of atom i calculated as the sum of all wij with wij as the weight of the j-th
neighbouring node of i. As an addition to the standard binary graph approach, we define three edge
weighting schemes:

1. wij = 1/Rij , with Rij as the edge distance.

2. wij =
√

ZiZj , with Zi and Zj as the nuclear charges of atoms i and j, respectively.

3. wij = 1 + |χi − χj |, a bond polarity measure, with χi and χj as the Pauling electronega-
tivities of atoms i and j, respectively.

The intuition for this choice is that the added properties cover all the straightforwardly computable
features of chemical bonds that could be relevant for prioritising the atoms attached to them. We
emphasise that using the distance-based features does not imply that we plan to rerun the coarse-
graining process at multiple steps during an MD simulation. The CG mapping will remain constant
during a simulation and the features will be computed on the initial (possibly optimised) structure.

For the three graph constructions, we compute the normalised Laplacian Lnorm instead of the regular
one,

Lnorm
ij = Lij/

√
didj , (7)

with degrees di and dj . Otherwise, the influence of the number of neighbours is too strong, which
is already covered by the standard binary graph from the original work by Webb et al. (2018).

We compute the spectral decomposition of each of these four Laplacians and perform a linear com-
bination of the resulting node priorities p with coefficients c to obtain the total priority ptotal,i for
each node i,

ptotal,i = cApA,i + cBpB,i + cCpC,i + cDpD,i . (8)

The optimal values for cA, cB, cC, and cD, should be the ones resulting in the most accurate force field
models. However, since the second part of the coarse-graining algorithm (described below) is not
differentiable, we are limited to optimisation algorithms that do not require gradients and therefore
an optimisation target which is fast to evaluate is desirable. Inspired by Eq. (5), we demonstrate
in section A.4 in the Appendix that CG models that result in lower average magnitudes of CG
forces across the dataset, train better than models with higher average force magnitudes. As a result,
we optimise our hyperparameters c with respect to this target, which can be evaluated efficiently
for a given CG model without running any force field parameter update steps. Details about this
optimisation process are discussed in section A.4 in the Appendix.

Based on the obtained node priority values, we can subsequently build a CG mapping with a rule-
based algorithm that iteratively processes atoms and assigns them to beads until all atoms are as-
signed. Combining this algorithm with an option for weighting the atom contributions yields the
final coarse-grained mapping C described in section 2.2.2. We choose these weights such that the
bead position is the centre of mass of the atoms that make up the bead. In Appendix A.3, we ex-
plain the bead assignment algorithm in more detail. We also note that we pass only fragments of a
pre-determined maximum size to the CG algorithm, which requires a simple fragmentation scheme
for larger structures, which we also describe in Appendix A.3.

To finalise the coarse-graining process, bead features need to be assigned. In classical force fields,
these would correspond to bead types (typically, a discrete number of types exist). However, we
generalise the bead description and assign an Nfeat-dimensional feature vector to each bead. This
vector consists of two parts:

1. The bead mass (see section 2.2.2 for its definition).
2. The element composition of the bead. This is a 6-dimensional vector containing the number

of hydrogen atoms in the bead as the first value, the number of carbons as the second, and
continuing for all six elements accounted for in our force field (i.e., H, C, N, O, S, P).

As a result, each bead is characterised by a 7-dimensional feature vector. Additional features were
explored during this work, most prominently, features derived (i) from bead-internal distance mea-
sures (e.g., mean distance of atoms to bead position) and (ii) from the Coulomb matrix descrip-
tor (Rupp et al., 2012) of the bead structure. However, we observed a negative effect of adding these
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geometry-dependent features with respect to MD stability of the resulting models indicating that the
additional model complexity hampers its generalisability.

2.3 DATASET

To train a coarse-grained ML force field, we require a dataset that contains molecular structures
with their chemical elements, atomic positions and atomic ground truth forces. We are interested in
covering large parts of chemical space relevant for biological systems, in particular, proteins, RNA,
and lipid chemistry. Since the coarse-graining process reduces the system sizes significantly, having
larger molecular systems up to and beyond 200 atoms in our training set is desirable such that the
maximum number of neighbours within the receptive field of the force field models encountered
during simulations of large biomolecules is already observed during training. A molecular dataset
fulfilling these requirements is currently not available, and therefore, we apply our in-house dataset
generation pipeline to generate one.

Our pipeline starts from large molecular structures (e.g., full proteins or RNA) and generates smaller
molecular fragments from these, for which the conformation space is sampled (a) via MD, (b) by
adding Gaussian noise to MD snapshots, and (c) by stochastic conformer generation. Reference cal-
culations are run on the sampled structures subsequently. In this work, we employ semi-empirical
quantum chemical methods as the reference, in particular, the GFN1-xTB method (Bannwarth et al.,
2021). Appendix A.5 contains a description of the components of our pipeline in more detail and
provides a more in-depth overview of the properties of the resulting dataset. Moreover, we empha-
sise that our reference dataset does not contain solvated structures. Remarks on the reason behind
this choice are made in Appendix A.6.

Our final dataset generated with our pipeline contains 4.9 million structures. We split it randomly
into training, validation and test set in a 80:10:10 fashion, keeping all structures (sets of positions)
of one fragment in the same subset to prevent data leakage. As mentioned above, further details on
the dataset can be found in Appendix A.5.

3 RESULTS

We train and evaluate two different models,

• a standard model, which generates the CG mapping based on the simple binary graph
representation of the molecule (i.e., cA = 1 and cB = cC = cD = 0), and

• the tuned model, which generates the CG mapping based on the optimised weighting of
the four calculated node priorities. The detailed results of how we obtained the optimised
weights are located in section A.4 in the Appendix.

The standard model acts as a baseline to assess the improvements achieved by our extension to
the original approach by Webb et al. (2018). During training, we monitor multiple metrics of the
training and validation set. In Figure 3, we present the learning curves for both models and for
three metrics, namely, the loss, the 95th-percentile error of force norms and the Pearson correlation
between the predicted and ground truth forces. In particular, we observe that the 95th-percentile
error is a useful metric for predicting which model has a high probability to produce stable MD
simulations, because occasional inaccurate predictions can self-amplify during a simulation. At the
same time, the maximum error on the validation set behaves less predictably between epochs as it
depends on the single worst predictions which may be caused by outlier structures in the dataset.

For each metric, the tuned model performs better than the standard model. Furthermore, we observe
that the training curves are significantly smoother for the tuned model, hinting at a well-behaved
(less noisy) optimisation space. This is especially evident for the Pearson correlation (see right plot
in Figure 3). Based on the explanation above, we select our models by their validation set 95th-
percentile error. This corresponds to the models after 212 and 101 epochs of training for standard
and tuned, respectively. Contrary to the standard model, note that the tuned model has not reached
its final training epoch of 300. However, since the validation set metrics for this model already
surpass the ones for the standard model, we decide to run the evaluation on the 101-epoch model.
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Figure 3: Validation set metrics for the standard and tuned model during training. We present the
loss, 95th-percentile error of the force norms and the Pearson correlation obtained on the validation
set. We observe that the tuned model outperforms the standard model on the validation set.

As the next step, we assess the practical applicability of our models and their generalisability to
new systems (in size and composition) by running coarse-grained MD simulations. Our simula-
tions are executed by interfacing the JAX-MD (Schoenholz & Cubuk, 2021) package with the JAX
implementation of the models.

First, we assess the stability of MD simulations run with our two ML-based CG force fields across
various systems representing protein, RNA, and lipid chemistry. However, we selected test systems
which are not part of our training dataset, hence, these are neither fragments generated from larger
systems nor part of the PubChem subset. As most of these test systems are directly taken from the
RCSB Protein Data Bank, we refer to these by their PDB ID. For this stability test, we run 100 ps
of NVT Langevin dynamics with a timestep of 5 fs at 300 K. Unstable MD simulations in which the
system topology breaks apart is a common issue for ML force fields, especially early in their training
process (Brunken et al., 2024). Apart from a visual inspection of the trajectory, this behaviour can
be detected easily by observing the kinetic energy of the system, or the temperature. The latter is
kept roughly constant in NVT simulations if the trajectory is stable. In Table 4 of Appendix A.7,
we present the maximum temperatures encountered during the 100 ps simulations of all our test
systems for the standard and the tuned model. We exclude the first five picoseconds of simulation
time to make sure the system has time to thermally equilibrate. We note that in all-atom FF con-
texts, additional stability measures are commonly applied (Hoogeboom et al., 2022), however, their
extension to the CG context is not straightforward. Furthermore, we provide visualisations of four
of the coarse-grained test systems overlaid with their all-atom counterparts in the Appendix A.7 in
Figure 10. Table 4 demonstrates that we obtain across stable simulations across most test systems
(RNA, lipids, proteins) for small systems of less than one hundred atoms and for larger systems of
multiple hundred atoms. However, some systems also break apart during the simulation for both
ML models (e.g., PDB ID: 1BQF) or just for the tuned model (e.g., PDB ID: 1P79). Further visual
inspection of the trajectories also show bond stretching between beads for some examples, most
notably for the weak phosphorus−oxygen bonds in the phosphate groups of RNA structures. We
provide images of MD snapshots that demonstrate this phenomenon in Appendix A.7 in Figure 9.
Moreover, with respect to MD stability, we do not observe the superiority of the tuned model over
the standard one but instead we document a weak opposite effect. We hypothesise that a reason for
the lack of improvement observed in MD stability with the tuned model may be that the main metric
we optimise for during training and CG model tuning is related to the average of forces, however,
MD stability is mainly related to individual inaccurate predictions along a long-running MD trajec-
tory. This is a well-known issue not only for CG force fields, but also for all-atom ones, and may be
a plausible reason for our observed stability issue. For stable systems, we also run 10 ns simulations
to assess (a) the model stability for longer simulation times and (b) the computation time obtained
for the simulations in our set up. The results are reported in Appendix A.7 in Figures 11 and 12.

Second, we take one of our test systems that proved to be stable for both of our models and assess the
qualitative physical accuracy of the stable simulation further. For this, we compare our trajectories
to the ones of (1) the Martini CG force field (see Appendix A.8 for details), and (2) the GFN-FF all-
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Figure 4: Comparison of RMSD along 1 ns trajectories for four CG force fields (two ML, one CG
reference, and one all-atom reference) with respect to the identical set of initial positions.

atom force field (Spicher & Grimme, 2020). Of course, the comparability between these trajectories
is limited as the simulated systems do not share the same dimensionality, however, our main goal
is to assess whether our trajectories are qualitatively reasonable beyond pure stability, e.g., with
respect to sampling similar conformations. As a test system, we selected the IPP lactotripeptide
(taken from the complex with PDB ID 8QFX). For comparison between models, we plot the root-
mean-square deviation (RMSD) between the initial positions (which are the same for each model)
and the positions along the trajectory (see Figure 4). By inspecting the MD trajectories visually, we
observe that in each simulation, the initial structure is quickly transformed into a slightly more folded
(i.e., compact) conformation. Depending on the FF model, this conformation has an RMSD of 1.5
and 2 Å compared to the initial structure. Furthermore, a second conformation is observed within
the first nanosecond of simulation. Visual inspection of the trajectory hints at the fact that the side
chains of the two more distant amino acids move further away from each other in this conformation.
It is visited between 600 and 900 ps in the all-atom reference simulation. The only other simulation
that visits a similar conformation in this simulation is the tuned ML model, however, since the
Martini model only uses 6 beads to represent the system, the two conformations may be less clearly
distinguishable. To compare between our two ML models, we observe that the standard model
exhibits very monotonous dynamics while the tuned model’s dynamics matches the stochasticity
of the two reference simulations to a larger extent, and hence appears more physically reasonable
because it produces a potential energy landscape where the energy barriers between conformations
are less extreme than the ones obtained with the standard model. This emphasises our key finding
that tuning the CG model is beneficial for downstream force field accuracy. Lastly, we observe
larger amplitudes for the reference dynamics compared to our ML models, however, it is uncertain
whether this must be attributed to limitations in the model or is caused by varying simulation time
steps and dimensionality of the system representation.

For longer simulations of 10 ns, we switch to time-lagged independent component analysis (TICA)
plots for visualisation. These plots are commonly used to present protein dynamics with a 2D rep-
resentation. In Figure 5, we compare the tuned ML model with the Martini reference. In both 10 ns
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Figure 5: TICA plots for tuned ML model compared to Martini for a 10 ns trajectory. For the TICA
plot of the standard ML model, see Figure 8 in Appendix A.7.

simulations, we observe three main configurations and a similar energy range between regions that
are visited the most and least often, which underlines the key result that the tuned ML model repro-
duces the dynamics in a qualitatively correct manner. However, we also observe some differences,
most prominently that the high energy regions between local-minimum configurations are sampled
at a slightly higher rate with the ML model (see the connections between regions in the TICA plot
(a) in Figure 5). For the standard ML model, the TICA plot matches the reference to a significantly
smaller extent (see Figure 8 in Appendix A.7). As mentioned for the RMSD analysis above, the
limited comparability between different CG models hampers a conclusive quantitative comparison,
however, we plan to tackle this challenge as a subsequent step in future work by generating in silico
results that can be compared to an experimental reference.

4 CONCLUSION AND OUTLOOK

In this work, we introduced a new transferable CG-MLFF model which is not restricted for appli-
cation to specific types of systems (e.g., only non-fragmented peptide sequences) but can be univer-
sally applied to most molecular biosystems. We emphasise that demonstrating proper transferability
across different types of systems (i.e., proteins, RNA, lipids, small molecules) is the core contri-
bution of this work as this has not been demonstrated in the CG-MLFF context before. Moreover,
we introduced a simple tuning strategy for the graph-based coarse-graining scheme by Webb et al.
(2018). Our pipeline comprises the dataset generation, CG model, MLFF model training, and the
application of the trained model to new systems in MD simulations which we observed to be stable
for most of our test systems. Furthermore, we proved qualitative correctness of our approach, by
comparison with the well-established Martini force field and an GFN-FF all-atom reference, for a
test system that exhibited a high degree of MD stability. While observing that tuning the CG model
significantly improves the MLFF model training, our results on how this advantage translates to MD
simulations has not yet been fully conclusive.

In conclusion, we can report two key findings, (1) it is possible to develop a transferable MLFF
for coarse-grained systems despite the vastness of (bio-)chemical space and the information loss
introduced by the CG mapping, and (2) even a simple and straightforward tunability scheme with
four optimisable parameters is able to significantly improve the resulting MLFF model training. As
a consequence, we believe that making the CG model even more flexible can further improve the
downstream MLFF accuracy leading to increased MD stability. Following this work, the subsequent
step is to conduct a more extensive evaluation study of these models across more test systems against
Martini and all-atom FFs, and extend these findings to the application of large, research-relevant
biosystems. To obtain valuable quantitative results for such systems, we anticipate that (a) treatment
of solvation, (b) a dataset with more accurate reference forces (at DFT level), and (c) further fine-
tuning of the model to experimental data will be necessary.
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Brooke E Husic, Cecilia Clementi, Frank Noé, and Gianni De Fabritiis. Machine learning coarse-
grained potentials of protein thermodynamics. Nat. Commun, 14(1):5739, 2023.

Siewert J Marrink, Alex H De Vries, and Alan E Mark. Coarse grained model for semiquantitative
lipid simulations. J. Phys. Chem. B, 108(2):750–760, 2004.

Siewert J. Marrink, H. Jelger Risselada, Serge Yefimov, D. Peter Tieleman, and Alex H. de Vries.
The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem.
B, 111(27):7812–7824, 2007.

Siewert J. Marrink, Luca Monticelli, Manuel N. Melo, Riccardo Alessandri, D. Peter Tieleman, and
Paulo C. T. Souza. Two decades of Martini: Better beads, broader scope. WIREs Comput. Mol.
Sci., 13(1):e1620, 2023.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai Ko-
rnbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nat. Commun, 14(1):579, 2023.

Dimitris Nasikas, Eleonora Ricci, George Giannakopoulos, Vangelis Karkaletsis, Doros N.
Theodorou, and Niki Vergadou. Investigation of machine learning-based coarse-grained map-
ping schemes for organic molecules. September 2022. doi: 10.1145/3549737.3549792.

W. G. Noid, J. W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen.
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained
models. J. Chem. Phys, 128(24), 2008.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geof-
frey R Hutchison. Open babel: An open chemical toolbox. J. Cheminform, 3:1–14, 2011.

12

https://doi.org/10.1038/s41524-023-01183-5
https://doi.org/10.1038/s41524-023-01183-5
https://doi.org/10.1021/acs.jpcb.3c05928


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Igor Poltavsky and Alexandre Tkatchenko. Machine learning force fields: Recent advances and
remaining challenges. J. Phys. Chem. Lett, 12(28):6551–6564, 2021.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett,
108(5):058301, 2012.

Romelia Salomon-Ferrer, David A Case, and Ross C Walker. An overview of the amber biomolec-
ular simulation package. WIREs Comput. Mol. Sci., 3(2):198–210, 2013.

Samuel S. Schoenholz and Ekin D. Cubuk. Jax, md a framework for differentiable physics. J. Stat.
Mech.: Theory Exp, 2021(12):124016, 2021.

Walter RP Scott, Philippe H Hünenberger, Ilario G Tironi, Alan E Mark, Salomon R Billeter, Jens
Fennen, Andrew E Torda, Thomas Huber, Peter Krüger, and Wilfred F Van Gunsteren. The
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A APPENDIX

A.1 DETAILS OF THE APPLIED MACE MODEL

In the main text, we noted that the JAX implementation we base our model on contains differences
compared to the PyTorch version. These are (1) the implementation of the symmetric contraction
(unchanged in our version), (2) the use of irreps-aware linear layers instead of a tensor product for
skip connection layers (unchanged in our version), and (3) the output of the symmetric contraction
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and subsequent irreps-aware linear layer being set to ignore all irreps beyond l = 0 for all layers
while it should do so only for the last layer (solved in our version), and some other minor changes.

Furthermore, as also stated in the main text, we apply an MLP to the bead descriptor at the first
MACE layer to account for continuous multi-dimensional bead types required for CG modelling.
The original MACE uses the following for a 2-body message for the first layer,

A
(1)
i,kl1m1 =

∑
j∈N (i)

R1
kl1(rij)Y

m1

l1 (r̂ji)W
1
kz̃j , (9)

where R1
kl1(rij) is a learnable projection of the distance rij onto a Bessel basis, Y m1

l1 (r̂ji) is the
output of a spherical harmonic component l1m1 at the vector r̂ji, and z̃j is the mapping into the
integer index of the atomic number z for atom j of a learnable matrix W 1 of size embedding size
k × number of atomic species. In contrast, for the CG (i.e., continuous) case, this message is as
follows,

A
(1)
i,kl1m1 =

∑
j∈N (i)

R1
kl1(rij)Y

m1

l1 (r̂ji) MLP(Dj)k , (10)

where Dj is the set of scalar initial bead descriptors for bead j, comparable to the use of an atomic
number.

A similar modification is applied for multi-body correlation where a similar discretisation is present.
The original multi-body message is,

B
(t)
i,ηνkLM =

∑
lm

CLM
ην lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, lm = (l1m1, ..., lνmν) (11)

m
(t)
i,kLM =

∑
ν

∑
ην

W(t)
z̃ikL,ην

B
(t)
i,ηνkLM , (12)

where ν is the correlation order, CLM
ην lm

are the generalised Clebsch−Gordan coefficients, ην index
all the possible couplings of l through the tensor product elevated to the power ν that will lead to the
equivariance L. The message aggregation into the final message that will be associated to node i is a
linear learnable function of the form B

(t)
i,ηνkLM via the learnable weight matrix W(t)

z̃ikL,ην
which has

one if its dimensions dedicated to encoding the atomic number zi using the z̃i mapping zi to W(t)

entries. We rewrite the multi-body message as,

m
(t)
i,kLM =

∑
ν

∑
ην

σ(MLP(t,ην)(Di)kL)W
(t)
kL,ην

B
(t)
i,ηνkLM , (13)

where again Di is the set of scalar initial bead descriptors for bead i and the sigmoid function σ
rescales the MLP for improved training stability.

Moreover, it was not possible to evaluate the average energy of a bead type in contrast to atom types.
Hence, in contrast to the original MACE, our MACE layers do not output an energy deviation from
an average or predefined node type energy, but rather the absolute energy value for a bead. Whereas
the original MACE weights every component of the 2-body message by a single value representing
the average number of neighbours of an atom, we replace it by a per-message component (i.e., a
per-edge weight),

A
(1)
i,kl1m1 =

∑
j∈N (i)

1√
didj

R1
kl1(rij)Y

m1

l1 (r̂ji) MLP(Dj)k , (14)

where di is the degree of node i. This approach allows us to train a model more agnostic to the bead
densities across various molecules.

Finally, we document the hyperparameters of our MACE model in Table 1 and the configuration of
our AMSGrad optimiser for model training in Table 2.

A.2 CONSTRAINTS ON THE CG MAPPING

As mentioned in the main text, the CG mapping C cannot take any arbitrary form to be physi-
cally reasonable, which in this context refers to the coarse-grained system being thermodynamically
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Table 1: List of MACE hyperparameters employed in this work. Note that m stands for mulitplicity
and

∑
m is the sum of multiplicities for irreps in a message.

hyperparameter value
hidden irreps 128x0e+ 128x1o

output irreps 2x0e

symmetric tensor product basis True
off diagonal True
maximum L 3

irreps considered for interaction spherical harmonic (O(3))
correlation (number of MACE layers) 2

readout MLP irreps 16x0e+ 8x1o

radial basis Bessel functions
number of basis functions 8

radial envelope soft envelope
gate SiLU
MLP for initial bead descriptors embedding [64,128], swish activation
MLP for L type at correlation order ξ [128,128 ·m], swish activation
MLP radial basis projection [64,64,64,

∑
m], SiLU activation

Table 2: List of configuration parameters for the employed AMSGrad optimiser during MACE
model training.

parameter value
batch size 500

learning rate 10−2

weight decay 5 · 10−4

EMA decay 0.99

gradient clipping factor 10

consistent with the fine-grained representation. This means that the potential energy surface of
the coarse-grained system is consistent with the corresponding one for the all-atom system. For
example, two conformations of a molecular system (i.e., two local minima on the potential energy
surface) must exhibit the same energy difference in both representations such that the coarse-grained
MD samples the two conformations in the same ratio as the fine-grained MD does.

More rigorously, this means that an effective potential Ũ(R̃) may be defined in a thermodynamically
consistent manner as the conditional free energy of the coarse-grained configuration, i.e.,

Ũ(R̃) = −kBT ln

∫
R∈C−1(R̃)

exp

(
−U(R)

kBT

)
dR

dR̃
, (15)

with kB as the Boltzmann constant and T as the temperature. Note that removing the constraint
C(R) = R̃ on the integrand of Eq. (15) would yield the free energy of the fine-grained system
(a scalar, equal to E[U ] − TS at equilibrium). Therefore, Eq. (15) can be interpreted as the free
energy of the fine-grained system, subject to the condition that coarse-grained positions are R̃. With
an identical coarse-graining (C : R 7→ R), Eq. (15) yields Ũ = U , thus preserving the energy
function. Further derivations yield a few simple conditions that need to be satisfied for C to be
thermodynamically consistent. We report these conditions below, however, for more details on the
mathematical background, we refer to Noid et al. (2008) as well as Wang & Gómez-Bombarelli
(2019).
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First, the mapping C must be linear, i.e., the transformation of coordinates is a matrix multiplication,

R̃ = C ·R . (16)

Furthermore, the elements Cij of C must satisfy the following conditions.

• Each row must be normalised, i.e., the weights of the atom contributions to a bead sum to
one, and weights below zero are not allowed.∑

j

Cij = 1 and Cij ≥ 0 (17)

• Each atom contributes to at most one bead.

With this mapping, the i-th bead mass Mi can be obtained from the atom masses mj by the following
equation,

Mi =

 Nat∑
j =1

C2
ij

mj

−1

, (18)

where Nat is the number of atoms.

A.3 BEAD ASSIGNMENT ALGORITHM AND PREPROCESSING

In this section, we describe the algorithm that assigns atoms to beads depending on their respective
priorities determined in the previous step (see the main text). This algorithm is taken from the
original work of Webb and coworkers (Webb et al., 2018).

1. Remove all hydrogen atoms from the structure. They are added to the beads which contain
their bond neighbours later. In principle, this step is optional and the hydrogen atoms can
also be treated as all other atoms.

2. Start with the atom with the lowest priority. If multiple atoms have the same priority, they
need to be processed at the same time. Find the neighbouring atom that is (i) not assigned
to a bead yet, (ii) has a higher priority than the currently processed atom, and (iii) has the
priority that is closest to the one of the currently processed atom. Group these two atoms
together, which creates a new bead. If multiple neighbours have the same priority, it can
also happen that the resulting bead will contain more than two atoms.

3. Iterate through all atoms from lowest to highest priority and process them as described
above. Note that if all of the neighbours of a given atom are already assigned to a bead,
then this atom will make up a new bead by itself.

4. After one full pass through all atoms, the created beads are the result of the first coarse-
graining level. If needed, one can repeat this procedure N times to obtain a system coarse-
grained to level N . Before starting a new iteration, we need to assign new bonds between
beads to construct a graph, which can be achieved by drawing chemical bonds between two
beads if any of the atoms that make up the beads were bonded before.

Up to this point, the described algorithm determines which atoms contribute to which beads, how-
ever, the weights of these contributions are still undetermined. Multiple schemes to determine these
weights are possible, for example, using the centre of mass of the atoms of a bead as the bead posi-
tion, the centre of positions, the centre of positions excluding hydrogens, and many others. We only
apply the center-of-mass method in this work. Combining the algorithm described above with this
option for weighting the atom contributions yields the final coarse-grained mapping C described in
section 2.2.2 of the main text.

Furthermore, we note that we implement a simple molecular fragmentation scheme to pass only
fragments of maximum size Nmax

frag to the CG algorithm. We perform this step because (1) the Lapla-
cian matrix size grows quadratically with fragment size potentially resulting in memory issues for
very large systems, and (2) the ranking of eigenvector coefficients becomes numerically unstable
in the case of a large number of atoms. Our fragmentation scheme first separates the unconnected
subgraphs of the system (i.e., the individual molecules) and then iteratively cuts them in half until
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Table 3: Pearson correlation between various metrics computed on training runs of various CG
models (grid search of priority weights). The metrics under investigation are the training set losses
after N epochs LN (N = 5, 10, 15, 20) as well as the mean magnitude of CG forces ⟨ || F̃ || ⟩ across
the dataset.

L5 L10 L15 L20 ⟨ || F̃ || ⟩
L5 1 0.79 0.82 0.87 0.70
L10 0.79 1 0.99 0.97 0.94
L15 0.82 0.99 1 0.99 0.94
L20 0.87 0.97 0.99 1 0.92
⟨ || F̃ || ⟩ 0.70 0.94 0.94 0.92 1

a maximum fragment size of Nmax
frag is reached. The resulting fragments are then passed to the CG

model separately. For each system type in our dataset, we define possible cuts, e.g., peptide bonds
for proteins, O−C bonds next to phosphate groups in RNA, and simple C−C single bonds for lipids.
We apply a value of Nmax

frag = 80 in our experiments.

A.4 TUNING THE CG MODEL

As described in section 2.2.3, our objective is to optimise the weights for the individual node priori-
ties in Eq. (8) such that the resulting model trains well on our dataset.

Inspired by Eq. (5), the mean magnitude of the CG forces is potentially a very convenient measure
for the quality of a CG model (i.e., a set of priority weights) as it is directly related to the amount of
statistical noise in the ground truth values learned by the MACE force field model. To validate this
assumption in practice, we train MACE models on a small subset of the data that is coarse-grained by
various CG models that have been determined by a grid search over the priority weights (following
values for each weight: 0, 0.1, 1, and 10). For the training set, we selected 100 fragments from the
original dataset at random, each with all of their associated configurations (sets of positions). We
record the training set loss after 5, 10, 15, and 20 epochs, as well as the mean magnitude of the CG
forces (which can be calculated without the need for any training steps). We emphasise that these
are the ground truth aggregated CG forces, and not the ones predicted by our model (which at this
stage has not been trained yet).

We present the Pearson correlation between grid points for each pair of metrics. Spearman rank
correlation coefficients were also calculated and exhibit identical qualitative trends. As expected,
our results show that the performance of our CG-MLFF models converges with increasing number
epochs, for example, the performances after 5 and 10 epochs are only correlated with a coefficient of
0.79, while performances after 15 and 20 epochs are highly correlated at 0.99. Based on these results,
10 epochs of training seem to be sufficient to identify the optimal CG models in an optimisation
procedure. However, we also observe that the mean magnitude of CG forces is strongly correlated
with the losses after 15 and 20 epochs, and therefore, this metric is very powerful for our CG model
optimisation because we can score a given CG model efficiently without having to perform any
CG-MLFF model training. The full set of results can be found in Table 3.

For CG model tuning, we apply the Differential Evolution algorithm as implemented in the SciPy
package (Virtanen et al., 2020). The bounds for the four priority weights were set to 0 and 1,
the relative tolerance of convergence to 0.01, and the dataset size was increased to 200 fragments
(with all their configurations) as the computation of the mean force magnitudes, which acts as our
minimisation target, is highly efficient. We obtain the following optimised hyperparameters for our
CG model: cA = 0.73 for the binary graph, cB = 0.08 for the 1/Rij weighted graph, cC = 0.18 for
the

√
ZiZj weighted graph, and cD = 0.08 for the 1 + |χi − χj | weighted graph.
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A.5 DATASET GENERATION

In this section of the Appendix, we provide more details on our in-house dataset generation pipeline,
which can be divided into the following three steps.

First, we generate our fragments directly from large systems (proteins, RNA, lipids nanostructures)
by an automated fragmentation procedure employing the fragmentation procedure of the Swoose
C++ package (Brunken et al., 2021) implemented as part of its automated force field parametrisa-
tion functionality (Brunken & Reiher, 2020). Because the molecular fragments should represent a
similar region of chemical space as the local substructures in the large biosystems of interest for
MD applications, we generate our fragments directly from such systems. This fragmentation proce-
dure cuts out spherical fragments from a larger structure with a radius rcut and then follows the cut
bonds recursively up to a bond that is an allowed bond to cut with a well-defined saturation scheme.
Swoose implements this procedure for protein systems and it also works for most organic systems,
however, we further extend it by adding another possible bond cut, which is cutting O−P bonds and
replacing them with O−H. This allows us to generate more diverse fragments for RNA molecules.
Furthermore, Swoose generates one fragment around each atom in the system, which would result
in too many fragments per system for our purpose. Hence, we keep only a subset of fragments
sampled in a way to maximise the distances between the atoms around which the fragments were
generated. Moreover, we increase the diversity of covered chemical space by including a selection
of small molecules from the PubChem subset of the SPICE dataset as additional fragments (Eastman
et al., 2023).

Second, based on the fragments and PubChem molecules as initial structures, we sample the confor-
mation space, i.e., the potential energy surface, by three distinct methods, described in the following.

1. We run GFN-FF (Spicher & Grimme, 2020) MD simulations at 500 K and extract snapshots
in equidistant intervals. We select the GFN-FF method as a well-established universal clas-
sical force field with fixed bond topology, such that we avoid chemical reactions during the
sampling process at the high simulation temperature as we previously observed in Phys-
Net’s solvated fragments dataset (Unke & Meuwly, 2019). The most significant advantage
of the MD sampling method is that is produces physically reasonably configurations that
are generated in a well-defined process. However, its disadvantages are that for short-to-
medium length MD runs, the extracted snapshots can be autocorrelated to some extent and
only a local part of the full conformation space can be sampled. Hence, we add methods 2
and 3 to our sampling approach.

2. For every N -th snapshot extracted from the MD simulation, we generate N random sets of
positions that we obtain by applying small displacements to the original positions. These
displacements are sampled from a Gaussian distribution. This mdgauss method, extends
the md method by adding a set of uncorrelated configurations. The number of structures
obtained from this sampling method is by construction the same as the number of structures
obtained from the MD run.

3. By applying the OpenBabel software (O’Boyle et al., 2011), we add conformers that
are generated by a stochastic approach and cover the conformer space more broadly. We
specifically apply this software as it allows conformer generation even for systems that
contain more than one molecule, which occurs regularly in our generated fragments. The
number of conformers generated can, in principle, be freely chosen, however, for simplicity,
we generate the same amount as the number of structures sampled from MD runs. Note
that for small fragments or PubChem molecules it may be possible that OpenBabel is not
able to generate that many distinct conformers. In such cases, we generate the maximum
possible number of conformers.

For an example fragment, we present the sampling of geometries visually in Figure 6.

Lastly, one requires reference forces for the generated structures. These can be calculated at any
level of quantum chemical approximation. For the sake of this proof-of-concept study, we employ
semi-empirical quantum chemical methods as the reference, in particular, the GFN1-xTB method
implemented in the xtb software (Bannwarth et al., 2021). Semi-empirical methods are known
to exhibit higher accuracy compared to classical force fields as they already contain quantum me-
chanical information for our ML force field model to learn. Moreover, the higher efficiency of
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semi-empirical methods compared to density functional theory allows us to generate a very large
dataset, which has been shown to be necessary for CG force field training, as the coarse-graining
process adds noise to the data (Krämer et al., 2023).

Figure 6: Overlay of all sampled geometries for one peptide example fragment generated from PDB
ID 1OGA. The geometries are separated by sampling method, namely md sampling (on the left),
mdgauss sampling (in the center), and OpenBabel sampling (on the right). This illustration
demonstrates the strengths and weaknesses of each of the sampling methods, most notably that the
MD-based methods sample the geometry more locally while the stochastic conformer generation
allows the sample the potential energy surface in a more diverse manner.

For this work, we generate a dataset focused on fragments of protein, RNA, and lipid systems as
these are the systems of interest for this project due to their high relevance for computational studies
of biological systems. The original large structures used for fragmentation and the resulting dataset
will be provided alongside this work.

We sample 400 structures for each of the sampling methods md and mdgauss, and 100 additional
structures with OpenBabel for each molecule/fragment. As stated above, the number of sampled
structures with the OpenBabel method may be smaller for small fragments. The fragmentation
was done with an initial radius of 7 Å. The resulting size distribution of all structures in the dataset is
depicted in Figure 7. We add a sanity check of the structures generated by the pipeline which filters
out physically unreasonable structures. This sanity check verifies that all hydrogen atoms in the
structures have exactly one neighbouring atom and that none of the atom pairs are too close to each
other. By this filter, we exclude approximately 16% of data points before training. The resulting
dataset contains 4,910,710 structures with 7170 unique fragments or molecules.

A.6 REMARK ON SOLVATION

We stress that solvation plays an important role in all biological systems and typically is explicitly
or at least implicitly treated in classical MD simulations. Therefore, it may come as a surprise that
we deliberately refrain from adding solvation to our training dataset. We decide to do so for two
main reasons,

1. because including solvation adds significant additional complexity to our research problem,
e.g.,

• the coarse-graining of the solvent is not straightforward with our presented approaches
and requires an extension of our algorithm, and

• the training structures as well as the large evaluation structures would grow in size
significantly by including a proper number of solvent molecules,
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Figure 7: Distribution of system sizes for all 4.9 million structures in our biosystems dataset. The
largest fragment consists of 297 atoms.

2. and because we are able to add the treatment of solvation to our models in a subsequent
step without compromising the advances made in this work. To achieve this, we require an
extension of the dataset with structures that include solvation and retrain our final models
on these data after extending the CG algorithm to include a reasonable coarse-graining
strategy for solvent molecules.

However, we recognise that without this extension, the quantitative correctness of our models acting
on non-solvated structures is limited and for some structures this may possibly hamper qualitative
correctness as well. Especially for RNA systems, we can expect that missing solvation may amplify
stability problems as RNA molecules are negatively charged due to the phosphate groups.
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A.7 MD SIMULATION ASSESSMENT

This section contains additional material gathered during the assessment of the MD simulations.
Table 4 list our test systems along with their sizes and maximum temperatures encountered during
100 ps simulations (to assess MD stability). Figure 10 visualises four of these systems in their all-
atom and CG representations. Moreover, we present the TICA plot obtained with the standard model
for the IPP lactotripeptide test system in Figure 8. In Figures 11 and 12, we present our results for
10 ns simulations for the standard and tuned models, respectively. This includes the computational
scaling and stability analysis for the systems that were observed to be stable throughout the 100 ps
simulations. These figures demonstrate (i) that many systems remain stable until the end of the 10 ns
simulation or at least for a large proportion of it, and (ii) that the computational scaling of the method
is approximately linear with system size. However, note that for some systems that break apart early
in the simulation, the model’s inference efficiency can be increased artificially because the model is
dealing with less tightly connected graphs. Lastly, we visualise the observed bond stretches in RNA
systems in Figure 9.

Table 4: Overview of 100 ps MD simulations at 300 K run with the standard and tuned CG force
field models including the size of each system (atoms and beads) and the maximum temperature T
encountered in the trajectory. Values significantly higher than 300 K signal moments of high kinetic
energy release, showing that a given simulation was unstable and the system most likely (at least
partially) broke apart.

Test system N atoms N beads
standard N beads

tuned Tmax
standard Tmax

tuned

lactotripeptide IPP2 50 12 13 515 491
1AKG 211 58 62 424 396
8-CHL3 592 120 136 358 352
1CEK 103 28 30 1.03 · 103 1.23 · 105

472D 524 172 194 345 346
1BQF 371 94 105 1.35 · 107 6.08 · 105

5KGZ 634 151 177 352 350
1P79 168 57 65 389 2.23 · 104

1KUW 139 34 41 447 775
2Z754 3102 1127 1191 310 1.94 · 1011

RNA fragm. from dataset5 157 51 55 390 399
lipid fragm. from dataset6 126 25 27 482 437

2Structure taken from complex with PDB ID 8QFX.
3A non-bonded cluster of eight randomly placed cholesterol molecules
4Full RNA system 2Z75 was fragmented as part of training set generation.
5Fragmented from RNA system with PDB ID 5V3I.
6Fragmented from large nanoparticle system made up of DOTAP and CHEMS lipids.
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Figure 8: TICA plot for standard ML model for a 10 ns trajectory. For comparison with the Martini
reference, see Figure 5.

Figure 9: Visualisation of bond stretches (next to phosphate groups) observed during MD simula-
tions of the RNA systems, demonstrated with the example of the system with PDB ID 1P79. On
the left, the initial structure is depicted, while on the right, we present the system after 250 ps of
simulation. The stretched bond is marked by a green ellipse.
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Figure 10: Overlays of all-atom and CG representations of four test systems employed during this
work (see Table 4). The CG representations obtained with the tuned model are shown on the left,
while the ones obtained with the standard model are depicted on the right. The systems are from top
to bottom: lactotripeptide IPP, protein with PDB ID 1AKG, RNA with PDB ID 472D, 8 randomly-
placed cholesterol molecules.
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Figure 11: Computational scaling and MD stability analysis for 10 ns simulations with the stan-
dard CG-MLFF model. MD stability is assessed via the maximum temperature encountered in the
trajectory as explained in the main text.
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Figure 12: Computational scaling and MD stability analysis for 10 ns simulations with the tuned CG-
MLFF model. MD stability is assessed via the maximum temperature encountered in the trajectory
as explained in the main text.
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A.8 MARTINI SIMULATIONS

In this work, we apply the Martini force field as a CG reference model (Marrink et al., 2007; Souza
et al., 2021). Martini uses a simplified representation of molecules, where four heavy atoms are
merged into a single coarse-grained (CG) bead (possible mapping is 4-to-1 or 3-to-1) (Marrink et al.,
2004). The basic assumption while parametrising of the CG model: carefully parameterised proper-
ties of the individual beads are transferable to the whole molecule. The Martini CG scheme is used
to study a wide range of biological systems: lipid bilayers, transmembrane proteins, RNA/DNA,
membrane fusion, and protein-protein interactions. This approach is very useful for studying bi-
ological processes that occur on longer timescales (≈ 10 − 100µs). The most common and first
application of the Martini CG approach is, for example, self-assembly of nanoparticles or vesicles.

The systems in this work were modelled using a coarse-grained approach within the canonical
(NVT) ensemble. Gromacs 2023 (Bekker et al., 1993) coupled with the MARTINI.v2 force field was
employed. The timestep was 10 fs and the temperature was maintained at 300 K, controlled by the
Nosé–Hoover thermostat. The system was first equilibrated in the NPT ensemble with a timestep
of 1 fs at a temperature of 300 K until the system volume stabilised, which typically required ap-
proximately 100 ps. During equilibration, we employed the velocity-rescaling thermostat and the
Berendsen barostat. Furthermore, water beads were completely removed from the simulation box,
and the Dry Martini force field was applied (Arnarez et al., 2015). Dry Martini is a version of Mar-
tini where water beads are removed from the simulation. Interactions between beads are adapted by
tweaking the interaction levels and tuning bonded parameters to reproduce the properties observed
with the standard Martini force field.
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