
Improving Contrastive Learning for Referring Expression Counting

Kostas Triaridis1* Panagiotis Kaliosis1* E-Ro Nguyen1

Jingyi Xu1 Hieu Le2 Dimitris Samaras1

1Stony Brook University 2EPFL

Abstract

Object counting has progressed from class-specific mod-
els, which count only known categories, to class-agnostic
models that generalize to unseen categories. The next chal-
lenge is Referring Expression Counting (REC), where the
goal is to count objects based on fine-grained attributes
and contextual differences. Existing methods struggle with
distinguishing visually similar objects that belong to the
same category but correspond to different referring ex-
pressions. To address this, we propose C-REX, a novel
contrastive learning framework, based on supervised con-
trastive learning, designed to enhance discriminative rep-
resentation learning. Unlike prior works, C-REX oper-
ates entirely within the image space, avoiding the misalign-
ment issues of image-text contrastive learning, thus pro-
viding a more stable contrastive signal. It also guaran-
tees a significantly larger pool of negative samples, lead-
ing to improved robustness in the learned representations.
Moreover, we showcase that our framework is versatile and
generic enough to be applied to other similar tasks like
class-agnostic counting. To support our approach, we ana-
lyze the key components of sota detection-based models and
identify that detecting object centroids instead of bound-
ing boxes is the key common factor behind their success
in counting tasks. We use this insight to design a simple yet
effective detection-based baseline to build upon. Our exper-
iments show that C-REX achieves state-of-the-art results in
REC, outperforming previous methods by more than 22% in
MAE and more than 10% in RMSE, while also demonstrat-
ing strong performance in class-agnostic counting. Code is
available at this url.

This paper is currently under review at the International
Conference on Computer Vision (ICCV 2025).
A pre-print is available at this url.
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Figure 1. Our proposed method C-REX. C-REX aligns embed-
dings of objects sharing the same class and referring expression
while separating those with different expressions or classes.

1. Introduction
Object counting methods aim to predict the number of in-
stances of objects in some specified category in an image.
More recent methods have shifted focus from class-specific
counting, where the model is able to count only known cat-
egories, to class-agnostic counting, where the model can
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handle categories unseen during training. The next logical
step for designing more general and robust counting models
is enabling them to differentiate between instances of cate-
gories with specific attributes and context within an image
and count them separately. To this end Dai et al. [12] in-
troduced the task of Referring Expression Counting (REC),
which aims to count instances of objects with fine-grained
contextual differences e.g. “person walking/standing” or
“box containing grapes/mango slices”.

A fundamental challenge in Referring Expression
Counting (REC) is distinguishing between visually similar
objects that belong to the same category but correspond to
different referring expressions. Traditional counting meth-
ods struggle in this setting, as they often lack the ability to
disambiguate objects based on nuanced differences in at-
tributes. Ensuring that the final count reflects only the cor-
rect subset of objects requires models that have learned dis-
criminative features that go beyond basic object recognition
and can instead accurately represent the fine-grained differ-
ences within the same class. To achieve this, we introduce
C-REX (Contrastive Learning for Referring Expressions)
a novel Contrastive Learning (CL) approach, based on su-
pervised contrastive learning [25]. C-REX brings together
image embeddings of objects from the same class that also
correspond to the same referring expression while pushing
away those tied to different expressions or different classes.
Concretely, we designate as “positive” samples the N im-
age embeddings most similar to the referring expression and
treat the rest as negatives, where N is the ground truth ob-
ject count within an image for a referring expression. We
also confirm that using the ground truth object count as the
number of positive selections is a justified choice, both the-
oretically and through experimental results (Section 4.5).

A key strength of our contrastive learning framework
is that it is general and versatile, as it can be applied to
any task that requires learning discriminative visual fea-
tures for objects with subtle, context-dependent differences
like those described by referring expressions. In this spirit,
we make a simple change to adapt our approach for class-
agnostic counting, for which we select as positives the
samples that are more similar to the given class, since
there are no referring expressions. With this adaptation,
our model achieves competitive performance in the class-
agnostic counting task, outperforming previous text-based
methods, as shown in Section 4.

We highlight that C-REX improves upon Dai et al. [12]
by addressing key limitations, in the context of contrastive
learning. By operating entirely within the image space
rather than contrasting image and text embeddings, it en-
sures a more stable contrastive signal. Additionally, it pro-
vides a significantly larger pool of negative samples, as the
number of candidate image tokens for detection consistently
exceeds the number of referring expressions for a category

in a given image.
We begin by developing a simple detection-based base-

line to implement our novel contrastive paradigm, as it of-
fers localization and explainability which are key advan-
tages over density-based models, despite the latter histor-
ically achieving better performance. These factors are es-
pecially crucial for Referring Expression Counting (REC),
where visually similar instances must be distinguished
[15, 38]. To understand the recent success of detection-
based methods, we analyze key components of state-of-the-
art approaches like CountGD [3] and GroundingREC [12],
which have outperformed density-based models. We iden-
tify that the common key factor behind their success is the
re-purposing of robust open-set detectors like Grounding
DINO [29] from bounding box to object centroid predic-
tors, as this allows them to more robustly identify objects
in dense and cluttered scenes. Our experiments in Section
4.5 validate this insight. Building on this observation, we
design a simple yet effective detection-based baseline that
achieves strong performance in both class-agnostic count-
ing and REC.

To summarize, our contributions are the following:
• We identify the conversion of modern open-set detection

models to centroid predictors as the key component that
has allowed detection-based methods to reach sota perfor-
mance in counting tasks. Based on this insight, we design
a new baseline to serve as the foundation of our models,
that also achieves competitive performance.

• Building on this baseline, we propose C-REX, a novel
contrastive learning method for REC based on supervised
contrastive learning, that achieves state-of-the-art perfor-
mance, outperforming previous works by over 1.4 points
in MAE and over 2 points in RMSE.

• We show that C-REX is general and versatile; it can be
adapted for other visual tasks that require discriminating
between visually similar but contextually distinct objects.
We adapt it for class-agnostic counting, and demonstrate
that its performance is on par with the best text-based
counting models.

2. Related work
Early works in object counting focused mostly on class-
specific counting [1, 49, 61], addressing challenges in di-
verse domains such as crowd counting [13, 30, 41, 48] or
traffic analysis [5]. More recent work has moved to class-
agnostic counting(CAC)[42, 58, 62] where the aim is to
generalize counting across various object categories, typ-
ically not encountered during training [19, 32, 46, 51, 54].
To enable this, many methods used textual description to de-
scribe the classes [2, 8, 24], while others use a small number
of annotated examples as visual reference [21, 22, 34, 56]
to achieve better results. More recently Dai et al. [12] in-
troduced Referring Expression Counting (REC), where the
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goal is to count only the subsets of instances of a class in
an image that match a given referring expression. Each re-
ferring expression consists of a class, specifying the object
category, and an attribute, describing its fine-grained char-
acteristics. REC is closely related to Referring Expression
Segmentation [33, 50, 53] and Referring Expression Com-
prehension [39, 45], which focus on segmentation or local-
ization rather than counting.

Early approaches on object counting mostly relied on
density map regression [4, 26, 27] or bounding box detec-
tion [11, 16] in order to predict the object count. Density-
based methods estimate the final count by summing over a
density map, being traditionally more accurate in cluttered
and densely populated scenes where detection-based meth-
ods struggle [3]. However, a critical limitation of density-
based methods is the lack of object-level detail which limits
their applicability in cases that require localization and ex-
plainability [15, 38]. This is especially important in REC,
where images contain multiple visually similar instances of
the same category, each associated with a different referring
expression. In such cases, ensuring that the final count accu-
rately reflects only the correct subset of objects is crucial for
reliable and precise counting. Recent approaches, such as
CountGD [3] and GeCo [37], leverage state-of-the-art open-
set object detectors [29, 60], and reach performance on-par
with the best density-based methods [36].

For REC it is crucial to be able to disambiguate between
visually similar objects with subtle contextual differences.
For this reason, Dai et al. [12] introduce a CL module that
contrasts image and referring expression embeddings. Con-
trastive learning in a language-image setting generally re-
quires more data and larger-scale training to achieve ro-
bust representations [10, 40], whereas contrastive learning
in the image space is more efficient [35, 60]. This is evi-
dent when comparing the performance of text-image mod-
els like CLIP [40] to image-specific models like DINOv2
[35] on smaller datasets, where DINOv2 achieves compara-
ble performance to CLIP even when trained on significantly
less data. Additionally, their approach cannot utilize a large
batch size with numerous negative samples, which is crucial
for improving the robustness of the learned representations
[9, 17, 18, 25, 47]. This motivates our approach, which op-
erates in image space only and can leverages a large amount
of negative samples and outperforms [12] in REC.

3. Method

3.1. New Baseline for Detection-based Counting

Historically, density-based methods have showcased better
performance than detection-based methods, as they were
more accurate when counting large numbers of instances,
and in scenes with cluttered and dense objects. However, re-
cent detection-based methods have started becoming promi-

nent again as works like CountGD [3] and GroundingREC
[12] achieved state-of-the-art results in different counting
benchmarks.

One advantage of detection-based counting is that it in-
herently provides explainability and localization, as each
count corresponds to a specific detection, making it straight-
forward to identify which instances are being counted. This
is particularly crucial in the context of Referring Expression
Counting (REC), where images usually contain multiple vi-
sually similar instances of a single category that correspond
to different referring expressions. In this scenario it is es-
sential to verify that the final count reflects only the correct
subset of these objects.

To this end, we identify two key components of the re-
cent detection-based works [3, 12] that enable their state-
of-the-art performance: the use of new and robust open-set
detectors like Grounding DINO [29] and their conversion
to object-centroid predictors instead of bounding box de-
tectors. We use this observation to design a simple new
detection-based baseline for object-counting that demon-
strates competitive performance in both class-agnostic and
referring-expression counting. Specifically, we finetune the
original Grounding DINO architecture with two losses: an
L1 loss for point center regression and a cross-entropy clas-
sification loss, essentially replacing bounding box predic-
tion with point center prediction for Grounding DINO. In
Section 4 we show that even this simple baseline achieves
performance comparable to the state of the art, especially
in the task of referring expression counting (Table 1). We
refer to this baseline as GDino improved.

3.2. Contrastive Learning for REC

For referring expression counting it is important to be able
to robustly differentiate objects that belong in the same class
but have different attributes (referring expressions). To this
end we propose a novel contrastive learning module, that
learns more robust discriminative features using only the re-
ferring expression and its corresponding ground truth object
count N as supervision.

Our goal is to perform contrastive learning within the
same image space, as text-image contrastive learning tends
to be less stable. In the context of REC, our approach
must accommodate multiple positive samples, since an im-
age typically contains multiple instances corresponding to
the same class-referring expression pair. To ensure effective
representation learning, we aim to bring the embeddings of
these instances closer together while maintaining clear sep-
aration from other objects. For this reason our proposed loss
is based on the supervised contrastive loss [25] that extends
the standard contrastive loss to be able to handle multiple
positive samples for each anchor. Given a set of samples
I , and a set of positives p ∈ P (i) for each sample i the
supervised contrastive loss is formulated as follows:

3



Method Backbone FT REC
Val set Test set

MAE↓ RMSE↓ F1↑ MAE↓ RMSE↓ F1↑
Mean - ✗ ✗ 14.28 27.75 - 13.75 25.91 -
ZSC [55] ResNet-50 ✓ ✗ 14.84 31.30 - 14.93 29.72 -
ZSC [55] Swin-T ✓ ✗ 12.96 26.74 - 13.00 29.07 -
TFOC [58] ViT-B ✗ ✗ 16.08 31.61 0.12 17.27 32.68 0.11
CounTX [2] ViT-B-16 ✓ ✗ 11.88 27.04 - 11.84 25.62 -
CountGD [3] Swin-B ✓ ✗ 9.51 22.91 - 11.33 30.87 -
GDino [29] Swin-T ✓ ✗ 9.03 21.98 0.65 8.88 21.95 0.66
GroundingREC [12] Swin-T ✓ ✓ 6.80 18.13 0.68 6.50 19.79 0.69
GDino improved Swin-T ✓ ✗ 5.92 17.09 0.65 5.90 19.73 0.68
C-REX (ours) Swin-T ✓ ✓ 4.86 13.60 0.68 5.06 17.53 0.70

Table 1. Comparison of results on the REC-8K dataset. GDino is short for GroundingDino. Results are obtained from Dai et al. [12],
except for CountGD which we retrained on the REC-8K dataset using their publicly available code. FT indicates whether the model was
fine-tuned on REC-8K, while REC refers to models that were specifically designed for the task. Best results are in bold.

Lsup =
∑
i∈I

− log

 1

|P (i)|
∑

p∈P (i)

exp(zi · zp / τ)∑
α∈I−{i}

exp(zi · zα / τ)


(1)

The positive samples are usually chosen to be the sam-
ples that belong to the same class as the anchor. For our
approach, we wish to contrast the image tokens that corre-
spond to the objects for a given class and attribute (referring
expression) to the ones that correspond to the same class but
different attributes or to different classes altogether. To do
this without explicit supervision for the image tokens zi ∈ I
we leverage N , the number of ground truth counts in the im-
age for the given RE and use it to assign pseudo-labels by
dividing our image tokens into a positive (I+) and negative
(I−) class. Given an image and RE tokens t, we get the
masked RE tokens tm by masking the token corresponding
to the class label. Then we compute similarity scores yi be-
tween all image tokens and the masked RE and assign the
positive class to the N tokens with the highest similarity
scores.

yi =
zi · tm

∥zi∥ ∥tm∥
(2)

I+ = argtopN
i∈I

(yi) (3)

We also propose a modified version of the supervised
contrastive loss, as the standard formulation also pushes
samples from the negative class I− closer together. In our
case, this is undesirable since the negative class may contain
samples from a diverse set of class labels, referring expres-
sions, or even tokens corresponding to no class label. To ad-
dress this, we modify the supervised contrastive objective to

only use samples from the positive class as anchors. Based
on this modification, our revised supervised contrastive loss
can be formulated as follows:

L∗
sup = (4)

∑
i∈I+︸︷︷︸

optimize
positives

only

− log

 1

|I+| − 1

∑
p∈I+−{i}

exp(zi · zp / τ)∑
α∈I−{i}

exp(zi · zα / τ)



We verify that the motivation for this modification is
well-grounded and supported by demonstrating its effec-
tiveness in our ablation study (Section 4.5).

Our final proposed model, named C-REX (Contrastive
learning for Referring Expression Counting) combines the
proposed modified detection losses, the L1 point center lo-
calization loss and the cross-entropy classification loss, and
our proposed novel contrastive loss via a weighted sum:

L = λlocLloc + λclsLcls + λcL∗
sup (5)

3.3. Extension to class-agnostic counting
C-REX is designed to be general and versatile, en-
abling models to distinguish objects with subtle, context-
dependent variations, such as those described by referring
expressions. This allows us to adapt it to any task that
requires multiple image-space object embeddings be con-
trasted and separated based on a set of distinguishing at-
tributes. Following this principle, we introduce a simple
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Figure 2. Qualitative comparison of referring expression counting (REC) results across different methods. The first row shows the input
images, while the second row contains ground truth annotations. The third, fourth, and fifth rows display predictions from GroundingREC
[12], our improved Grounding DINO baseline, and C-REX, respectively. Each column corresponds to a different referring expression. We
observe that our method not only gets the most accurate counts, but it also counts the correct ground truth instances (i.e. the ones that were
truly referred to by the given expression).

adaptation for class-agnostic counting, where positive sam-
ples are selected based on their similarity to the target class,
rather than a referring expression. This adaptation is less
critical in class-agnostic counting where models need to dif-
ferentiate between objects of different classes, whose image
embeddings are already different enough, so we do not ex-
pect to see the same amount of improvement as in REC.
With this adaptation, our model achieves competitive per-
formance in the class-agnostic counting task, outperform-
ing previous text-based methods, as shown in Section 4, al-
though the improvement is less significant, as was expected.

3.4. Advantages over alternate CL methods

Dai et al. [12] also tried to learn more discriminative fea-
tures by contrasting image embeddings to text embeddings
of ”candidate” referring expressions. However, their ap-
proach has key limitations in the context of contrastive
learning. Specifically, their contrastive loss operates on
image-text pairs, which presents additional challenges due

to the inherent misalignment between image and text em-
bedding spaces [28]. In contrast, our method operates en-
tirely within the image space, ensuring a more stable con-
trastive signal. CL in an image-text setting generally re-
quires more data and larger-scale training to achieve robust
representations [10, 40], whereas contrastive learning in the
image space is more efficient [35, 60].

Additionally, a crucial factor in contrastive learning is
the presence of a large batch size with numerous nega-
tive samples, as this increases the diversity and variability
of samples included, thus improving the robustness of the
learned representations [9, 17, 18, 25, 47]. However, [12] is
limited in that regard, as the number of negative samples is
constrained by the number of existing referring expressions
for a single class in an image, typically fewer than four.
Our contrastive loss overcomes this constraint by leverag-
ing a significantly larger pool of negatives, typically in the
hundreds, consisting of image embeddings not selected by
our strategy [29]. These advantages are reflected in our ex-
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perimental results (Section 4), where our model achieves
state-of-the-art REC performance, substantially surpassing
previous work in both MAE and RMSE.

4. Experiments
We train C-REX on the REC-8K training set, and then eval-
uate on its test split for the REC task, following Dai et al.
[12]. We then train our model on the FSC-147 [43] train-
ing set only, and evaluate on the FSC-147 test set, and the
CARPK test set, following the protocol of the state-of-the-
art class-agnostic counting models [3, 36] to ensure a fair
comparison for the class-agnostic counting task.

4.1. Implementation details
We use Grounding DINO [29] with a SWIN-T [31] image
encoder and a BERT-base [14] text encoder, keeping them
frozen and only finetuning its feature enhancer and cross-
modality decoder. For the model output we select 900 to-
kens to make predictions following DETR [7] and use the
thresholding method of Dai et al. [12] to select positive de-
tections, setting a threshold of 0.30 for the CLS token and
0.36 for the rest of the text tokens. The predicted count is
calculated as the number of predicted positive detections.

We train our models using AdamW with a learning rate
of 1e-5 and a weight decay of 1e-4. For our loss calculation
we select λloc to be 1, λcls to be 5 and λc to be 0.005.

4.2. Datasets & Metrics

REC-8K [12] consists of 8, 011 images, each paired with
2.13 referring expressions (REs) on average. In total, the
dataset contains 17, 122 image-RE pairs, where each pair is
annotated with an arbitrary number of ground-truth points
pinpointing the target objects in the image.

FSC-147 [43] is a widely used object counting dataset,
which consists of 6, 135 images spanning 147 classes, split
in a non-overlapping manner. Each image is annotated with
three visual exemplars.

CARPK [20] contains drone-captured images of cars typi-
cally located in parking lots. It has 1, 448 images, annotated
with at least two bounding boxes as visual exemplars.

Metrics Following prior work [3, 12, 36, 55], we report the
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) to evaluate and compare performance. For REC
we also report the F1 score following Dai et al. [12].

4.3. Results in REC
Quantitative Comparison We compare our proposed
method, C-REX, against existing class-agnostic counting
methods, including ZSC [55], TFOC [58], CounTX [2],
CountGD [3], as well as GroundingREC [12], the only other
method specifically designed for REC. Table 1 presents our

Method Setting
Val set Test set

MAE RMSE MAE RMSE

FamNet [42] VE 23.75 69.07 22.08 99.54
BMNet+ [44] VE 15.74 58.53 14.62 91.83
CounTR [8] VE 13.13 49.83 11.95 91.23
CACViT [52] VE 10.63 37.95 9.13 48.96
DAVE [36] VE 8.91 28.08 8.66 32.36
CountGD [3] Both 7.10 26.08 6.75 43.65

ZSC [55] Text 26.93 88.63 22.09 115.17
CounTX [2] Text 17.10 65.61 15.88 106.29
CountGD [3] Text 12.14 47.51 14.76 120.42
DAVE [36] Text 15.48 52.57 14.90 103.42
GDino [29] Text 10.32 55.54 10.82 104.00
GREC [12] Text 10.06 58.62 10.12 107.19

GDino impr. Text 9.71 55.11 10.73 103.79
C-REX Text 10.19 57.14 10.01 101.46

Table 2. Comparison of results on the FSC-147 [43] dataset, us-
ing either text or visual exemplars as a guide to perform counting.
GDino is short for GroundingDino, GREC is short for Ground-
ingREC, and DGino impr. denotes our improved baseline. VE
stands for visual exemplars, while Both stands for VE and text.
All results from the original papers. Best results in bold.

experimental results, where we also compare with Ground-
ing DINO [29], following Dai et al. [12], as well as our
improved baseline. The latter surpasses GroundingREC in
MAE and RMSE, though it falls slightly behind in F1 score.
Noteably, C-REX outperforms all previous methods by a
substantial margin, achieving the best results across all three
metrics, becoming the sota model on REC-8K.

Dataset Method Test
MAE ↓ RMSE ↓

CARPK

CLIP-count [23] 11.96 16.61
CounTX [2] 8.13 10.87
VLCounter [24] 6.46 8.68
CountGD [3] † 3.83 5.41
GroundingREC [12] 7.91 10.18
GDino improved 3.80 5.16
C-REX (ours) 4.21 6.12

Table 3. Comparison with state-of-the-art CAC methods, using
text as guidance. All models are trained on FSC-147 [43]. We
mark CountGD with † as it is the only model trained using both
visual exemplars and text. CounTX is finetuned on CARPK [20].

Figure 3 presents the MAE and RMSE scores across dif-
ferent object count ranges on the test set, illustrating per-
formance under varying object densities. Our proposed
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Figure 3. Quantitative comparison between GroundingREC, the improved GDino baseline and C-REX in the REC-8K test set by object
count range. The number of samples for each bin is annotated below the bin’s range as n. We observe that C-REX outperforms the two
baseline models across all count ranges, with the results only being close for the RMSE higher count bin.

method, C-REX, achieves consistently lower MAE than
GroundingREC and our improved Grounding DINO base-
line across all object count ranges, with particularly notice-
able improvements in mid-to-high count scenarios (21–100
objects). While the RMSE improvements for 100+ objects
are more modest, C-REX still demonstrates comparable or
superior performance, indicating the effectiveness of detect-
ing object centroids instead of bounding boxes. Figure 4
presents the performance of the models across different at-
tribute categories. C-REX generally outperforms both base-
lines, with the largest improvements observed in attributes
like action, location, and color, where precise object differ-
entiation is crucial (e.g., “car driving left/right”), showcas-
ing the importance of our contrastive approach for disam-
biguating between items in those categories. Visual exam-
ples for these attribute categories are provided in the sup-
plementary.

Qualitative Comparison Figure 2 presents qualitative
comparisons between GroundingREC, our improved base-
line, and C-REX on diverse REC scenarios. Each col-
umn corresponds to a different referring expression, rang-
ing from object orientation (“car driving to the right”), to
fine-grained attributes (“person not wearing a mask”) and
positional relationships (“stamp in the bottom two rows” or
“person in the bus stop”). We observe that C-REX consis-
tently provides more accurate counts, particularly in cases
requiring precise attribute understanding and spatial aware-
ness. For instance, in the “car driving to the right” scenario,
C-REX correctly identifies the orientation of cars and accu-
rately predicts the total count, whereas both baselines fail
due to incorrect localization. Similarly, in the “stamp in

the bottom two rows” example, C-REX correctly focuses
on the relevant stamps, while other methods struggle with
miscounting due to either restricting the count to one row or
identifying objects from other rows. A similar issue arises
in the “person in the bus stop” case, where the baselines
fail to restrict counting to only those inside the bus stop,
whereas C-REX demonstrates better selectivity and accu-
racy. We provide more examples of both high performing
and failure cases for our model in the supplementary.

4.4. Results in Class-Agnostic Counting

We adapt C-REX for class-agnostic counting and evaluate it
on the benchmark datasets FSC-147 [43] and CARPK [20].
Specifically, we trained C-REX on FSC-147 and then eval-
uated its generalization abilities on CARPK’s test set. We
present results for both datasets on Table 2 and Table 3 re-
spectively. In FSC-147, C-REX outperforms all previous
text-based methods on both MAE and RMSE on the test
set. In CARPK, we notice that the more generic approach
of the improved Grounding DINO baseline leads to the best
overall performance, however C-REX is also competitive,
performing better or on par with most previous methods.

4.5. Ablation Study

4.5.1. Supervised CL modification

On Table 4 we see that our proposed modification (L∗
sup) to

the supervised contrastive objective significantly improves
performance compared to both the unmodified version and
the baseline method. This highlights the importance of our
decision to use only positive samples as anchors, confirming
its crucial role in improving the model’s effectiveness.
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Figure 4. Quantitative comparison in terms of MAE between
GroundingREC, our improved baseline and C-REX in the REC-
8K test set for different RE categories. C-REX outperforms both
baseline models across most categories, with the largest improve-
ments shown in the action, orientation and location categories. We
visualize categories with more than 30 samples.

4.5.2. Number of selections
We also verify that choosing the top N (where N cor-
responds to the ground truth count) samples to belong to
the positive class outperforms two alternative strategies: (i)
choosing a predefined small amount of high similarity sam-
ples that behave as pseudo-exemplars, and (ii) selecting
slightly more than N samples to account for uncertainty
in the selection process (Table 5). We discuss our choise
of N further in the supplementary, showing that it is both
theoretically justified and empirically supported.

4.5.3. Key baseline components
To validate the impact of re-purposing open-set detectors as
object centroid predictors, we compare different variations
of GroundingREC [12] and display the results in Table 6.
First, we evaluate the full GroundingREC model, then we
remove its feature fusion modules, and finally its CL mod-
ule, leaving only the core detection-based counting pipeline
which forms our baseline. The results, presented in Section
4.5, demonstrate that even without fusion modules or con-
trastive learning, our improved baseline remains competi-

Method Val set Test set
MAE RMSE F1 MAE RMSE F1

baseline 5.92 17.09 0.65 5.90 19.73 0.68
+ Lsup 5.69 14.98 0.65 5.91 19.34 0.68
+ L∗

sup 4.86 13.60 0.68 5.06 17.53 0.70

Table 4. Ablation study comparing the performance of C-REX on
the validation and test set when using the proposed modified su-
pervised contrastive loss (L∗

sup) versus the typical supervised con-
trastive loss formulation (Lsup). Our proposed modification leads
to better performance across both datasets and metrics.

Number of
Selections

Val set Test set
MAE RMSE MAE RMSE

top N 4.86 13.60 5.06 17.53
top 5 7.58 18.34 7.51 20.83
top N +

√
N 6.02 15.79 6.07 18.80

top N + 2log2(N) 5.41 14.89 5.53 18.95

Table 5. Ablation study for the number of selections for our pro-
posed contrastive loss. N refers to the ground truth object count.

tive, highlighting the effectiveness of centroid-based detec-
tion.

Number of
Selections

Val set Test set
MAE RMSE MAE RMSE

GDino 9.03 21.98 8.88 21.95
GREC [12] 6.80 18.13 6.50 19.79
GREC - feat.fusion 6.53 18.57 6.16 18.86
GDino impr. 5.92 17.09 5.90 19.73

Table 6. Ablation study for our proposed baseline. GREC is
GroundingREC [12]. GREC - feat.fusion refer to GroundingREC
without its feature fusion module. GDino impr. is our baseline.

5. Conclusion
In this work, we introduce C-REX, a novel contrastive
learning framework designed to tackle Referring Expres-
sion Counting (REC) by improving detection-based count-
ing models’ capabilities in distinguishing visually similar
objects with different referring expressions. By operating
entirely within the image space, C-REX eliminates the mis-
alignment issues inherent in image-text contrastive learn-
ing, ensuring a more stable contrastive signal and leverag-
ing a significantly larger pool of negative samples for im-
proved robustness. Additionally, we adapt C-REX for class-
agnostic counting, and explain that it is general and versa-
tile; being able to be adapted for other visual tasks that re-
quire discriminating between visually similar but contextu-
ally distinct objects like referring expression segmentation
or detection. To support our approach, we analyzed sota
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detection-based counting methods and identified centroid-
based detection as a key factor behind their success, using it
to design an improved detection-based baseline. Our exper-
iments validate the effectiveness of C-REX, that achieves
sota performance in REC with over 22% improvement in
MAE and more than 10% in RMSE, while also performing
strongly in class-agnostic counting. These findings high-
light the potential of CL within the image space for broader
object counting and vision-language tasks, opening avenues
for future research in fine-grained visual understanding.
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Improving Contrastive Learning for Referring Expression Counting

Supplementary Material

We organize the supplementary material as follows:
6 Discussion on choice of number of selections
7 Details on metrics
8 Qualitative Results from well performing attribute cate-

gories
9 Additional Qualitative Results

6. Discussion on choice of number of selections
Intuitively choosing the the top N (where N is the ground
truth count) samples based on their similarity to the re-
ferring expression makes sense, as visually similar objects
with incorrect referring expressions often lie near the deci-
sion boundary. In the context of contrastive learning, it is
crucial to target excluding those samples in order to build
more discriminative representations for samples with fine-
grained differences. We verify that when selecting with
this strategy, approximately 80% of selected samples cor-
respond to correct instances. This shows that if there are
N correct samples and Ñ additional objects that are vi-
sually similar but correspond to different referring expres-
sions, the selection process still favors correct samples. Un-
less Ñ << N , we guarantee that most of the correct sam-
ples will be pushed away from most of the “confusing”
ones. Moreover, some degree of label uncertainty is not
detrimental, as prior research has shown that controlled la-
bel noise can even improve model robustness and general-
ization [6, 57, 59]. In fact, incorporating some degree of
label uncertainty is a relatively common practice in self-
supervised learning. For example, in DINO training, ran-
dom local crops often exclude key objects or contain only
background, yet the model still learns meaningful represen-
tations [35, 60].

7. Details on metrics
We use MAE, RMSE and F1 as metrics. Given n samples
where ci represents the ground truth counts and ĉi repre-
sents the predicted counts for each sample i, the MAE and
RMSE are calculated as:

MAE =
1

n

n∑
i=1

|ci − ĉi|, RMSE =

√√√√ 1

n

n∑
i=1

(ci − ĉi)2 (6)

In the REC task specifically, images typically contain
multiple instances of a given class, each associated with
different referring expressions. This setup poses a signifi-
cant challenge for detection-based counting models, which
may miss correct instances or generate false positives by

misidentifying objects of the same class that belong to dif-
ferent referring expressions. When this occurs, MAE and
RMSE can be misleadingly low, failing to capture the true
counting performance. To address this, we also report the
F1 score, following Dai et al. [12], which ensures that our
predicted count not only matches the total number of in-
stances but also correctly identifies them.
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location orientation

Nail polish	
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Figure 5. Some qualitative examples from the “location” and “ori-
entation” attribute categories, for which our model vastly outper-
forms previous works. Here we can observe that our novel con-
trastive learning approach allows the model to disambiguate be-
tween fine-grained spatial attributes, only selecting instances from
items in the “top” layer for the first image and cars driving to the
“left” in the second image.

8. Qualitative Results from well performing at-
tribute categories

Figure 5 showcases the model’s localization and orienta-
tion capabilities. Specifically, the first column of Figure 5
presents a cardboard with multiple rows of nail polishes,
with the target referring expression prompting the model to
count the ones located in the top shelf. We observe that the
model succesfully locates and subsequently counts all the
nail polishes found in the top shelf, and none found in the
rest of the shelves. In the second column, we observe the
model’s good orientation capabilities, as it manages to cor-
rectly count the cars driving on the right side of the road,
without misidentifying cars on the left side.
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Figure 6. Qualitative Comparison of referring expression counting (REC) results where our proposed method C-REX achieves good per-
formance. The first row shows the input images, while the second row contains ground truth annotations. The third row displays C-REX
predictions. Each column corresponds to a different referring expression.
Figure 7. Qualitative Comparison of referring expression counting (REC) results where our proposed method C-REX yields poor perfor-
mance. In the same notion, the first row shows the input images, while the second row contains ground truth annotations. The third row
displays C-REX predictions. Each column corresponds to a different referring expression.

9. Additional Qualitative Results

In Figure 6, we present a series of examples where the pro-
posed method achieved good and poor performance respec-
tively. The former are presented in the top sub-figure, while
the latter are found in the bottom sub-figure. For instance, in
the first column of the top sub-figure, our proposed model
successfully identifies all the black cars, while it does not
count any differently colored car instances. Another no-
table example is the one on the fourth column (“Apple in
the second top layer”), where the model correctly counts

and locates the right row of apples, demonstrating its good
performance on positional relationship attributes.

In contrast, there are also cases where C-REX fails to
correctly count the target instances. Such cases are pre-
sented in the bottom sub-figure of Figure 6. For example,
in the first column, where the target objects are defined as
the bottle caps with the letter “T” on them, we notice that
the model fails to identify, and thus correctly count, the vast
majority of them. Moreover, in the third column, where the
target referring expression prompts us to count the amount
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of birds in the bottom line of the cables, we notice that the
model miscounts the ones that are actually located in the
bottom row, while it also counts three that lie in the top row.
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