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Abstract

Molecular interactions often involve high-order relationships that cannot be fully
captured by traditional graph-based models limited to pairwise connections. Hy-
pergraphs naturally extend graphs by enabling multi-way interactions, making
them well-suited for modeling complex molecular systems. In this work, we intro-
duce EquiHGNN, an Equivariant HyperGraph Neural Network framework that
integrates symmetry-aware representations to improve molecular modeling. By
enforcing the equivariance under relevant transformation groups, our approach
preserves geometric and topological properties, leading to more robust and physi-
cally meaningful representations. We examine a range of equivariant architectures
and demonstrate that integrating symmetry constraints leads to notable perfor-
mance gains on large-scale molecular datasets. Experiments on both small and
large molecules show that high-order interactions offer limited benefits for small
molecules but consistently outperform 2D graphs on larger ones. Adding geometric
features to these high-order structures further improves the performance, empha-
sizing the value of spatial information in molecular learning. Our source code is
available at https://github.com/HySonLab/EquiHGNN/.

1 Introduction

Molecular systems exhibit complex, high-order interactions, including conjugated π-systems, hy-
drogen bonding networks, and ring strain effects [1, 2]. Taking advantage of the inherent benefits
of graph-based representations, Graph Neural Networks (GNNs) have been widely used to model
molecular interactions [3] due to their ability to efficiently learn relational structures. GNNs leverage
message passing mechanisms to aggregate information from neighboring atoms, making them well
suited to encode local connectivity and bond-based interactions [4, 5]. However, standard GNNs pri-
marily model pairwise relationships between nodes, limiting their ability to represent the multi-body
dependencies inherent in molecular interactions. Furthermore, they often lack explicit geometric
information, such as spatial coordinates, bond angles, and torsional relationships, that is crucial for
accurately capturing the three-dimensional structure and properties of molecules.

Topological Deep Learning (TDL) [6, 7, 8] offers a robust framework to overcome the limitations of
GNN by integrating higher-order structures that extend beyond simple node-to-node connections.
Techniques such as simplicial complexes [9], cell complexes [10], combinatorial complexes [6, 11]
and hypergraphs [12, 13, 14] enrich traditional graph representations by capturing complex multi-
body interactions intrinsic to molecular systems. By embedding these topological structures within
deep learning architectures, we can achieve a more holistic and principled understanding of molecular
interactions. This approach has already led to state-of-the-art performance in a variety of machine
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Figure 1: a) Illustration of a hypergraph constructed from a molecule, where vertices represent
atoms and hyperedges represent conjugated bonds, highlighted in blue and orange. b) Hypergraph to
Bipartite representations

Figure 2: Overview of the Equivariant Hypergraph Neural Network framework.

learning tasks [12, 15, 11, 16], and holds significant promise to advance research and applications in
the applied sciences and beyond.

In addition to topological considerations, molecular interactions are inherently governed by geometric
constraints. Geometric Deep Learning (GDL) [17] incorporates geometric priors, such as structural
and symmetry information about the input space, which are essential to maintain spatial symmetries
and to ensure that the learned representations accurately reflect the physical properties of molecules.
A key requirement in molecular modeling is the equivariance to transformations such as rotations,
translations, and reflections. Recent advancements in equivariant architectures enable the integration
of geometric constraints into deep learning models, ensuring that molecular representations align
with the principles of three-dimensional spatial organization [18, 19, 20, 21, 22, 23, 24].

Although previous work has explored integrating symmetry into simplicial [25] and combinatorial
complexes[26], incorporating equivariant features into hypergraphs offers a more expressive and
adaptable framework for modeling complex multi-body interactions in molecular systems. Unlike
other complex-based representations, hypergraphs provide a more direct and scalable approach to
capturing these interactions, enabling more intuitive molecular modeling. Given these advantages, in
this study we focus on hypergraphs to model high-level interactions in molecular systems.

We introduce EquiHGNN, a unified framework that seamlessly integrates topological and geometric
learning to model molecular interactions while preserving geometric consistency. Instead of designing
a complex message-passing framework, we initialize the hypergraph features with symmetry-aware
geometric representations and invariant scalar information, enabling the model to effectively capture
structural and functional properties without sacrificing equivariance. Compared to baseline models
that do not incorporate symmetry into hypergraph representations, our approach encodes both scalar
and geometric features within a unified framework.

We evaluated our model on QM9 [27], OPV [28], PCQM4Mv2 [29], and Molecule3D [30] to assess
both accuracy and scalability. While QM9 and OPV contain small molecules, PCQM4Mv2 and
Molecule3D test performance on large-scale graphs. Our model achieved competitive results across
all datasets, demonstrating strong generalization and scalability to complex molecular structures.

Our contributions are as follows.

• We propose Equivariant Hypergraph Neural Network (EquiHGNN) for molecular property
prediction that effectively captures both scalar and geometric features through hypergraph
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representations. Its modular and intuitive design enables seamless integration with existing
frameworks and allows reuse of publicly available models.

• We conducted an empirical study to analyze the impact of various architectural choices and
configurations, exploring different equivariant approaches. Specifically, we examine the
use of EGNN [31] in the Euclidean domain, Equiformer [32] in the Fourier domain, and
FAFormer [24] in the frame domain.

• We observe that high-order interactions in hypergraphs, although slightly less effective on
small molecules, consistently enhance performance on large-scale graphs. Additionally,
integrating 3D geometric information into the hypergraph significantly improves the accuracy
of the model.

2 Method

This section presents our intuitive approach to modeling high-order interactions with symmetry-
aware features, emphasizing key components and detailing their seamless integration for optimal
performance.

2.1 AllSet

The AllSet framework [13] formulates HGNNs using multiset functions, ensuring permutation
invariance and expression of the message passing. It models hypergraphs as bipartite graphs, enabling
flexible message propagation through two learnable set functions.

Formally, let H = (V, E) be a hypergraph, where V is the set of nodes and E is the set of hyperedges,
each of which connects a subset of nodes. The AllSet framework updates representations through a
two-step message-passing mechanism. First, hyperedge embeddings are computed by aggregating
features from incident nodes using a set function fV→E , defined as follows:

Z(t+1)
e = fV→E

(
Ve\v,X(t) ;Z(t),v

e,:

)
,

where X(t) represents the features of nodes in iteration t, Z(t)
e denotes hyperedge embeddings, and

Ve is the set of nodes belonging to hyperedge e. This function aggregates node information into a
hyperedge representation while preserving permutation invariance.

The node features are then updated based on the embeddings of the hyperedges through a second set
function fE→V , which propagates information back from the hyperedges to the nodes:

X(t+1)
v = fE→V

(
E

v,Z
(t+1),v
e

;X(t)
v,:

)
,

where Ev is the set of hyperedges containing the node v. This formulation allows the message-passing
process to flexibly capture complex dependencies between nodes and hyperedges.

After T steps of the message passing, the hypergraph-level prediciotn is calculated in the readout part
on the final hidene states of hyperedges and nodes:

y = MLP

(∑
v∈G

X(T )
v

∑
e∈G

Z(T )
e

)
.

This architecture ensures permutation invariance while allowing expressive transformations of hyper-
graph features.

2.2 Equivariant Hypergraph Neural Network

Our approach enhances AllSet by initializing node features with both scalar attributes and 3D
geometric properties, naturally embedding equivariant information into the model. This simple yet
effective design leads to a more expressive and symmetry-aware framework for hypergraph learning.

To explore the best strategy for symmetry-aware representation, we evaluated models across three
geometric domains. Scalar-based models such as EGNN [31] preserve pairwise distances and
relational structure, ensuring invariance. Frame-based methods such as FAFormer [24] apply frame
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averaging to enforce equivariance while capturing higher-order geometric patterns. Fourier-based
models such as Equiformer [32] transform geometric features into the spectral domain to model
long-range dependencies. This comparative analysis helps identify the most effective backbone for
incorporating geometric symmetry into hypergraph learning.

As illustrated in Figure 2, we first extract symmetry-aware embeddings using an equivariant model
(e.g., EGNN or Equiformer). These embeddings are then used as input features in a hypergraph
module that captures complex higher-order interactions. The hyperedges embedding is concatenated
with the vertexes features and passed through several MLP layers to generate the final predictions.
Although the pipeline remains conceptually simple, it significantly improves performance over other
baselines.

3 Experiments

Density Functional Theory (DFT) is a widely-used quantum mechanical method for predicting
molecular properties, such as structure, reactivity, and responses to electromagnetic fields. Although
DFT provides high accuracy, its computational cost increases rapidly with the size of the system,
making it impractical for large-scale molecular screening. As a result, DFT calculations can be
time-consuming, often requiring several hours for even small molecules. This limitation makes it
challenging to explore large chemical spaces or conduct extensive property predictions. In this study,
we utilize the QM9 [27] and OPV [28] datasets for molecular property prediction. QM9 consists of
small organic molecules and is widely used to benchmark fundamental molecular properties. The OPV
dataset focuses on organic photovoltaic molecules, which typically contain larger conjugated systems
relevant for electronic and optoelectronic applications. To assess the scalability and expressiveness of
our model, we evaluate large-scale graph datasets such as PCQM4Mv2 [29] and Molecule3D [30],
both derived from PubChemQC [33]. These datasets are designed to predict critical molecular
properties for fields such as drug discovery and materials science, featuring complex molecular
structures and substantial graph data. While PCQM4Mv2 is focused primarily on predicting the
HOMO-LUMO gap from SMILE strings, Molecule3D emphasizes 3D molecular geometry prediction,
integrating molecular properties prediction as a secondary task.

3.1 Results

We perform experiments comparing our approach to the MHNN baseline [14], which represents the
hypergraph using a bipartite graph structure, similar to AllSet [13]. To incorporate symmetry-aware
features, we evaluated three different setups: EGNN [31], FAFormer [24], and Equiformer [32].
Furthermore, we compare performance with 2D graph models to assess whether incorporating
higher-order interactions with symmetry awareness can improve the model performance. All results
show significantly better performance compared to 2D graph models, including GIN [34] and
GAT [35], highlighting the importance of capturing geometric and topological information. The tables
below report the MAE scores across all datasets, with bold values indicating the best-performing
models and underlined values denoting the second-best. For the PCQM4Mv2 and Molecule3D
datasets, only EGNN-MHNN is included among the equivariant integration models, as training
FaFormer and Equiformer on these large-scale datasets is prohibitively time-consuming. In particular,
in PCQM4Mv2, 3D geometric information is available only for the training set; therefore, all
experiments are conducted on this subset to ensure a fair comparison between 2D and 3D graph
representations.

3.1.1 QM9 dataset

Table 1 presents the Mean Absolute Error (MAE) for six molecular properties from the QM9 dataset.
The baseline MHNN, which captures higher-order interactions through hypergraph representations,
underperforms compared to standard 2D graph-based models. For example, on ϵHOMO, MHNN
yields an MAE of 55.38 meV, while GIN and GAT achieve 47.67 meV and 51.56 meV, respectively.
GIN also records the lowest error on µ (0.2 meV). These results suggest that modeling higher-order
relations alone does not improve the performance of small molecules.

In contrast, incorporating geometric inductive biases leads to significant gains. Both EGNN-MHNN
and FAFormer-MHNN consistently reduce MAE across tasks. FAFormer-MHNN achieves the best
results in three of the six properties, including ϵLUMO (51.9 meV), ∆ϵ (73.3 meV), and ⟨R2⟩ (2602.89
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Table 1: MAE on the QM9 test set.

Task µ α ϵHOMO ϵLUMO ∆ϵ ⟨R2⟩
Units (↓) D a0

3 meV meV meV a0
2

GIN 0.2 ± 0.003 4.09 ± 0.04 47.67 ± 0.4 99.62 ± 0.9 147.87 ± 1.3 6279.8 ± 86.91
GAT 0.65 ± 0.006 6.17 ± 0.07 51.56 ± 0.5 111.24 ± 0.9 158.26 ± 1.1 8772.5 ± 97.43
MHNN 0.67 ± 0.005 9.29 ± 0.1 55.38 ± 0.5 124.23 ± 1.07 166.6 ± 1.3 9301.44 ± 138.369

EGNN-MHNN 0.59 ± 0.005 2.02 ± 0.02 44.82 ± 0.3 92.54 ± 0.9 140.06 ± 1.5 4293.09 ± 66.44
FAFormer-MHNN 0.3 ± 0.003 4.85 ± 0.04 26.47 ± 0.2 51.9 ± 0.4 73.3 ± 0.7 2602.89 ± 25.04
Equiformer-MHNN 0.34 ± 0.003 2.48 ± 0.02 25.57 ± 0.2 67.19 ± 0.5 230.77 ± 1.8 102815 ± 445.433

a0
2), halving the error compared to the baselines of the MHNN and 2D graph. EGNN-MHNN

obtains the lowest MAE in α (2.02 a0
3) and competitive results on ⟨R2⟩ (4293.09 a0

2). In particular,
Equiformer-MHNN achieves the best performance in ϵHOMO (25.57 meV). These findings highlight
that while higher-order modeling alone is insufficient, combining topological and geometric priors
yields a more powerful and accurate framework for molecular property prediction in the QM9 setting.

3.1.2 OPV dataset

Table 2: MAE on the OPV test set.

Molecular Polymer

Methods ∆ε εHOMO εLUMO Ioverlap ∆ε εHOMO εLUMO OLUMO

Units (↓) meV meV meV W/mol meV meV meV meV

GIN 50.45 ± 0.9 39.16 ± 0.5 53.29 ± 0.8 206.53 ± 3.6 53.69 ± 1.0 61.65 ± 0.9 78.48 ± 1.5 64.64 ± 0.6
GAT 55.8 ± 0.9 32.2 ± 0.5 46.68 ± 0.7 204.03 ± 4.2 47.91 ± 0.83 58.47 ± 0.92 71.84 ± 1.3 56.61 ± 0.7
MHNN 34.02 ± 0.4 26.21 ± 0.4 24.46 ± 0.3 139.58 ± 2.3 48.95 ± 1.1 49.93 ± 0.8 60.71 ± 1.1 48.41 ± 0.7

EGNN-MHNN 28.27 ± 0.3 20.97 ± 0.2 20.03 ± 0.3 99.7 ± 1.5 45.63 ± 0.9 66.67 ± 1.1 69.32 ± 1.2 67.28 ± 0.9
FAFormer-MHNN 36.4 ± 0.6 20.5 ± 0.2 18.84 ± 0.3 100.52 ± 1.5 46.12 ± 0.9 54.85 ± 1.0 72.05 ± 1.4 52.74 ± 0.8
Equiformer-MHNN 28.12 ± 0.4 20.24 ± 0.2 20.59 ± 0.3 107.346 ± 1.7 45.42 ± 0.9 50.08 ± 0.8 58.17 ± 1.0 43.6 ± 0.6

The OPV dataset includes both small (molecular) and large (polymer) compounds, offering a robust
benchmark for evaluating the scalability and generalization of various graph-based representations.
Table 2 highlights the performance (in MAE) of several models in four tasks for each category.

For small molecules, the proposed Equiformer-MHNN outperforms all baselines in two out of four
tasks. It achieves the lowest MAE for ∆ε (28.12 meV) and εHOMO (20.24 meV). FaFormer-MHNN
performs best in εLUMO with 18.84 meV, while EGNN-MHNN leads in Ioverlap. When applied to
molecular tasks, incorporating symmetry awareness into the hypergraph consistently outperforms 2D
graphs and models that rely solely on higher-order interactions.

In contrast, for larger polymer molecules, Equiformer-MHNN continues to demonstrate strong
performance, outperforming all other models in three of four tasks. It achieves the best MAE for
∆ε (45.42 meV), εLUMO (58.17 meV) and OLUMO (43.6 meV), with a close second for εHOMO (50.08
meV). Although EGNN-MHNN and FAFormer-MHNN do not surpass Equiformer-MHNN, they
still significantly outperform traditional 2D GNNs across all polymer-related tasks, highlighting
the importance of incorporating geometric and equivariant representations when modeling complex
macromolecules.

The baseline MHNN, which models high-order interactions without geometric inductive bias, achieves
a moderate performance boost over GIN and GAT for small molecules (e.g., 24.46 meV in εLUMO
vs 53.29 and 46.68 meV for GIN and GAT, respectively). However, its improvements diminish in
the polymer regime, where long-range dependencies and complex geometry require more expressive
representations.

3.1.3 PCQM4Mv2

Table 3 reports the MAE for the prediction of the HOMO-LUMO gap in the PCQM4Mv2 test set.
The baseline models, GIN and GAT, achieve errors of 117.65 meV and 116.93 meV, respectively.
MHNN reduces the error to 108.11 meV by incorporating high-order molecular interactions through
hypergraph representations. EGNN-MHNN further improves the performance to 98.45 meV by

5



Table 3: MAE on the PCMQM4Mv2 test set in meV.

Model gap (↓)

GIN 117.65 ± 0.23
GAT 116.93 ± 0.21
MHNN 108.11 ± 0.25

EGNN-MHNN 98.45 ± 0.2

Table 4: MAE on the Molecule3D test set in meV.

Model gap (↓)

GIN 129.61 ± 0.25
GAT 137.22 ± 0.36
MHNN 117.55 ± 0.28

EGNN-MHNN 122.25 ± 0.24

integrating 3D geometric features with equivariant message passing. These results indicate that
geometric inductive biases and spatial information are beneficial for learning quantum chemical
properties in large-scale molecular graphs.

3.1.4 Molecule3D

Table 4 shows the MAE results in the Molecule3D test set. GIN and GAT yield errors of 129.61 meV
and 137.22 meV, respectively. MHNN achieves the lowest error of 117.55 meV, demonstrating the
effectiveness of high-order interaction modeling to capture structural dependencies. EGNN-MHNN
obtains a slightly higher error of 122.25 meV, suggesting that the added geometric modeling does not
consistently improve performance in datasets with high conformational flexibility.

4 Conclusion

In this work, we have explored the integration of symmetry-aware features into hypergraph represen-
tations for molecular modeling. Our approach focuses on a simple yet effective strategy of preparing
node features through an embedding that combines both symmetry-aware geometric representations
and invariant scalar information. We experimented with several equivariant techniques, including
spatial domain modeling, frame averaging, and Fourier domain methods. Although we also attempted
to directly modify the hypergraph message passing framework, this approach proved to be not only
challenging but also yielded poor results, highlighting the elegance and practicality of our embedding-
based strategy. Our results demonstrate that hypergraphs consistently outperform pairwise graph
approaches on larger molecules, showcasing their scalability. Additionally, incorporating symmetry-
aware features significantly improves model performance, emphasizing the importance of capturing
both high-order interactions and geometric consistency. Overall, our model demonstrates strong
generalization capabilities to large graphs while maintaining a simple and robust framework.

5 Limitations and Future work

In molecular systems, various higher-order interactions beyond conjugated bonds are important, such
as those explored by ETNNs [26]. Furthermore, SE3Set [36] employs a fragmentation method using
a BFS-like algorithm to identify connected subgraphs, which could be valuable for capturing complex
interactions. Our experiments with using rings as higher-order interactions resulted in significantly
worse performance compared to conjugated bonds, highlighting the need for further exploration
of effective high-order interactions. Moreover, while several state-of-the-art equivariant models
outperform Equiformer on certain tasks with better computational and parameter efficiency, our work
demonstrates a simple and flexible framework where node features for hypergraph neural networks
are initialized with embeddings from equivariant models. This design offers a straightforward plug-
and-play capability, allowing integration with other more advanced equivariant architectures to further
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enhance performance and scalability. Future work will explore the incorporation of these models to
unlock better efficiency and generalization.
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[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[36] Hongfei Wu, Lijun Wu, Guoqing Liu, Zhirong Liu, Bin Shao, and Zun Wang. Se3set: Harnessing
equivariant hypergraph neural networks for molecular representation learning. arXiv preprint
arXiv:2405.16511, 2024.

[37] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

[38] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[39] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[40] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations (ICLR), 2020.

[41] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. Advances in Neural Information Processing Systems,
34:6790–6802, 2021.

[42] Truong Son Hy. Graph representation learning, deep generative models on graphs, group
equivariant molecular neural networks and multiresolution machine learning. page 366.

[43] Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. arXiv preprint
arXiv:2110.03336, 2021.

[44] Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıa, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pages 9013–9033.
PMLR, 2023.

[45] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations, 2018.

[46] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[47] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in neural information processing
systems, 33:1970–1981, 2020.

[48] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve e(3) equivariant message passing. In International
Conference on Learning Representations, 2022.

9



[49] Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the
expressive power of geometric graph neural networks. In International conference on machine
learning, pages 15330–15355. PMLR, 2023.

[50] Truong Son Hy, Shubhendu Trivedi, Horace Pan, Brandon M. Anderson, and Risi Kondor.
Predicting molecular properties with covariant compositional networks. The Journal of Chemical
Physics, 148(24):241745, 06 2018.

[51] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
3558–3565, 2019.

[52] Cong Liu, David Ruhe, Floor Eijkelboom, and Patrick Forré. Clifford group equivariant
simplicial message passing networks. arXiv preprint arXiv:2402.10011, 2024.

[53] Kevin A Murgas, Emil Saucan, and Romeil Sandhu. Hypergraph geometry reflects higher-order
dynamics in protein interaction networks. Scientific Reports, 12(1):20879, 2022.

[54] Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeusel-
mann, Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Predicting ret-
rosynthetic pathways using transformer-based models and a hyper-graph exploration strategy.
Chemical science, 11(12):3316–3325, 2020.

[55] Justin Airas and Bin Zhang. Scaling graph neural networks to large proteins. Journal of
Chemical Theory and Computation, 2024.

[56] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

10



A Related Work

A.1 Graph Neural Network

Graph Neural Networks (GNNs) have been widely developed to improve representation learning
in graph-structured data, enabling effective modeling of relational and structural information [37].
GraphSAGE [38] introduced an inductive framework that aggregates information from the local
neighborhood of a node, allowing generalization to unseen graphs. More general, Message Passing
Neural Networks (MPNNs) [3] are a foundational class of GNNs that iteratively update node rep-
resentations by aggregating and transforming information from their neighbors, enabling effective
learning on graph-structured data. Graph Convolutional Networks (GCN) [39] leveraged spectral
graph theory to perform efficient message passing through neighborhood-based feature propagation.
Graph Isomorphism Networks (GIN) [34] maximized expressive power by using sum aggregation,
making them as discriminative as the Weisfeiler-Lehman test for graph isomorphism. Graph Attention
Networks (GAT) [35] integrated attention mechanisms to dynamically weight neighbor contributions,
improving the model’s ability to capture important structural dependencies. However, these models
operate on discrete graph structures, lack inherent equivariance or invariance to geometric transfor-
mations such as rotations, translations, and reflections, and can only model pairwise interactions,
making them impractical for capturing high-order molecular interactions such as conjugate bonds.
This work addresses these limitations by proposing EquiHGNN, a framework that incorporates both
geometric awareness and higher-order interaction modeling.

A.2 Geometric Graph Neural Networks

Geometric graph [17] is a special kind of graph with geometric information, e.g. the positions of
the atoms in 3D coordinates, encapsulating rich directional information that depicts the geometry of
the system, making the system ineffectively processed by GNNs. Researchers propped a variety of
Geometric Graph Neural Networks quipped with invariant/equivriant properties to better characterize
the geometry of geometric graph.

Many tasks require models to be invariant under Euclidean transformations, which is often achieved by
converting equivariant coordinates into invariant scalars. Early works like Cormorant [19] introduced
the idea of using covariant tensorial representations for molecular graphs, ensuring that the learned
features transform predictably under rotations and translations. Using spherical harmonics and tensor
contractions, Cormorant demonstrated how symmetry-preserving architectures can substantially
improve molecular property predictions. SchNet [18] uses continuous filter convolutions with filter
weights conditioned on relative distances but lacks directional encoding. DimeNet [40] addresses
this by introducing directional message passing, incorporating both distances and angles between
adjacent edges. GemNet [41] extends this further by incorporating dihedral angles, enabling more
expressive two-hop directional message passing based on quadruplets of nodes.

Equivariant graph neural networks, on the contrary, simultaneously update invariant and equivariant
features, as many tasks require equivariant output [42]. EGNN [31], a well-known scalarization-
based model, constrains messages to invariant distances and multiplies them by relative coordinates
to ensure equivariant updates. Frame Averaging (FA) [43, 44] ensures equivariance by encoding
coordinates in multiple reference frames and averaging their representations. Since summing over
all group elements is computationally difficult, , FA selects a representative subset using a frame
function [43]. This method has been further explored in material design, offering a scalable alternative
to traditional equivariant architectures [44]. FAFormer [24] incorporates the Transformer with frame
averaging within each layer, offers superior performance in the prediction of contact maps and the
detection of aptamers.

Spherical harmonics-based models use functions derived from spherical harmonics and irreducible
representations, leveraging tensor product operations to ensure equivariant data transformations
[45, 19]. Tensor Field Network (TFN) [46] and NequIP[20] utilize equivariant graph convolutions
with linear messages derived from tensor products, with NequIP further enhancing this approach
using equivariant gate activations. The SE(3)-Transformer [47] extends SEGNN [48] by replacing
equivariant gate activations with equivariant dot product attention for dynamic interaction weighting,
while Equiformer [32] further enhances it with MLP-based attention, equivariant layer normalization,
and regularizations such as dropout and stochastic depth.
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As shown in [49], rotationally equivariant GNNs are more expressive than invariant GNNs, especially
for sparse geometric graphs. In this work, we focus on equivariant methods, specifically EGNN [31]
for the scalarization-based approach, FAFormer [24] for the frame-averaging-based approach, and
Equiformer [32] for the spherical harmonic-based approach.

A.3 Topological Deep Learning

Topological Deep Learning (TDL) [6, 7] extends beyond traditional graphs by leveraging higher-
order structures, enabling a more expressive framework for modeling complex interactions among
multiple entities simultaneously. Beyond rotational symmetry, molecular graphs also exhibit rich
permutation symmetries in their relational structure. Predicting molecular properties with Covariant
Compositional Networks (CCNs) [50] proposed a framework that preserves higher-order permutation
equivariance during message passing by modeling interactions as higher-order tensors. This approach
enables the network to learn more expressive and physically meaningful representations compared to
first-order (pairwise) GNNs, especially when modeling complex molecular systems with many-body
interactions. The Weisfeiler-Lehman graph isomorphism test has been extended to simplicial and
regular cell complexes [9, 10], providing a theoretical foundation for higher-order graph structures.
HGNN [51] introduced a spectral-based framework that utilizes the Laplacian hypergraph to pass
messages across hyperedges. To improve flexibility, AllSet [13] proposed a more general approach
that models hypergraphs as multi-sets, employing learnable permutation-invariant set functions for
adaptive message aggregation. Compared to baselline pretrained GNNs, MHNN [14] takes advantage
of the hypergraph to achieve better performance under limited training data. CCNN [6] further
advances this direction by introducing Combinatorial Complexes, which capture hierarchical order
and enable structured dependencies across multiple levels. A comprehensive review of these advances
can be found in [8].

Despite these developments, there has been limited work that incorporates symetry with topological
structures. Recent efforts have explored simplicial complexes with equivariant message passing
[25, 52], integrating symmetry-aware mechanisms into higher-order networks [52]. Additionally,
ETNN [26] extends equivariant message passing to combinatorial complexes, providing a more
structured approach to learning equivariant representations in topological deep learning.

Hypergraphs offer a powerful framework for modeling higher-order interactions, particularly in
domains such as molecular modeling and complex systems. However, equivariant hypergraph neural
networks remain largely unexplored. This work introduces a novel hypergraph-equivariant framework
that inherits the scalability of graph-based methods, making it suitable for large molecular systems,
while also incorporating equivariant geometric features to enhance expressive power and robustness.

B Background

B.1 Message Passing

Message Passing Neural Networks (MPNNs) play a fundamental role in learning node representations
by propagating information along graph edges. As inherently permutation-invariant architectures,
MPNNs effectively capture relational structures in graph-structured data, making them particularly
well-suited for applications such as molecular modeling [3].

Given a graph G = (V, E) with nodes vi ∈ V and edges eij ∈ E , each node vi is associated with
a feature vector hi ∈ Rcn and each edge eij with a feature vector aij ∈ Rce , where cn and ce
represent the dimensionalities of the node and edge features, respectively. The nodes representation
are iteratively updated by:

mij = ϕe(h
l
i,h

l
j ,aij)

mi = AGGREGATE
(
{mij}j∈N (i)

)
hl+1
i = ϕu(h

l
i,mi)

(1)

where N (i) denotes the set of neighbors of node vi, and the AGGREGATE function is a permutation-
invariant operation over the neighbors (e.g., summation). The functions ϕm and ϕe are the message
computation and the feature update function, respectively, typically parameterized by multilayer
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Table 5: Model Architecture Overview

Model No.parameters No.layers No. attention heads Hidden dimension

GIN 965K 2 - 256
GAT 3.7M 2 4 256
MHNN 2.5M 2 - 256
EGNN 844K 2 8 256
FAFormer 3.2M 2 2 256
Equiformer 13M 1 1 256

perceptrons (MLP). To obtain the final graph representation, a permutation-invariant aggregator is
applied to the final hidden states of all nodes. However, this operation itself does not inherently
preserve the E(3) equivariance.

B.2 Equivariance

Equivariance is a property of functions that ensures that information is preserved under transforma-
tions from a group G. A function ϕ : X → Y is equivariant with respect to G if for all g ∈ G and
x ∈ X , the following holds:

ϕ(g · x) = g · ϕ(x).
This property ensures that the output transforms in the same way as the input under transformations
like rotation, translation, or scaling. In molecular modeling, the equivariance with these symmetries
(e.g., the rotation group SO(3)) is crucial because molecules retain their physical properties regardless
of their orientation or position.

B.3 Hypergraph

A hypergraph is a generalization of a graph where an edge, called a hyperedge, can connect any
number of nodes. Formally, a hypergraph is defined as:

H = (V, E),
where V is the set of nodes and E ⊆ 2V \ {∅} is the set of hyperedges, each representing a subset of
nodes. Unlike traditional graphs that capture pairwise relationships, hypergraphs model higher-order
interactions, making them ideal for complex systems such as protein interactions [53] and chemical
reactions [54].

Hypergraph-based models extend GNNs to process hyperedges, allowing better representation
of structured data. In molecular chemistry, hypergraphs effectively model conjugated structures,
where delocalized electrons form multi-atomic interactions crucial for optoelectronic properties.
Recent studies demonstrate that HGNNs outperform traditional GNNs and 3D-based models in
predicting molecular properties, offering a powerful approach for data-scarce applications like
organic semiconductor design.

C Model details

Table 5 outlines the architectural configurations of the models used in our experiments, including the
number of parameters, layers, attention heads, and hidden dimensions.

D Datasets

QM9 [27] dataset is a widely used reference for the prediction of chemical properties. It comprises
approximately 134,000 small organic molecules, each containing up to 29 atoms. The data set
includes five atomic species including hydrogen, carbon, oxygen, nitrogen, and fluorine, structured as
molecular graphs where the atoms are connected by four types of chemical bonds: single, double,
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Table 6: Overview of the datasets

Dataset Graphs Task type Task number Metric

QM9 134K regression 12 MAE
OPV 91K regression 8 MAE
PCQM4Mv2 3.7M regression 1 MAE
Molecule3D 3.9M regression 6 MAE

triple, and aromatic. In addition, the 3D coordinates of each atom, measured in angstroms, are
provided.

Organic Photovoltaic (OPV) [28] comprises 90,823 unique molecules, providing their SMILES
representations, 3D geometries, and optoelectronic properties computed by DFT calculations. It
includes four molecular-level tasks for monomers: the highest occupied molecular orbital (εHOMO),
the lowest unoccupied molecular orbital (εLUMO), the HOMO-LUMO gap (∆ε), and the spectral
overlap (Ioverlap). Furthermore, OPV features four polymer-level tasks: polymer εHOMO, polymer
εLUMO, the polymer energy gap (∆ε), and the optical LUMO (OLUMO).

PCQM4Mv2 [29] is a large-scale quantum chemistry dataset consisting of approximately 3.7 million
molecular graphs, derived from the PubChemQC project [33]. It is designed for predicting the
DFT-calculated HOMO-LUMO energy gap from SMILES representations, and additionally provides
3D structures for the training molecules.

Molecule3D [30] is a large-scale benchmark designed to predict 3D molecular geometries from
2D molecular graphs and to assess their effectiveness in downstream prediction of quantum prop-
erties. It supports two main tasks: (1) prediction of DFT-optimized 3D atomic coordinates from
SMILES strings or molecular graphs, and (2) prediction of quantum properties such as total energy,
HOMO/LUMO energies, and the HOMO–LUMO gap using either ground truth or predicted 3D
structures. Each sample includes a SMILES string, molecular graph, 3D coordinates, and quantum
properties sourced from PubChemQC [33]. In this work, we focus specifically on the prediction of
the HOMO-LUMO gap.

Table 6 provides an overview of the experimental dataset. We use RDKit to identify conjugated bonds,
which serve as hyperedges, with atoms as vertices, as illustrated in Section 1a. For all experiments,
the data are split into training, validation and test sets using an 80-10-10 ratio. The model is trained
in the training set, the best model is selected based on the performance in the validation set, and the
final evaluation is performed in the test set.

E Training details

Equivariant models utilize radial distances, where a larger radius enables the capture of high-level
features crucial for complex molecules such as polymers and proteins. In such molecules, long-range
interactions, such as electrostatic and hydrophobic effects, are key to determining their electronic and
structural properties. A study on scaling GNNs [55] shows that increasing the number of message-
passing layers and the cutoff radius helps GNNs incorporate distant atomic interactions, thereby
enhancing expressiveness for large proteins.

However, in transformer-based architectures, a larger radius significantly increases computational
costs due to the quadratic scaling of the attention mechanism with the number of nodes. Based
on these empirical insights, we adopt a consistent configuration with a 5 Angstrom radius cutoff
and 16 neighboring nodes for EGNN, FAFormer, and Equiformer, achieving an optimal balance
between expressiveness and computational efficiency. Appendix C provides a summary of the model
architecture configurations.

We train the models for 400 epochs with a batch size of 16, using the Adam optimizer with a fixed
learning rate of 1× 10−4. Training is carried out on 2xRTX 3060 GPUs, enabling parallel processing
for efficiency. The models are optimized to minimize the loss of MSE, and the checkpoint with the
lowest MAE validation is selected for the final evaluation on the test set. Our implementation is built
using PyTorch Geometric [56].
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