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Abstract
The subset selection problem with a monotone
and submodular objective function under a lin-
ear cost constraint has wide applications, such
as maximum coverage, influence maximization,
and feature selection, just to name a few. Various
greedy algorithms have been proposed with good
performance both theoretically and empirically.
Recently, evolutionary algorithms (EAs), inspired
by Darwin’s evolution theory, have emerged
as a prominent methodology, offering both em-
pirical advantages and theoretical guarantees.
Among these, the multi-objective EA, POMC, has
demonstrated the best empirical performance to
date, achieving an approximation guarantee of
(1/2)(1 − 1/e). However, there remains a gap
in the approximation bounds of EAs compared
to greedy algorithms, and their full theoretical
potential is yet to be realized. In this paper, we re-
analyze the approximation performance of POMC
theoretically, and derive an improved guarantee of
1/2, which thus provides theoretical justification
for its encouraging empirical performance. Fur-
thermore, we propose a novel multi-objective EA,
EPOL, which not only achieves the best-known
practical approximation guarantee of 0.6174, but
also delivers superior empirical performance in
applications of maximum coverage and influence
maximization. We hope this work can help bet-
ter solving the subset selection problem, but also
enhance our theoretical understanding of EAs.

1. Introduction
The subset selection problem aims to select a subset X
from a given ground set V that maximizes a specific func-
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tion f , while the cost of the subset X must not exceed a
given budget B. This fundamental problem is NP-hard and
arises in diverse domains involving cost-aware resource al-
location, including combinatorial optimization, computer
networks, data mining, and machine learning. Potential ap-
plications include maximum coverage (Feige, 1998), maxi-
mizing coverage under budget constraints; influence max-
imization (Kempe et al., 2003), maximizing social influ-
ence spread under budget constraints; sensor placement,
balancing information gain with installation costs (Krause
et al., 2006); recommendation systems, promoting prod-
ucts within advertising budgets while respecting user prefer-
ences (Ashkan et al., 2015); unsupervised feature selection,
optimizing reconstruction error of a data matrix under fea-
ture resource constraints (Feng et al., 2019); active learning,
selecting maximally informative data samples under limited
annotation budgets (Golovin & Krause, 2011); and human-
assisted learning, optimizing machine learning models with
limited expert resources (De et al., 2020; Liu et al., 2023).

By introducing monotonicity and submodularity, the algo-
rithms with theoretical guarantees for subset selection have
been well studied. A set function f is monotone (typi-
cally non-decreasing) if it does not decrease with the ad-
dition of items to a set. A set function f is submodular if
∀X ⊆ Y, v /∈ Y : f(X ∪ v)−f(X) ≥ f(Y ∪ v)−f(Y ),
implying the diminishing returns property (Nemhauser et al.,
1978). In this paper, we focus on the subset selection prob-
lem as follows:

argmax
X⊆V

f(X) s.t. c(X) =
∑
v∈X

c(v) ≤ B, (1)

where the objective function f : 2V → R is monotone and
submodular, and the cost function c : 2V → R is linear. For
the special case c(X) = |X| ≤ B, a simple greedy algo-
rithm achieves the optimal polynomial-time approximation
guarantee of 1− 1/e (Nemhauser et al., 1978).

For the general problem presented in Eq. (1) with a lin-
ear cost constraint, greedy algorithms are also mainstream
algorithms, and many variants have been proposed. The
Generalized Greedy Algorithm (GGA) iteratively selects
an item maximizing the ratio of the increment on f and
c, achieving a (1/2)(1 − 1/e) ≈ 0.32-approximation ra-
tio (Krause & Guestrin, 2005), which was further improved
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to 1− 1/
√
e ≈ 0.39 (Lin & Bilmes, 2010). Another greedy

algorithm, Greedy+, extends GGA by considering addi-
tional single-item expansions of all intermediate solutions,
achieving a better approximation ratio of 0.5 (Yaroslavt-
sev et al., 2020). The 1-guess-Greedy+ variant further
improves this approach, reaching an impressive approxi-
mation ratio of 0.6174, by merely executing a single partial
enumeration step. While there are greedy algorithms that
obtain the theoretical optimal approximation of 1−1/e, they
are generally impractical due to high computational costs.
Sviridenko (2004) developed a (1 − 1/e)-approximation
algorithm by selecting three optimal elements and using
a greedy approach, which, however, has a high time com-
plexity of O(n5), where n = |V | is the size of the ground
set V . Later, Badanidiyuru & Vondrák (2014) and Ene
& Nguyen (2019) proposed greedy-based algorithms that
achieve a (1 − 1/e − ϵ)-approximation, where ϵ > 0.
However, their computational costs remain prohibitively
high, with time complexities of O(n2( logn

ϵ )O(1/ϵ8)) and
(1/ϵ)O(1/ϵ4)n log2 n, respectively. These complexities ren-
der the algorithms impractical for real-world applications.
For additional unique algorithmic approaches, please refer
to (Tang et al., 2022; Kulik et al., 2021; Li et al., 2022).

Since greedy algorithms may get trapped in local optima,
evolutionary algorithms (EAs), inspired by Darwin’s theory
of evolution, have been recently applied to subset selec-
tion (Zhou et al., 2019). They are general-purpose random-
ized heuristic optimization algorithms (Bäck, 1996) that
mimic variational reproduction and natural selection. Start-
ing from an initial population of solutions, EAs iteratively
improve solutions by employing global-search operators
such as mutation. They have achieved superior empirical
performance than greedy algorithms, while also ensuring
theoretical guarantees. Qian et al. (2017a) proposed a simple
multi-objective EA named POMC to maximize f and mini-
mize c simultaneously, which can achieve an approximation
ratio of (1/2)(1 − 1/e), using O(nBPmax/δ) expected
running time1, where Pmax is the largest size of population
during the running of POMC, and δ = minv∈V c(v) is the
minimum cost of any item in V . EAMC (Bian et al., 2020)
and EVO-SMC (Zhu et al., 2024) are single-objective EAs
for subset selection. They are guided by surrogate func-
tions of integrating f and c, and maintain a limited number
of solutions for each possible subset size. They ensure
approximation ratios of (1/2)(1 − 1/e) and 0.5, respec-
tively, using O(n2KB) expected running time, where KB

denotes the largest size of a subset satisfying the constraint
c(X) ≤ B. FPOMC (Bian et al., 2021) modifies POMC by
introducing a greedy selection strategy and also achieves a
(1/2)(1− 1/e)-approximation ratio with an expected run-

1The expected running time refers to the expected number of
evaluations of the objective function, as objective evaluation is
usually the most expensive part of the algorithmic process.

ning time of O(n2KB). For more EAs with theoretical
guarantees for a cost function mapping to non-negative inte-
gers instead of reals, i.e., c : 2V → N, please see (Neumann
& Witt, 2023; Neumann & Rudolph, 2024). Among these
EAs, POMC achieves the best experimental results (Roost-
apour et al., 2022). Table 1 provides a summary of the
practical algorithms for the subset selection problem consid-
ered in Eq. (1). Note that there have also developed a series
of EAs with theoretical guarantees for diverse variants of
subset selection, e.g., (Qian et al., 2015a; 2016; 2017b;c;
2018; 2020; Bian et al., 2022; Liu & Qian, 2024; Qian et al.,
2017d; 2019; Qian, 2020; 2021; Qian et al., 2022; 2023)

Despite exhibiting the best empirical performance, POMC
still has gaps in approximation ratios compared to other
algorithms. Thus, an interesting question is whether the
currently-known approximation ratio of POMC is tight. To
further explore the potential of EAs, can we design EAs
better than POMC both theoretically and empirically? In
this paper, we try to address these questions and make the
following contributions:

• Through a refined analysis of the lower bound for
improving f(X) by adding a specific item to X ,
we improve the approximation ratio of POMC from
(1/2)(1− 1/e) to 1/2 in Theorem 3.1.

• We propose a new multi-objective EA called EPOL,
which achieves an approximation ratio of 0.6174 (The-
orem 4.1), using O(n2BPmax/δ) expected running
time. EPOL is easily parallelizable, and the expected
running time can be reduced to O(nBPmax/δ), the
same as that of POMC.

• Experiments across various settings of the applications
of maximum coverage and influence maximization vali-
date the best performance of POMC among all existing
algorithms, and show that EPOL can further improve
the performance significantly in almost all cases.

2. Preliminaries
Let R and R+ denote the set of reals and non-negative
reals, respectively. The set V = {v1, v2, . . . , vn} denotes
a ground set. A set function f : 2V → R is monotone if
∀X ⊆ Y : f(X) ≤ f(Y ). The submodularity represents
the diminishing returns property (Nemhauser et al., 1978),
i.e., adding an item to a set X gives a larger benefit than
adding the same item to a superset Y of X . A set function
f : 2V → R is submodular if ∀X ⊆ Y ⊆ V, v /∈ Y ,

f(X ∪ v)− f(X) ≥ f(Y ∪ v)− f(Y ); (2)

or equivalently for any X ⊆ Y ⊆ V ,

f(Y )− f(X) ≤
∑

v∈Y \X

(
f(X ∪ v)− f(X)

)
. (3)

2



Improved Theoretically-Grounded Evolutionary Algorithms for Subset Selection with a Linear Cost Constraint

Table 1. Summary of practical algorithms (with approximation guarantees and running time) for the subset selection problem in Eq. (1).

Algorithm Guarantee Running time

Greedy algorithms

GGA (Krause & Guestrin, 2005) (1/2)(1− 1/e) ≈ 0.32 O(nKB)
GGA (Lin & Bilmes, 2010) 1− 1/

√
e ≈ 0.39 O(nKB)

Greedy+ (Yaroslavtsev et al., 2020) 0.5 O(nKB)
1-guess-Greedy+ (Feldman et al., 2023) 0.6174 O(n2KB)

Evolutionary algorithms

POMC (Qian et al., 2017a) (1/2)(1− 1/e) O(nBPmax/δ)
EAMC (Bian et al., 2020) (1/2)(1− 1/e) O(n2KB)

FPOMC (Bian et al., 2021) (1/2)(1− 1/e) O(n2KB)
EVO-SMC (Zhu et al., 2024) 0.5 O(n2KB)

POMC (this paper) 0.5 O(nBPmax/δ)
EPOL (this paper) 0.6174 O(n2BPmax/δ)

Note that we represent a set {v} with a single element as v.

Our studied problem as presented in Definition 2.1 is to
maximize a monotone objective function f with a linear
cost function c. We assume w.l.o.g. that monotone functions
are normalized, i.e., f(∅) = 0.
Definition 2.1 (Subset Selection with a Linear Cost Con-
straint). Given a monotone submodular objective function
f : 2V → R+, a linear cost function c : 2V → R+ and a
budget B, to find

argmaxX⊆V f(X) s.t. c(X)=
∑

v∈X
c(v)≤B. (4)

2.1. Previous Algorithms

We now introduce practical greedy algorithms for the
problem defined in Definition 2.1, including 1-guess-
Greedy+ (Feldman et al., 2023), which achieves the best-
known practical approximation ratio of 0.6174, close to
the optimal ratio of 1 − 1/e ≈ 0.632. In addition, we in-
troduce POMC, an EA that has demonstrated advantages
in experiments and achieves an approximation ratio of
(1/2)(1− 1/e) ≈ 0.32.

2.1.1. GREEDY ALGORITHMS

Generalized Greedy Algorithm (GGA) (Zhang & Vorobey-
chik, 2016) iteratively selects an item v that maximizes the
ratio of marginal gain on f to cost c, until reaching the cost
budget B. The algorithm finally outputs the better of two
candidates: the subset Xi found by the greedy process or the
best single item. GGA achieves a (1/2)(1− 1/e) ≈ 0.32-
approximation ratio (Krause & Guestrin, 2005), which was
later improved to 1− 1/

√
e ≈ 0.39 (Lin & Bilmes, 2010).

An alternative greedy algorithm, called Greedy+ (Yaroslavt-
sev et al., 2020), extends GGA by considering solutions
formed by adding a single item to all generated subsets Xj in
the iterative process. Specifically, Greedy+ outputs the best
solution in {Xi} ∪ {Xj ∪ v |0≤j≤ i, v∈V ∧ c(Xj ∪ v) ≤
B}. This modification improves the approximation ratio

to 0.5 (Yaroslavtsev et al., 2020). Recently, a practical
greedy algorithm named 1-guess-Greedy+ was proposed.
By performing a single partial enumeration on the existing
Greedy+ algorithm, it achieves an approximation ratio of
0.6174, which is impressively close to the optimal approxi-
mation ratio of 1− 1/e ≈ 0.632 (Feldman et al., 2023).

2.1.2. POMC ALGORITHM

The performance of greedy algorithms may be limited due
to the greedy nature. This motivates the design of a series of
EAs (Qian et al., 2017a; Bian et al., 2020; 2021; Roostapour
et al., 2022; Neumann & Witt, 2023; Neumann & Rudolph,
2024; Zhu et al., 2024), trying to obtain better optimization
abilities for subset selection. Based on Pareto Optimiza-
tion (Friedrich & Neumann, 2015; Qian et al., 2015b), Qian
et al. (2017a) proposed a multi-objective EA, POMC, for
subset selection. It represents a subset X ⊆ V by a Boolean
vector x ∈ {0, 1}n, where the i-th bit xi = 1 iff vi ∈ X .
We will not distinguish x ∈ {0, 1}n and its corresponding
subset {vi ∈ V |xi = 1} for notational convenience. POMC
reformulates the original problem Eq. (4) as a bi-objective
maximization problem

argmaxx∈{0,1}n

(
f1(x), f2(x)

)
, (5)

where f1(x) =

{
−∞, c(x) > B

f(x), otherwise
, f2(x) = −c(x).

That is, POMC maximizes the objective function f and
minimizes the cost function c simultaneously. The solu-
tions with cost values larger than B (i.e., c(x) > B) are
excluded by setting their f1 values to −∞. Under the bi-
objective formulation, two solutions are compared based on
the domination relationship.

Definition 2.2 (Domination). For two solutions x and x′,
• x weakly dominates x′, denoted as x ⪰ x′, if f1(x) ≥
f1(x

′) ∧ f2(x) ≥ f2(x
′);

• x dominates x′, denoted as x ≻ x′, if x ⪰ x′ and either
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Algorithm 1 POMC (V , f , c, B)
Input: a ground set V with n items, a monotone submodular
function f , a linear cost function c, a budget B
Output: a solution x ∈ {0, 1}n with c(x) ≤ B
Process:

1: Reformulate the original problem in Eq. (4) to the bi-
objective problem (f1(x), f2(x)) in Eq. (5);

2: Let x = 0n, P = {x};
3: repeat
4: Select x from P uniformly at random;
5: Generate x′ by flipping each bit of x with prob. 1/n;
6: if ∄z ∈ P such that z ≻ x′ then
7: P = (P \ {z ∈ P | x′ ⪰ z}) ∪ {x′}
8: end if
9: until some criterion is met

10: return argmaxx∈P,c(x)≤B f(x)

f1(x) > f1(x
′) or f2(x) > f2(x

′);
• they are incomparable if neither x ⪰ x′ nor x′ ⪰ x.

To solve the bi-objective maximization problem Eq. (5),
POMC employs a simple multi-objective EA in lines 2–9 of
Algorithm 1, inspired by the GSEMO algorithm (Laumanns
et al., 2004). It starts from the empty set 0n (line 2), and
repeatedly improves the quality of solutions in the popula-
tion P (lines 3–9). In each iteration, a parent solution x is
selected from P uniformly at random (line 4); then an off-
spring solution x′ is generated by flipping each bit of x with
probability 1/n (line 5), which is used to update the popu-
lation P (line 6–8). If x′ is not dominated by any solution
in P (line 6), it will be added into P , and meanwhile, those
solutions weakly dominated by x′ will be deleted (line 7).
This ensures that P contains only incomparable solutions.
After terminated, it returns the best feasible solution with
the largest f value in the population (line 10).

Qian et al. (2017a) proved that POMC achieves an approx-
imation ratio of (1/2)(1− 1/e) with at most enBPmax/δ
expected number of iterations, where Pmax is the largest
population size during the running of POMC, and δ =
minv∈V c(v) is the minimum item cost in the ground set V .

Theorem 2.3. (Qian et al., 2017a) For the problem in Defini-
tion 2.1, POMC with at most enBPmax/δ expected number
of iterations finds a subset X ⊆ V such that c(X) ≤ B and

f(X) ≥ (1/2)(1− 1/e) · f(X∗),

where X∗ is an optimal solution.

Though the approximation ratio has gaps compared to
other algorithms, POMC achieves the best emprical per-
formance (Roostapour et al., 2022). This work aims to
improve the approximation bound of POMC, and design a
more advanced EA with stronger theoretical guarantees and

better empirical performance, as stated in Sections 3 and 4,
respectively. We will show their superior performance on
two real-world applications in Section 5.

3. Improved 1/2-Approximation of POMC
In this section, we re-analyze the approximation ratio of
POMC, improving the previously known (1/2)(1 − 1/e)
in Theorem 2.3 to 1/2 in Theorem 3.1. Let oc be the item
from the optimal solution X∗ with the maximum cost, i.e.,
oc ∈ argmaxv∈X∗ c(v).
Theorem 3.1. For the problem in Definition 2.1, POMC
with at most enBPmax/δ expected number of iterations
finds a subset X ⊆ V such that c(X) ≤ B and

f(X) ≥ (1/2) · f(X∗).

Previous analysis of POMC used a coarse-grained manner
to evaluate the lower bound on improving f(X) (Qian et al.,
2017a). This led to POMC being able to derive a solution
X1 that satisfies f(X1) ≥ (1−1/e) ·f(X∗), which is, how-
ever, infeasible, i.e., c(X1) > B. A connection was then
established between X1 and two feasible solutions X and
Y , demonstrating that max{f(X), f(Y )} ≥ f(X1)/2 ≥
(1/2)(1 − 1/e) · f(X∗). This weakens the tightness of
the bound. In contrast, our analysis adopts a fine-grained
approach, inspired by the analysis of Greedy+ (Yaroslavt-
sev et al., 2020) and 1-Guess-Greedy+ (Feldman et al.,
2023), to evaluate the lower bound on improving f(X),
leading to that POMC can find a feasible solution X2 with
f(X2) ≥ (1/2) ·f(X∗) and c(X2) ∈ (B−c(oc), B]. Then,
we give the detailed proof of Theorem 3.1, which relies on
Lemma 3.2, showing that POMC can obtain an approxima-
tion ratio of 1− z(r) within at most enBPmax/δ expected
number of iterations. This approximation ratio, i.e., 1−z(r),
based on a special function z(·) described in Lemma 3.4,
where r = f(oc)/f(X

∗), will also be used in the analysis
of the proposed EPOL algorithm in Section 4.
Lemma 3.2. Define r as f(oc)/f(X∗). If r ≤ 1/2, POMC
with at most enBPmax/δ expected number of iterations
finds a subset X ⊆ V with c(X) ≤ B and

f(X) ≥ (1− z(r)) · f(X∗),

where z(·) is a special function described in Lemma 3.4.

Lemma 3.2 builds on Lemmas 3.3 and 3.4. Specifically,
Lemma 3.3 shows a lower bound on improving f(X) by
adding a specific item to X . The improvement is expressed
as a weighted combination of f(X∗) − f(X ∪ oc) and
f(X∗)− f(X)− f(oc), scaled by the cost c(v∗) and nor-
malized by the budget B − c(oc). Its proof is provided
in Appendix A due to space limitation. Lemma 3.4 estab-
lishes an one-to-one correspondence between the expres-
sions r/z(r) − 1 and ln(z(r)/(1 − r)), as defined by the
unique value z(r).
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Lemma 3.3. For any subset X ⊆ V such that the total cost
c(X) ≤ B − c(oc), where oc ∈ argmaxv∈X∗ c(v), there
exists a solution X ′ = X ∪ v∗ that satisfies

f(X ′)− f(X) ≥ (1− α) · c(v∗)
B − c(oc)

(f(X∗)− f(X ∪ oc))

+
α · c(v∗)
B − c(oc)

(f(X∗)− f(oc)− f(X)) ,

where v∗ ∈ argmax
v∈X∗\(X∪oc)

f(X∪v)−f(X)
c(v) and α ∈ [0, 1].

Lemma 3.4 (Lemma 4 in (Feldman et al., 2023)). For every
r ∈ [0, 1/2], there is a unique value z(r) ∈ [r, 1/2] satisfy-
ing the equation r/z(r)− 1 = ln(z(r)/(1− r)) ∈ [−1, 0].
Moreover, z(r) is a non-decreasing function of r.

The proof of Lemma 3.2 defines Jmax as the largest j
in [0, B − c(oc)] for which a subset X ∈ P satisfying
c(X) ≤ j and f(X) meets a threshold that increases with
j. The process iteratively updates the value of Jmax by
applying Lemma 3.3 until a subset achieves the desired ap-
proximation level. Additionally, it analyzes the expected
number of iterations required to achieve each successive
improvement in Jmax.

Proof of Lemma 3.2. We analyze the increase of a quantity
Jmax during the process of POMC, which is defined as

Jmax = max{j ∈ [0, B − c(oc)] | ∃X ∈ P, c(X) ≤ j∧

f(X) ≥ (1− e−
min{j,J}
B−c(oc) ) · (f(X∗)− f(oc))

+
max{j − J, 0}
B − c(oc)

· z(r) · f(X∗)},

where r = f(oc)/f(X
∗) ≤ 1/2, and J = −(B − c(oc)) ·

ln z(r)
1−r ∈ [0, B − c(oc)] according to Lemma 3.4.

The initial value of Jmax is 0, since POMC starts from the
all-0s solution 0n, representing an empty set. Assume that
currently Jmax = i ≤ B − c(oc) and X is a corresponding
solution with the value i, i.e., c(X) ≤ i ≤ B − c(oc) and

f(X) ≥ (1− e−
min{i,J}
B−c(oc) ) · (f(X∗)− f(oc))

+
max{i− J, 0}
B − c(oc)

· z(r) · f(X∗).
(6)

We first show that Jmax cannot decrease. If X is kept
in P , Jmax obviously will not decrease. If X is deleted
from P (line 7 of Algorithm 1), the newly included solution
X ′ must weakly dominate X , i.e., f(X ′) ≥ f(X) and
c(X ′) ≤ c(X), implying Jmax ≥ i.

Next, we show that within enPmax expected number of
iterations, either Jmax can increase by at least δ or a (1−
z(r))-approximation solution can be generated, where δ =
minv∈V c(v) and Pmax is the largest size of the population
P during the execution of POMC.

Case 1: Assume that f(X ∪ oc) < (1 − z(r)) · f(X∗).
Because Jmax ≤ B − c(oc), the corresponding solution X
must satisfy c(X) ≤ B − c(oc). According to Lemma 3.3,
by flipping one specific 0-bit of X , i.e., adding an item
v∗ ∈ argmaxv∈X∗\{X∪oc}

f(X∪v)−f(X)
c(v) , we can generate

a new solution X ′ = X ∪ v∗ such that

f(X ′)−f(X) ≥ (1−α)·c(v∗)
B − c(oc)

(
f(X∗)−f(X∪oc)

)
+

α · c(v∗)
B−c(oc)

(
f(X∗)− f(oc)− f(X)

)
≥ (1− α) · c(v∗)

B − c(oc)
· z(r) · f(X∗)

+
α·c(v∗)
B−c(oc)

(
f(X∗)−f(oc)−f(X)

)
,

(7)

where α ∈ [0, 1] and the last inequality holds by the assump-
tion that f(X ∪ oc) < (1− z(r)) · f(X∗).

Eq. (6) consists of two terms added together, where the

first term is (1 − e−
min{i,J}
B−c(oc) ) · (f(X∗) − f(oc)) and the

second term is max{i−J,0}
B−c(oc)

· z(r) · f(X∗). When i ≤
J , the second term in Eq. (6) equals zero. Conversely,
when i > J , the first term becomes a constant value,
(1− e−

J
B−c(oc) ) · (f(X∗)− f(oc)), while the second term

contributes i−J
B−c(oc)

· z(r) · f(X∗). Next, we analyze f(X ′)

by considering the relationships among i, i+ c(v∗), and J .

(1) When i + c(v∗) ≤ J , applying Eq. (6) to Eq. (7) and
setting α = 1, we get

f(X ′) ≥
(
1−

(
1− c(v∗)

B − c(oc)

)
· e−

i
B−c(oc)

)
· (f(X∗)− f(oc))

≥
(
1− e−

i+c(v∗)
B−c(oc)

)
· (f(X∗)− f(oc)),

(8)

where the last inequality holds by 1 + x ≤ ex.

(2) When J ∈ [i, i+ c(v∗)), applying Eq. (6) to Eq. (7), and
setting α=(J−i)/c(v∗)<1, i.e., i+α · c(v∗) = J , we get

f(X ′) ≥
(
1− e−

i+α·c(v∗)
B−c(oc)

)
· (f(X∗)− f(oc))

+
(1− α) · c(v∗)
B − c(oc)

z(r) · f(X∗)

= Cst+
i+ c(v∗)− J

B − c(oc)
· z(r) · f(X∗),

(9)

where Cst denotes the constant value Cst = (1 −
e−

J
B−c(oc) ) · (f(X∗)− f(oc)).

(3) When J < i, applying Eq. (6) to Eq. (7) and setting
α = 0, we get

f(X ′) ≥ Cst+
i+ c(v∗)− J

B − c(oc)
· z(r) · f(X∗). (10)
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By combining the inequalities derived from cases (1) to (3),
i.e., Eqs. (8) to (10), we can conclude that the new solution
X ′ = X ∪ v∗ satisfies:

f(X ′) ≥
(
1− e−

min{i+c(v∗),J}
B−c(oc)

)
· (f(X∗)− f(oc))

+
max{i+ c(v∗)− J, 0}

B − c(oc)
· z(r) · f(X∗).

Additionally, the cost of solution X ′ satisfies c(X ′) =
c(X) + c(v∗) ≤ i+ c(v∗). Consequently, the solution X ′

must be included in P ; otherwise, X ′ must be dominated by
one solution in P (line 6 of Algorithm 1). This implies that
Jmax has already exceeded i, contradicting the assumption
that Jmax = i. Hence, after including X ′, we have Jmax ≥
i + c(v∗). Since c(v∗) ≥ δ, it follows that Jmax ≥ i + δ.
Thus, Jmax can increase by at least δ in one iteration with
probability at least 1

Pmax
· 1n (1−

1
n )

n−1 ≥ 1
enPmax

, where
1

Pmax
is a lower bound on the probability of selecting X

(line 4), and 1
n (1 −

1
n )

n−1 is the probability of flipping
a specific bit while keeping other bits unchanged (line 5).
Therefore, it needs at most enPmax expected number of
iterations to increase Jmax by at least δ.

Case 2: If f(X ∪ oc) < (1− z(r)) · f(X∗) does not hold,
it implies that X ∪ oc is a feasible solution with (1− z(r))-
approximation, i.e., c(X ∪ oc) ≤ i+ c(oc) ≤ B and

f(X ∪ oc) ≥ (1− z(r)) · f(X∗).

The solution X ∪ oc can be generated in one iteration by
selecting X in line 4 and flipping only the 0-bit correspond-
ing to the item oc in line 5, whose probability is at least

1
Pmax

· 1
n (1 −

1
n )

n−1 ≥ 1
enPmax

. That is, X ∪ oc will
be generated in at most enPmax iterations in expectation.
According to the updating procedure of P (lines 6–8), we
know that once X ∪ oc is produced, P will always contain
a solution Z ⪰ X ∪ oc, i.e., c(Z) ≤ c(X ∪ oc) ≤ B and
f(Z) ≥ f(X ∪ oc) ≥ (1− z(r)) · f(X∗).

We have shown that when Jmax ≤ B − c(oc), either Jmax

can increase by at least δ or a (1 − z(r))-approximation
solution can be generated within enPmax iterations in ex-
pectation. The latter implies that the theorem already holds.
We now focus on the state where the inclusion of the new so-
lution X ′ causes Jmax+ c(v∗) to exceed B− c(oc). Specif-
ically, we consider the case where Jmax ≤ B − c(oc) <
Jmax + c(v∗), which leads to

f(X ′) ≥ Cst+
Jmax + c(v∗)− J

B − c(oc)
· z(r) · f(X∗)

≥ Cst+
B − c(oc)− J

B − c(oc)
· z(r) · f(X∗)

=
(
1− z(r)

1− r

)
·
(
f(X∗)− f(oc)

)
+ r · f(X∗)

= (1− z(r)) · f(X∗),

where the first inequality holds by applying Eqs. (9) and (10)
because J = −(B− c(oc)) · ln z(r)

1−r ≤ B− c(oc) < Jmax+
c(v∗), the second inequality holds by Jmax + c(v∗) > B −
c(oc), the first equality holds by Cst = (1 − e−

J
B−c(oc) ) ·

(f(X∗)−f(oc)), J = −(B−c(oc)) · ln z(r)
1−r , and ln z(r)

1−r =
r

z(r) −1 by Lemma 3.4, and the last equality is derived from
the fact that r = f(oc)/f(X

∗). The solution X ′ is feasible,
because c(X ′) ≤ Jmax + c(v∗) ≤ B − c(oc) + c(oc) =
B. Once X ′ is produced, P will always contain a (1 −
z(r))-approximation solution. To achieve this, it requires at
most B−c(oc)

δ ·enPmax+enPmax ≤ enBPmax/δ expected
number of iterations. Thus, the lemma holds. □

The proof of Theorem 3.1 proceeds by analyzing two cases.
In each case, a 1/2-approximation solution is achieved. The
final result is obtained by taking the maximum of the ex-
pected number of iterations required for the two cases.

Proof of Theorem 3.1. Lemma 3.2 has shown that when
r = f(oc)/f(X

∗) ≤ 1/2, POMC can find a feasible solu-
tion X in the population P satisfying f(X) ≥ (1− z(r)) ·
f(X∗), using at most enBPmax/δ expected number of it-
erations. According to Lemma 3.4, the function z(r) has
an upper bound 1/2 when r ∈ [0, 1/2]. Then we have
f(X) ≥ (1− z(r)) · f(X∗) ≥ (1/2) · f(X∗).

When f(oc)/f(X
∗) > 1/2, it implies that the solution with

a single item oc satisfying f(oc) > (1/2) ·f(X∗). Note that
0n always exists in P , since it has the smallest cost. Thus,
the subset oc (an abbreviation of {oc}) can be generated
in one iteration by selecting 0n in line 4 of Algorithm 1
and flipping only the corresponding 0-bit in line 5, whose
probability is at least 1

Pmax
· 1n (1−

1
n )

n−1 ≥ 1
enPmax

. That
is, oc will be generated in at most enPmax expected number
of iterations. According to the updating procedure of P
(lines 6-8), we know that once the subset oc is produced, P
will always contain a 1/2-approximation solution.

Taking the maximum of the expected number of iterations
of the above two cases, POMC uses at most enBPmax/δ
expected number of iterations, to find a 1/2-approximation
solution. Thus, the theorem holds. □

4. Proposed EPOL with 0.6174-Approximation
In this section, we propose an Enhanced Pareto Optimization
method for maximizing a monotone submodular function
with a Linear cost constraint in Definition 2.1, briefly called
EPOL. As described in Algorithm 2, EPOL divides the
original problem (V, f, c, B) into several residual problems,
that is, for each v ∈ V , it creates a residual problem (V \
v, f(· | v), c, B − c(v)), where f(· | v) = f(· ∪ v)− f(v),
and then solves these residual problems by running POMC
(line 3). EPOL combines the output solution Xv of each
residual problem (V \ v, f(· | v), c, B − c(v)) with v to
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Algorithm 2 EPOL Algorithm
Input: a ground set V with n items, a monotone submodular
objective function f , a linear cost function c, a budget B
Output: a solution X ⊆ V with c(X) ≤ B
Process:

1: Q← ∅;
2: for v in V do
3: Xv ← POMC(V \ v, f(· | v), c, B − c(v));
4: Q← Q ∪ {Xv ∪ v}
5: end for
6: return argmaxX∈Q,c(X)≤B f(X)

form a new candidate solution set Q = {Xv ∪ v,∀v ∈ V }
(line 4). Finally, EPOL returns the best feasible solution
among these candidate solutions (line 6). The idea of EPOL
is inspired by (Feldman et al., 2023).

In Theorem 4.1, we prove that EPOL can achieve an ap-
proximation ratio of 0.6174 using at most en2BPmax/δ
expected number of iterations. The key to the proof is estab-
lishing a connection between the approximation guarantees
of the residual problem (V \of , f(· | of ), c, B−c(of )) and
the original problem, primarily by using Lemma 3.2, where
of ∈ argmaxv∈X∗ f(v).
Theorem 4.1. For the problem in Definition 2.1, EPOL with
at most en2BPmax/δ expected number of iterations finds a
subset X ⊆ V such that c(X) ≤ B and

f(X) ≥ 0.6174 · f(X∗).

Proof. Let of be the largest-value item in the optimal so-
lution X∗, i.e., of ∈ argmaxv∈X∗ f(v). We can observe
that X∗ \ of is an optimal solution of the residual problem
(V \ of , f(· | of ), c, B − c(of )). For any X ⊆ V \ of with
c(X) ≤ B − c(of ), it holds that

f(X∗ \ of | of ) ≥ f(X | of ).

We now prove Theorem 4.1 by considering the relationship
between f(of ) and f(X∗).

Case 1: Assume that f(of ) ≥ (1/3)·f(X∗). Given that the
function f is submodular, it can be verified that f(· | v) is
also submodular. According to Theorem 3.1, for the residual
problem (V \of , f(· | of ), c, B−c(of )), POMC will return
a solution Xof satisfying that Xof ≤ B − c(of ) and

f(Xof | of ) ≥ (1/2) · f(X∗ \ of | of ).

By rearranging the above inequality, we obtain

f(Xof ∪ of ) ≥ f(X∗)/2 + f(of )/2 ≥ (2/3) · f(X∗),

where the last inequality is by the assumption f(of ) ≥
(1/3) · f(X∗). The solution Xof ∪ of will be contained in
Q in line 4 of Algorithm 2.

Case 2: We analyze the case where f(of ) < (1/3) · f(X∗).
Let o′c be the item in X∗ \ of with the maximum cost,
i.e., o′c ∈ argmaxv∈X∗\of c(v), which implies f(o′c) ≤
f(of ). By the submodularity (i.e., Eq. (2)) of f , we have
f(X∗ \ of )− f(∅) ≥ f(X∗)− f(of ). It follows that

f(o′c)

f(X∗ \ of )
≤ f(of )

f(X∗)− f(of )
≤ 1/2. (11)

Let r′ = f(o′c)/f(X
∗ \ of ) ≤ 1/2. We apply Lemma 3.2

to the residual problem (V \ of , f(· | of ), c, B − c(of )).
As a result, POMC returns a solution Xof satisfying Xof ≤
B−c(of ) and f(Xof | of ) ≥ (1−z(r′)) ·f(X∗ \of | of ).
Rearranging this inequality yields

f(Xof ∪ of ) ≥ (1− z(r′)) · (f(X∗)− f(of )) + f(of )

≥ (1− z(
f(of )

f(X∗)− f(of )
)) · (f(X∗)− f(of )) + f(of ),

where the second inequality holds by Eq. (11) and the non-
decreasing property of z(·). Let t = f(of )/f(X

∗), where
t ∈ [0, 1/3]. Then, the above equation becomes f(Xof ∪
of ) ≥

(
(1 − z( t

1−t )) · (1 − t) + t
)
· f(X∗) ≥ 0.6174 ·

f(X∗), where the second inequality holds by Lemma 13
of (Feldman et al., 2023). The solution Xof ∪ of will be
contained in Q in line 4 of Algorithm 2.

Hence, EPOL guarantees a solution X such that c(X) ≤ B
and f(X) ≥ min{2/3, 0.6174} · f(X∗) = 0.6174 · f(X∗).
As EPOL runs POMC n times for solving the n residual
problems, the total expected number of iterations is at most
n · enBPmax/δ. Thus, the theorem holds.

The processes in lines 2–5 of Algorithm 2 are independent
and can run in parallel on N processors. This reduces the
expected number of iterations to en2BPmax/(Nδ) (Corol-
lary 4.2). When N = n, the expected number of iterations
can reduce to enBPmax/δ, as same as that of POMC.

Corollary 4.2. For the problem in Definition 2.1, EPOL
with at most en2BPmax/(Nδ) expected number of iter-
ations finds a subset X ⊆ V such that c(X) ≤ B and
f(X) ≥ 0.6174 · f(X∗), where N denotes the number of
processors used by EPOL.

Note that in our experiments, EPOL executes only on KB

residual problems corresponding to the top-KB items with
the highest f values, where KB denotes the maximum num-
ber of items in a subset X that satisfies the budget constraint
c(X) ≤ B. Notably, KB is non-decreasing with respect to
the budget B, implying that EPOL will execute more resid-
ual problems as the problem becomes harder (i.e., when
the budget B increases). Despite this limitation, EPOL still
shows superior performance.
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5. Empirical Study
We empirically examine EPOL on the applications of max-
imum coverage and influence maximization, by compar-
ing a series of competitive algorithms, including greedy
algorithms and the EA-based methods. The source code is
available at https://github.com/lamda-bbo/EPOL.

5.1. Experimental Settings

Maximum Coverage. Given a set U of items, and a col-
lection V = {S1, S2, . . . , Sn} of subsets of U , maximum
coverage (Feige, 1998) is to select a subset of V to maximize
the number of covered items of U under a cost budget B,
i.e., argmaxX⊆V,c(X)≤B

∣∣⋃
Si∈X Si

∣∣. The objective func-
tion is easily verified to be monotone and submodular. We
use three real-world graph datasets: frb30-15-1 (450 ver-
tices, 17,827 edges) and frb35-17-1 (595 vertices, 27,856
edges), both studied in (Bian et al., 2020; Roostapour et al.,
2022), as well as the Twitter Interaction Network for the
US Congress, congress (475 vertices, 13,289 edges) (Fink
et al., 2023). For each vertex, we generate a set which
contains the vertex itself and its adjacent vertices. The
cost of each vertex (set) is c(v)= 1+max{d(v)−q, 0} as
in (Harshaw et al., 2019), where d(v) is the out-degree of
v and q is a constant. We set q∈{0, 5, 10} and the budget
B ∈ {300, 350, . . . , 500}.

Influence Maximization. Given a directed graph G =
(V,E) representing a social network, influence maximiza-
tion (Kempe et al., 2003) is to find a subset of users X ⊆ V
such that the expected number of users activated by prop-
agating from X is maximized, while satisfying the cost
constraint, i.e., argmaxX⊆V,c(X)≤B E[|IC(X)|]. IC(X)
is the set of users activated by propagating from the seed
users X under the Independence Cascade model. It be-
gins with X , uses a set At to record the nodes activated
at time t, and at time t + 1, each inactive neighbor v of
u ∈ At becomes active with edge probability pu,v; this
process is repeated until no nodes get activated at some
time. The function E[|IC(X)|] is monotone and submodu-
lar. We use three real-world graph datasets: graph100 (100
vertices, 3,465 edges) and graph200 (200 vertices, 9,950
edges), widely used as social networks in influence maxi-
mization (Bian et al., 2020), as well as the animal interaction
network insecta (152 vertices, 6,716 edges). The cost of
each node is calculated based on its out-degree d(v), i.e.,
c(v) = 1 + (1 + |ξ|) · d(v), where ξ is a random number
drawn from the normal distribution N (0, 0.52). To calcu-
late E[|IC(X)|] in our experiments, we simulate the random
propagation process starting from the solution X for 500
times independently, and use the average as an estimation.
We set the probability of each edge as {0.05, 0.1} and the
budget B as {100, 200, . . . , 500}.

Settings. We compare the SOTA greedy algorithms and

EA-based methods as follows:

• GGA (Zhang & Vorobeychik, 2016): Iteratively selects
an item maximizing the ratio of the increment on f and
c, and outputs the best solution among the subset Xi

found by the iterative process and single items, i.e.,
{Xi} ∪ {v | v ∈ V }.

• Greedy+ (Yaroslavtsev et al., 2020): Extends GGA by
outputting the best solution in {Xi} ∪ {Xj ∪ v | 0 ≤
j ≤ i, v ∈ V ∧ c(Xj ∪ v) ≤ B}.

• 1-guess-Greedy+ (Feldman et al., 2023): Performs a
single partial enumeration on Greedy+.

• POMC (Qian et al., 2017a): Maximizes f and mini-
mizes c simultaneously, through a multi-objective EA
process.

• EAMC (Bian et al., 2020): Searches solutions guided
by a surrogate function of integrating f and c, and
maintains a limited number of solutions for each possi-
ble subset size.

• EVO-SMC (Zhu et al., 2024): Similar to EAMC, but
uses a different surrogate function of integrating func-
tion f and function c.

• FPOMC (Bian et al., 2021): Modifies POMC by intro-
ducing a greedy selection strategy.

The algorithms in our study fall into two categories: Fixed-
time algorithms such as GGA, Greedy+, and 1-guess
Greedy+, with runtime complexities of O(nKB), O(nKB),
and O(n2KB), respectively, and anytime algorithms such
as POMC, EAMC, FPOMC, and EVO-SMC, whose perfor-
mance improves with runtime. To ensure a fair comparison,
the number of objective evaluations for POMC, EAMC,
FPOMC, and EVO-SMC is set to 20nKB . EPOL divides
the original problem into n residual problems (V \ v, f(· |
v), c, B − c(v)) for each v ∈ V . Note that we only run the
residual problems corresponding to the top-KB values of
f(v) to balance computational efficiency and performance,
rather than all n residual problems. These KB subproblems
are then solved by POMC in parallel with 20nKB evalua-
tions. The ratios of KB/n in our experimental settings can
be found in Table 4 of Appendix B.2. For all EA-based
methods, we independently repeat the run 10 times and
report the average results. The objective evaluation for in-
fluence maximization, i.e., E[|IC(X)|], is noisy because
the propagation process is randomized, and we use the av-
erage of multiple Monte Carlo simulations to estimate the
expectation. Specifically, starting from a solution X , we
simulate the propagation 500 times and use the average as
the estimated objective value. Since the behavior of greedy
algorithms is randomized under noise, we also repeat their
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Table 2. The objective value (number of covered vertices) of maximum coverage (avg ± std) obtained by the algorithms on frb35-17-1 for
q = 5 and the budgets B ∈ {300, 350, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is significantly
better/worse than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes the average
rank (the smaller, the better) of each algorithm under each setting as in (Demsar, 2006).

Budget B 300 350 400 450 500 Avg.R.
GGA (Zhang & Vorobeychik, 2016) 309.0 • 339.0 • 368.0 • 401.0 • 424.0 • 5.4
Greedy+ (Yaroslavtsev et al., 2020) 309.0 • 339.0 • 368.0 • 401.0 • 425.0 • 4.4

1-guess- Greedy+ (Feldman et al., 2023) 314.0 • 352.0 • 385.0 • 412.0 • 440.0 • 2.6
EVO-SMC (Zhu et al., 2024) 292.6 ± 6.2 • 325.8 ± 5.1 • 355.3 ± 5.7 • 381.9 ± 6.0 • 410.5 ± 4.4 • 8.0
FPOMC (Bian et al., 2021) 303.9 ± 4.3 • 336.1 ± 3.9 • 368.6 ± 4.4 • 398.1 ± 3.9 • 423.2 ± 5.4 • 6.0
EAMC (Bian et al., 2020) 297.1 ± 3.2 • 333.5 ± 5.0 • 364.1 ± 5.1 • 398.5 ± 4.1 • 425.5 ± 5.7 • 6.2
POMC (Qian et al., 2017a) 314.6 ± 1.8 • 350.9 ± 2.4 • 383.7 ± 2.6 • 413.8 ± 2.6 • 441.5 ± 2.4 • 2.4

EPOL (this paper) 319.1 ± 0.8 356.6 ± 0.9 389.8 ± 0.6 419.0 ± 0.6 445.7 ± 0.6 1.0

Table 3. Average ranks of algorithms on datasets: MC1 (frb30-15-
1), MC2 (frb-35-17-1), MC3 (congress) for maximum coverage
with q = 5; IM1 (graph100), IM2 (graph200), IM3 (insecta) for
influence maximization with an edge probability of 0.05. The
smaller, the better.

MC1 MC2 MC3 IM1 IM2 IM3

GGA 5.4 5.4 6.0 7.8 8.0 8.0
Greedy+ 4.0 4.4 5.0 6.4 7.0 6.6
1-guess-Greedy+ 2.4 2.6 2.2 4.0 5.4 3.6
EVO-SMC 8.0 8.0 7.0 5.6 3.6 4.8
FPOMC 7.0 6.0 8.0 5.4 5.2 5.0
EAMC 5.6 6.2 4.0 3.0 2.2 3.4
POMC 2.6 2.4 2.8 2.8 3.0 3.2
EPOL 1.0 1.0 1.0 1.0 1.6 1.4

run 10 times independently and report the average results
for the application of influence maximization.

5.2. Experimental Results

We report the average results of maximum coverage ob-
tained by each algorithm on frb35-17-1 with q = 5 in Ta-
ble 2. Additional results are provided in Tables 5 to 9 of
Appendix B.2 due to space limitation. Across all settings,
EPOL remains significantly superior in almost all cases and
is never significantly outperformed.

We summarize the average rank on two applications in Ta-
ble 3. Among the three greedy methods, GGA performs the
worst, while 1-guess-Greedy+ performs the best. For EA-
based methods, EAMC, FPOMC, and EVO-SMC underper-
form greedy methods in maximum coverage but can excel in
influence maximization, indicating performance instability
across tasks. Overall, POMC is the best performer except
EPOL, showing a small and robust average rank across both
applications. EPOL clearly performs the best. We also
compare Sto-EVO-SMC (Zhu et al., 2024), a stochastic vari-
ant of EVO-SMC, which shows minimal difference across
parameter settings and underperforms compared to EPOL
(Figure 1, Appendix B.3).

To further assess the effectiveness of EPOL, we compare
it with P-POMC, a variant that solves the original problem
KB times independently using KB parallel processors in-
stead of KB independent residual problems, where each
processor is also allocated a budget of 20nKB evaluations.
The best solution among KB processors is selected as the
final output for a single run. We run P-POMC 10 times
and compare it with EPOL. EPOL consistently achieves
better solutions (Table 10, Appendix B.4). Although the
setting that EPOL runs a subset of residual problems (KB

residual problems) is sufficient to show the superiority of
the proposed EPOL as the implemented version is weaker,
we conduct additional experiments comparing EPOL (as in
the previous experiments) with the full version (EPOL-full),
which enumerates all residual problems. The results of Ta-
ble 11 in Appendix B.5 show that EPOL-full consistently
outperforms EPOL with significant advantages in several
cases, highlighting EPOL-full’s potential to improve perfor-
mance by addressing all residual problems. Figures 2 and 3
in Appendix B.6 illustrate the curves of the average values
over runtime, where EPOL surpasses all greedy algorithms
within 12nKB and 4nKB runtime for maximum coverage
and influence maximization, respectively.

6. Conclusion
In this paper, we improve the approximation ratio of POMC
to 1/2, providing a clearer theoretical understanding for
its promising empirical results. Additionally, we propose
EPOL, a novel multi-objective EA that achieves the best-
known practical approximation guarantee of 0.6174 while
demonstrating superior empirical performance. We believe
this work can advance solving the subset selection problem
but also deepen our theoretical understanding of EAs.

Impact Statement
Subset selection with a linear cost constraint is a funda-
mental problem in many applications. While EAs have
shown competitive empirical performance, they lag behind
greedy algorithms in approximation guarantees. This paper
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deepens theoretical understanding of EAs and advances the
solving of subset selection. We refine the analysis of the
SOTA EA, POMC, improving its approximation guarantee
to 1/2, and introduce a novel EA, EPOL, which achieves
the best-known practical approximation ratio of 0.6174 and
demonstrates superior empirical performance.

Acknowledgements
This work was supported by the National Science and Tech-
nology Major Project (2022ZD0116600), the National Sci-
ence Foundation of China (62276124), and the Fundamental
Research Funds for the Central Universities (14380020).

References
Ashkan, A., Kveton, B., Berkovsky, S., and Wen, Z. Optimal

greedy diversity for recommendation. In Proceedings
of the 24th International Joint Conference on Artificial
Intelligence (IJCAI’15), pp. 1742–1748, Buenos Aires,
Argentina, 2015.
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A. Omitted Proof of Lemma 3.3
Lemma A.1. For any subset X ⊆ V such that the total cost c(X) ≤ B − c(oc), where oc ∈ argmaxv∈X∗ c(v), there
exists a solution X ′ = X ∪ v∗ that satisfies

f(X ′)− f(X) ≥ (1− α) · c(v∗)
B − c(oc)

(f(X∗)− f(X ∪ oc)) +
α · c(v∗)
B − c(oc)

(f(X∗)− f(oc)− f(X)) ,

where v∗ ∈ argmax
v∈X∗\(X∪oc)

f(X∪v)−f(X)
c(v) and α ∈ [0, 1].

Proof. By the definition of submodularity, we have

f(X∗ ∪X ∪ oc)− f(X ∪ oc) ≤
∑

v∈X∗\(X∪oc)

f(X ∪ oc ∪ v)− f(X ∪ oc)

≤
∑

v∈X∗\(X∪oc)

f(X ∪ v)− f(X) =
∑

v∈X∗\(X∪oc)

c(v) · f(X ∪ v)− f(X)

c(v)

≤ f(X ∪ v∗)− f(X)

c(v∗)
·

∑
v∈X∗\(X∪oc)

c(v) ≤ B − c(oc)

c(v∗)
·
(
f(X ∪ v∗)− f(X)

)
,

(12)

where the first inequality holds by Eq. (3), the second inequality holds by Eq. (2), the third inequality holds by the definition
of v∗, and the last inequality holds because the total cost of items in X∗ \ (X ∪ oc) does not exceed B − c(oc).

Since f is monotone, we also have f(X∗ ∪X ∪ oc) ≥ f(X∗). Combining this with Eq. (12), we have

f(X ∪ v∗)− f(X) ≥ c(v∗)

B − c(oc)
(f(X∗)− f(X ∪ oc))

≥ (1− α) · c(v∗)
B − c(oc)

(f(X∗)− f(X ∪ oc)) +
α · c(v∗)
B − c(oc)

(
f(X∗)− f(oc)− f(X)

)
,

where α ∈ [0, 1], and the second inequality is by the submodularity (i.e., Eq. (2)) of f , that is, f(X ∪ oc) − f(X) ≤
f(oc)− f(∅) = f(oc).

B. Additional Experimental Results
B.1. Settings

For the application of maximum coverage, we use three real-world graph datasets: frb30-15-1 (450 vertices, 17,827 edges),
frb35-17-1 (595 vertices, 27,856 edges), and congress (475 vertices, 13,289 edges) (Fink et al., 2023). We set q∈{0, 5, 10}
and the budget B ∈ {300, 350, . . . , 500}. For the application of ifluence maximization, we use three real-world graph
datasets: graph100 (100 vertices, 3,465 edges), graph200 (200 vertices, 9,950 edges), and insecta (152 vertices, 6,716
edges). We set the probability of each edge as {0.05, 0.1} and the budget B as {100, 200, . . . , 500}.

We compare EPOL with several competitive algorithms, including SOTA greedy algorithms such as GGA, Greedy+ and
1-guess-Greedy+, and the EA-based methods such as POMC, EAMC, FPOMC and EVO-SMC. The number of objective
evaluations for POMC, EAMC, FPOMC and EVO-SMC is set to 20nKB . EPOL runs the process of POMC in parallel to
solve KB residual problems. We list the ratios of KB/n in our experimental settings in Table 4. The number of KB used in
our experiments is no more than 32% of n.

For all EA-based methods, we independently repeat the run 10 times. Since the behavior of greedy algorithms is randomized
under noise, we also repeat their run 10 times independently for the application of influence maximization.

B.2. Additional Results on All Settings

In this section, we report the average results of each algorithm across various settings. Specifically, we detail the average
results on maximum coverage with q ∈ {0, 5, 10} in Tables 5 to 7, respectively. For the application of influence maximization,
we report the average results with a probability of each edge as {0.05, 0.1} in Tables 8 and 9, respectively.
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Table 4. Ratios of KB/n for different settings in two applications. For maximum coverage, (·, ·, ·) represents KB/n ratios for q =
{0, 5, 10}. For influence maximization, (·, ·) indicates KB/n ratios at edge probabilities {0.05, 0.1}.

Maximum coverage
B 300 350 400 450 500

frb30-15-1 (450 vertices, 17,827 edges) (12%, 16%, 21%) (12%, 17%, 23%) (13%, 18%, 24%) (14%, 19%, 25%) (15%, 20%, 26%)
frb35-17-1 (595 vertices, 27,856 edges) (2%, 3%, 3%) (3%, 3%, 4%) (3%, 3%, 4%) (3%, 4%, 5%) (3%, 4%, 5%)
congress (475 vertices, 13,289 edges) (7%, 12%, 19%) (8%, 13%, 21%) (9%, 14%, 22%) (10%, 15%, 23%) (11%, 16%, 25%)

Influence maximization
B 100 200 300 400 500

graph100 (100 vertices, 3,465 edges) (14%, 14%) (20%, 20%) (25%, 25%) (29%, 29%) (32%, 32%)
graph200 (200 vertices, 9,950 edges) (8%, 8%) (12%, 12%) (15%, 15%) (17%, 17%) (19%, 19%)

insecta (152 vertices, 6,716 edges) (11%, 11%) (16%, 16%) (19%, 19%) (22%, 22%) (25%, 25%)

As expected, the objective value achieved by each algorithm increases with B due to the monotonicity of the objective.
Among the three greedy methods, GGA consistently performs the worst, Greedy+ performs slightly better than GGA, and
1-guess-Greedy+ performs best, occasionally surpassing EA methods. The performance order of these greedy methods is
reasonable because Greedy+ is an extension of GGA, and 1-guess-Greedy+ is further enhanced by performing a single
partial enumeration on Greedy+. Therefore, the solutions found by Greedy+ contain those of GGA, and the solutions found
by 1-guess-Greedy+ contain those of Greedy+. This relationship explains the progressive improvement in performance.

For EA-based methods, EAMC, FPOMC, and EVO-SMC generally perform worse than greedy methods in most cases when
it comes to maximum coverage. However, they tend to excel in influence maximization, as shown by their lower average
rank in this task. This suggests that their performance is inconsistent and varies significantly across different tasks. Overall,
POMC stands out as the most reliable and well-rounded performer among all existing algorithms, maintaining lower average
ranks across various settings in both applications. It performs on par with 1-guess-Greedy+ in maximum coverage, as their
average ranks are closely matched, while in influence maximization, POMC achieves a better overall ranking than other
EA-based methods. Across all settings, EPOL significantly outperforms other algorithms in nearly all cases, as confirmed by
the Wilcoxon signed-rank test (Demsar, 2006) at a 0.05 confidence level. Exceptions are observed in specific cases involving
POMC and 1-guess-Greedy+ on maximum coverage, as well as EAMC and EVO-SMC on influence maximization, under
certain combinations of the budget B. However, EPOL is never significantly outperformed in any scenario.

Table 5. The objective value (number of covered vertices) of maximum coverage (avg ± std) obtained by the algorithms when q = 0 and
the budgets B ∈ {300, 350, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is significantly better/worse
than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes the average rank (the
smaller, the better) of each algorithm under each setting as in (Demsar, 2006).

frb30-15-1 (450 vertices, 17,827 edges)
Budget B 300 350 400 450 500 Avg.R.

GGA (Zhang & Vorobeychik, 2016) 260.0 • 291.0 • 315.0 • 346.0 • 358.0 • 6.0
Greedy+ (Yaroslavtsev et al., 2020) 260.0 • 291.0 • 318.0 • 346.0 • 364.0 • 5.0

1-guess-Greedy+ (Feldman et al., 2023) 267.0 • 298.0 • 326.0 • 350.0 • 367.0 • 2.6
EVO-SMC (Zhu et al., 2024) 259.5 ± 1.9 • 289.5 ± 3.0 • 318.1 ± 2.8 • 334.9 ± 3.1 • 353.9 ± 2.5 • 6.8
FPOMC (Bian et al., 2021) 254.8 ± 5.2 • 286.7 ± 5.2 • 313.9 ± 3.9 • 336.4 ± 7.2 • 353.7 ± 3.7 • 7.8
EAMC (Bian et al., 2020) 263.3 ± 2.1 • 294.7 ± 3.6 • 324.7 ± 3.2 • 345.9 ± 2.3 • 365.0 ± 2.9 • 4.4
POMC (Qian et al., 2017a) 267.2 ± 1.6 • 300.2 ± 1.3 325.6 ± 2.1 • 349.1 ± 1.5 • 369.1 ± 3.1 • 2.4

EPOL (this paper) 269.9 ± 0.9 301.4 ± 1.0 330.0 ± 0.6 352.9 ± 0.3 373.1 ± 0.9 1.0
frb35-17-1 (595 vertices, 27,856 edges)

GGA (Zhang & Vorobeychik, 2016) 273.0 • 312.0 • 346.0 • 373.0 • 399.0 • 6.2
Greedy+ (Yaroslavtsev et al., 2020) 273.0 • 312.0 • 346.0 • 373.0 • 400.0 • 5.2

1-guess-Greedy+ (Feldman et al., 2023) 283.0 321.0 353.0 • 386.0 • 415.0 • 2.0
EVO-SMC (Zhu et al., 2024) 276.0 ± 2.1 • 308.5 ± 3.7 • 337.6 ± 2.7 • 364.4 ± 4.0 • 391.2 ± 2.4 • 7.4
FPOMC (Bian et al., 2021) 271.0 ± 2.6 • 309.4 ± 3.8 • 339.8 ± 2.7 • 369.6 ± 5.3 • 396.8 ± 5.5 • 7.2
EAMC (Bian et al., 2020) 277.6 ± 2.4 • 312.9 ± 3.3 • 347.7 ± 2.0 • 377.8 ± 3.4 • 409.2 ± 1.5 • 4.0
POMC (Qian et al., 2017a) 280.3 ± 2.0 • 317.8 ± 1.9 • 353.1 ± 1.3 • 382.9 ± 2.5 • 412.6 ± 3.2 • 2.8

EPOL (this paper) 282.9 ± 0.3 321.0 ± 0.0 355.2 ± 0.4 388.0 ± 0.9 417.6 ± 0.5 1.2
congress (475 vertices, 13,289 edges)

GGA (Zhang & Vorobeychik, 2016) 271.0 • 298.0 • 320.0 • 341.0 • 358.0 • 6.6
Greedy+ (Yaroslavtsev et al., 2020) 271.0 • 298.0 • 322.0 • 341.0 • 358.0 • 5.6

1-guess-Greedy+ (Feldman et al., 2023) 282.0 • 304.0 • 331.0 • 355.0 • 372.0 • 4.0
EVO-SMC (Zhu et al., 2024) 274.9 ± 7.4 • 305.9 ± 6.8 • 324.7 ± 7.4 • 339.3 ± 3.5 • 351.3 ± 4.9 • 5.6
FPOMC (Bian et al., 2021) 248.1 ± 6.8 • 275.9 ± 7.6 • 299.3 ± 8.9 • 319.7 ± 8.6 • 337.4 ± 4.5 • 8.0
EAMC (Bian et al., 2020) 277.0 ± 4.3 • 307.6 ± 7.5 • 332.0 ± 7.8 • 358.7 ± 1.0 • 372.4 ± 2.2 • 3.2
POMC (Qian et al., 2017a) 282.7 ± 0.5 316.2 ± 0.9 • 339.7 ± 0.6 • 359.4 ± 1.4 • 376.4 ± 1.1 • 2.0

EPOL (this paper) 283.0 ± 0.0 317.0 ± 0.0 341.0 ± 0.0 360.9 ± 0.3 378.0 ± 0.0 1.0
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Table 6. The objective value (number of covered vertices) of maximum coverage (avg ± std) obtained by the algorithms when q = 5 and
the budgets B ∈ {300, 350, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is significantly better/worse
than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes the average rank (the
smaller, the better) of each algorithm under each setting as in (Demsar, 2006).

frb30-15-1 (450 vertices, 17,827 edges)
Budget B 300 350 400 450 500 Avg.R.

GGA (Zhang & Vorobeychik, 2016) 292.0 • 318.0 • 344.0 • 358.0 • 377.0 • 5.4
Greedy+ (Yaroslavtsev et al., 2020) 292.0 • 322.0 • 344.0 • 361.0 • 377.0 • 4.0

1-guess-Greedy+ (Feldman et al., 2023) 297.0 • 324.0 • 346.0 • 370.0 • 386.0 • 2.4
EVO-SMC (Zhu et al., 2024) 274.9 ± 4.0 • 305.6 ± 3.9 • 330.8 ± 4.3 • 347.5 ± 5.0 • 365.0 ± 3.5 • 8.0
FPOMC (Bian et al., 2021) 283.2 ± 3.4 • 311.0 ± 5.0 • 332.6 ± 3.7 • 356.2 ± 3.2 • 371.3 ± 4.2 • 7.0
EAMC (Bian et al., 2020) 288.9 ± 3.5 • 320.7 ± 4.0 • 340.3 ± 4.1 • 358.8 ± 4.9 • 375.2 ± 3.5 • 5.6
POMC (Qian et al., 2017a) 295.9 ± 2.1 • 323.6 ± 1.7 • 348.4 ± 2.6 • 369.2 ± 2.6 • 386.3 ± 2.1 • 2.6

EPOL (this paper) 301.1 ± 1.0 329.7 ± 0.5 354.4 ± 0.9 375.2 ± 1.5 394.1 ± 1.8 1.0
frb35-17-1 (595 vertices, 27,856 edges)

GGA (Zhang & Vorobeychik, 2016) 309.0 • 339.0 • 368.0 • 401.0 • 424.0 • 5.4
Greedy+ (Yaroslavtsev et al., 2020) 309.0 • 339.0 • 368.0 • 401.0 • 425.0 • 4.4

1-guess- Greedy+ (Feldman et al., 2023) 314.0 • 352.0 • 385.0 • 412.0 • 440.0 • 2.6
EVO-SMC (Zhu et al., 2024) 292.6 ± 6.2 • 325.8 ± 5.1 • 355.3 ± 5.7 • 381.9 ± 6.0 • 410.5 ± 4.4 • 8.0
FPOMC (Bian et al., 2021) 303.9 ± 4.3 • 336.1 ± 3.9 • 368.6 ± 4.4 • 398.1 ± 3.9 • 423.2 ± 5.4 • 6.0
EAMC (Bian et al., 2020) 297.1 ± 3.2 • 333.5 ± 5.0 • 364.1 ± 5.1 • 398.5 ± 4.1 • 425.5 ± 5.7 • 6.2
POMC (Qian et al., 2017a) 314.6 ± 1.8 • 350.9 ± 2.4 • 383.7 ± 2.6 • 413.8 ± 2.6 • 441.5 ± 2.4 • 2.4

EPOL (this paper) 319.1 ± 0.8 356.6 ± 0.9 389.8 ± 0.6 419.0 ± 0.6 445.7 ± 0.6 1.0
congress (475 vertices, 13,289 edges)

GGA (Zhang & Vorobeychik, 2016) 326.0 • 348.0 • 368.0 • 384.0 • 398.0 • 6.0
Greedy+ (Yaroslavtsev et al., 2020) 326.0 • 348.0 • 368.0 • 384.0 • 399.0 • 5.0

1-guess-Greedy+ (Feldman et al., 2023) 330.0 • 355.0 • 376.0 • 394.0 • 410.0 • 2.2
EVO-SMC (Zhu et al., 2024) 309.3 ± 3.6 • 327.8 ± 3.6 • 348.3 ± 4.1 • 361.9 ± 3.8 • 376.5 ± 2.7 • 7.0
FPOMC (Bian et al., 2021) 295.6 ± 9.3 • 320.1 ± 7.6 • 340.3 ± 9.7 • 353.9 ± 10.3• 374.1 ± 12.1• 8.0
EAMC (Bian et al., 2020) 327.4 ± 2.5 • 350.5 ± 2.0 • 369.5 ± 1.4 • 385.2 ± 1.9 • 400.9 ± 2.0 • 4.0
POMC (Qian et al., 2017a) 329.4 ± 1.1 • 353.9 ± 1.1 • 375.7 ± 2.1 • 396.0 ± 3.2 • 409.2 ± 3.3 • 2.8

EPOL (this paper) 332.8 ± 0.4 358.0 ± 0.6 381.2 ± 0.6 399.9 ± 0.7 415.5 ± 0.5 1.0

Table 7. The objective value (number of covered vertices) of maximum coverage (avg ± std) obtained by the algorithms when q = 10 and
the budgets B ∈ {300, 350, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is significantly better/worse
than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes the average rank (the
smaller, the better) of each algorithm under each setting.

frb30-15-1 (450 vertices, 17,827 edges)
Budget B 300 350 400 450 500 Avg.R.

GGA (Zhang & Vorobeychik, 2016) 331.0 • 350.0 • 371.0 • 387.0 • 406.0 • 5.0
Greedy+ (Yaroslavtsev et al., 2020) 331.0 • 352.0 • 372.0 • 388.0 • 406.0 • 4.0

1-guess-Greedy+ (Feldman et al., 2023) 334.0 • 357.0 • 375.0 • 392.0 • 409.0 • 3.0
EVO-SMC (Zhu et al., 2024) 301.1 ± 5.9 • 323.4 ± 2.8 • 346.2 ± 4.3 • 364.7 ± 4.7 • 381.6 ± 3.9 • 8.0
FPOMC (Bian et al., 2021) 322.8 ± 6.5 • 346.8 ± 3.9 • 369.0 ± 2.3 • 386.1 ± 3.2 • 402.6 ± 3.5 • 6.2
EAMC (Bian et al., 2020) 324.4 ± 2.5 • 345.2 ± 3.5 • 365.1 ± 3.3 • 379.8 ± 2.0 • 391.7 ± 4.8 • 6.8
POMC (Qian et al., 2017a) 335.1 ± 1.2 • 359.1 ± 2.0 • 377.3 ± 1.9 • 397.1 ± 3.2 • 409.5 ± 2.6 • 2.0

EPOL (this paper) 337.2 ± 1.0 362.0 ± 1.2 382.8 ± 0.7 401.3 ± 0.8 415.2 ± 0.9 1.0
frb35-17-1 (595 vertices, 27,856 edges)

GGA (Zhang & Vorobeychik, 2016) 342.0 • 377.0 • 405.0 • 433.0 • 461.0 • 5.0
Greedy+ (Yaroslavtsev et al., 2020) 344.0 • 377.0 • 406.0 • 433.0 • 461.0 • 4.0

1-guess-Greedy+ (Feldman et al., 2023) 359.0 392.0 • 420.0 • 446.0 • 471.0 • 2.4
EVO-SMC (Zhu et al., 2024) 321.2 ± 6.2 • 351.2 ± 4.4 • 373.4 ± 7.1 • 404.4 ± 7.4 • 428.4 ± 7.3 • 8.0
FPOMC (Bian et al., 2021) 341.7 ± 2.5 • 371.6 ± 5.7 • 404.5 ± 3.9 • 429.1 ± 5.1 • 455.9 ± 3.8 • 6.4
EAMC (Bian et al., 2020) 334.3 ± 2.6 • 370.9 ± 4.1 • 401.6 ± 4.3 • 432.5 ± 4.2 • 456.9 ± 8.2 • 6.6
POMC (Qian et al., 2017a) 354.3 ± 2.7 • 390.4 ± 2.8 • 419.3 ± 2.0 • 447.1 ± 2.3 • 474.1 ± 2.6 • 2.6

EPOL (this paper) 359.0 ± 0.0 395.9 ± 0.3 425.9 ± 0.7 454.0 ± 0.8 477.7 ± 0.6 1.0
congress (475 vertices, 13,289 edges)

GGA (Zhang & Vorobeychik, 2016) 420.0 • 432.0 • 442.0 • 450.0 • 457.0 • 5.0
Greedy+ (Yaroslavtsev et al., 2020) 420.0 • 432.0 • 442.0 • 450.0 • 457.0 • 4.0

1-guess-Greedy+ (Feldman et al., 2023) 423.0 • 437.0 • 446.0 • 453.0 • 460.0 • 2.6
EVO-SMC (Zhu et al., 2024) 386.0 ± 4.5 • 398.9 ± 4.0 • 409.3 ± 4.4 • 415.8 ± 3.4 • 421.5 ± 2.6 • 7.0
FPOMC (Bian et al., 2021) 358.7 ± 10.5 • 381.3 ± 6.1 • 393.4 ± 9.0 • 403.0 ± 11.3 • 419.7 ± 6.0 • 8.0
EAMC (Bian et al., 2020) 414.7 ± 1.1 • 428.4 ± 2.0 • 439.2 ± 1.7 • 447.0 ± 2.1 • 453.2 ± 1.0 • 6.0
POMC (Qian et al., 2017a) 422.9 ± 0.8 • 436.9 ± 1.5 • 446.8 ± 1.7 • 455.0 ± 1.0 • 460.2 ± 0.9 • 2.4

EPOL (this paper) 423.5 ± 0.5 437.1 ± 0.5 447.8 ± 0.7 455.7 ± 0.5 462.1 ± 0.7 1.0
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Table 8. The objective value (influence spread) of influence maximization (avg ± std) obtained by the algorithms for the probability of
each edge 0.05 and the budgets B ∈ {100, 200, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is
significantly better/worse than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes
the average rank (the smaller, the better) of each algorithm under each setting.

graph100 (100 vertices, 3,465 edges)
Budget B 100 200 300 400 500 Avg.R.

GGA (Zhang & Vorobeychik, 2016) 22.43 ± 1.21 • 35.49 ± 1.35 • 43.30 ± 0.99 • 49.71 ± 1.10 • 55.18 ± 0.89 • 7.8
Greedy+ (Yaroslavtsev et al., 2020) 23.87 ± 0.37 • 35.61 ± 0.78 • 44.22 ± 0.63 • 50.92 ± 0.61 • 55.80 ± 0.69 • 6.4

1-guess-Greedy+ (Feldman et al., 2023) 24.66 ± 0.17 • 37.17 ± 0.29 • 45.70 ± 0.33 • 51.89 ± 0.18 • 56.91 ± 0.26 • 4.0
EVO-SMC (Zhu et al., 2024) 25.03 ± 0.32 • 37.39 ± 0.55 • 44.72 ± 0.79 • 50.45 ± 0.92 • 54.44 ± 1.02 • 5.6
FPOMC (Bian et al., 2021) 24.29 ± 0.64 • 36.58 ± 1.12 • 45.18 ± 0.95 • 51.24 ± 0.70 • 55.74 ± 0.88 • 5.4
EAMC (Bian et al., 2020) 25.08 ± 0.27 • 37.80 ± 0.18 45.88 ± 0.44 51.19 ± 0.56 • 56.21 ± 0.34 • 3.0
POMC (Qian et al., 2017a) 24.96 ± 0.35 • 37.56 ± 0.39 • 45.81 ± 0.30 • 52.24 ± 0.21 • 57.03 ± 0.22 • 2.8

EPOL (this paper) 25.48 ± 0.17 37.98 ± 0.17 46.41 ± 0.24 52.76 ± 0.14 57.71 ± 0.17 1.0
graph200 (200 vertices, 9,950 edges)

GGA (Zhang & Vorobeychik, 2016) 44.31 ± 1.14 • 70.87 ± 2.84 • 89.51 ± 2.55 • 103.44 ± 2.64 • 109.07 ± 3.16 • 8.0
Greedy+ (Yaroslavtsev et al., 2020) 45.12 ± 0.47 • 81.57 ± 0.72 • 94.06 ± 0.91 • 106.95 ± 1.01 • 115.22 ± 1.88 • 7.0

1-guess-Greedy+ (Feldman et al., 2023) 46.11 ± 0.52 • 82.56 ± 0.75 • 96.58 ± 0.69 • 108.97 ± 0.33 • 117.47 ± 0.28 • 5.4
EVO-SMC (Zhu et al., 2024) 48.04 ± 0.44 84.38 ± 0.21 • 96.81 ± 0.60 • 109.09 ± 1.66 • 116.77 ± 1.78 • 3.6
FPOMC (Bian et al., 2021) 46.72 ± 0.77 • 82.62 ± 2.57 • 95.92 ± 0.67 • 108.54 ± 0.90 • 117.64 ± 0.91 • 5.2
EAMC (Bian et al., 2020) 47.92 ± 0.43 84.78 ± 0.44 97.06 ± 0.46 • 110.81 ± 0.27 118.37 ± 2.06 • 2.2
POMC (Qian et al., 2017a) 46.78 ± 0.61 • 83.87 ± 0.66 • 98.41 ± 0.59 • 110.05 ± 0.73 • 119.40 ± 0.24 • 3.0

EPOL (this paper) 47.79 ± 0.33 84.76 ± 0.35 99.73 ± 0.26 111.04 ± 0.43 120.12 ± 0.26 1.6
insecta (152 vertices, 6,716 edges)

GGA (Zhang & Vorobeychik, 2016) 38.09 ± 1.33 • 53.35 ± 4.24 • 65.48 ± 3.31 • 75.55 ± 1.39 • 83.17 ± 1.49 • 8.0
Greedy+ (Yaroslavtsev et al., 2020) 39.49 ± 1.07 • 57.94 ± 0.52 • 68.86 ± 2.65 • 78.39 ± 1.31 • 84.69 ± 1.04 • 6.6

1-guess-Greedy+ (Feldman et al., 2023) 40.57 ± 0.64 • 58.99 ± 0.27 • 72.90 ± 0.66 • 80.24 ± 0.39 • 86.59 ± 0.26 • 3.6
EVO-SMC (Zhu et al., 2024) 41.76 ± 0.28 59.63 ± 0.29 68.73 ± 0.87 • 78.14 ± 1.29 • 85.11 ± 0.62 • 5.0
FPOMC (Bian et al., 2021) 40.48 ± 0.57 • 58.75 ± 0.39 • 71.70 ± 1.82 • 79.75 ± 0.41 • 85.92 ± 0.89 • 5.0
EAMC (Bian et al., 2020) 41.79 ± 0.18 59.66 ± 0.35 70.81 ± 1.18 • 80.04 ± 0.68 • 86.48 ± 0.41 • 3.2
POMC (Qian et al., 2017a) 40.90 ± 0.51 • 58.40 ± 0.57 • 73.96 ± 0.40 • 81.10 ± 0.42 • 87.15 ± 0.28 • 3.2

EPOL (this paper) 41.64 ± 0.26 59.89 ± 0.33 74.60 ± 0.20 81.77 ± 0.15 88.00 ± 0.07 1.4

Table 9. The objective value (influence spread) of influence maximization (avg ± std) obtained by the algorithms for the probability of
each edge 0.1 and the budgets B ∈ {100, 200, . . . , 500}. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is
significantly better/worse than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05. Avg.R. denotes
the average rank (the smaller, the better) of each algorithm under each setting.

graph100 (100 vertices, 3,465 edges)
Budget B 300 350 400 450 500 Avg.R.

GGA (Zhang & Vorobeychik, 2016) 58.49 ± 0.50 • 66.18 ± 1.78 • 74.17 ± 0.87 • 78.58 ± 1.03 • 81.76 ± 0.88 • 7.8
Greedy+ (Yaroslavtsev et al., 2020) 58.28 ± 0.38 • 68.71 ± 0.97 • 75.42 ± 0.63 • 79.47 ± 0.58 • 82.62 ± 0.42 • 6.8

1-guess-Greedy+ (Feldman et al., 2023) 59.66 ± 0.26 • 71.49 ± 0.25 • 76.79 ± 0.22 • 80.33 ± 0.17 • 83.36 ± 0.19 • 3.6
EVO-SMC (Zhu et al., 2024) 60.22 ± 0.41 • 70.34 ± 1.26 • 75.29 ± 1.01 • 79.81 ± 0.28 • 82.53 ± 0.56 • 5.8
FPOMC (Bian et al., 2021) 59.05 ± 0.90 • 70.44 ± 1.16 • 76.40 ± 0.43 • 80.20 ± 0.62 • 83.07 ± 0.43 • 4.8
EAMC (Bian et al., 2020) 60.40 ± 0.35 71.02 ± 0.74 • 75.93 ± 0.90 • 80.07 ± 0.41 • 83.79 ± 0.37 • 3.8
POMC (Qian et al., 2017a) 59.97 ± 0.16 • 71.77 ± 0.16 • 76.92 ± 0.12 • 80.83 ± 0.27 • 83.80 ± 0.16 • 2.4

EPOL (this paper) 60.65 ± 0.18 72.13 ± 0.12 77.28 ± 0.06 81.37 ± 0.09 84.09 ± 0.05 1.0
graph200 (200 vertices, 9,950 edges)

GGA (Zhang & Vorobeychik, 2016) 115.79 ± 0.93 • 148.37 ± 3.00 • 159.45 ± 1.22 • 166.47 ± 2.82 • 168.26 ± 1.58 • 8.0
Greedy+ (Yaroslavtsev et al., 2020) 116.14 ± 1.35 • 153.05 ± 0.76 • 162.60 ± 0.64 • 169.17 ± 0.88 • 172.00 ± 1.10 • 7.0

1-guess-Greedy+ (Feldman et al., 2023) 118.53 ± 0.47 • 154.32 ± 0.57 • 163.57 ± 0.17 • 170.43 ± 0.21 • 173.87 ± 0.45 • 5.4
EVO-SMC (Zhu et al., 2024) 120.36 ± 0.30 155.23 ± 0.12 • 163.78 ± 0.22 • 169.63 ± 0.89 • 172.37 ± 1.35 • 4.6
FPOMC (Bian et al., 2021) 119.88 ± 0.35 • 155.26 ± 0.17 • 163.82 ± 0.26 • 170.70 ± 0.35 • 174.39 ± 0.57 • 3.4
EAMC (Bian et al., 2020) 120.66 ± 0.45 155.32 ± 0.18 163.93 ± 0.22 170.79 ± 0.45 • 174.36 ± 0.75 • 2.2
POMC (Qian et al., 2017a) 119.65 ± 0.25 • 154.91 ± 0.20 • 163.54 ± 0.18 • 170.70 ± 0.35 • 174.72 ± 0.07 • 4.2

EPOL (this paper) 120.61 ± 0.19 155.55 ± 0.28 164.15 ± 0.29 171.14 ± 0.09 174.99 ± 0.09 1.2
insecta (152 vertices, 6,716 edges)

GGA (Zhang & Vorobeychik, 2016) 95.34 ± 1.07 • 107.39 ± 2.65 • 115.54 ± 1.53 • 122.04 ± 1.04 • 126.28 ± 1.00 • 8.0
Greedy+ (Yaroslavtsev et al., 2020) 95.85 ± 0.83 • 111.41 ± 0.96 • 120.15 ± 1.75 • 124.18 ± 0.44 • 128.16 ± 0.40 • 6.6

1-guess-Greedy+ (Feldman et al., 2023) 97.94 ± 0.34 • 113.09 ± 0.38 • 121.65 ± 0.25 • 125.13 ± 0.31 • 129.05 ± 0.18 • 4.8
EVO-SMC (Zhu et al., 2024) 99.37 ± 0.36 • 113.54 ± 0.56 • 119.45 ± 0.74 • 124.55 ± 1.08 • 128.02 ± 0.76 • 5.2
FPOMC (Bian et al., 2021) 98.83 ± 0.29 • 112.95 ± 0.52 • 122.11 ± 0.13 • 125.50 ± 0.47 • 129.33 ± 0.27 • 4.0
EAMC (Bian et al., 2020) 99.28 ± 0.31 • 113.93 ± 0.18 • 120.58 ± 1.01 • 126.21 ± 0.53 • 128.80 ± 0.42 • 3.6
POMC (Qian et al., 2017a) 98.84 ± 0.31 • 113.86 ± 0.33 • 122.06 ± 0.21 • 126.43 ± 0.20 • 129.52 ± 0.13 • 2.8

EPOL (this paper) 99.52 ± 0.18 114.25 ± 0.15 122.38 ± 0.11 126.69 ± 0.08 129.71 ± 0.09 1.0
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B.3. Results of Sto-EVO-SMC

Sto-EVO-SMC is a stochastic version of EVO-SMC, which brings two parameters ϵ and p, maintaining the same guarantee
as EVO-SMC with probability 1 − ϵ. We run sto-EVO-SMC by setting ϵ ∈ {0.1, 0.2, 0.5} and p ∈ {0.2, 0.5}, and plot
the average results of sto-EVO-SMC-ϵ-p, EVO-SMC and EPOL in Figure 1. We can find that all the class of EVO-SMC
algorithms (i.e., EVO-SMC and sto-EVO-SMC-ϵ-p) shows minimal difference across parameter settings, and performs
worse than EPOL in all cases, expect for B = 100 on graph200 and insecta.
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Figure 1. The average objective values of sto-EVO-SMC-ϵ-p, EVO-SMC, and EPOL: number of covered vertices (top) for maximum
coverage with q = 5 and influence spread (bottom) for influence maximization with the probability of each edge 0.05, where ϵ ∈
{0.1, 0.2, 0.5} and p ∈ {0.2, 0.5}.

B.4. Results of P-POMC

Table 10. The objective value (avg ± std) obtained by EPOL and P-POMC for q = 5 on maximum coverage and the probability of each
edge 0.05 on influence maximization. For each B, the largest number is bolded, and ‘•/◦’ denote that EPOL is significantly better/worse
than the corresponding algorithm by the Wilcoxon signed-rank test with confidence level 0.05.

Maximum coverage

frb30-15-1 (450 vertices, 17,827 edges)
B 300 350 400 450 500

P-POMC 299.6 ± 1.0 • 329.5 ± 0.8 353.9 ± 1.3 375.0 ± 1.9 393.5 ± 1.5
EPOL 301.1 ± 1.0 329.7 ± 0.5 354.4 ± 0.9 375.2 ± 1.5 394.1 ± 1.8

frb35-17-1 (595 vertices, 27,856 edges)
P-POMC 318.1 ± 0.3 • 355.0 ± 0.4 • 389.5 ± 1.0 418.2 ± 0.7 • 445.6 ± 0.7

EPOL 319.1 ± 0.8 356.6 ± 0.9 389.8 ± 0.6 419.0 ± 0.6 445.7 ± 0.6
congress (475 vertices, 13,289 edges)

P-POMC 330.3 ± 0.8 • 355.6 ± 0.5 • 380.0 ± 1.3 • 399.0 ± 1.0 414.6 ± 0.8 •
EPOL 332.8 ± 0.4 358.0 ± 0.6 381.2 ± 0.6 399.9 ± 0.7 415.5 ± 0.5

Influence maximization

graph100 (100 vertices, 3,465 edges)
B 100 200 300 400 500

P-POMC 25.07 ± 0.14 • 37.97 ± 0.22 46.29 ± 0.13 52.75 ± 0.19 57.47 ± 0.11 •
EPOL 25.48 ± 0.17 37.98 ± 0.17 46.41 ± 0.24 52.76 ± 0.14 57.71 ± 0.17

graph200 (200 vertices, 9,950 edges)
P-POMC 47.33 ± 0.34 • 84.39 ± 0.32 • 99.53 ± 0.21 110.98 ± 0.17 120.02 ± 0.29

EPOL 47.79 ± 0.33 84.76 ± 0.35 99.73 ± 0.26 111.04 ± 0.43 120.12 ± 0.26
insecta (152 vertices, 6,716 edges)

P-POMC 41.59 ± 0.31 59.67 ± 0.39 74.47 ± 0.24 81.75 ± 0.17 87.94 ± 0.24
EPOL 41.64 ± 0.26 59.89 ± 0.33 74.60 ± 0.20 81.77 ± 0.15 88.00 ± 0.07

To evaluate the effectiveness of EPOL, we compare it with a variant called P-POMC. In P-POMC, the original problem
runs on KB parallel processors instead of solving KB independent residual problems. The best feasible solution among
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these KB processors is used as the final output of a single P-POMC run. By running P-POMC 10 times and comparing the
average results with EPOL, we observe that EPOL consistently outperforms P-POMC. Moreover, EPOL demonstrates a
significant advantage over P-POMC in certain cases, as marked in Table 10. This comparison underscores the effectiveness
of EPOL across various scenarios.

B.5. Results of EPOL-full

Although the setting that EPOL runs a subset of residual problems (KB residual problems) is sufficient to show the
superiority of the proposed EPOL as the implemented version is weaker, we conduct additional experiments comparing
EPOL (as in the previous experiments) and the full version (EPOL-full), which enumerates all residual problems. For q = 5,
the objective values (avg ± std) on maximum coverage for three datasets are summarized in Table 11. The results show that
EPOL-full consistently outperforms EPOL with significant advantages in several cases, highlighting EPOL-full’s potential
to improve performance by addressing all residual problems.

Table 11. The objective value (number of covered vertices) of maximum coverage (avg ± std) obtained by EPOL and EPOL-full when
q = 5 and the budgets B ∈ {300, 350, . . . , 500}. For each B, the larger number is bolded, and ‘•/◦’ denote that EPOL-full is
significantly outperforms EPOL by the Wilcoxon signed-rank test with confidence level 0.05.

frb-30-15-1 (450 vertices, 17,827 edges)
Budget B 300 350 400 450 500

EPOL 301.1 ± 1.0 • 329.7 ± 0.5 • 354.4 ± 0.9 375.2 ± 1.5 • 394.1 ± 1.8
EPOL-full 302.1 ± 0.8 330.9 ± 0.3 354.8 ± 0.4 377.3 ± 1.3 395.2 ± 1.1

frb-35-17-1 (595 vertices, 27,856 edges)
EPOL 319.1 ± 0.8 356.6 ± 0.9 • 389.8 ± 0.6 • 419.0 ± 0.6 445.7 ± 0.6 •

EPOL-full 319.8 ± 0.4 357.9 ± 0.3 390.6 ± 0.5 419.0 ± 0.0 446.5 ± 0.5
congress (475 vertices, 13,289 edges)

EPOL 332.8 ± 0.4 358.0 ± 0.6 • 381.2 ± 0.6 399.9 ± 0.7 415.5 ± 0.5 •
EPOL-full 333.4 ± 0.5 359.0 ± 0.6 381.4 ± 0.7 400.2 ± 1.0 416.1 ± 0.5

B.6. Objective Values vs. Runtime

The class of greedy algorithms, including GGA, Greedy+, and 1-guess Greedy+, is composed of fixed-time algorithms
with a runtime complexity of O(nKB), O(nKB) and O(n2KB), respectively. In contrast, other algorithms are anytime
algorithms, whose performance improves with increased runtime. EPOL surpasses all greedy algorithms within 12nKB

for maximum coverage and 4nKB for influence maximization, as shown in Figures 2 and 3. Moreover, EPOL eventually
converges to the best objective value in almost all cases.
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Figure 2. The average objective value (number of covered vertices) vs. runtime (i.e., number of objective evaluations) for maximum
coverage with q = 5 and budget B ∈ {300, 350, 400, 450, 500} (from top to bottom) on datasets frb-30-15-1 (left), frb35-17-1 (middle),
and congress (right). Error bars show standard deviations.
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Figure 3. The average objective value (influence spread) vs. runtime (i.e., number of objective evaluations) for influence maximization
with the probability of each edge 0.05 and budget B ∈ {100, 200, 300, 400, 500} (from top to bottom) on datasets graph100 (left),
graph200 (middle), and insecta (right). Error bars show standard deviations.
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