
Weisfeiler–Leman at the margin

Billy J. Franks∗
University of Kaiserslautern-Landau

Christopher Morris∗
RWTH Aachen University

Ameya Velingker
Google Research

Floris Geerts
University of Antwerp

Abstract
The Weisfeiler–Leman algorithm (1-WL) is a well-studied heuristic for the graph
isomorphism problem. Recently, the algorithm has played a prominent role in
understanding the expressive power of message-passing graph neural networks
(MPNNs) and being effective as a graph kernel. Despite its success, 1-WL faces
challenges in distinguishing non-isomorphic graphs, leading to the development of
more expressive MPNN and kernel architectures. However, the relationship between
enhanced expressivity and improved generalization performance remains unclear.
Here, we focus on augmenting 1-WL and MPNNs with subgraph information
and employ classical margin theory to investigate the conditions under which
an architecture’s increased expressivity aligns with improved generalization
performance. In addition, we show that gradient flow pushes the MPNN’s weights
toward the maximum margin solution.

1 Introduction
Graph-structured data are common in fields such as chemo- and bioinformatics [55, 100, 114],
combinatorial optimization [25], image analysis [97], and social-network analysis [32], highlighting
the need for effective machine learning methods for graphs. Current approaches include graph
kernels [20, 63] and message-passing graph neural networks (MPNNs) [44, 93]. Notably, 1-WL [112]
and its MPNN counterparts [78, 115] have recently improved vertex- and graph-level learning [80].
However, 1-WL’s limitations in distinguishing non-isomorphic graphs [7, 24] have led to more
expressive extensions [80]. For instance, Bouritsas et al. [21] enhanced 1-WL and MPNNs by
incorporating subgraph information, showing that this approach improves graph discrimination and
predictive performance compared to 1-WL and k-WL [24]. Yet, the reasons behind these performance
improvements remain unclear. Recent work [82] using 1-WL to analyze the VC dimension of MPNNs
does not clarify why increased expressive power correlates with better generalization performance.
Specifically, while higher VC dimension reflects that more non-isomorphic graphs can be differentiated
by 1-WL, it also worsens generalization performance. This issue is similarly relevant for 1-WL-based
kernels. See Appendix A for a discussion of related work.

Here, based on Alon et al. [3]’s theory of partial concepts, we derive tight upper and lower bounds for
the VC dimension of the 1-WL-based kernels, corresponding MPNNs, and more expressive architectures,
parameterized by the margin separating the data. Our theory establishes the first link between increased
expressive power and improved generalization performance. In addition, building on Ji and Telgarsky
[53], we show that gradient flow pushes the MPNN’s weights toward the maximum margin solution.

2 Background
Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets,
i.e., the generalization of sets allowing for multiple instances for each of its elements. For two sets

∗Equal contribution.

B. J. Franks et al., Weisfeiler–Leman at the margin (Extended Abstract). Presented at the Third Learning on Graphs
Conference (LoG 2024), Virtual Event, November 26–29, 2024.

Weisfeiler–Leman at the margin

X and Y , let XY denote the set of functions mapping from Y to X . Let S ⊂ Rd, then the convex
hull conv(S) is the minimal convex set containing the set S. For p ∈ Rd, d > 0, and ε > 0, the ball
B(p, ε, d) := {s ∈ Rd | ∥p− s∥ ≤ ε}. Here, and in the remainder of the paper, ∥ · ∥ refers to the
2-norm ∥x∥ :=

√
x2
1 + · · ·+ x2

d, for x ∈ Rd.

Kernels. A kernel on a non-empty set X is a symmetric, positive semidefinite function k : X×X → R.
Equivalently, a function k : X × X → R is a kernel if there is a feature map ϕ : X → H to a Hilbert
space H with inner product ⟨·, ·⟩ such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for all x and y ∈ X . We also call
ϕ(x) ∈ H a feature vector. A graph kernel is a kernel on the set G of all graphs. In the context of graph
kernels, we also refer to a feature vector as a graph embedding.

VC Dimension of partial concepts. Let X be a non-empty set. As outlined in Alon et al. [3], we
consider partial concepts H ⊆ {0, 1, ⋆}X , where each concept c ∈ H is a partial function. That is, if
x ∈ X such that c(x) = ⋆, then c is undefined at x. The support of a partial concept h ∈ H is the
set supp(h) := {x ∈ X | h(x) ̸= ⋆}. The VC dimension of (total) concepts [106] straightforwardly
generalizes to partial concepts. That is, the VC dimension of a partial concept class H, denoted VC(H),
is the maximum cardinality of a shattered set U := {x1, . . . , xm} ⊆ X . Here, the set U is shattered if
for any τττ ∈ {0, 1}m there exists c ∈ H such that c(xi) = τi, for all i ∈ [m]. In essence, Alon et al. [3]
showed that the standard definition of PAC learnability extends to partial concepts, recovering the
equivalence of finite VC dimension and PAC learnability.

Geometric margin classifiers. Classifiers with a geometric margin, e.g., support vector machines [27],
are a cornerstone of machine learning. A sample (x1, y1), . . . , (xs, ys) ∈ Rd × {0, 1}, for d > 0, is
(r, λ)-separable if (1) there exists p ∈ Rd and r > 0 and a ball B(p, r, d) such that x1, . . . ,xs ∈
B(p, r, d) and (2) the Euclidean distance between conv({xi | yi = 0}) and conv({xi | yi = 1}) is at
least 2λ. Then, the sample is linearly separable with margin λ. We define the set of concepts Hr,λ(Rd)
as follows{

h ∈ {0, 1, ⋆}R
d
∣∣∣ ∀x1, . . . ,xs ∈ supp(h) : (x1, h(x1)), . . . , (xs, h(xs)) is (r, λ)-separable

}
.

Alon et al. [3] showed that the VC dimension of the concept class Hr,λ(Rd) is asymptotically lower-
and upper-bounded by r2/λ2. Importantly, the above bounds are independent of the dimension d, while
standard VC dimension bounds scale linearly with d [5].

The 1-dimensional Weisfeiler–Leman algorithm. The 1-WL or color refinement is a well-studied
heuristic for the graph isomorphism problem, originally proposed by Weisfeiler and Leman [112].
Intuitively, the algorithm determines if two graphs are non-isomorphic by iteratively coloring or labeling
vertices. Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL
computes a vertex coloring C1

t : V (G) → N, depending on the coloring of the neighbors. That is, in
iteration t > 0, we set C1

t (v) :=

RELABEL
((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural number,
which has not been used in previous iterations. In iteration 0, the coloring C1

0 := ℓ is used. To test
whether two graphs G and H are non-isomorphic, we run the above algorithm in “parallel” on both
graphs. If the two graphs have a different number of vertices colored c ∈ N at some iteration, the 1-WL
distinguishes the graphs as non-isomorphic. Moreover, if the number of colors between two iterations,
t and (t + 1), does not change, i.e., the cardinalities of the images of C1

t and C1
t+1 are equal, the

algorithm terminates. For such t, we define the stable coloring C1
∞(v) = C1

t (v), for v ∈ V (G ∪̇H).

Graph kernels based on the 1-WL. Let G be a graph, following Shervashidze et al. [95], the
idea for a kernel based on the 1-WL is to run the 1-WL for T ≥ 0 iterations, resulting in a coloring
function C1

t : V (G) → N for each iteration t ≤ T . Let Σt denote the range of C1
t , i.e., Σt :=

{c | ∃ v ∈ V (G) : C1
t (v) = c}. We assume Σt to be ordered by the natural order of N, i.e., we

assume that Σt consists of c1 < · · · < c|Σt|. After each iteration, we compute a feature vector
ϕt(G) ∈ R|Σt| for each graph G. Each component ϕt(G)i counts the number of occurrences of
vertices of G labeled by ci ∈ Σt. The overall feature vector ϕWL(G) is defined as the concatenation

2

Weisfeiler–Leman at the margin

of the feature vectors of all T iterations, i.e., ϕ(T)
WL (G) :=

[
ϕ0(G), . . . , ϕT (G)

]
, where [. . .] denote

column-wise vector concatenation. This results in the kernel k(T)
WL (G,H) := ⟨ϕ(T)

WL (G), ϕ
(T)
WL (H)⟩,

where ⟨·, ·⟩ denotes the standard inner product. We further define the normalized 1-WL feature vector
Ě

ϕ
(T)
WL (G) := ϕ

(T)
WL (G)/∥ϕ(T)

WL (G)∥ obtained by normalizing the 1-WL feature vector to unit length.

Weisfeiler–Leman optimal assignment kernel. Based on the 1-WL, Kriege et al. [61] defined the
Weisfeiler–Leman optimal assignment kernel (1-WLOA), which computes an optimal assignment
between the colors computed by the 1-WL for all iterations; see Kriege et al. [61] for details. Given two
graphs G and H and let T ≥ 0, the 1-WLOA computes

kWLOA(G,H) :=
∑

t∈[T]∪{0}

∑
c∈Σt

min(ϕt(G)c, ϕt(H)c).

Observe that for a fixed but arbitrary n, we can compute a corresponding finite-dimensional feature map
ϕ
(T)
WLOA for the set of n-order graphs. From the theory developed in Kriege et al. [61], it follows that the

1-WLOA kernel has the same expressive power as the 1-WL in distinguishing non-isomorphic graphs.

More expressive variants of the 1-WL. It is easy to see that the 1-WL cannot distinguish all pairs of
non-isomorphic graphs [7, 24]. However, there exists a large set of more expressive extensions of
the 1-WL, which have been successfully leveraged as kernel or neural architectures [80]. Moreover,
empirical results suggest that such added expressive power often translates into increased predictive
performance. Nonetheless, the precise mechanisms underlying this performance boost remain unclear.

In the following, we define a simple, more expressive modification of the 1-WL, the 1-WLF . It is a
simplified variant of the algorithms defined in Bouritsas et al. [21], which does not account for orbit
information. Let G be a graph and F be a finite set of graphs. For F ∈ F , we define a vertex labeling
ℓF : V (G) → N such that ℓF (v) = ℓF (w) if, and only, if there exists Xv ⊆ V (G) with v ∈ Xv and
Xw ⊆ V (G) with w ∈ Xw such that G[Xv] ≃ F and G[Xw] ≃ F . In other words, ℓF encodes the
presence of subgraphs G[Xv] in G, isomorphic to F and containing vertex v. Furthermore, we define the
vertex labeling ℓF : V (G) → N, where ℓF (v) = ℓF (w) if, and only, if, for all F ∈ F , ℓF (v) = ℓF (w).
Finally, for t ≥ 0, we define the vertex coloring C1,F

t : V (G) → N, where C1,F
0 (v) := ℓF (v) and

C1,F
t (v) :=

RELABEL
((
C1,F

t−1(v), {{C
1,F
t−1(u) | u ∈ N(v)}}

))
,

for v ∈ V (G). Hence, the 1-WLF only differs from the 1-WL at the initialization step. In Proposition 11,
we show that the 1-WLF is more expressive than the 1-WL. We can also define a 1-WLOA variant of
the 1-WLF , which we denote by 1-WLOAF . See Appendix C for how to derive kernels based on the
1-WLF . See Appendix D for a formal definition of MPNNs and more expressive variants.

3 Weisfeiler–Leman at the margin: When more expressivity matters
Here, we prove lower and upper bounds on the VC dimension of 1-WL-based kernels, MPNNs, and
their more expressive generalizations. We first derive a general condition to prove margin-based lower
and upper bounds. For a subset S ⊆ Rd, d > 0, we consider the following set of partial concepts from S
to {0, 1, ⋆}, Hr,λ(S) :={

h ∈ {0, 1, ⋆}S
∣∣∣ ∀x1, . . . ,xs ∈ supp(h) : (x1, h(x1)), . . . , (xs, h(xs)) is (r, λ)-separable

}
.

For the upper bound, since S ⊆ Rd, the VC dimension of Hr,λ(S) is upper-bounded by the VC
dimension of Hr,λ(Rd). As already mentioned, the latter is known to be bounded by r2/λ2 [3, 14]. For
the lower bound, the following lemma, implicit in Alon et al. [3], states sufficient conditions for S such
that the VC dimension of Hr,λ(S) is also lower-bounded by r2/λ2.

Lemma 1. Let S ⊆ Rd. If S contains m := ⌊r2/λ2⌋ vectors b1, . . . , bm ∈ Rd with bi := (b
(1)
i , b

(2)
i)

and b
(2)
1 , . . . , b

(2)
m being pairwise orthogonal, ∥bi∥ = r′, and ∥b(2)i ∥ = r, then VC-dim(Hr′,λ(S)) ∈

Θ(r
2
/λ2).

Next, we derive lower- and upper-bounds on the VC dimension of graphs separable by some
graph embedding, e.g., the 1-WL kernel. For n, d > 0, let E(n, d) be a class of graph embedding

3

Weisfeiler–Leman at the margin

methods consisting of mappings from Gn to Rd, e.g., 1-WL feature vectors. A (graph) sample
(G1, y1), . . . , (Gs, ys) ∈ Gn × {0, 1} is (r, λ)-E(n, d)-separable if there is an embedding emb ∈
E(n, d) such that (emb(G1), y1), . . . , (emb(Gs), ys) ∈ Rd × {0, 1} is (r, λ)-separable, resulting in
the set of partial concepts

Hr,λ(E(n, d)) :=
{
h ∈ {0, 1, ⋆}Gn

∣∣∣ ∀G1, . . . , Gs ∈ supp(h) :

(G1, h(G1)), . . . , (Gs, h(Gs)) is (r, λ)-E(n, d)-separable
}
.

Now, consider the subset S(n, d) := {emb(G) ∈ Rd | G ∈ Gn, emb ∈ E(n, d)} of Rd. It is clear that
the VC dimension of Hr,λ(E(n, d)) is equal to the VC dimension of Hr,λ(S(n, d)), which in turn
is upper-bounded by r2/λ2. We next use Lemma 1 to obtain lower bounds on the VC dimension of
Hr,λ(E(n, d)) for specific classes of embeddings.

We first consider the class of graph embeddings obtained by the 1-WL feature map after T ≥ 0 iterations,
i.e., EWL(n, dT) := {G 7→ ϕ

(T)
WL (G) | G ∈ Gn} and its normalized counterpart sEWL(n, dT) := {G 7→

Ě

ϕ
(T)
WL (G) | G ∈ Gn}, where dT is the dimension of the corresponding Hilbert space after T rounds of

1-WL; see Section 2 for details. The following result shows that the VC dimension of the normalized
and unnormalized 1-WL kernel can be lower- and upper-bounded in the margin λ, the number of
iterations, and the number of vertices.
Theorem 2. For any T, λ > 0, r =

√
T + 1n, and n ≥ r2/λ2, we have VC-dim(Hr,λ(EWL(n, dT))) ∈

Θ(r
2
/λ2). Further, for r =

√
T/(T + 1) and n ≥ r2/λ2, we have VC-dim(H1,λ(sEWL(n, dT))) ∈

Θ(1/λ2).

Further, by defining EWL,F (n, dT), EWLOA(n, dT), and EWLOA,F (n, dT) analogously, we can show
the same or similar results for the 1-WLF , 1-WLOA, and 1-WLOAF . The only difference is that
∥ϕ(t)

WL(Gi)∥ ≠ ∥ϕ(t)
WLOA(Gi)∥ and thus the radii and bounds change slightly. Concretely, for the 1-WLF ,

we get an identical dependency on the margin λ, the number of iterations, and the number of vertices.
Corollary 3. Let F be a finite set of graphs. For any T, λ > 0, r =

√
T + 1n, and n ≥ r2/λ2, we

have, VC-dim(Hr,λ(EWL,F (n, dT))) ∈ Θ(r
2
/λ2). Further, for r =

√
T/(T + 1) and n ≥ r2/λ2, we

have VC-dim(H1,λ(sEWL,F (n, dT))) ∈ Θ(1/λ2).

Similarly, by changing the radii from
√
Tn to

√
Tn, we get the following results for the 1-WLOA and

1-WLOAF kernel.
Proposition 4. For any T, λ > 0, r =

√
(T + 1)n, and n ≥ r2/λ2, we have

VC-dim(Hr,λ(EWLOA(n, dT))) ∈ Θ(r
2
/λ2). Further, for r =

√
T/(T + 1) and n ≥ r2/λ2, we

have VC-dim(H1,λ(sEWLOA(n, dT))) ∈ Θ(1/λ2).
Corollary 5. Let F be a finite set of graphs. For any T, λ > 0, for r =

√
(T + 1)n, and n ≥ r2/λ2,

we have, VC-dim(Hr,λ(EWLOA,F (n, dT))) ∈ Θ(r
2
/λ2). Further, for r =

√
T/(T + 1) and n ≥

r2/λ2, we have VC-dim(H1,λ(sEWLOA,F (n, dT))) ∈ Θ(1/λ2).

Therefore, using F permits the above statements to be feasible for smaller values of n or λ. See Ap-
pendix E.4 for analogous results for MPNN and more expressive variants. In addition, in Appendix F,
we show that gradient flow pushes the MPNN’s weights toward the maximum margin solution.

In the full paper, we derive conditions under which 1-WLOAF leads to better generalization performance
than the 1-WLOA. We also report on empirical results, validating our derived bounds in practice.

4 Conclusion
Here, we focused on determining the precise conditions under which increasing the expressive power of
MPNN or kernel architectures leads to a provably increased generalization performance. We focused
on augmenting 1-WL with subgraph information and derived tight upper and lower bounds for the
architectures’ VC dimension parameterized by the margin. In addition, we introduced variations of
expressive 1-WL-based kernels and neural architectures with provable generalization properties. Our
theoretical results constitute an essential initial step in unraveling the conditions under which more
expressive MPNN and kernel architectures yield enhanced generalization performance. Hence, our
theory lays a solid foundation for the systematic and principled design of novel expressive MPNN
architectures.

4

Weisfeiler–Leman at the margin

References
[1] A. Aamand, J. Y. Chen, P. Indyk, S. Narayanan, R. Rubinfeld, N. Schiefer, S. Silwal, and

T. Wagner. Exponentially improving the complexity of simulating the Weisfeiler-Lehman test
with graph neural networks. ArXiv preprint, 2022. 11

[2] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural
networks with random node initialization. In Joint Conference on Artificial Intelligence, pages
2112–2118, 2021. 11

[3] N. Alon, S. Hanneke, R. Holzman, and S. Moran. A theory of PAC learnability of partial concept
classes. In Annual Symposium on Foundations of Computer Science, pages 658–671, 2021. 1, 2,
3, 12, 18

[4] T. Amir, S. J. Gortler, I. Avni, R. Ravina, and N. Dym. Neural injective functions for multisets,
measures and graphs via a finite witness theorem. ArXiv preprint, 2023. 11

[5] M. Anthony and P. L. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge
University Press, 2002. 2

[6] S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, pages 244–253,
2018. 25

[7] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On the power of color refinement. In
International Symposium on Fundamentals of Computation Theory, pages 339–350, 2015. 1, 3

[8] W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant
graph neural networks. In International Conference on Learning Representations, 2021. 11

[9] M. Balcilar, P. Héroux, B. Gaüzère, P. Vasseur, S. Adam, and P. Honeine. Breaking the limits of
message passing graph neural networks. In International Conference on Machine Learning,
pages 599–608, 2021. 11

[10] A. Baranwal, K. Fountoulakis, and A. Jagannath. Graph convolution for semi-supervised
classification: Improved linear separability and out-of-distribution generalization. In International
Conference on Machine Learning, 2021. 12

[11] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J. P. Silva. The logical expres-
siveness of graph neural networks. In International Conference on Learning Representations,
2020. 11

[12] P. Barceló, F. Geerts, J. L. Reutter, and M. Ryschkov. Graph neural networks with local graph
parameters. In Advances in Neural Information Processing Systems, pages 25280–25293, 2021.
11

[13] P. Barceló, M. Galkin, C. Morris, and M. A. R. Orth. Weisfeiler and Leman go relational. In
Learning of Graphs Conference, 2022. 11

[14] P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and
other pattern classifiers. Advances in Kernel methods—support vector learning, pages 43–54,
1999. 3, 17

[15] I. I. Baskin, V. A. Palyulin, and N. S. Zefirov. A neural device for searching direct correlations
between structures and properties of chemical compounds. Journal of Chemical Information and
Computer Sciences, 37(4):715–721, 1997. 11

[16] D. Beaini, S. Passaro, V. Létourneau, W. L. Hamilton, G. Corso, and P. Lió. Directional graph
networks. In International Conference on Machine Learning, pages 748–758, 2021. 11

[17] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein, and
H. Maron. Equivariant subgraph aggregation networks. In International Conference on Learning
Representations, 2022. 11

[18] C. Bodnar, F. Frasca, N. Otter, Y. G. Wang, P. Liò, G. Montúfar, and M. M. Bronstein. Weisfeiler
and Lehman go cellular: CW networks. In Advances in Neural Information Processing Systems,
pages 2625–2640, 2021. 11

[19] C. Bodnar, F. Frasca, Y. Wang, N. Otter, G. F. Montúfar, P. Lió, and M. M. Bronstein. Weisfeiler
and Lehman go topological: Message passing simplicial networks. In International Conference
on Machine Learning, pages 1026–1037, 2021. 11

5

Weisfeiler–Leman at the margin

[20] K. M. Borgwardt, M. E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck. Graph kernels:
State-of-the-art and future challenges. Foundations and Trends in Machine Learning, 13(5–6),
2020. 1, 11, 12

[21] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. ArXiv preprint, 2020. 1, 3, 11

[22] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally connected
networks on graphs. In International Conference on Learning Representation, 2014. 11

[23] J. Böker, R. Levie, N. Huang, S. Villar, and C. Morris. Fine-grained expressivity of graph neural
networks. In Advances in Neural Information Processing Systems, 2023. 11

[24] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for
graph identifications. Combinatorica, 12(4):389–410, 1992. 1, 3

[25] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković. Combinatorial
optimization and reasoning with graph neural networks. In Joint Conference on Artificial
Intelligence, pages 4348–4355, 2021. 1

[26] Z. Chen, S. Villar, L. Chen, and J. Bruna. On the equivalence between graph isomorphism testing
and function approximation with gnns. In Advances in Neural Information Processing Systems,
pages 15868–15876, 2019. 11

[27] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995. 2,
12

[28] L. Cotta, C. Morris, and B. Ribeiro. Reconstruction for powerful graph representations. In
Advances in Neural Information Processing Systems, pages 1713–1726, 2021. 11

[29] G. Dasoulas, L. D. Santos, K. Scaman, and A. Virmaux. Coloring graph neural networks for node
disambiguation. In International Joint Conference on Artificial Intelligence, pages 2126–2132,
2020. 11

[30] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Information Processing Systems, pages
3837–3845, 2016. 11

[31] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints.
In Advances in Neural Information Processing Systems, pages 2224–2232, 2015. 11

[32] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, 2010. 1

[33] R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and its applications. In
Annual Conference on Learning Theory, pages 157–171, 2007. 12

[34] P. M. Esser, L. C. Vankadara, and D. Ghoshdastidar. Learning theory can (sometimes) explain
generalisation in graph neural networks. In Advances in Neural Information Processing Systems,
pages 27043–27056, 2021. 12

[35] J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How powerful are k-hop message passing
graph neural networks. In Advances in Neural Information Processing Systems, 2022. 11

[36] B. Finkelshtein, X. Huang, M. Bronstein, and İ. İ. Ceylan. Cooperative graph neural networks.
ArXiv preprint, 2023. 11

[37] B. J. Franks, M. Anders, M. Kloft, and P. Schweitzer. A systematic approach to universal random
features in graph neural networks. Transactions on Machine Learning Research, 2023. 11

[38] F. Frasca, B. Bevilacqua, M. M. Bronstein, and H. Maron. Understanding and extending subgraph
GNNs by rethinking their symmetries. ArXiv preprint, 2022. 11

[39] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures
for signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049,
2019. 11

[40] V. K. Garg, S. Jegelka, and T. S. Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning, pages 3419–3430, 2020. 12

[41] F. Geerts. The expressive power of kth-order invariant graph networks. ArXiv preprint, 2020. 11

6

Weisfeiler–Leman at the margin

[42] F. Geerts and J. L. Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022. 11

[43] F. Geerts, F. Mazowiecki, and G. A. Pérez. Let’s agree to degree: Comparing graph convolutional
networks in the message-passing framework. In International Conference on Machine Learning,
pages 3640–3649, 2021. 11

[44] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In International Conference on Machine Learning, pages 1263–1272, 2017.
1, 11, 12, 13

[45] O. Goldreich. Introduction to testing graph properties. In Property Testing. Springer, 2010. 12

[46] C. Goller and A. Küchler. Learning task-dependent distributed representations by backpropagation
through structure. In International Conference on Neural Networks, pages 347–352, 1996. 11

[47] M. Grohe. The descriptive complexity of graph neural networks. ArXiv preprint, 2023. 11

[48] A. Grønlund, L. Kamma, and K. G. Larsen. Near-tight margin-based generalization bounds for
support vector machines. In International Conference on Machine Learning, pages 3779–3788,
2020. 12

[49] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017. 11

[50] B. Hammer. Generalization ability of folding networks. IEEE Trans. Knowl. Data Eng., (2):
196–206, 2001. 12

[51] M. Horn, E. D. Brouwer, M. Moor, Y. Moreau, B. Rieck, and K. M. Borgwardt. Topological
graph neural networks. In International Conference on Learning Representations, 2022. 11

[52] Y. Huang, X. Peng, J. Ma, and M. Zhang. Boosting the cycle counting power of graph neural
networks with I2-GNNs. ArXiv preprint, 2022. 11

[53] Z. Ji and M. Telgarsky. Gradient descent aligns the layers of deep linear networks. In International
Conference on Learning Representations, 2019. 1, 22, 24, 25, 26, 27, 28, 29

[54] H. Ju, D. Li, A. Sharma, and H. R. Zhang. Generalization in graph neural networks: Improved
pac-bayesian bounds on graph diffusion. ArXiv preprint, 2023. 12

[55] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, 2021. 1

[56] M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of sigmoidal and general
Pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169–176, 1997. 11

[57] J. Kim, T. D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and S. Hong. Pure transformers are
powerful graph learners. ArXiv preprint, 2022. 11

[58] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. 13

[59] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. 11, 12

[60] D. B. Kireev. Chemnet: A novel neural network based method for graph/property mapping.
Journal of Chemical Information and Computer Sciences, 35(2):175–180, 1995. 11

[61] N. M. Kriege, P. Giscard, and R. C. Wilson. On valid optimal assignment kernels and applications
to graph classification. In Advances in Neural Information Processing Systems, pages 1615–1623,
2016. 3, 11

[62] N. M. Kriege, C. Morris, A. Rey, and C. Sohler. A property testing framework for the theoretical
expressivity of graph kernels. In International Joint Conference on Artificial Intelligence, pages
2348–2354, 2018. 11, 12

[63] N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied Network
Science, 5(1):6, 2020. 1, 11, 12

7

Weisfeiler–Leman at the margin

[64] R. Levie. A graphon-signal analysis of graph neural networks. In Advances in Neural Information
Processing Systems, 2023. 12

[65] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolutional neural
networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1):
97–109, 2019. 11

[66] P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful
neural networks for graph representation learning. In Advances in Neural Information Processing
Systems, 2020. 11

[67] R. Liao, R. Urtasun, and R. S. Zemel. A PAC-Bayesian approach to generalization bounds for
graph neural networks. In International Conference on Learning Representations, 2021. 12

[68] T. Maehara and H. NT. A simple proof of the universality of invariant/equivariant graph neural
networks. ArXiv preprint, 2019. 11

[69] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. In
Advances in Neural Information Processing Systems, pages 2153–2164, 2019. 11

[70] K. Martinkus, P. A. Papp, B. Schesch, and R. Wattenhofer. Agent-based graph neural networks.
ArXiv preprint, 2022. 11

[71] S. Maskey, Y. Lee, R. Levie, and G. Kutyniok. Generalization analysis of message passing neural
networks on large random graphs. In Advances in Neural Information Processing Systems, 2022.
12

[72] C. Merkwirth and T. Lengauer. Automatic generation of complementary descriptors with
molecular graph networks. Journal of Chemical Information and Modeling, 45(5):1159–1168,
2005. 11

[73] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009. 11

[74] A. Micheli and A. S. Sestito. A new neural network model for contextual processing of graphs.
In Italian Workshop on Neural Nets Neural Nets and International Workshop on Natural and
Artificial Immune Systems, pages 10–17, 2005. 11

[75] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
2012. 12

[76] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric deep
learning on graphs and manifolds using mixture model cnns. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 5425–5434, 2017. 11

[77] C. Morris, K. Kersting, and P. Mutzel. Glocalized Weisfeiler-Lehman kernels: Global-local
feature maps of graphs. In IEEE International Conference on Data Mining, pages 327–336, 2017.
11

[78] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and Leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial
Intelligence, pages 4602–4609, 2019. 1, 11, 13, 14, 20, 21

[79] C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and Leman go sparse: Towards higher-order
graph embeddings. In Advances in Neural Information Processing Systems, 2020. 11

[80] C. Morris, Y. L., H. Maron, B. Rieck, N. M. Kriege, M. Grohe, M. Fey, and K. Borgwardt.
Weisfeiler and Leman go machine learning: The story so far. ArXiv preprint, 2021. 1, 3, 11, 13

[81] C. Morris, G. Rattan, S. Kiefer, and S. Ravanbakhsh. SpeqNets: Sparsity-aware permutation-
equivariant graph networks. In International Conference on Machine Learning, pages 16017–
16042, 2022. 11

[82] C. Morris, F. Geerts, J. Tönshoff, and M. Grohe. WL meet VC. In International Conference on
Machine Learning, pages 25275–25302, 2023. 1, 12, 20

[83] L. Müller, M. Galkin, C. Morris, and L. Rampásek. Attending to graph transformers. ArXiv
preprint, 2023. 11

[84] R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro. Relational pooling for graph
representations. In International Conference on Machine Learning, pages 4663–4673, 2019. 11

8

Weisfeiler–Leman at the margin

[85] H. Nguyen and T. Maehara. Graph homomorphism convolution. In International Conference on
Machine Learning, pages 7306–7316, 2020. 11

[86] P. A. Papp and R. Wattenhofer. A theoretical comparison of graph neural network extensions. In
International Conference on Machine Learning, pages 17323–17345, 2022. 11

[87] P. A. Papp, L. F. K. Martinkus, and R. Wattenhofer. DropGNN: Random dropouts increase the
expressiveness of graph neural networks. In Advances in Neural Information Processing Systems,
2021. 11

[88] O. Puny, D. Lim, B. T. Kiani, H. Maron, and Y. Lipman. Equivariant polynomials for graph
neural networks. ArXiv preprint, 2023. 11

[89] C. Qian, G. Rattan, F. Geerts, C. Morris, and M. Niepert. Ordered subgraph aggregation networks.
In Advances in Neural Information Processing Systems, 2022. 11

[90] C. Qian, A. Manolache, K. Ahmed, Z. Zeng, G. V. den Broeck, M. Niepert, and C. Morris.
Probabilistically rewired message-passing neural networks. ArXiv preprint, 2023. 11

[91] E. Rosenbluth, J. Tönshoff, and M. Grohe. Some might say all you need is sum. ArXiv preprint,
2023. 11

[92] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. In
SIAM International Conference on Data Mining, pages 333–341, 2021. 11

[93] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. 1, 11, 13

[94] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner. The Vapnik-Chervonenkis dimension of graph
and recursive neural networks. Neural Networks, pages 248–259, 2018. 11, 12

[95] N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn, and K. M. Borgwardt.
Efficient graphlet kernels for large graph comparison. In International Conference on Artificial
Intelligence and Statistics, pages 488–495, 2009. 2

[96] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, pages 2539–2561,
2011. 11

[97] M. Simonovsky and N. Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition, pages
29–38, 2017. 1

[98] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
descent on separable data. Journal of Machine Learning Research, 19:70:1–70:57, 2018. 28

[99] A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3):714–35, 1997. 11

[100] J. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. Donghia, C. MacNair, S. French,
L. Carfrae, Z. Bloom-Ackerman, V. Tran, A. Chiappino-Pepe, A. Badran, I. Andrews, E. Chory,
G. Church, E. Brown, T. Jaakkola, R. Barzilay, and J. Collins. A deep learning approach to
antibiotic discovery. Cell, pages 688–702.e13, 2020. 1

[101] R. Talak, S. Hu, L. Peng, and L. Carlone. Neural trees for learning on graphs. ArXiv preprint,
2021. 11

[102] E. H. Thiede, W. Zhou, and R. Kondor. Autobahn: Automorphism-based graph neural nets. In
Advances in Neural Information Processing Systems, pages 29922–29934, 2021. 11

[103] I. O. Tolstikhin and D. Lopez-Paz. Minimax lower bounds for realizable transductive classification.
ArXiv preprint, 2016. 12

[104] J. Tönshoff, M. Ritzert, H. Wolf, and M. Grohe. Graph learning with 1D convolutions on random
walks. ArXiv preprint, 2021. 11

[105] V. Vapnik. Statistical learning theory. Wiley, 1998. 12

[106] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. 2, 11

[107] V. N. Vapnik and A. Chervonenkis. A note on one class of perceptrons. Avtomatika i
Telemekhanika, 24(6):937–945, 1964. 12

9

Weisfeiler–Leman at the margin

[108] A. Velingker, A. K. Sinop, I. Ktena, P. Velickovic, and S. Gollapudi. Affinity-aware graph
networks. ArXiv preprint, 2022. 11

[109] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018. 11

[110] S. Verma and Z. Zhang. Stability and generalization of graph convolutional neural networks. In
International Conference on Knowledge Discovery & Data Mining, pages 1539–1548, 2019. 12

[111] C. Vignac, A. Loukas, and P. Frossard. Building powerful and equivariant graph neural networks
with structural message-passing. In Advances in Neural Information Processing Systems, 2020.
11

[112] B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra which
appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968. English translation by G.
Ryabov is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.
pdf. 1, 2

[113] A. Wijesinghe and Q. Wang. A new perspective on "how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations, 2022. 11

[114] F. Wong, E. J. Zheng, J. A. Valeri, N. M. Donghia, M. N. Anahtar, S. Omori, A. Li, A. Cubillos-
Ruiz, A. Krishnan, W. Jin, A. L. Manson, J. Friedrichs, R. Helbig, B. Hajian, D. K. Fiejtek, F. F.
Wagner, H. H. Soutter, A. M. Earl, J. M. Stokes, L. D. Renner, and J. J. Collins. Discovery of a
structural class of antibiotics with explainable deep learning. Nature, 2023. 1

[115] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. 1, 11, 13

[116] P. Yanardag and S. V. N. Vishwanathan. A structural smoothing framework for robust graph
comparison. In Advances in Neural Information Processing Systems, pages 2134–2142, 2015. 11

[117] P. Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In International Conference on
Knowledge Discovery and Data Mining, pages 1365–1374, 2015. 11

[118] G. Yehudai, E. Fetaya, E. A. Meirom, G. Chechik, and H. Maron. From local structures to size
generalization in graph neural networks. In International Conference on Machine Learning,
pages 11975–11986, 2021. 12

[119] J. You, J. Gomes-Selman, R. Ying, and J. Leskovec. Identity-aware graph neural networks. In
AAAI Conference on Artificial Intelligence, pages 10737–10745, 2021. 11

[120] B. Zhang, G. Feng, Y. Du, D. He, and L. Wang. A complete expressiveness hierarchy for
subgraph gnns via subgraph weisfeiler-lehman tests. ArXiv preprint, 2023. 11

[121] B. Zhang, S. Luo, L. Wang, and D. He. Rethinking the expressive power of GNNs via graph
biconnectivity. ArXiv preprint, 2023. 11

[122] M. Zhang and P. Li. Nested graph neural networks. In Advances in Neural Information Processing
Systems, pages 15734–15747, 2021. 11

[123] L. Zhao, W. Jin, L. Akoglu, and N. Shah. From stars to subgraphs: Uplifting any GNN with local
structure awareness. In International Conference on Learning Representations, 2022. 11

10

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Weisfeiler–Leman at the margin

A Related work
In the following, we discuss relevant related work.

A.1 Graph kernels based on the 1-WL

Shervashidze et al. [96] were the first to utilize the 1-WL as a graph kernel. Later, Morris et al.
[77, 79, 81] generalized this to variants of the k-WL. Moreover, Kriege et al. [61] derived the Weisfeiler-
Leman optimal assignment kernel, using the 1-WL to compute optimal assignments between vertices of
two given graphs. Yanardag and Vishwanathan [116] successfully employed the Weisfeiler–Leman
kernels within frameworks for smoothed [116] and deep graph kernels [117]. For a theoretical
investigation of graph kernels based on the 1-WL, see [62]. See also [80] for an overview of the
Weisfeiler–Leman algorithm in machine learning and Borgwardt et al. [20], Kriege et al. [63] for a
detailed review of graph kernels.

A.2 MPNNs

Recently, MPNNs [44, 93] emerged as the most prominent graph representation learning architecture.
Notable instances of this architecture include, e.g., Duvenaud et al. [31], Hamilton et al. [49],
and Veličković et al. [109], which can be subsumed under the message-passing framework introduced
in Gilmer et al. [44]. In parallel, approaches based on spectral information were introduced in,
e.g., Bruna et al. [22], Defferrard et al. [30], Gama et al. [39], Kipf and Welling [59], Levie et al. [65],
and Monti et al. [76]—all of which descend from early work in Baskin et al. [15], Goller and Küchler
[46], Kireev [60], Merkwirth and Lengauer [72], Micheli [73], Micheli and Sestito [74], Scarselli et al.
[93], and Sperduti and Starita [99]. Rcently, connections between MPNNs and Weisfeiler–Leman-type
algorithms have been shown [11, 43, 78, 115]. Specifically, Morris et al. [78] and Xu et al. [115]
showed that the 1-WL limits the expressive power of any possible MPNN architecture in distinguishing
non-isomorphic graphs. [21] showed how to make MPNNs more expressive by incorporating subgraph
information.

A.3 Expressive power of MPNNs

Recently, connections between MPNNs and Weisfeiler–Leman-type algorithms have been shown [11,
43, 78, 115]. Specifically, Morris et al. [78] and Xu et al. [115] showed that the 1-WL limits the
expressive power of any possible MPNN architecture in distinguishing non-isomorphic graphs.
In turn, these results have been generalized to the k-WL, e.g., Azizian and Lelarge [8], Geerts
[41], Maron et al. [69], Morris et al. [78, 79, 81], and connected to the permutation-equivariant function
approximation over graphs, see, e.g., Azizian and Lelarge [8], Chen et al. [26], Geerts and Reutter
[42], Maehara and NT [68]. Furthermore, Aamand et al. [1], Amir et al. [4] devised an improved
analysis using randomization and moments of neural networks, respectively. Recent works have
extended the expressive power of MPNNs, e.g., by encoding vertex identifiers [84, 111], using random
features [2, 29, 92] or individualization-refinement algorithms [37], affinity measures [108], equivariant
graph polynomials [88], homomorphism and subgraph counts [12, 21, 85], spectral information [9],
simplicial [19] and cellular complexes [18], persistent homology [51], random walks [70, 104], graph
decompositions [101], relational [13], distance [66] and directional information [16], graph rewiring [90]
and adaptive message passing [36], subgraph information [17, 28, 35, 38, 52, 80, 86, 87, 89, 102, 113,
119, 120, 122, 123], and biconnectivity [121]. See Morris et al. [80] for an in-depth survey on this
topic. Geerts and Reutter [42] devised a general approach to bound the expressive power of a large
variety of MPNNs using 1-WL or k-WL.

Recently, Kim et al. [57] showed that transformer architectures [83] can simulate the 2-WL. Grohe [47]
showed tight connections between MPNNs’ expressivity and circuit complexity. Moreover, Rosenbluth
et al. [91] investigated the expressive power of different aggregation functions beyond sum aggregation.
Finally, Böker et al. [23] defined a continuous variant of the 1-WL, deriving a more fine-grained
topological characterization of the expressive power of MPNNs.

A.4 Generalization abilities of graph kernels and MPNNs

Scarselli et al. [94] used classical techniques from learning theory [56] to show that MPNNs’ VC
dimension [106] with piece-wise polynomial activation functions on a fixed graph, under various
assumptions, is in O(P 2n log n), where P is the number of parameters and n is the order of the input

11

Weisfeiler–Leman at the margin

graph; see also Hammer [50]. We note here that Scarselli et al. [94] analyzed a different type of
MPNN not aligned with modern MPNN architectures [44]. Garg et al. [40] showed that the empirical
Rademacher complexity (see, e.g., Mohri et al. [75]) of a specific, simple MPNN architecture, using
sum aggregation, is bounded in the maximum degree, the number of layers, Lipschitz constants of
activation functions, and parameter matrices’ norms. We note here that their analysis assumes weight
sharing across layers. Liao et al. [67] refined these results via a PAC-Bayesian approach, further refined
in Ju et al. [54]. Maskey et al. [71] used random graphs models to show that MPNNs’ generalization
ability depends on the (average) number of vertices in the resulting graphs. In addition, Levie [64]
defined a measure of a natural graph-signal similarity notion, resulting in a generalization bound
for MPNNs depending on the covering number and the number of vertices. Verma and Zhang [110]
studied the generalization abilities of 1-layer MPNNs in a transductive setting based on algorithmic
stability. Similarly, Esser et al. [34] used stochastic block models to study the transductive Rademacher
complexity [33, 103] of standard MPNNs. For semi-supervised node classification, [10] studied the
classification of a mixture of Gaussians, where the data corresponds to the node features of a stochastic
block model, under which conditions the mixture model is linearly separable using the GCN layer [59].
Most recently, [82] made progress connecting MPNNs’ expressive power and generalization ability via
the Weisfeiler–Leman hierarchy. They studied the influence of graph structure and the parameters’
encoding lengths on MPNNs’ generalization by tightly connecting 1-WL’s expressivity and MPNNs’
Vapnik–Chervonenkis (VC) dimension. They derived that MPNNs’ VC dimension depends tightly on
the number of equivalence classes computed by the 1-WL over a given set of graphs. Moreover, they
showed that MPNNs’ VC dimension depends logarithmically on the number of colors computed by the
1-WL and polynomially on the number of parameters. Kriege et al. [62] leveraged results from graph
property testing [45] to study the sample complexity of learning to distinguish various graph properties,
e.g., planarity or triangle freeness, using graph kernels [20, 63]. Finally, [118] showed negative results
for MPNNs’ generalization ability to larger graphs.

Margin theory and VC dimension. Using the margin as a regularization mechanism dates back
to Vapnik and Chervonenkis [107]. Later, the concept of margin was successfully applied to support
vector machines (SVMs) [27, 105] and connected to VC dimension theory; see Mohri et al. [75] for an
overview. Grønlund et al. [48] derived the so-far tightest generalization bounds for SVMs. Alon et al.
[3] introduced the theory of VC dimension of partial concepts, i.e., the hypothesis set allows partial
functions and showed, analogous to the standard case, that finite VC dimension implies learnability and
vice versa.

B Extended notation
Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets,
i.e., the generalization of sets allowing for multiple instances for each of its elements. For two sets
X and Y , let XY denote the set of functions mapping from Y to X . Let S ⊂ Rd, then the convex
hull conv(S) is the minimal convex set containing the set S. For p ∈ Rd, d > 0, and ε > 0, the ball
B(p, ε, d) := {s ∈ Rd | ∥p− s∥ ≤ ε}. Here, and in the remainder of the paper, ∥ · ∥ refers to the
2-norm ∥x∥ :=

√
x2
1 + · · ·+ x2

d for x ∈ Rd.

Graphs. An (undirected) graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G)
and edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. For ease of notation, we denote an edge {u, v} in
E(G) by (u, v) or (v, u). The order of a graph G is its number |V (G)| of vertices. If not stated
otherwise, we set n := |V (G)| and call G an n-order graph. We denote the set of all n-order graphs by
Gn. For a graph G ∈ Gn, we denote its adjacency matrix by A(G) ∈ {0, 1}n×n, where A(G)vw = 1
if, and only, if (v, w) ∈ E(G). For a set of nodes S ⊆ V (G), we denote the induced subgraph of G as
G[S] := (V (G) ∩ S,E(G) ∩ S2).

The neighborhood of v ∈ V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)} and the degree
of a vertex v is |N(v)|. A (vertex-)labeled graph G is a triple (V (G), E(G), ℓ) with a (vertex-)label
function ℓ : V (G) → N. Then ℓ(v) is a label of v, for v ∈ V (G). For X ⊆ V (G), the graph
G[X] := (X,EX) is the subgraph induced by X , where EX := {(u, v) ∈ E(G) | u, v ∈ X}. Two
graphs G and H are isomorphic, and we write G ≃ H if there exists a bijection φ : V (G) → V (H)
preserving the adjacency relation, i.e., (u, v) is in E(G) if, and only, if (φ(u), φ(v)) is in E(H). Then
φ is an isomorphism between G and H . In the case of labeled graphs, we additionally require that
l(v) = l(φ(v)) for all v in V (G). We denote the complete graph on n vertices by Kn and a cycle on n

12

Weisfeiler–Leman at the margin

vertices by Cn. for r ≥ 0, a graph is r-regular if all of its vertices have degree r. Given two graphs G
and H with disjoint vertex sets, we denote their disjoint union by G ∪̇H .

C Graph kernels based on the 1-WLF

Similar to the 1-WL, we can also define a graph kernel based on the 1-WLF . Let G be a graph, we run
the 1-WLF for T ≥ 0 iterations, resulting in a coloring function C1,F

t → Σt for each iteration t ≤ T .
Let Σt denote the range of C1,F

t , i.e., Σt := {c | ∃ v ∈ V (G) : C1,F
t (v) = c}. Again, we assume Σt

to be ordered by the natural order of N, i.e., we assume that Σt consists of c1 < · · · < c|Σt|. After each
iteration, we compute a feature vector ϕF,t(G) ∈ R|Σt| for each graph G. Each component ϕF,t(G)i
counts the number of occurrences of vertices of G labeled by ci ∈ Σt. The overall feature vector
ϕWLF (G) is defined as the concatenation of the feature vectors of all T iterations, i.e.,

ϕ
(T)
WLF

(G) :=
[
ϕF,0(G), . . . , ϕF,T (G)

]
,

where [. . .] denote column-wise vector concatenation. We then define the kernel and its normalized
counterpart in the same way as with the 1-WL.

D Message-passing graph neural networks
Intuitively, MPNNs learn a vectorial representation, i.e., a d-dimensional real-valued vector, representing
each vertex in a graph by aggregating information from neighboring vertices. Formally, let G =

(V (G), E(G), ℓ) be a labeled graph with initial vertex features h(0)
v ∈ Rd that are consistent with

ℓ. That is, each vertex v is annotated with a feature h
(0)
v ∈ Rd such that h(0)

v = h
(0)
u if, and only, if

ℓ(v) = ℓ(u). An example is a one-hot encoding of the labels ℓ(u) and ℓ(v). An MPNN architecture
consists of a stack of neural network layers, i.e., a composition of permutation-equivariant parameterized
functions. Following, Scarselli et al. [93] and Gilmer et al. [44], in each layer, t > 0, we compute vertex
features

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

∈ Rd,

for each v ∈ V (G), where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g.,
neural networks. In the case of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ Rd, (1)

to compute a single vectorial representation based on learned vertex features after iteration L. Again,
READOUT may be a differentiable parameterized function. To adapt the parameters of the above three
functions, they are optimized end-to-end, usually through a variant of stochastic gradient descent,
e.g., Kingma and Ba [58], together with the parameters of a neural network used for classification or
regression.

More expressive MPNNs. Since the expressive power of MPNNs is strictly limited by the 1-WL
in distinguishing non-isomorphic graphs [78, 115], a large set of more expressive extensions of
MPNNs [80] exists. Here, we introduce the MPNNF architecture, an MPNN variant of the 1-WLF ;
see Section 2. In essence, an MPNNF is a standard MPNN, where we set the initial features consistent
with the initial vertex-labeling of the 1-WLF , e.g., one-hot encodings of ℓF . Following Morris et al.
[78], it is straightforward to derive an MPNNF architecture that has the same expressive power as the
1-WLF in distinguishing non-isomorphic graphs.

Notation. In the subsequent sections, we use the following notation for MPNNs. We denote the
class of all (labeled) graphs by G. For d, l > 0, we denote the class of MPNNs using summation for
aggregation, and such that update and readout functions are multilayer perceptrons (MLPs), all of a
width of at most d, by MPNNmlp(d, L). We refer to elements in MPNNmlp(d, L) as simple MPNNs;
see Appendix D.1 for details. We stress that simple MPNNs are already expressive enough to be
equivalent to the 1-WL in distinguishing non-isomorphic graphs [78]. The class MPNNmlp,F (d, L) is
defined similarly, based on MPNNF s.

13

Weisfeiler–Leman at the margin

D.1 Simple MPNNs

Here, we provide more details on the simple MPNNs mentioned in Appendix D. That is, for given d
and L ∈ N, we define the class MPNNmlp(d, L) of simple MPNNs as L-layer MPNNs for which,
according to Appendix D, for each t ∈ [L], the aggregation function AGG(t) is summation and the
update function UPD(t) is a multilayer perceptron mlp(t) : R2d → Rd of width at most d. Similarly, the
readout function in Equation (1) consists of a multilayer perceptron mlp : Rd → Rd applied on the sum
of all vertex features computed in layer L.2 More specifically, MPNNs in MPNNmlp(d, L) compute on
a labeled graph G = (V (G), E(G), ℓ) with d-dimensional initial vertex features h(0)

v ∈ Rd, consistent
with ℓ, the following vertex features, for each v ∈ V (G),

h(t)
v := mlp(t)

(
h(t−1)
v ,

∑
u∈N(v)

h(t−1)
u

)
∈ Rd,

for t ∈ [L], and
hG := mlp

(∑
v∈V (G)

h(L)
v

)
∈ Rd.

Note that the class MPNNmlp(d, L) encompasses the GNN architecture derived in Morris et al. [78]
that has the same expressive power as the 1-WL in distinguishing non-isomorphic graphs.

Notation. In the subsequent sections, we use the following notation for MPNNs. We denote the
class of all (labeled) graphs by G. For d, l > 0, we denote the class of MPNNs using summation for
aggregation, and such that update and readout functions are multilayer perceptrons (MLPs), all of a
width of at most d, by MPNNmlp(d, L). We refer to elements in MPNNmlp(d, L) as simple MPNNs;
see Appendix D.1 for details. We stress that simple MPNNs are already expressive enough to be
equivalent to the 1-WL in distinguishing non-isomorphic graphs [78]. The class MPNNmlp,F (d, L) is
defined similarly, based on MPNNF s.

E Proofs missing from the main paper
Here, we outline proofs missing in the main paper.

E.1 Fundamentals

Here, we prove some fundamental statements for later use.

Margin optimization. Let (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}, d > 0, be a linearly separable
sample, and let I+ := {i ∈ [n] | yi = 1} and I− := {i ∈ [n] | yi = 0}. Consider the well-known
alternative—to the typical hard-margin SVM formulation—optimization problem for finding the
minimum distance between the convex sets induced by the two classes, i.e.,

2λ := min
α∈R|I+|,β∈R|I−|

∥x+
α − x−

β ∥

s.t. x+
α =

∑
i∈I+

αixi, x−
β =

∑
j∈I−

βjxj∑
i∈I+

αi = 1,
∑
j∈I−

βj = 1,

∀ i ∈ I+, j ∈ I− : αi ≥ 0, βj ≥ 0,

(2)

where α and β are the variables determining the convex combinations for both the positive and negative
classes. Moreover, λ is exactly the margin that is computed by the typical hard-margin SVM and from
the optimal arguments α∗ and β∗, we can compute the usual hard-margin solution w and b as:

w :=
x+
α∗ − x−

β∗

λ2

b :=
∥x−

β∗∥2 − ∥x+
α∗∥2

2λ2

2For simplicity, we assume that all feature dimensions of the layers are fixed to d ∈ N.

14

Weisfeiler–Leman at the margin

.

We can describe ∥x+
α − x−

β ∥2 by a sum of pairwise distances.∥∥∥∥x+
α − x−

β

∥∥∥∥2 =

∥∥∥∥∑
i∈I+

αixi −
∑
j∈I−

βjxj

∥∥∥∥2

=

∥∥∥∥∑
i∈I+

αixi

∑
j∈I−

βj −
∑
j∈I−

βjxj

∑
i∈I+

αi

∥∥∥∥2

=

∥∥∥∥∑
i∈I+

∑
j∈I−

αiβjxi −
∑
i∈I+

∑
j∈I−

αiβjxj

∥∥∥∥2

=

∥∥∥∥ ∑
(i,j)∈I+×I−

δi,j(xi − xj)

∥∥∥∥2 (δi,j := αiβj)

=
∑

(i,j)∈I+×I−

∑
(k,l)∈I+×I−

δi,jδk,l(xi − xj)
⊤(xk − xl)

=
∑

(i,j),(k,l)∈I+×I−

δi,jδk,l(−x⊤
i xl − x⊤

j xk + x⊤
i xk + x⊤

j xl)

=
1

2

∑
(i,j),(k,l)∈I+×I−

δi,jδk,l(∥xi − xl∥2 + ∥xj − xk∥2 − ∥xi − xk∥2 − ∥xj − xl∥2). (3)

We remark that the pairwise distances indexed by (i, l) and (j, k) represent inter-class distances, since
yi = yk = 1 and yj = yl = 0. Along the same line, the pairwise distances indexed by (i, k) and (j, l)
represent intra-class distances.
Proposition 6. Let (x1, y1), . . . , (xn, yn) and (x̃1, y1), . . . , (x̃n, yn) in Rd be two linearly-separable
samples, with margins λ and λ̃, respectively, with the same labels yi ∈ {0, 1}. If

min
yi ̸=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2 > max
yi=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2, (4)

then λ̃ > λ. That is, we get an increase in margin if the minimum increase in distances between classes
considering the two samples is strictly larger than the maximum increase in distance within each class.

Proof. Let
∆min := min

yi ̸=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2,

and
∆max := max

yi=yj

∥x̃i − x̃j∥2 − ∥xi − xj∥2.

By Equation (4), ∆min > ∆max. Starting at Equation (3),

∥x+
α − x−

β ∥
2 =

1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥xi − xl∥2 + ∥xj − xk∥2 − ∥xi − xk∥2 − ∥xj − xl∥2)

<
1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥xi − xl∥2 +∆min + ∥xj − xk∥2 +∆min

− ∥xi − xk∥2 −∆max − ∥xj − xl∥2 −∆max

≤ 1

2

∑
(i,j)

∑
(k,l)

αi,jαk,l(∥x̃i − x̃l∥2 + ∥x̃j − x̃k∥2 − ∥x̃i − x̃k∥2 − ∥x̃j − x̃l∥2)

= ∥x̃+
α − x̃−

α∥2,

where x̃+
α and x̃−

α are derived from applying the optimization (Equation (2)) to the datapoints (x̃1, y1),
. . . , (x̃n, yn).

15

Weisfeiler–Leman at the margin

In the following, we omit all of the conditions from Equation (2) for simplicity. Let x+∗ and x−∗ be the
representatives of the optimal solution to Equation (2), then

∀α : γ = ∥x+∗ − x−∗∥ ≤ ∥x+
α − x−

α∥.
Hence,

∀α : γ = ∥x+∗ − x−∗∥ ≤ ∥x+
α − x−

α∥ < ∥x̃+
α − x̃−

α∥,
which implies that

γ < min
α

∥x̃+
α − x̃−

α∥ =: γ̃,

showing the desired result.

Concatenating feature vectors. We will consider concatenating two feature vectors and analyze how
this affects attained margins. To this end, let X := {(xi, yi) ∈ Rd × {0, 1} | i ∈ [n]}. When we split
up Rd into Rd1 × Rd2 , we write xi := (x1

i ,x
2
i) with x1

i ∈ Rd1 and x2
i ∈ Rd2 .

Proposition 7. If X := {(x1, y1), . . . , (xn, yn)} is a sample, such that

1. (x1
1, y1), . . . , (x

1
n, yn) is (r1, γ1)-separable and

2. (x2
1, y1), . . . , (x

2
n, yn) is (r2, γ2)-separable,

then (x1, y1), . . . , (xn, yn) is (
√

r21 + r22,
√
γ2
1 + γ2

2)-separable.

Proof. Let I := I+ ∪̇ I− satisfying yi = 1 if, and only, if i ∈ I+ and yi = 0 if, and only, if i ∈ I−,
p := |I|, p+ := |I+| and p− := |I−|. Further, let x+

i := xi, (x1
i)

+ := (x1
i , 0), (x

2
i)

+ := (0,x2
i)

for i ∈ I+, and x−
i := xi, (x1

i)
− := (x1

i , 0), and (x2
i)

− := (0,x2
i) for i ∈ I−. We collect x+

i , x−
i ,

(x1
i)

+, (x2
i)

+, (x1
i)

−, and (x2
i)

− into matrices X+ ∈ Rp+×d, X− ∈ Rp−×d, X+
1 , X+

2 ∈ Rp+×d,
and X−

1 ,X−
2 ∈ Rp−×d.

The margins γ1, γ2, and γ (the margin of (x1, y1), . . . , (xn, yn)) are given by

γ1 := min
α∈(R+,p+ ,β∈R+,p− ,1⊤α=1=1⊤β

∥(X+
1)⊤α− (X−

1)⊤β∥

γ2 := min
α∈R+,p+ ,β∈R+,p− ,1⊤α=1=1⊤β

∥(X+
2)⊤α− (X−

2)⊤β∥

γ := min
α∈R+,p+ ,β∈R+,p− ,1⊤α=1=1⊤β

∥(X+)⊤α− (X−)⊤β∥,

where R+ is the set of positive real numbers and 1 is a vector of ones of appropriate size. We have

∥(X+)⊤α− (X−)⊤β∥2 = ∥(X+
1)⊤α1 + (X+

2)⊤α2 − (X−
1)⊤β1 − (X−

2)⊤β2∥2

= ∥((X+
1)⊤α1 − (X−

1)⊤β1) + ((X+
2)⊤α2 − (X−

2)⊤β2)∥2

= ∥(X+
1)⊤α1 − (X−

1)⊤β1∥2 + ∥(X+
2)⊤α2 − (X−

2)⊤β2∥2.
The latter terms attain, by assumption, minimal values of γ1 and γ2, respectively. Thus, γ2 =
γ2
1 + γ2

2 . Also note that ∥xi∥2 ≤ r21 + r22 for all i ∈ I . This implies that (x1, y1), . . . , (xn, yn) is
(
√
r21 + r22,

√
γ2
1 + γ2

2)-separable.

Existence of regular graphs. The following result ensures the existence of enough regular graphs
needed for the proof of Theorem 2 and its variants.
Lemma 8. For any even n and all i ∈ {0, . . . , n− 1}, there exists an i-regular graph with one orbit
containing all vertices.

Proof. Let n be even, and let c be an arbitrary natural number. We define
Eodd := {(i, i+ n/2) | i ∈ [n/2]},

and
Ec := {(i, i+ c mod n) | i ∈ [n]},

where mod is the modulo operator with equivalence classes [n]. It is easily verified that for any C ∈ N,
([n],

⋃
c∈[C] Ec) is a 2C-regular graph. Also, ([n], Eodd ∪

⋃
c∈[C] Ec) is a 2C + 1-regular graph. The

permutation, in cycle notation, (1, 2, . . . , n) is an automorphism for both graphs, implying that all
vertices are in the same orbit.

16

Weisfeiler–Leman at the margin

Remark 9. For any odd n, no i-regular graph exists with i odd. This is a classical textbook question
that can be verified by handshaking. For regular graphs,∑

i∈[n]

deg(i) = i · n.

Summing the degrees for each vertex counts each edge twice. Thus, i · n must be even, and since n is
odd, i must be even.

E.2 Expressive power of enhanced variants

We now prove results on the expressive power of the 1-WLF .
Proposition 10. Let G be a graph and F be a set of graphs. Then, for all rounds, the 1-WLF
distinguishes at least the same vertices as the 1-WL.

Proof. Using, induction on t, we show that, for all vertices v, w ∈ V (G),

C1,F
t (v) = C1,F

t (w) implies C1
t (v) = C1

t (w). (5)

The base case, t = 0, is clear since 1-WLF refines the single color class induced by C1
0 . For the

induction, assume that Equation (5) holds and assume that, C1,F
t+1(v) = C1,F

t+1(w) holds. Hence,
C1

t (v) = C1
t (w) and

{{C1,F
t (a) | a ∈ N(v)}} = {{C1,F

t (b) | b ∈ N(w)}}

holds. Hence, there is a color-preserving bijection φ : N(v) → N(w) between the above two multisets,
i.e., C1,F

t (a) = C1,F
t (φ(a)), for a ∈ N(v). Hence, by Equation (5), C1

t (a) = C1
t (φ(a)), for

a ∈ N(v). Consequently, it holds that C1
t+1(v) = C1

t+1(w), proving the desired result.

In addition, by choosing the set of graphs F appropriately, 1-WLF gets strictly more expressive than
1-WL in distinguishing non-isomorphic graphs.
Proposition 11. For every n ≥ 6, there exists at least one pair of non-isomorphic graphs and a set of
graphs F containing a single constant-order graph, such that, for all rounds, 1-WL does not distinguish
them while 1-WLF distinguishes them after a single round.

Proof. For n = 6, we can choose a pair of a 6-cycle and the disjoint union of two 3-cycles. Since
both graphs are 2-regular, the 1-WL cannot distinguish them. By choosing F = {C3}, the 1-WLF
distinguishes them. For n > 6, we can simply pad the graphs with n− 6 isolated vertices.

E.3 Margin-based upper and lower bounds on the VC dimension of Weisfeiler–Leman-based
kernels

We first state the upper bound that we will be using for all the following cases, which is a classical result,
for instance based on fat-shattering.
Lemma 12 (Theorem 1.6 in [14]). Let S ⊆ Rd.

VC-dim(Hr,λ(S)) ∈ O(r
2
/λ2).

We now prove the VC dimension theory results from the main paper. In the following, we will reuse
our notation of splitting up Rd into Rd1 × Rd2 . We write xi = (x

(1)
i ,x

(2)
i) with x

(1)
i ∈ Rd1 and

x
(2)
i ∈ Rd2 . Further, let (x(1)

i)+ := (x
(1)
i , 0), and (x

(2)
i)+ := (0,x

(2)
i).

Lemma 13 (Lemma 1 in the main paper). Let S ⊆ Rd. If S contains m := ⌊r2/λ2⌋ vectors
b1, . . . , bm ∈ Rd with bi := (b

(1)
i , b

(2)
i) and b

(2)
1 , . . . , b

(2)
m being pairwise orthogonal, ∥bi∥ = r′, and

∥b(2)i ∥ = r, then
VC-dim(Hr′,λ(S)) ∈ Ω(r

2
/λ2).

17

Weisfeiler–Leman at the margin

Proof. Following the argument in Alon et al. [3], we show that the vectors b1, . . . , bm can be shattered.
Indeed, let A and B be two arbitary sets partitioning [m]. Consider the vector

w :=
λ

r2

(∑
i∈A

(b
(2)
i)+ −

∑
i∈B

(b
(2)
i)+

)
.

We observe that, because of assumptions underlying the vectors bi, we have

w⊤bj =

{(
λ
r2

)
· (b(2)j)⊤b

(2)
j = λ if j ∈ A

−
(

λ
r2

)
· (b(2)j)⊤b

(2)
j = −λ if j ∈ B.

In other words, w witnesses that the distance between the convex hull of {bi | i ∈ A} and {bi | i ∈ B}
is at least 2λ, implying the result.

In the following, we will heavily rely upon Lemma 13 and more specifically we can construct
m = ⌊r2/λ2⌋ graphs. Since we will be using regular graphs for simplicity where each regular graph has
different regularity, we require n ≥ m, which is true for n ≥ r2/λ2. Notice that this requirement can
be relaxed, and we could, for instance, consider graphs with nodes of two regularities, which would
significantly lower the requirement on n. However, for these graphs, the construction and proofs would
become significantly more complex as we would have to additionally deal with signal propagation
within these graphs until we can guarantee orthogonality of the 1-WL-feature vectors. For this type of
proof, we believe en/e ≥ r2/λ2 would need to hold. However, we leave this to future research.
Theorem 14. For any T, λ > 0, we have,

VC-dim(H√
T+1n,λ(EWL(n, dT))) ∈ Ω(r

2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWL(n, dT))) ∈ Ω(1/λ2), for r =
√

T/(T + 1) and n ≥ r2/λ2.

Proof. The upper bounds follow from the general upper bound described earlier. For the lower bound,
we show that for even n ≥ r2/λ2, there exist m = ⌊r2/λ2⌋ graphs G1, . . . , Gm in Gn such that the
vectors bi := ϕ

(1)
WL(Gi) and sbi := sϕ

(1)
WL(Gi) satisfy the assumptions of Lemma 13. Indeed, we can

simply consider Gi to be an (i− 1)-regular graph of order n; see Lemma 8. We break up the feature
vectors into two parts: a one-dimensional part corresponding to the information related to the initial color
and the remaining part containing all other information. We remark that for the 1-WL and for unlabeled
graphs, all vertices have the same initial color. The interesting information is contained in the second
part. If we inspect the 1-WL feature vectors, excluding the initial colors, for T = 1 of Gi, we obtain
(0, . . . , n︸︷︷︸

pos i

, . . . , 0) in the unnormalized case, and 1√
1+1n

(0, . . . , n︸︷︷︸
pos i

, . . . , 0) in the normalized case.

It is readily verified that b(2)i := (0, . . . , n︸︷︷︸
pos i

, . . . , 0) and b
(1)
i being the remaining initial colors are

vectors satisfying the assumptions of Lemma 13 in the unnormalized case. For larger T , b(2)i is ϕ(1)
WL(Gi)

except for the initial colors. Note that ∥b(2)i ∥ =
√
Tn = r and ∥bi∥ =

√
T + 1n : = r′. For the

normalized case, one simply needs to rescale with 1/r′. Note that for T > 0, 1/2 ≤ r2/r′2 < 1. This
implies a lower bound of Ω(r

2

λ2) in the unnormalized case, and Ω(r2

λ2r′2) = Ω(1
λ2) in the normalized

case.

So far, we assumed n to be even. For odd n, there is a slight technicality in that we can construct all
r-regular graphs where r is even, i.e., we can construct n+1/2 regular graphs. Analogously this means
for odd n and n+1/2 ≥ r2/λ2, which is equivalent to n ≥ 2r2/λ2 − 1, by a slight variant of Lemma 13
this implies a lower bound of Ω(2r

2
/λ2 − 1) = Ω(r

2
/λ2). Analogous to the normalized case can be

considered for odd n and results in the same bound, which proves the desired result.

Theorem 15. Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(H√
T+1n,λ(EWL,F (n, dT))) ∈ Ω(r

2
/λ2), for r =

√
Tn and n ≥ r2/λ2

VC-dim(H1,λ(sEWL,F (n, dT))) ∈ Ω(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

18

Weisfeiler–Leman at the margin

Proof. This proof is analogous to the proof of Theorem 14. Note that in the proof above, we can choose
the regular graphs such that all vertices in one graph are in the same orbit; see Lemma 8. This implies
that if one vertex is colored according to F , all vertices are colored in the same color, and the feature
vectors ϕ(1)

WL,F (Gi) look exactly as described before, implying the result.

A careful reader might wonder why we did not consider the initial colors in the proofs above. In the
1-WL-case, the initial colors are the same for all graphs in Gn, i.e., the 1-WL feature vectors take the
form (n, . . .). We could leverage this to reduce the radius of the hypothesis class slightly. However,
when considering the 1-WLF -case, the graphs in F change the initial colors. Because of our regular
graph construction from Lemma 8, all nodes within one graph share the same color, determined by a
subset F ⊆ F , where F contains all graphs that are subgraphs of the regular graph in question. Hence,
2|F| possible initial colorings of graphs in Gn exists. Also, in both cases, our regular graphs are not
necessarily orthogonal in the dimensions of these initial colors. Therefore, we disregarded them in the
constructions of w above.
Theorem 16. For any T, λ > 0, we have,

VC-dim(H√
(T+1)n,λ

(EWLOA(n, dT))) ∈ Ω(r
2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA(n, dT))) ∈ Ω(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Proof. This proof is analogous to the proof of Theorem 14 except ∥ϕ(1)
WLOA(Gi)∥ =

√
(T + 1)n =: r′

and ∥ei∥ =
√
Tn = r. This implies a lower bound of Ω(r

2

λ2) in the unnormalized case, and
Ω(r2

λ2r′2) = Ω(1
λ2) in the normalized case, as desired.

Theorem 17. Let F be a finite set of graphs. For any T, λ > 0, we have,

VC-dim(H√
(T+1)n,λ

(EWLOA,F (n, dT))) ∈ Ω(r
2
/λ2), for r =

√
Tn and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA,F (n, dT))) ∈ Ω(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Proof. This proof is analogous to the proofs of Corollary 3 and Theorem 16.

Note that the upper bound and the previous theorems on lower bounds imply tight bounds in O-notation.
Corollary 18 (Theorem 2 in the main paper). For any T, λ > 0, we have,

VC-dim(Hr,λ(EWL(n, dT))) ∈ Θ(r
2
/λ2), for r =

√
T + 1n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWL(n, dT))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Corollary 19 (Corollary 3 in the main paper). Let F be a finite set of graphs. For any T, λ > 0, we
have,

VC-dim(Hr,λ(EWL,F (n, dT))) ∈ Θ(r
2
/λ2), for r =

√
T + 1n and n ≥ r2/λ2

VC-dim(H1,λ(sEWL,F (n, dT))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Corollary 20 (Proposition 4 in the main paper). For any T, λ > 0, we have,

VC-dim(Hr,λ(EWLOA(n, dT))) ∈ Θ(r
2
/λ2), for r =

√
(T + 1)n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA(n, dT))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

Corollary 21 (Corollary 5 in the main paper). Let F be a finite set of graphs. For any T, λ > 0, we
have,

VC-dim(Hr,λ(EWLOA,F (n, dT))) ∈ Θ(r
2
/λ2), for r =

√
(T + 1)n and n ≥ r2/λ2,

VC-dim(H1,λ(sEWLOA,F (n, dT))) ∈ Θ(1/λ2), for r =
√
T/(T + 1) and n ≥ r2/λ2.

19

Weisfeiler–Leman at the margin

E.3.1 Colored margin bounds

Given T ≥ 0 and C ⊆ N, we say that a graph G has color complexity (C, T) if the first T iterations of
1-WL assign colors to G in the set C. Let GC,T be the class of all graphs of color complexity (C, T).
We note that GC,T possibly contains infinitely many graphs. Indeed, if C corresponds to the color
assigned by 1-WL to degree two nodes, then GC,T contains all 2-regular graphs.

Let E(C, T, d) be a class of graph embedding methods consisting of mappings from GC,T to Rd.
Separability is lifted to the setting by considering the set of partial concepts defined on GC,T , as follows

Hr,λ(E(C, T, d)) :=
{
h ∈ {0, 1, ⋆}GC,T

∣∣∣ ∀G1, . . . , Gs ∈ supp(h) :

(G1, h(G1)), . . . , (Gs, h(Gs)) is (r, λ)-E(n, d)-separable
}
.

Let sEWL(C, T, d) be the class of embeddings corresponding to the normalized 1-WL kernel, i.e.,
sEWL(C, T, d) := {G 7→ Ě

ϕ
(T)
WL (G) | G ∈ GC,T }. We note that d is a constant depending on |C| and T

we denote this constant by dC,T . An immediate consequence of the proof of Theorem 2 is that we can
obtain a margin-bound for infinite classes of graphs.
Corollary 22. For any T > 0, C ⊆ N, and λ > 0, such that GC,T contains all regular graphs of degree
0, 1, . . . , r

2
/λ2, for r =

√
T/(T + 1), we have

VC-dim(H1,λ(sEWL(C, T, dC,T))) ∈ Θ(1/λ2).

E.4 Margin-based bounds on the VC dimension of MPNNs and more expressive architectures

In the following, we lift the above results to MPNNs. Assume a fixed but arbitrary number of layers
T ≥ 0, vertices n > 0, and an embedding dimension d > 0. In addition, we denote the following class
of graph embeddings EMPNN(n, d, T) := {G 7→ m(G) | G ∈ Gn and m ∈ MPNNmlp(d, T)}, i.e., the
set of d-dimensional vectors computable by simple T -layer MPNNs over the set of n-order graphs.
Now, the following result lifts Theorem 2 to MPNNs.
Proposition 23. For any n, T > 0, sufficiently large d > 0, and r =

√
T + 1n and n ≥ r2/λ2, we

have, VC-dim(Hr,λ(EMPNN(n, d, T))) ∈ Θ(r
2
/λ2). Further, for r =

√
T/(T + 1) and n ≥ r2/λ2,

we have, VC-dim(H1,λ(EMPNN(n, d, T))) ∈ Θ(1/λ2).

Moreover, we can lift Corollary 3 to MPNNF architectures by defining EMPNN,F (n, d, T) analogously
to the above.
Corollary 24. Let F be a finite set of graphs. For any n, T > 0, sufficiently large d > 0, and
r =

√
T + 1n and n ≥ r2/λ2, we have VC-dim(Hr,λ(EMPNN,F (n, d, T))) ∈ Θ(r

2
/λ2). For r =√

T/(T + 1) and n ≥ r2/λ2, we have VC-dim(H1,λ(EMPNN,F (n, d, T))) ∈ Θ(1/λ2).

We can also lift the results to the MPNN versions of the 1-WLOA and 1-WLOAF ; see the appendix for
details. The above results are somewhat restrictive since we only consider MPNNs that behave like
linear classifiers by definition of the considered functions. The above implies that the upper bound does
not hold for general MPNNs since they can separate non-linearly separable data under mild conditions.

We now lift the above results for the 1-WL kernel to MPNNs. To prove Proposition 23, we show that
EMPNN(n, d, T) contains EWL(n, dT). Thereto, the following result shows that MPNNs can compute
the 1-WL feature vector.
Proposition 25. Let Gn be the set of n-order graphs and let S ⊆ Gn. Then, for all T ≥ 0, there exists a
sufficiently wide T -layered simple MPNN architecture mpnnn : S → Rd, for an appropriately chosen
d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T)
WL (G).

Proof. The proof follows the construction outlined in the proof of [82, Proposition 2]. Let s := |S|.
Hence, sn is an upper bound for the number of colors computed by 1-WL over all s graphs in one
iteration.

Now, by Morris et al. [78, Theorem 2], there exists an MPNN architecture with feature dimension (at
most) n and consisting of t layers such that for each graph G ∈ S it computes 1-WL-equivalent vertex
features f (t)

v in R1×n for v ∈ V (G). That is, for vertices v and w in V (G) it holds that

f (t)
v = f (t)

w ⇐⇒ C1
T (v) = C1

T (w).

20

Weisfeiler–Leman at the margin

We note, by the construction outlined in the proof of Morris et al. [78, Theorem 2], that f (t)
v , for

v ∈ V (G), is defined over the rational numbers. We further note that we can construct a single MPNN
architecture for all s graphs by applying Morris et al. [78, Theorem 2] over the disjoint union of the
graphs in S. This increases the width from n to sn. We now show how to compute the 1-WL feature
vector of a single iteration t. The overall feature vector can be obtained by (column-wise) concatenation
over all layers.

Since the vertex features are rational, there exists a number M in N such that M · f (t)
v is in N1×sn for

all v ∈ V (G) and G ∈ S, i.e., a vector over N. Now, let

W ′ =

K
sn−1 · · · Ksn−1

... · · ·
...

K0 · · · K0

 ∈ Nsn×2sn,

for a sufficiently large K > 0, then kv := M · f (t)
v W ′, for vertex v ∈ V (G) and graph G ∈ S,

computes a vector kv in N2sn containing 2sn occurrences of a natural number uniquely encoding the
color of the vertex v. We next turn kv into a one-hot encoding. More specifically, we define

h′
v = lsig(kv ◦ (w′′)⊤ + b),

where ◦ denotes element-wise multiplication, with w′′ = (1,−1, 1,−1, . . . , 1,−1) ∈ R2sn and
b = (−c1 − 1, c1 + 1,−c2 − 1, c2 + 1, . . . ,−csn − 1, csn + 1) ∈ R2snwith ci the number encoding
the ith color under 1-WL at iteration t on the set S. We note that for odd i,

(h′
v)i := lsig(C1

t (v)− ci − 1) =

{
1 C1

t (v) ≥ ci
0 otherwise.

and for even i,

(h′
v)i := lsig(−C1

t (v) + ci + 1) =

{
1 C1

t (v) ≤ ci
0 otherwise.

In other words, ((h′
v)i, (h

′
v)i+1) are both 1 if and only if C1

t (v) = ci. We thus obtain one-hot encoding
of the color C1

t (v) by combining ((h′
v)i, (h

′
v)i+1) using an “AND” encoding (e.g., lsig(x+ y − 1))

applied to pairs of consecutive entries in h′
v . That is,

hv := lsig


h′
v ·



1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 1


− (1, 1, . . . , 1)


∈ Rsn.

We obtain the overall 1-WL vector by row-wise summation and concatenation over all layers. We
remark that, for a single iteration, the maximal width of the whole construction is 2sn.

By the above proposition, MPNNs of sufficient width can compute the 1-WL feature vectors. Moreover,
the normalization can be included in the MPNN computation. Hence, we can prove the lower bound by
simulating the proof of Theorem 2. The upper bound follows by the same arguments as described at the
beginning of Section 3. The above result can be easily extended to the 1-WLF , implying Corollary 24.
Corollary 26. Let Gn be the set of n-order graphs, let S ⊆ Gn, and let F be a set of graphs. Then, for
all T ≥ 0, there exists a sufficiently wide T -layered MPNN architecture mpnnn : S → Rd, for an
appropriately chosen d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T)
1-WLF

(G).

Proof sketch. By definition of the 1-WLF , the algorithm is essentially the 1-WL operating on a
specifically vertex-labeled graph. Since Morris et al. [78, Theorem 2] also works for vertex-labeled
graphs, the proof technique for Proposition 25 can be straightforwardly lifted to the 1-WLF .

21

Weisfeiler–Leman at the margin

We can also extend Proposition 25 to the 1-WLOA and 1-WLOAF , i.e., derive an MPNN architecture
that can compute 1-WLOA’s and 1-WLOAF ’s feature vectors. By that, we can extend Proposition 4
and Corollary 5 to their corresponding MPNN versions.
Proposition 27. Let Gn be the set of n-order graphs and let S ⊆ Gn. Then, for all T ≥ 0, there exists a
sufficiently wide T -layered MPNN architecture mpnnn : S → Rd, for an appropriately chosen d > 0,
such that, for all G ∈ S,

mpnnn(G) = ϕ
(T)
WLOA(G).

Proof. By Proposition 25, there exists a T -layered MPNN architecture mpnnn : S → Rd, for an
appropriately chosen d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T)
1-WL(G).

We now show how to transform ϕ
(T)
1-WL(G) into ϕ

(T)
WLOA(G). We show the transformation for a single

iteration t ≤ T , i.e., transforming ϕt,1-WL(G) into ϕt,1-WLOA(G). Let C denote the number of colors at
iteration t of the 1-WL over all |S| graphs. Since n is finite, C is finite as well. That is, ϕt,1-WL(G) has
C entries. Hence, the number of components for ϕt,WLOA(G) is at most Cn. By multiplying ϕt,1-WL(G)
with an appropriately chosen matrix M ∈ {0, 1}C×Cn, we get a vector r ∈ RCn, where each entry of
ϕt,1-WL(G) is repeated n times. Specifically,

M :=



1 0 · · · 0
1 0 · · · 0
...

... · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1
0 0 · · · 1

0 0 · · ·
...

0 0 · · · 1



∈ {0, 1}C×Cn.

Now let

b := (1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n) ∈ RCn and r′ := sign(r − b).

Observe that r′ = ϕt,1-WLOA(G), implying the result

In a similar way as for Corollary 26, we can lift the above result to the 1-WLOAF .
Corollary 28. Let Gn be the set of n-order graphs, let S ⊆ Gn, and let F be a set of graphs. Then, for
all T ≥ 0, there exists a sufficiently wide T -layered MPNN architecture mpnnn : S → Rd, for an
appropriately chosen d > 0, such that, for all G ∈ S,

mpnnn(G) = ϕ
(T)
1-WLOAF

(G).

F Large margins and gradient flow
Proposition 23 and Corollary 24 ensure the existence of parameter assignment such that MPNN and
MPNNF architectures generalize. However, it remains unclear how to find them. Hence, building on
the results in Ji and Telgarsky [53], we now show that, under some assumptions, MPNNs exhibit an
“alignment” property whereby gradient flow pushes the network’s weights toward the maximum margin
solution.

Formal setup. We consider MPNNs following Appendix D and consider graph classification tasks
using a readout layer. We make some simplifying assumptions and consider linear MPNNs. That is, set
the aggregation function AGG to summation and UPD at layer i is summation followed by a dense

22

Weisfeiler–Leman at the margin

layer with trainable weight matrix W (i) ∈ Rdi×di−1 . Let G be an n-order graph, if we pack the node
embeddings h(i)

v into an di × n matrix X(i) whose vth column is h(i)
v , then

X(i+1) = W (i+1)X(i)A′(G),

where A′(G) := A(G) + In, In ∈ Rn×n is the n-dimensional identity matrix, and X = X(0) is the
d0 × n matrix whose columns correspond to vertices’ initial features; we also write d = d0. For the
permutation-invariant readout layer, we use simple summation of the final node embeddings and assume
that X(L) is transformed into a prediction ŷ as follows,

ŷ = READOUT
(
X(L)

)
= X(L) · 1n.

Since we desire a scalar output, we will have dL = 1.

Suppose our training dataset is {(Gi,Xi, yi)}ki=1, where Xi ∈ Rd×ni is a set of d-dimensional node
features over an ni-order graph Gi with order ni, and yi ∈ {−1,+1} for all i. We use a loss function ℓ
with the following assumption.
Assumption 29. The loss function ℓ : R → R+ has a continuous derivative ℓ′ such that ℓ′(x) < 0 for
all x, limx→−∞ ℓ(x) = ∞, and limx→∞ ℓ(x) = 0.

The empirical risk induced by the MPNN is

R(W (L), . . . ,W (1)) =
1

k

k∑
i=1

ℓ(yi, ŷi)

=
1

k

k∑
i=1

ℓ(WprodZiA
′(G)L1ni),

where Wprod = W (L)W (L−1) · · ·W (1), and Zi = yiXi.

We consider gradient flow and gradient descent. In gradient flow, the evolution of W =
(W (L),W (L−1), . . . ,W (1)) is given by {W (t) : t ≥ 0}, where there is an initial state W (0)
at t = 0, and

dW (t)

dt
= −∇R(W (t)).

We make one additional assumption on the initialization of the network.
Assumption 30. The initialization of W at t = 0 satisfies ∇R(W (0)) ̸= R(0) = ℓ(0).

Alignment theorems. We now assume the data is MPNN-separable, i.e., there is a set of weights that
correctly classifies every data point. More specifically, assume there is a vector ū ∈ Rd such that
yi · ū⊤XiA

′(Gi)
L1ni > 0 for all i. Furthermore, the maximum margin is given by

γ = max
∥ū∥=1

min
1≤i≤k

yi · ū⊤XiA
′(Gi)

L1ni
> 0.

while the corresponding solution ū ∈ Rd is given by

argmax
∥ū∥=1

min
1≤i≤k

yi · ū⊤XiA
′(Gi)

L1ni
.

Furthermore, those vi = ZiA
′(Gi)

L1ni for which ⟨ū,vi⟩ = γ are called support vectors.

Our first main result shows that under gradient flow, the trainable weight vectors of our MPNN
architecture get “aligned.”
Theorem 31. Suppose Assumptions 29 and 30 hold. Let ui(t) ∈ Rdi and vi(t) ∈ Rdi−1 denote the
left and right singular vectors, respectively, of W (i)(t) ∈ Rdi×di−1 . Then, we have the following using
the Frobenius norm ∥·∥F :

• For j = 1, 2, . . . , L, we have

lim
t→∞

∥∥∥∥ W (j)(t)

∥W (j)(t)∥F
− uj(t)vj(t)

⊤
∥∥∥∥
F

= 0.

23

Weisfeiler–Leman at the margin

• Also,

lim
t→∞

∣∣∣∣∣
〈
(W (L)(t) · · ·W (1)(t))⊤∏L

j=1 ∥W (j)(t)∥F
,v1

〉∣∣∣∣∣ = 1.

Furthermore, we show that under mild assumptions, the weights converge to the maximum margin
solution ū.
Assumption 32. The support vectors vi = ZiA

′(Gi)
L1ni span Rd.

Note that, for unlabeled graphs, due to separability, the above assumption is trivially fulfilled.
Theorem 33 (Convergence to the maximum margin solution). Suppose Assumptions 29 and 32 hold.
Then, for the exponential loss function ℓ(x) = e−x, under gradient flow, we have that the learned
weights of the MPNN converge to the maximum margin solution, i.e.,

lim
t→∞

W (L)(t)W (L−1)(t) · · ·W (1)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (1)(t)∥F
= ū.

We note here that the results can be straightforwardly adjusted to MPNNF architectures.

We present the proofs of our main results from Appendix F, i.e., Theorem 41 and Theorem 44. We will
need some supporting lemmas, which we state and prove next. We note that the proof structure is close
to the one in Ji and Telgarsky [53].

F.0.1 Setup

Recall that we consider linear L-layer MPNNs following Appendix D with trainable weight matrices
W (i) ∈ Rdi×di−1 . Moreover, in our linear MPNN, after L layers, the final node embeddings X(L) are
given by

X(L) := W (L)W (L−1) · · ·W (1)X(0)A′(G)L,

where A′(G) := A(G) + In, In ∈ Rn×n is the n-dimensional identity matrix, and X = X(0) is the
d0 × n matrix whose columns correspond to vertices’ initial features; d = d0.

These node embeddings are then converted into predictions

ŷ := READOUT
(
X(L)

)
= X(L)1n = W (L)W (L−1) · · ·W (1)X(0)A′(G)L1n.

In our analysis, we will often need to reason about the singular values of the weight matrices. For
j = 1, 2, . . . , L, we let σj(t) denote the largest singular value of W (j)(t), and we let u(t) and v(t)
denote the left-singular and right-singular vectors, respectively, corresponding to this singular value.

Recall that the training dataset is {(Gi,Xi, yi)}ki=1, where Xi ∈ Rdi×ni is a set of di-dimensional
node features over an ni-order graph Gi with |V (Gi)| =: ni, and yi ∈ {−1,+1} for all i. Also, we
write d = d0 for the input node feature dimension. We further recall that the loss function ℓ satisfies the
following assumptions.
Assumption 29. The loss function ℓ : R → R+ has a continuous derivative ℓ′ such that ℓ′(x) < 0 for
all x, limx→−∞ ℓ(x) = ∞, and limx→∞ ℓ(x) = 0.

The empirical risk induced by the MPNN is

R(W (L), . . . ,W (1)) :=
1

k

k∑
i=1

ℓ(yi, ŷi)

=
1

k

k∑
i=1

ℓ(WprodZiA
′(Gi)

L1ni
),

where Wprod = W (L)W (L−1) · · ·W (1), and Zi = yiXi.

For convenience, it will often be useful to write R as a function of the product Wprod. Let R1 be the
risk function R written as a function of the product Wprod, i.e.,

R1(Wprod) :=
1

k

k∑
i=1

ℓ(WprodZiA
′(Gi)

L1ni
).

24

Weisfeiler–Leman at the margin

We will consider gradient flow. In gradient flow, the evolution of W = (W (L),W (L−1), . . . ,W (1))
is given by {W (t) : t ≥ 0}, where there is an initial state W (0) at t = 0, and

dW (t)

dt
:= −∇R(W (t)).

Note that gradient flow satisfies the following:

dR(W (t))

dt
=

〈
∇R(W (t)),

dW (t)

dt

〉
= −∥∇R(W)∥22 = −

L∑
j=1

∥∥∥∥ ∂R
∂W (j)

∥∥∥∥2
F

, (6)

which implies that the risk never increases. The discrete version of this is given by

W (t+ 1) := W (t)− ηt∇R(W (t)),

which corresponds to gradient descent with step size ηt. Recall that we make the following assumption
on the initialization of the network under consideration:
Assumption 30. The initialization of W at t = 0 satisfies ∇R(W (0)) ̸= R(0) = ℓ(0).

F.0.2 Lemmas and Theorems

The proof structure of our main theorems largely follows that of Ji and Telgarsky [53], except with the
main change that xi 7→ XiA

′(G)L1n and zi 7→ ZiA
′(G)L1n. Many of the lemmas follow directly

from the relevant lemma in Ji and Telgarsky [53] with this transformation; we therefore defer to their
proofs for a number of lemmas.

We start with a lemma that relates the weight matrices at successive levels to each other under the
dynamics of gradient flow. This is essentially Theorem 1 of Arora et al. [6] applied to our setting—our
R1 and R correspond to L1 and LN , respectively, in the aforementioned work.
Lemma 34 (Theorem 1 in Arora et al. [6]). (W (j+1))⊤(t)W (j+1)(t)−W (j)(t)(W (j))⊤(t) is a
constant function of t.

Proof. For each j = 1, 2, . . . , L,

∂R
∂W (j)

=

L∏
i=j+1

(W (i))⊤ · dR1

dWprod
(W (L)W (L−1) · · ·W (1)) ·

j−1∏
i=1

(W (i))⊤.

Hence, Ẇ (j) = dW
dt is given by

Ẇ (j) = −∇R(W (t))

= −η

L∏
i=j+1

(W (i)(t))⊤ · dR
dW

(W (L)(t)W (L−1)(t) · · ·W (1)(t)) ·
j−1∏
i=1

(W (i)(t))⊤.

Right multiplying the equation for j by (W (j))⊤(t) and left multiplying the equation for j + 1 by
(W (j+1))⊤(t), we see that

(W (j+1))⊤(t)Ẇ (j+1)(t) = Ẇ (j)(t)(W (j))⊤(t).

Adding the above equation to its transpose, we obtain

(W (j+1))⊤(t)Ẇ (j+1)(t)+(Ẇ (j+1))⊤(t)W (j+1)(t) = Ẇ (j)(t)(W (j))⊤(t)+W (j)(t)(Ẇ (j))⊤(t).

Note that this is equivalent to

d

dt

[
(W (j+1))⊤(t)W (j+1)(t)

]
=

d

dt

[
W (j+1)(t)(W (j+1))⊤(t)

]
,

which implies that (W (j+1))⊤(t)W (j+1)(t)−W (j+1)(t)(W (j+1))⊤(t) does not depend on t, as
desired.

25

Weisfeiler–Leman at the margin

For the remainder of this section, let B(R) denote the set of W = (W (L),W (L−1), . . . ,W (1)) for
which each component is bounded by R in Frobenius norm, i.e.,

B(R) =

{
W : max

1≤j≤L
∥W (j)∥F ≤ R

}
.

We now present the following lemma, which shows that the partial derivative of the risk function with
respect to the first weight matrix W (1) is bounded away from 0 in the Frobenius norm.
Lemma 35. For any R > 0, there exists a constant ϵR > 0 such that for any t ≥ 1 and
(W (L)(t),W (L−1)(t), · · · ,W (1)(t)) ∈ B(R), we have ∥∂R(t)/∂W (1)(t)∥F ≥ ϵR.

Proof. The lemma is the same as the first part of Lemma 2.3 in [53]. Therefore, we defer to the proof
there.

Our main interest in Lemma 35 is that it allows us to prove the following important corollary, which
establishes that under gradient flow, the weight matrices grow unboundedly in Frobenius norm and do
not spend much time inside a ball of any fixed finite radius.
Corollary 36. Under gradient flow subject to Assumptions 29 and 30, {t ≥ 0: W (t) ∈ B(R)} has
finite measure.

Proof. The corollary corresponds to the second part of Ji and Telgarsky [53]. We reproduce the proof
here. Note that since dR(W (t))/dt = −∥∇R(W (t))∥2F ≤ 0 for all t ≥ 0 (see Equation (6)),

R(W (0)) ≥ −
∫ ∞

0

dR(W (t))

dt
dt

=

∫ ∞

0

∥∥∥∥ ∂R(t)

∂W (t)

∥∥∥∥2
F

dt

=

∫ ∞

0

 L∑
j=1

∥∥∥∥ ∂R(t)

∂W (j)(t)

∥∥∥∥2
F

 dt

≥
∫ ∞

0

∥∥∥∥ ∂R(t)

∂W (1)(t)

∥∥∥∥2
F

dt

≥
∫ ∞

1

∥∥∥∥ ∂R(t)

∂W (1)(t)

∥∥∥∥2
F

dt

≥ ϵ(R)2
∫ ∞

1

I[W (t) ∈ B(R)] dt,

where the final implication holds due to Lemma 35. Since R(W (0)) is finite, this implies that
{t ≥ 0: W (t) ∈ B(R)} has finite measure.

We now define the following notation for convenience:

Bj(t) := W (j)(t)(W (j))⊤(t)−W (j+1)(t)(W (j+1))⊤(t), and

D :=

(
max

1≤j≤L
∥W (j)(0)∥2F

)
− ∥W (L)(0)∥2F +

L−1∑
j=1

∥Bj(0)∥22.

While the previous corollary allows us to show the unboundedness of the weight matrices in the
Frobenius norm, we often need to reason about the weight matrices in the standard operator norm. The
following lemma shows that the two norms can not differ by too much.
Lemma 37. For every 1 ≤ i ≤ L, we have ∥W (i)∥2F − ∥W (i)∥22 ≤ D.

Proof. A proof appears in [53]; see part 1 of Lemma 2.6.

26

Weisfeiler–Leman at the margin

The next lemma is the key to establishing the “alignment” property. Roughly speaking, it establishes that
the largest left singular vector of a weight matrix gets minimally aligned with the largest right singular
vector of the weight matrix in the successive round of message passing.
Lemma 38. For all 1 ≤ j ≤ L, we have

⟨vj+1,uj⟩2 ≥ 1− D + ∥W (j)(0)∥22 + ∥W (j+1)(0)∥22
σ2
j+1

.

Proof. Once again, the proof appears in [53] (see part 2 of Lemma 2.6).

The previous two lemmas can be used to establish the following lemma, which shows that each
(normalized) weight matrix tends to a rank-1 approximation given by its top left and right singular
vectors, and the (normalized) partial product of weight matrices tend to the relevant right singular vector
of the final weight matrix in the product. We note that the first part of the lemma appears in Theorem 2.2
of [53]; however, the second part does not appear explicitly in their work (although the proof is similar
to the third part of Lemma 2.6 in [53]). Therefore, we provide the proof below.
Lemma 39. Suppose min1≤j≤L ∥W (j)(t)∥F → ∞ as t → ∞. For any 1 ≤ j ≤ L, we have,

• W (j)(t)/∥W (j)(t)∥F → uj(t)vj(t)
⊤ as t → ∞.

• Also, ∣∣∣∣ W (L)(t)W (L−1)(t) · · ·W (j)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (j)(t)∥F
vj(t)

∣∣∣∣→ 1

as t → ∞.

Proof. Since ∥W (j)(t)∥F → ∞, Lemma 37 implies that, as t → ∞, ∥W (j)(t)∥2 → ∞, and,
moreover, the singular values of W (j)(t) beyond the top singular value are dominated by ∥W (j)(t)∥F .
Thus, W (j)(t)/∥W (j)(t)∥F → uj(t)vj(t)

⊤, which establishes the first part.

For the second part, note that by Lemma 38 and the fact that σj = ∥W (j)(t)∥2 → ∞, we have that
|⟨uj(t),vj+1(t)⟩| → 1. Hence, for any j, we have∣∣∣∣ W (L)W (L−1) · · ·W (j)

∥W (L)∥F ∥W (L−1)∥F · · · ∥W (j)∥F
vj

∣∣∣∣→ ∣∣(uLv
⊤
L) · · · (ujv

⊤
j)vj

∣∣
=
∣∣uL(v

⊤
LuL−1) · · · (v⊤

j+1uj)(v
⊤
j vj)

∣∣
→ |uL|
= 1

as t → ∞, which completes the proof.

The following theorem shows that under gradient flow, the risk goes to zero as t → ∞, while the
Frobenius norm of each weight matrix tends to infinity. The theorem corresponds to parts 1 and 2 of
Theorem 2.2 in Ji and Telgarsky [53]; therefore, we defer to the proofs there.
Theorem 40 (Parts 1 and 2 of Theorem 2.2 in [53]). We have the following:

• limt→∞ R(W (t)) = 0.

• For all i = 1, 2, . . . , L, we have limt→∞ ∥W (i)(t)∥F = ∞.

Proof. See the proof of parts 1 and 2 of Theorem 2.2 in [53].

Our main alignment result for linear MPNNs is the following, whose proof follows easily from the
previous lemmas.
Theorem 41. Suppose Assumptions 29 and 30 hold. Let ui(t) ∈ Rdi and vi(t) ∈ Rdi−1 denote the
left and right singular vectors, respectively, of W (i)(t) ∈ Rdi×di−1 . Then, we have the following using
the Frobenius norm ∥·∥F :

27

Weisfeiler–Leman at the margin

• For j = 1, 2, . . . , L, we have

lim
t→∞

∥∥∥∥ W (j)(t)

∥W (j)(t)∥F
− uj(t)vj(t)

⊤
∥∥∥∥
F

= 0.

• Also,

lim
t→∞

∣∣∣∣∣
〈
(W (L)(t) · · ·W (1)(t))⊤∏L

j=1 ∥W (j)(t)∥F
,v1

〉∣∣∣∣∣ = 1.

Proof. Note that by Theorem 40, we have that ∥W (j)∥F → ∞ for every j. Thus, the first part of
Lemma 39 implies the first part of the theorem. Note that setting j = 1 in the second part of Lemma 39
implies the second part of the theorem, completing the proof.

F.0.3 Margin

We now state results on the margin.
Lemma 42. Suppose the data set {(Xi, yi)}ki=1 and Gi on ni nodes are sampled according to
Assumption 32. Let S ⊂ {1, 2, . . . , k} be the set of indices for support vectors. Then,

min
∥ξξξ∥2=1
⟨ξξξ,ū⟩=0

max
i∈S

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
> 0 (7)

with probability 1 over the sampling.

Proof. First, we note that there are s ≤ d support vectors; furthermore, each support vector
ZiA

′(Gi)
L1ni has a corresponding dual variable αi that is positive, so that∑

i∈S

αiZiA
′(Gi)

L1ni
= ū. (8)

This follows from Soudry et al. [98] (see Lemma 12 in Appendix B), which was also used by Ji and
Telgarsky [53]).

Next, assume for the sake of contradiction that there exists ξξξ with ∥ξξξ∥2 = 1 and ⟨ξξξ, ū⟩ = 0 but

max
1≤i≤k

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
≤ 0.

Then, note that

0 = ⟨ξξξ, ū⟩

=

〈
ξξξ,
∑
i∈S

αiZiA
′(Gi)

L1ni

〉
=
∑
i∈S

αi

〈
ξξξ, ZiA

′(Gi)
L1ni

〉
≤ 0.

This implies that
〈
ξξξ, ZiA

′(Gi)
L1ni

〉
= 0 for all i ∈ S, which contradicts our assumption that the

support vectors span the entirety of Rd. This completes the proof.

Lemma 43. Suppose Assumption 32 holds. Let ℓ be the exponential loss given by ℓ(x) = e−x. For
almost all data, if w ∈ Rd satisfies ⟨w,u⟩ ≥ 0 and w⊥, the projection of w on to the subspace of Rd

orthogonal to u, satisfies ∥w⊥∥2 ≥ 1+ln(k)
α , then ⟨w⊥,∇R(w)⟩ ≥ 0 (recall α from Equation (8)).

Proof. Let vj = ZjA
′(Gj)

L1 = yjXjA
′(Gj)

L. Moreover, for any z ∈ Rd let z = z∥ + z⊥,
where z∥ is the projection of z on to u and z⊥ is the component of z orthogonal to u. Let
j′ = argmaxj∈S⟨−w⊥,vj⟩ (recall that S is the index set for support vectors).. We note that
−⟨w⊥,v⊥

j′ ⟩ = −⟨w⊥,vj′⟩ ≥ α∥w⊥∥, where α is the quantity on the lefthand side of (7).

28

Weisfeiler–Leman at the margin

Observe that

⟨w⊥,∇R(w⊤)⟩ = 1

k

k∑
i=1

ℓ′(⟨w,vi⟩) · ⟨w⊥,vi⟩

= −1

k

k∑
i=1

exp(−⟨w,vi⟩) · ⟨w⊥,v⊥
i ⟩

= −1

k
exp(−⟨w,vj′⟩) · ⟨w⊥,v⊥

j′ ⟩ −
1

k

∑
1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

exp(−⟨w,vi⟩) · ⟨w⊥,v⊥
i ⟩.

(9)

The first term on the righthand side of (9) can be bounded as follows:

−1

k
exp(−⟨w,vj′⟩) · ⟨w⊥,v⊥

j′ ⟩ = −1

k
exp

(
−⟨w,v

∥
j′⟩ − ⟨w,v⊥

j′ ⟩
)
· ⟨w⊥,v⊥

j′ ⟩

= −1

k
exp

(
−⟨w∥,v

∥
j′⟩
)
exp

(
−⟨w⊥,v⊥

j′ ⟩
)
· ⟨w⊥,v⊥

j′ ⟩

≥ 1

k
exp(−⟨w, γu⟩) exp(α∥w⊥∥) · α∥w⊥∥. (10)

For the second term in (9), we have∑
1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w,vi⟩) · ⟨w⊥,v⊥

i ⟩ =
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w, γū⟩) exp(−⟨w,vi − γū⟩) · ⟨w⊥,v⊥

i ⟩

≥
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

−1

k
exp(−⟨w, γū⟩) exp(−⟨w⊥,v⊥

i ⟩) · ⟨w⊥,v⊥
i ⟩

≥
∑

1≤i≤k

⟨w⊥,v⊥
i ⟩≥0

1

k
exp(−⟨w, γū⟩)(−e−1)

≥ exp(−⟨w, γū⟩)(−e−1), (11)

since xe−x ≤ −e−1 for x ≥ 0, and the assumption ⟨w,u⟩ ≥ 0 along with the fact that vi has margin
at least γ implies that ⟨w,vi − γu− v⊥

i ⟩ ≥ 0.

By plugging (10) and (11) into (9), we obtain

⟨w⊥,∇R(w⊤)⟩ ≥ exp(−⟨w, γū⟩)
[
1

k
exp(α∥w⊥∥) · α∥w⊥∥ − e−1

]
.

Finally, note that since ∥w⊥∥ ≥ (1 + ln(k))/α (by the assumption in the lemma), 1
k exp(α∥w⊥∥) ·

α∥w⊥∥ − e−1 ≥ 0, which completes the proof.

Our main theorem establishes the convergence of linear MPNNs to the maximum margin solution.
Theorem 44 (Convergence to the maximum margin solution). Suppose Assumptions 29 and 32 hold.
Then, for the exponential loss function ℓ(x) = e−x, under gradient flow, we have that the learned
weights of the MPNN converge to the maximum margin solution, i.e.,

lim
t→∞

W (L)(t)W (L−1)(t) · · ·W (1)(t)

∥W (L)(t)∥F ∥W (L−1)(t)∥F · · · ∥W (1)(t)∥F
= ū.

Proof. The proof follows that of Theorem 2.8 in [53], except that one uses Assumption 32 along with
the transformations xi 7→ XiA

′(G)L1n and zi 7→ ZiA
′(G)L1n, where the relevant support vectors

are of the form ZiA
′(G)L1n. The proof follows similarly from Lemma 43 as in [53].

29

	1 Introduction
	2 Background
	3 Weisfeiler–Leman at the margin: When more expressivity matters
	4 Conclusion
	A Related work
	A.1 Graph kernels based on the 1-WL
	A.2 MPNNs
	A.3 Expressive power of MPNNs
	A.4 Generalization abilities of graph kernels and MPNNs

	B Extended notation
	C Graph kernels based on the 1-WLF
	D Message-passing graph neural networks
	D.1 Simple MPNNs

	E Proofs missing from the main paper
	E.1 Fundamentals
	E.2 Expressive power of enhanced variants
	E.3 Margin-based upper and lower bounds on the VC dimension of Weisfeiler–Leman-based kernels
	E.3.1 Colored margin bounds

	E.4 Margin-based bounds on the VC dimension of MPNNs and more expressive architectures

	F Large margins and gradient flow
	F.0.1 Setup
	F.0.2 Lemmas and Theorems
	F.0.3 Margin

