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Abstract

We consider the unlabeled linear regression read-
ing as Y = Π∗XB∗ + W, where Π∗,B∗ and
W represents missing (or incomplete) correspon-
dence information, signals, and additive noise, re-
spectively. Our goal is to perform data alignment
between Y and X, or equivalently, reconstruct
the correspondence information encoded by Π∗.
Based on whether signal B∗ is given a prior, we
separately propose two greedy-selection-based es-
timators, which both reach the mini-max optimal-
ity. Compared with previous works, our work (i)
supports partial recovery of the correspondence
information; and (ii) applies to a general matrix
family rather than the permutation matrices, to put
more specifically, selection matrices, where multi-
ple rows of X can correspond to the same row in
Y. Moreover, numerical experiments are provided
to corroborate our claims.

1 INTRODUCTION

Starting under the name “broken sample” problem in
1970s [DeGroot and Goel, 1976, 1980, Goel, 1975], data
alignment has received increasing attention nowadays due
to its wide spectrum of applications, which span from com-
puter vision to curve registration to natural language pro-
cessing to data privacy to linkage record [Unnikrishnan
et al., 2015, Pananjady et al., 2018, Hsu et al., 2017, Slawski
and Ben-David, 2019, Dokmanic, 2019, Zhang et al., 2019,
Slawski et al., 2020, Zhang and Li, 2020, Tsakiris et al.,
2020]. Among the numerous applications, two prominent
examples are the linkage attack and database merging.

In linkage attacks, intruders aim at the disclosure of sensi-
tive data by using public data. This can be viewed as the
inverse problem of data de-anonymization. Usually, these
attacks involve direct comparison between the sensitive data

and the public data, where their correspondence informa-
tion is formulated as an unknown selection matrix to be
reconstructed. In the task of database merging, the goal is to
merge multiple databases, which contain data of the same
identity, into one comprehensive database. In practice, these
databases may not be well aligned due to the data formatting
and data quality issues. How to reconstruct the correspon-
dence information across the databases and properly align
their data constitute a technical challenge. For more appli-
cations, we refer the interested readers to Pananjady et al.
[2018], Slawski and Ben-David [2019], Unnikrishnan et al.
[2015], Slawski et al. [2020], Zhang et al. [2022].

In this paper, we formulate the above-mentioned problem
as an unlabeled linear regression reading as

Y = Π∗XB∗ + W,

where Y ∈ Rn1×m denotes the sensing results, Π∗ ∈
{0, 1}n1×n2 is the (unknown) selection matrix, X ∈ Rn2×p

is the sensing matrix, B∗ ∈ Rp×m represents the signal of
interest, and W ∈ Rn1×m is the additive sensing noise. Our
goal is to reconstruct the correct correspondence of rows,
which are sabotaged by the unknown matrix Π∗. To start
with, we briefly review the previous works.

Related work. As mentioned before, research on regression
without correspondence has a long history that can at least
date back to 1970s dubbed “broken sample problem” [De-
Groot and Goel, 1976, 1980, Goel, 1975, Bai and Hsing,
2005]. Due to their large volume, we restrict ourselves to
recent work on this area, which begins with Unnikrishnan
et al. [2015] and a noiseless setting (W = 0) with single ob-
servation (m = 1) is adopted. Provided that entries Xij in
the sensing matrix are drawn from continuous distributions,
they establish the necessary condition n ≥ 2p for correct
correspondence reconstruction. Similar results can also be
found in Dokmanic [2019], Tsakiris et al. [2020]. Later,
Pananjady et al. [2018], Slawski and Ben-David [2019] ex-
tend the noiseless setting to a noisy setting and discover a
phase transition phenomenon when the signal-to-noise-ratio
(SNR) exceeds a certain threshold. Apart from the above
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work, there are other works focusing on the single observa-
tion model, i.e., m = 1 [Hsu et al., 2017, Haghighatshoar
and Caire, 2018, Tsakiris and Peng, 2019, Peng and Tsakiris,
2020, Zhang and Li, 2021]. Apart from the linear sensing
model, there are also some research on the generalized lin-
ear sensing relation such as Fang and Li [2022]. Since the
single observation model is not our focus, we only leave
their names without further discussion.

Then we discuss the research on the multiple observation
model, i.e., m� 1. Albeit there are some previous works,
we find the theoretical analysis first appears in Pananjady
et al. [2017], whose focus is to denoise the product Π∗XB∗.
Adopting vastly different strategies, Slawski et al. [2020],
Zhang et al. [2019], Zhang and Li [2020] later propose
three estimators for the correspondence recovery. Zhang
et al. [2019] designs the estimator to approximately com-
pute the maximum likelihood (ML) estimator. In Slawski
et al. [2020], they take the viewpoint of robustness and view
the permuted rows as outliers. The basic idea of their esti-
mator is to first detect the outliers and then reconstruct the
correspondence based on these identified outliers. The same
idea is also used in Slawski et al. [2019]. Meanwhile, Zhang
and Li [2020] tackles the problem from the perspective of
non-convex optimization. In contrast to our paper, all these
works need to reconstruct the whole selection matrix even
if only one row’s correspondence is desired. Notably, our
estimators designed for recovering one single row’s corre-
spondence can automatically yield estimators to recover the
whole selection matrix, which are completed by iterative
applications to each row. For a detailed comparison, we
defer it to Table 1 as the technical details yet to be presented
are inevitably involved.

In addition to the literature on unlabeled linear regression,
other work on graph matching, generalized linear regres-
sion without correspondence, linear assignment problem,
quadratic assignment problem are also related to ours. Since
their connections are in a rather loose manner, we only men-
tion a few of their names without further discussion [Mézard
and Parisi, 1986, 1985, Caracciolo et al., 2017, Malatesta
et al., 2019, Chertkov et al., 2010, Semerjian et al., 2020,
Koopmans and Beckmann, 1957, Umeyama, 1988].

Our contribution can be summarized as follows:

• We propose two optimal estimators for the correspon-
dence recovery with selection matrix. Compared with
the previous work focusing on the permutation ma-
trix, our estimators apply to a broader class of matrices
and do not enforce bijection between Y and Π∗XB∗.

• We first propose estimators to recover the correspondence
for one single row. In this paper, we separately consider
the oracle case, where B∗ is known, and the non-oracle
case, where B∗ is unknown. Numerical experiments sug-
gest both estimators can reliably reconstruct the corre-
spondence under certain conditions.

• We provide a theoretical guarantee of our estimators’ per-
formance. In this part, the major technical difficulty comes
from the heavy tails inherent in the non-oracle estimator.
To handle such an issue, we tailor the leave-one-out tech-
nique [Karoui et al., 2013, Karoui, 2018, Chen et al., 2020,
Sur et al., 2019]. Focusing on the high stable rank regime,
i.e., srank(B∗) � log4 n, we show that reliable corre-
spondence recovery can be guaranteed for both oracle
and non-oracle case once SNR exceeds certain positive
constants.

Notations. We denote c, c0, and c
′

as some fixed positive
constants. We write a . b if there exists some positive
constant c such that a ≤ cb. Similarly, we define a &
b. Provided a . b and b . a hold simultaneously, we
write a � b to indicate a and b are of the same order. In
addition, we denote the inner product between two vectors
(and matrices) as 〈·, ·〉. For an arbitrary vector v, we denote
its Euclidean norm as ‖v‖2.

For an arbitrary matrix M, we define its stable rank
srank(M) as |||M|||2F/|||M|||2OP, where |||·|||F and |||·|||OP denote the
Frobenius norm and operator norm, respectively, and their
definitions can be found in Horn and Johnson [1990]. For
an arbitrary row index i (1 ≤ i ≤ n), we define π(i) as the
correspondence index for i associated with the selection ma-
trix Π. For the ground-truth selection matrix Π∗, we denote
π∗(i) as the correct correspondence index for i. Moreover,
we define the signal-to-noise-ratio (SNR) as |||B∗|||2F/(mσ2),
where B∗ ∈ Rp×m denotes the signal and σ2 represents the
variance of the sensing noise.

2 PROBLEM SETTING

This section starts with a formal restatement of the problem

Y = Π∗XB∗ + W,

where Y ∈ Rn1×m denotes the sensing result, Π∗ ∈
Rn1×n2 is the (unknown) selection matrix such that Π∗ =
{0, 1}n1×n2 ,

∑
j Π∗ij = 1, X ∈ Rn2×p is the sensing

matrix with each entry being i.i.d. standard normal ran-
dom variable, B∗ ∈ Rp×m is the signal of interests, and
W ∈ Rn1×m denotes the additive sensing noise such that
its entries are i.i.d. Gaussian distributed random variables
with zero mean and σ2 variance, namely, Wij

i.i.d∼ N(0, σ2).
For the clarify of presentation, we assume n1 = n2 = n.
Notice that this condition is not enforced by the selection
matrix. In fact, our current analysis can be generalized to
the n1 6= n2 case effortlessly.

Compared with previous works [Pananjady et al., 2018, Hsu
et al., 2017, Slawski and Ben-David, 2019, Zhang et al.,
2019, Slawski et al., 2020, Zhang and Li, 2020, Zhang
et al., 2022], our work has the following two noticeable
characteristics:



Table 1: Comparison with the prior art. All results are w.r.t. the exact correspondence recovery in the non-oracle case
(B∗ is unknown). Besides, these results are presented in their best orders, which only hold in certain regimes. Notation
SNRmin, nmin, and hmax denotes the minimum required SNR, minimum sample number, and maximum allowed number of
mismatched rows, respectively. Moreover, the logarithmic term is omitted in the notation Ω̃(·) and Õ(·). The notation r(·)
denotes the rank of the corresponding matrix.

SNRmin (≥) nmin/p (≥) hmax/n (≤)

m = 1 m� 1 m = 1 m� 1 m = 1 m� 1 Partial Recover. Select. Matrix

[Pananjady et al., 2018] Ω̃(nc) Ω̃(1) Õ(1)

[Hsu et al., 2017] ∞ Ω̃(1) Õ(1)

[Slawski and Ben-David, 2019] Ω̃(nc) Ω̃(1) Õ(log−1 n)

[Zhang et al., 2019] Ω̃(n
c

srank(B∗) ) Ω̃(1) Õ
(
log−1 r(B∗)

)
[Slawski et al., 2020] Ω̃(n

c
srank(B∗) ) Ω̃(p) Õ(log−1 n) X

[Zhang and Li, 2020] Ω̃(nc) Ω̃(n
c

srank(B∗) ) Ω̃(1) Ω̃(
√
p) Õ(1) Õ(1)

Our Estimator Ω̃(n
c

srank(B∗) ) Ω̃(1) Õ(1) X X

• We can support partial correspondence recovery. In cer-
tain applications, simultaneously recovering all correspon-
dence is unnecessary. One particular example is merging
databases while only a small proportion of the correspon-
dence information is desired. While previous works such
as [Pananjady et al., 2018, Hsu et al., 2017, Slawski and
Ben-David, 2019, Zhang et al., 2019, Slawski et al., 2020,
Zhang and Li, 2020] all focus on reconstructing the whole
permutation (selection) matrix, our work is the first work
that can support partial correspondence recovery. This can
lead to significant computational savings, especially when
the sample number n is sufficiently large.

• Our estimators apply to a general family of matrices, to
put it more specifically, selection matrices, where multiple
rows in Π∗XB∗ can correspond to the same row in Y,
rather than the permutation matrices, where the correspon-
dences between Π∗XB∗ and Y are bijective. 1 The only
work focusing on the selection matrix is Slawski et al.
[2020] however it (i) only allows a limited number of
mismatched rows, (ii) requires a much larger sample size,
and (iii) is with a much higher computational cost.

A detailed comparison between our work and previous
works is put in Table 1. 2

2.1 MINI-MAX LOWER BOUND

First, we present the mini-max lower bound for the permuted
linear regression, which is a subset of our problem, as the
baseline for comparison.

1The family of permutation matrices is a subset of the selection
matrices. Compared with permutation matrices, selection matrices
(i) are not necessarily a square matrix, or equivalently, n1 6= n2;
(ii) allow multiple rows to have the same correspondence.

2Notice that an algorithm with a larger hmax covers a boarder
class of selection matrices, as more mismatched rows are allowed.

Theorem 1 (Theorem 1 in Zhang et al. [2019]). Provided
that log det

(
I + B∗>B∗/σ2

)
< logn!−2

n , we conclude

inf
Π̂

sup
Π∗

PX,W(Π̂ 6= Π∗) ≥ 1

2
, (1)

where the probability PX,W(·) is w.r.t. X and W, and the
infimum is over all possible permutation estimators Π̂.

According to the above theorem, we conclude that correct
correspondence recovery requires log det(I + B∗>B∗/σ2)
to be at least of order log n. With the relation such that
log det(I + B∗>B∗/σ2) ' srank(B∗) log(1 + SNR), we
can approximately write the SNR requirement as log(1 +

SNR) & n
srank(B∗) , or equivalently, SNR & c0n

c1
srank(B∗) − 1.

In the following context, we separately present partial corre-
spondence recovery estimators for the oracle and non-oracle
case, whose behaviors all match the mini-max lower bound
in Theorem 1.

3 ORACLE CASE ESTIMATOR

As a warm-up example, this section considers the oracle
scenario, where B∗ is given a priori. In this scenario, it is
well known that maximum likelihood (ML) estimator can
be recast as a linear assignment problem (LAP) [Kuhn,
1955, Bertsekas and Castañón, 1992]. However, we have to
solve the whole selection matrix even if we only need the
correspondence of one single row.

To handle such an issue, we modify the LAP formulation
and propose a greedy-selection-based estimator. A formal
statement is put in Algorithm 1. Then we conclude

Theorem 2. Consider the oracle case. Assume that
(i) srank(B∗) � log2 n, (ii) n ≥ 2p, and (iii) SNR ≥ c.
For an arbitrary row index i, we conclude Algorithm 1 ob-



Algorithm 1 Oracle greedy estimator for correspondence
recovery.
Input: observation Y, sensing matrix X, and matrix B∗.
Output: Reconstruct the correspondence π̂(i) as

π̂(i) = argmaxj
〈
Yi,:,B

∗>Xj,:

〉
,

where Y>i,: denotes the ith row of the matrix Y and X>j,:
denotes the jth row of the matrix X.

tains its correct correspondence, i.e., π̂(i) = π∗(i), with
probability at least 1− c0n−c1 when n is sufficiently large.

Invoking Theorem 2, we can prove that the ground-truth
selection matrix Π∗ can be correctly reconstructed once
SNR ≥ c. Comparing our estimator in Algorithm 1 with the
statistical lower bound in Theorem 1, we conclude that our
greedy-selection-based estimator almost reaches the min-
imax optimality. In addition, we can automatically obtain
an estimator for the entire selection matrix Π∗, which is to
iterative apply Algorithm 1 to each row.

Remark 3. Notice that the assumption on the stable rank is
quite common in permutation recovery literature [Slawski
et al., 2020, Zhang et al., 2019, Zhang and Li, 2020].
Roughly speaking, it is used to describe the data diver-
sity. For an arbitrary matrix B∗, we have its stable rank
srank(B∗) = rank(B∗) = min(p,m) when its energy are
uniformly distributed among all eigenvalues. When its prin-
cipal eigenvalue dominates the signal strength, in other
words, the energy of the rest eigenvalues is negligible, we
have srank(B∗) to be approximately one.

3.1 PROOF OUTLINES

Denote the correct correspondence index associated with
index i to be π∗(i). To begin with, we notice that the correct
correspondence π∗(i) is obtained provided the following
inequality holds for all indices j except π∗(i), i.e.,∥∥B∗>Xπ∗(i),:

∥∥2
2
>
〈
B∗>Xπ∗(i),:,B

∗>Xj,:

〉
+
〈
Wi,:,B

∗> (Xj,: −Xπ∗(i),:

)〉
, (2)

for all j 6= π∗(i). This inequality is a restatement of the
condition π∗(i) = argmaxj〈Yi,:,B

∗>Xj,:〉.

Then, we separately prove the following relations hold with
a high probability

• ‖B∗>Xπ∗(i),:‖2 & |||B∗|||F;

• 〈B∗>Xπ∗(i),:,B
∗>Xj,:〉 . log n

∣∣∣∣∣∣B∗B∗>∣∣∣∣∣∣F;

• 〈Wi,:,B
∗>(Xj,: −Xπ∗(i),:)〉 . σ log n|||B∗|||F.

Afterward, we complete the proof by verifying (2), which
proceeds as

|||B∗|||2F
1©
&

log n√
srank(B∗)

|||B∗|||2F + σ(log n)|||B∗|||F

2©
= |||B∗|||F|||B

∗|||OP + σ(log n)|||B∗|||F
3©
≥
∣∣∣∣∣∣B∗B∗>∣∣∣∣∣∣F + σ(log n)|||B∗|||F.

In 1©, we use the assumptions SNR ≥ c and srank(B∗)�
log2 n, in 2© we use the definition of srank(B∗), and in
3© we use the relation

∣∣∣∣∣∣B∗B∗>∣∣∣∣∣∣F ≤ |||B∗|||OP|||B∗|||F. The
technical details are left in the supplementary material.

Having presented the algorithm for the oracle case, in the
subsequent section, we will move on to the non-oracle case.

4 NON-ORACLE CASE ESTIMATOR

This section designs an estimator for the non-oracle case,
where information B∗ is unavailable. As explained in Panan-
jady et al. [2018], even for the unlabeled linear regression, 3

reconstructing the correspondence is NP-hard for a general
sensing matrix X.

To reconstruct the correspondence information in poly-
nomial time, we need to exploit the statistical properties
of X. Our design insight starts with the fact such that
EX>Y = EX>Π∗XB∗ = (n − h)B∗, where h is the
number of mismatched rows. This implies that we can ob-
tain the direction of B∗, i.e., B∗/‖B∗‖F, from the product
EX>Y. With the belief such that X>Y∗ should be close
to EX>Y∗, we would like to approximate the value of B∗

by X>Y. The proposed algorithm is summarized in Algo-
rithm 2. Numerical results show that this greedy selection
estimator can restore the correct correspondence with high
probability, even when SNR is with modest value.

Algorithm 2 Non-Oracle greedy estimator for correspon-
dence recovery.
Input: observation Y and sensing matrix X.
Output: Reconstruct the corrspondence π̂(i) as

π̂(i) = argmaxj
〈
Yi,:,Y

>XXj,:

〉
,

where Y>i,: denotes the ith row of the matrix Y and X>j,:
denotes the jth row of the matrix X.

4.1 MAIN RESULTS FOR NON-ORACLE
ESTIMATOR

Regarding its theoretical performance, we have that Algo-
rithm 2 can yield the ground-truth correspondence π∗(i)

3Π∗ is a permutation matrix rather than a selection matrix.



when SNR ≥ c in certain regime. A formal statement is
given as the following.

Theorem 4. Consider the non-oracle case. Assume that
(i) srank(B∗)� log4 n, (ii) n & p log6 n, (iii) h ≤ c0 · n,
and (iv) SNR ≥ c. Then for an arbitrary row index i, we
conclude Algorithm 2 obtains its correct correspondence,
i.e., π̂(i) = π∗(i), with probability at least 1− c0 · p−c1 −
c2 · n−c3 when n and p are sufficiently large.

Similar to the oracle case, we can design the algorithm for
the whole selection matrix recovery by iteratively applying
Algorithm 2 to each row.

Comparing with Theorem 1, we conclude Algorithm 2
reaches the minimax optimal convergence rate as the lower
bound in Theorem 1 becomes

Ω
(
n

c
srank(B∗)

)
= Ω

[
exp

(
c log n

srank(B∗)

)]
1©
= Ω(1),

where in 1© we use the assumption srank(B∗)� log4 n.

Remark 5. Notice that we do not require most rows to be
matched. In fact, we allow the maximum allowed number of
mismatched rows to be in the same order of n (optimal or-
der), i.e., hmax � n. A numerical experiment (c.f. the bottom
right of Figure 3) suggests our estimator can reconstruct the
correspondence even when half of the rows are permuted.

Comparison with prior work. In addition, we would like
to compare our results with the previous works. We put
a detailed comparison in Table 1 and briefly discuss our
advantages over Zhang and Li [2020], Slawski et al. [2020],
whose settings are of the most similarity to ours.

The most noticeable characteristic of our work is its unique
ability to perform partial correspondence recovery. More-
over, we notice certain improvements in the number of re-
quired samples n and that of maximum allowed mismatched
rows hmax. For the minimum sample number, Slawski et al.
[2020] require n ≥ Ω̃(p2) and Zhang and Li [2020] re-
quire n ≥ Ω̃(p1.5). Meanwhile, our work improves it to
Ω̃(p). Turning to the maximum allowed mismatched rows,
Slawski et al. [2020] limits it to O(n/logn), while our work
reaches the optimal order, i.e., Õ(n). In addition, we have a
slight advantage over Zhang and Li [2020] in terms of the
SNR requirement. While they require SNR & log n even
when the stable rank srank(B∗) is sufficiently large, we
reduce the requirement to SNR ≥ Ω(1).

The only loss is its more stringent requirement on
srank(B∗): we require the stable rank to satisfy
srank(B∗) � log4 n while most of the prior arts only re-
quire srank(B∗) � log n. We conjecture the stringent re-
quirement on srank(B∗) is due to the proof artifacts rather
than inherent in the estimator, which hopefully will be fixed
with a more delicate analysis.

4.2 PROOF OUTLINES

In addition, we would like to discuss the proof technique,
which is based on a modified version of the leave-one-out
technique [Karoui et al., 2013, Karoui, 2018, Chen et al.,
2020, Sur et al., 2019] and may serve independent technical
interests.

Denote matrix B̃ as (n− h)
−1

X>Π∗XB∗. The proof of
Theorem 4 lies in showing

〈B∗>Xπ∗(i),: + Wi,:, (B̃ + (n− h)−1X>W)>Xπ∗(i),:〉

≥ 〈B∗>Xπ∗(i),: + Wi,:, (B̃ + (n− h)−1X>W)>Xj,:〉.
(3)

For notational conciseness, we define

Term1 =
〈
B∗>Xπ∗(i),:,W

>X
(
Xj,: −Xπ∗(i),:

)〉
/(n− h);

Term2 =
〈
Wi,:, B̃

> (Xj,: −Xπ∗(i),:

)〉
;

Term3 = (n− h)−1
〈
Wi,:,W

>X
(
Xj,: −Xπ∗(i),:

)〉
;

Termtot =
〈
B∗>Xπ∗(i),:, B̃

> (Xπ∗(i),: −Xj,:

)〉
.

Then (3) is equivalent to Termtot ≥ Term1+Term2+Term3.
The technical challenge comes from the correlation between
B̃ and the rows of X. Take Termtot as an example. With the
definition of B̃, we conclude this term involves Gaussian
random variables of form (·)4, whose behavior are difficult
to capture. Similar problems exist in the other three terms
too.

To decouple the correlation thereof, we propose a tailored
version of the leave-one-out technique [Karoui et al., 2013,
Karoui, 2018, Chen et al., 2020, Sur et al., 2019]. Compared
with the prior works using the leave-one-out technique,
which creates independence by replacing fixed number of
rows/columns with their i.i.d. substitutes, our method is
rather adaptive and requires simultaneous replacement of
rows ranging from two to four (The specific number is
determined by the relations of i, j, π∗(i), and π∗(j)).

The analysis can be divided into the following three stages.

• Stage I. First, we create i.i.d. copies X
′

i,: ∈ Rp of
the rows in X. Then, for each row π∗i , we construct
{B̃\(π∗(i))}nπ∗(i)=1 as

B̃\(π∗(i)) = (n− h)−1
( ∑
k 6=π∗(i)
k 6=i

Xπ(k),:X
>
k,:

+
∑
k=i or
k=π∗(i)

X
′

π(k),:X
′>
k,:

)
B∗.

Easily, we can verify that B̃\(π∗(i)) is independent of the
π∗(i)th row Xπ∗(i),: as Xπ∗(i),: is not contained in the
perturbed sample B̃\(π∗(i)).



Then, we construct perturbed copies {B̃\(π∗(i),j)}π∗(i)6=j
for every possible pair (π∗(i), j). In formulae:

B̃\(π∗(i),j) = (n− h)−1
( ∑

k 6=π∗(i),j
π∗(k)6=π∗(i),j

Xπ(k),:X
>
k,:

+
∑

k=π∗(i) or k=j or
k=i or π∗(k)=j

X
′

π(k),:X
′>
k,:

)
B∗,

Same as above, we can verify that B̃\(π∗(i),j) is indepen-
dent of the rows Xπ∗(i),: and Xj,:, 1 ≤ π∗(i) 6= j ≤ n.

• Stage II. We analyze the separate behavior of Termtot,
Term1, Term2, and Term3. The difficulties incurred by
the correlations between B̃ and the rows of X is tackled
via the perturbed samples created above. To illustrate the
procedure, we consider Termtot without loss of generality.
First, we rewrite it as

Termtot =
〈
B∗>Xπ∗(i),:, B̃

>
\(π∗(i),j)

(
Xπ∗(i),: −Xj,:

)〉
︸ ︷︷ ︸

Termtot,1

+

〈
B∗>Xπ∗(i),:,

(
B̃\(π∗(i),j) − B̃

)> (
Xπ∗(i),: −Xj,:

)〉
︸ ︷︷ ︸

Termtot,2

.

For Termtot,1, we exploit the independence across the
rows in X. We first condition on the rows Xk,: (k 6=
π∗(i), j) and can view it as a random variable determined
by Xπ∗(i),: and Xj,:, which can be analyzed by the stan-
dard results such as Hanson-wright inequality [Vershynin,
2018], etc.
For Termtot,2, we notice that B̃\(π∗(i),j) only differs in
B̃ in a finite number of terms, which are all related to
Xπ∗(i),:,Xj,:. This suggests that almost all terms in the
difference (B̃\(π∗(i),j) − B̃) have been crossed out. Thus,
we analyze Termtot,2 by separately considering each non-
zero term in (B̃\(π∗(i),j) − B̃) and complete the analysis
of Termtot. For other terms, we follow a similar approach
and can show

Term1 ≤ c1σ(log n)
5/2

√
p

n
|||B∗|||F , ∆1;

Term2 ≤ c2σ(log2 n)|||B∗|||F , ∆2;

Term3 ≤ c3
[
mp(log n)2σ2

n
+ σ2(log n)2

√
mp

n

]
, ∆3;

Termtot ≥ c4|||B∗|||2F + (log2 n)(log n2p3)

√
p

n
|||B∗|||2F

+
p(log n)3/2

n
|||B∗|||2F +

(log n)|||B∗|||2F√
srank(B∗)

. (4)

• Stage III. Under the settings of Theorem 4, we complete
the proof by showing the right-hand side of Termtot in (4)

is no less than ∆1 + ∆2 + ∆3, which further leads to the
relation such that

Termtot ≥ ∆1 + ∆2 + ∆3,

holds with high probability.

Due to the space limit, we omit the technical details and
defer them to the supplementary material. In the next sec-
tion, we will present numerical experiments to verify our
theorems.

5 NUMERICAL EXPERIMENTS

This section presents the numerical results to validate our
claims. To evaluate the correspondence recovery, we adopt
the recovery rate of the whole selection matrix, namely,
P(Π̂ = Π∗), rather than that of the rows, i.e., P(π∗(i) =
π̂(i)). The underlying reason is that one single row’s corre-
spondence may still be recovered correctly even when SNR
is zero since numerous rows remain matched. However, due
to the lack of signal strength, or equivalently, small SNR,
the whole selection matrix cannot be reconstructed in such
a case. This suggests P(Π̂ = Π∗) may be a better quantity
to measure the performance.

In the following context, we separately study the impact of
signal length p, the ratio n/p between sample number and
signal length, and the number of mismatched rows h on
the correspondence recovery. Note that plots have varying
X-axis as the phase transitions happen at different points.

5.1 IMPACT OF SIGNAL LENGTH p

We separately investigate the impact of signal length on the
oracle estimator and non-oracle estimator when p increases.

Experiment setup. We set the signal length p to be
{100, 150, 200} and let n = 5p. The number of mismatched
rows h is set to be n/4 and the stable rank srank(B∗) is set
to be {0.09n, 0.12n, 0.16n, 0.2n}.

Results discussion. The numerical results are put in Fig-
ure 1, from which we observe a sharp transition of the corre-
spondence recovery once SNR exceeds a certain threshold.
Comparing the thresholds for the oracle case, we find the
thresholds for the non-oracle case are much larger.

In addition, we notice the threshold shrinks with the in-
creasing n, p, and srank(B∗). Take the oracle estimator for
example. When n increases from 500 to 1000, the corre-
sponding phase transition threshold reduces from 1 to 0.7.
A similar phenomenon also appears in the non-oracle case.
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Figure 1: Impact of length p: the number of mismatched rows is fixed as h = n/4.
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Figure 2: Impact of n/p ratio: the number of mismatched rows is fixed as h = n/4.

5.2 IMPACT OF RATIO n/p

In this subsection, we investigate the impact of the ratio n/p
on the reconstruction performance.

Experiment setup. We fix the sample number n to be
800 and vary p within {100, 200, 300}. The stable rank
srank(B∗) is set {60, 80, 100} and the number of mis-
matched rows h is fixed as n/4.

Results discussion. Corresponding numerical results are

put in Figure 2. For the oracle case, we find the ratio n/p
hardly has any impact on the reconstruction performance: in
all cases, the selection matrix can be recovered with positive
probability when SNR ≥ 0.7 and is reliably reconstructed
(with almost 100% correctness) when SNR ≥ 1.08. Mean-
while, for the non-oracle case, we can see that a lower n/p
ratio makes it harder to reconstruct the selection matrix.
For example, when n/p = 8, we have that the correct rate
becomes positive once SNR ≥ 0.9, a little larger than the
corresponding value for the oracle case. When n/p decreases
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Figure 3: Impact of mismatched rows: the sample number n is fixed as 600 while the signal length p is fixed as 100.

to n/p = 4, this value increases to 1.4. When n/p decreases
to n/p = 8/3, this value further increases to 2.5. When n/p
further decreases below 2 (not plotted), we find it impossible
to reconstruct the selection matrix even with infinite SNR,
i.e., noiseless sensing relation, which is rigorously proved
in Unnikrishnan et al. [2018].

In addition, we notice that a lower n/p ratio will put more
stringent conditions on srank(B∗). When n/p = 8, we can
reliably recover the selection matrix with srank(B∗) being
60. When n/p decreases to 8/3, we find the selection matrix
can hardly be reconstructed.

5.3 IMPACT OF MISMATCHED ROWS

This subsection studies the impact of mismatched rows.

Experiment setup. We fix the signal length p to be 100, the
sample number n to be 600, and the stable rank srank(B∗)
to be {60, 80, 100}. Then we vary the number of mis-
matched rows h to be {n/4, 3n/8, n/2}.

Results discussion. Corresponding results are shown in
Figure 3. Similar to the discussion w.r.t. the ratio n/p, in the
oracle case we find the performances are almost identical for
a different number of mismatched rows. While for the non-
oracle case, the number of mismatched rows has a negative
influence on the correspondence recovery: more mismatched
rows lead to poorer performance. When h/n = 1/4, we have
the recovery rate become positive when SNR ≥ 1.1; when
h/n = 3/8, we have this threshold value increase to 1.2; and
when h/n = 1/2, we have this threshold value further jump
to 1.5, which exhibits a similar trend when n/p decreases.

Moreover, we notice a higher h/n ratio puts more stringent
requirements on the stable rank srank(B∗) for a reliable
recovery of permutation. A similar phenomenon has also
been observed in Figure 2.

In addition, we notice the allowed number of mismatched
rows are affected by the n/p ratio: a larger n/p allows more
mismatched rows, in other words, a larger proportion hmax/n.

6 CONCLUSION

This paper considers the correspondence recovery for the
unlabeled linear regression. Depending on whether the sig-
nal B∗ is known or not, we propose separate estimators for
each case. To the best of our knowledge, these are the first
estimators that can support partial correspondence recovery,
where only a proportion of the rows’ correspondences rather
than the whole selection matrix are to be reconstructed.
Compared with the previous works on permuted linear re-
gression, our estimators apply to a broader family of matri-
ces, i.e., selection matrices rather than permutation matrices.
Moreover, we prove both estimators are mini-max optimal.
Notably, in analyzing the non-oracle estimator, we tailor the
leave-one-out technique to an adaptive “leave-multiple-out”
technique, which involves the simultaneous replacement of
multiple (un-deterministic) rows and may serve as indepen-
dent technical interests. Moreover, numerical experiments
are presented to confirm our claims.
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